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I. INTRODUCTION

With the Large Hadron Collider (LHC) beginning to yield data, these are exciting times

in particle physics. It is anticipated that the LHC will definitively answer the question of

whether supersymmetry (SUSY), the most highly sought and motivated exension of the

Standard Model to date, is present at energies as low as the TeV range. As if this were

not enough, cosmologists are on the edge of our proverbial seats as we await the results of

the Planck Satellite mission, launched nearly two years ago and scheduled to release new

precision results early next year. Both mainstream particle physics and inflationary cosmol-

ogy are simultaneously poised to undergo great strides in the near future, and inflationary

models that make use of LHC-testable ideas such as SUSY are at the bleeding edge.

One such class of models, lying at this interface between cosmology and mainstream

particle physics, is SUSY hybrid inflation [1, 2]. Current events aside, models of SUSY

hybrid inflation are well-motivated in a variety of other ways. This framework naturally

incorporates grand unified theories (GUTs) [3]; the SUSY hybrid potential for the scalar

components of the superfields constitutes a supersymmetric extension of the Higgs potential,

through which the GUT symmetry breaking is achieved. SUSY is temporarily broken during

inflation and subsequently restored at the vacuum expectation value (vev) of the system,

allowing for the usual mechanisms of SUSY breaking to be employed at low energies. A

natural extension of these models is to generalize SUSY to its local form, supergravity

(SUGRA) [4].

In a series of recent calculations, we have shown that the ‘standard’ edition of SUSY

hybrid inflation models can be brought into good agreement with the latest experimental

data from the WMAP 7-yr analysis [5] if the model is generalized to include various well-

motivated corrections to the supergravity potential [6, 7]. If suitable soft SUSY-breaking

terms are carried over from the hidden sector, only the canonical form of the Kähler potential

is needed to produce a red-tilted spectrum with a scalar spectral index ns that can lie

anywhere in the 2σ region [8–10]. If the model is extended to include non-minimal terms in

the Kähler potential [11, 12], there is also a region of parameter space where large tensor

modes are possible, with the tensor-to-scalar ratio r reaching as high as 0.03, potentially

measurable by Planck [13, 14]. One major difficulty remains, namely what to do with the

topological defects that may be copiously produced at the end of inflation (depending on
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the gauge group chosen). One option, employed in those earlier treatments, is to specialize

to a gauge group which does not result in topological defects, such as the so-called ‘flipped

SU(5)’ group (SU(5)×U(1)X). Fortunately, the main conclusions are upheld under a change

in gauge group, so this option may be exploited without detriment to the results. Another

solution is to ensure that the gauge group is broken sufficiently early during inflation so that

any cosmologically catastrophic objects are inflated away. This is the motivation behind

the ‘shifted’ class of SUSY hybrid inflation models [15]. In this paper, we will show that a

red-tilted spectrum and observable gravity waves, in keeping with the previous treatments,

can also be achieved in shifted hybrid inflation while the issue of topological defects is

automatically resolved.

The paper is organized as follows. Section II contains a brief review of shifted hybrid

models, developing the equations that describe the system as well as a synopsis of the

differences versus the standard hybrid scenario. In Section III, we employ a minimal Kähler

potential and show how this leads to a red-tilted spectrum. In Section IV, we generalize

the Kähler potential to include non-minimal contributions, and show how this leads to large

tensor modes that may be observable by Planck. Finally, Section V contains a summary

and concluding remarks.

II. REVIEW OF SHIFTED HYBRID MODELS

The simplest model of SUSY hybrid inflation is described by the superpotential [1, 2]

Wst = κS(ΦΦ−M2), (1)

where S is a gauge singlet superfield [16, 17], Φ and Φ are conjugate supermultiplets under

some gauge group G, M is the energy scale at which G breaks, and κ is a dimensionless

coupling which we take to be positive without loss of generality. If a U(1) ‘R-symmetry’

is included in the theory, Wst is the most general superpotential leaving both G and the

R-symmetry intact at the renormalizable level. We will refer to the class of models described

by Wst as ‘standard’ (SUSY) hybrid inflation. Panel (a) of Fig. 1 depicts the inflationary

scalar potential that is derived from Wst.

In the standard scenario, there is one flat direction that can support inflation (driven

by radiative corrections, and/or other contributions) in the scalar potential V (s, φ, φ) with
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(a) (b)

FIG. 1. Scalar potentials in the (a) standard and (b) shifted SUSY hybrid inflation scenarios.

Here, we use the potentials derived from the tree level, global SUSY case; additional contributions

are important, and are described in the text. Various locations of interest are marked off in the φ

direction; see Eqs. (5) and (9) for definitions of quantities in the shifted case.

s, φ, φ the scalar components of the superfields. This inflationary valley is aligned along the

s-direction, with |φ| = |φ| = 0 until the inflaton experiences a ‘waterfall’ at the critical point

|s| & M . (Note that we take |φ| = |φ| throughout, in order that the D-terms vanish.) After

reaching the waterfall point, inflation ends and the gauge group G is broken, and topological

defects may be produced as the system of fields transitions to the vev.

The ‘shifted’ (SUSY) hybrid scenario modifies Wst to include an additional non-renormal-

izable term [15] 1

Wsh = κS(ΦΦ−M2)− βS
(ΦΦ)2

M2
∗

, (2)

= κS

[
(ΦΦ−M2)− ξ

(ΦΦ)2

M2

]
, (3)

where β is a (positive) dimensionless coupling, M∗ is some cutoff scale of the theory, and

we have defined ξ ≡ βM2/κM2
∗ for convenience. The (global SUSY) scalar potential in this

model appears as

Vglobal = κ2

([
(|φ|2 −M2)− ξ

|φ|4
M2

]2
+ σ2|φ|2

[
1− 2ξ

|φ|2
M2

]2)
, (4)

where we have defined the canonically normalized inflaton field σ ≡
√
2|s|, and we have

taken the D-flat direction with arg φ + arg φ = 0. As can be seen in Panel (b) of Fig. 1,

1 If the gauged supermultiplets are in the adjoint representation, the leading order non-renormalizable term

is cubic in Φ. For a detailed analysis of shifted inflation with an SU(5) GUT, see Ref. [18].
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this potential retains the inflationary track along |φ| = 0, and also contains two additional

tracks at constant values

|φ| = ± M√
2ξ

. (5)

The shape of the potential along these tracks is very similar to that of the standard track,

and so the inflationary dynamics are expected to be much the same as in the standard

case. However, if we choose one of the tracks described by Eq. (5), the inflationary valley

is ‘shifted’ to nonzero |φ| values, and so the gauge symmetry G is broken. If enough e-

foldings of inflation take place along this shifted track, topological defects from G-breaking

will be inflated away, along with any other objects that are problematic in large densities

(e.g. primordial black holes). In our discussion of shifted hybrid models, we will assume

that inflation occurs entirely along a valley described by Eq. (5).2 In this case, we may only

have values
1

8
≤ ξ <

1

4
, (6)

in order to ensure that Vmin = 0 and that the shifted track lies lower than the standard track

(i.e. the appropriate initial conditions are easily achieved) [15]. Additionally, we will assume

that G is broken down to the Standard Model in a single stage, so that multiple periods

of inflation are not needed to handle topological defects produced by subsequent stages of

symmetry breaking.

In order to drive inflation, a slope must be given to the flat direction(s) in the potential

Vglobal above. Eq. (4) is a tree level expression, and since SUSY is broken (i.e. V > 0 due

to FS 6= 0) along this flat direction, there is a mass splitting in the supermultiplets and the

radiative corrections to the potential do not vanish entirely. Using the Coleman-Weinberg

formula [19], the 1-loop contribution may be written as [15]

∆V1-loop = κ2m4 · κ2

4π2
F (x), (7)

F (x) =
1

4

[
(x4 + 1) ln

(x4 − 1)

x4
+ 2x2 ln

x2 + 1

x2 − 1
+ 2 ln

(
2
κ2m2x2

Q2

)
− 3

]
, (8)

2 Inflation along the |φ| = 0 valley within the shifted potential occurs in very much the same way as in the

standard hybrid case, the chief difference being the value of φ at the vev. In addition, there exist a number

of interesting intermediate scenarios where inflation takes place partially along each of the standard and

shifted tracks, the details of which are enumerated in Ref. [15]; these will not concern us here.
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where Q is the renormalization scale, and we have defined the useful parametrizations

m2 ≡ M2

(
1

4ξ
− 1

)
,

x ≡ σ

m
,

which we will use throughout our analysis. Once the potential is given a slope, the inflaton

rolls toward smaller field values, until its instantaneous mass becomes tachyonic at x = 1

(σ = m). The system becomes destabilized and undergoes a ‘waterfall’ transition to the

vev. The vacuum appears at σ = 0, but in the φ direction there exist two vacua on each

side of the origin at values

|φ|2±
σ=0−−→ M2

2ξ

[
1±

√
1− 4ξ

]
. (9)

As described in Ref. [15], |φ|− appears earlier than |φ|+ as the inflaton rolls, and the system

evolves into |φ|− before |φ|+ exists as a minimum. Hence the appropriate choice of global

vev is 〈|φ|〉 = |φ|−.
In general, there exist further contributions to the potential in addition to radiative

corrections. Although we have already noted that SUSY is spontaneously broken during

inflation, we may also have contributions from explicit soft SUSY-breaking terms. We may

write the effective linear and mass-squared soft terms in the form

∆Vsoft =
1√
2
am3/2κm

3x+
1

2
M2

σm
2x2 +M2

φ

(
M2

ξ

)
, (10)

a = 2|A− 2| cos[argS + arg(A− 2)], (11)

with m3/2 ∼ 1 TeV, and where A − 2 is the complex coefficient of the linear soft term in

the Lagrangian. It has been shown that a does not vary much over the course of inflation

if arg S is initially very small [12]. We will tacitly assume that this choice has been made,

and treat a as a constant of order unity. The soft masses Mσ and Mφ can, in principle, lie

at intermediate scales; indeed, it has been shown that such a choice can lead to a favorable

reduction in ns (for M2
S < 0) [9] or to Planck-observable values of r (for M2

S > 0) [13] in

the context of the standard hybrid scenario. However, it has also been shown that these

intermediate scales are not crucial [8, 14] to either effect. It is perhaps more attractive from

a model building perspective to employ soft masses around the TeV-scale, so we will take

Mσ,Mφ ∼ m3/2.
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Finally, it is inconsistent to use global SUSY to describe physics near the Planck scale.

Rather, we should employ supergravity. The F -term SUGRA scalar potential is a function

of both the superpotential W and the Kähler potential K of a given theory, and may be

written down using the formula

VF = eK/m2

P

(
K−1

ij DziWDz∗j
W ∗ − 3m−2

P |W |2
)
, (12)

where zi ∈ {s, φ, φ, · · · }, and we have used the shorthand

Kij ≡
∂2K

∂zi∂z∗j
,

DziW ≡ ∂W

∂zi
+m−2

P

∂K

∂zi
W,

Dz∗i
W ∗ = (DziW )∗ .

We will have occasion to use both minimal (canonical) and non-minimal forms of the

Kähler potential. In general, K should be expanded3 in inverse powers of the cutoff scale

M∗

K = |S|2 + |Φ|2 + |Φ|2 + κS

4

|S|4
M2

∗

+
κΦ

4

|Φ|4
M2

∗

+
κΦ

4

|Φ|4
M2

∗

+ κSΦ
|S|2|Φ|2
M2

∗

+ κSΦ

|S|2|Φ|2
M2

∗

+ κΦΦ

|Φ|2|Φ|2
M2

∗

+
κSS

6

|S|6
M4

∗

+ · · · . (13)

However, for reasons that will become clear later, we will choose M∗ = mP in the cases

where we have need for the higher-order (i.e. cutoff suppressed) terms in K. (In the cases

where we use the minimal Kähler potential, M∗ will enter only via the definition of ξ.) Under

this assumption, the SUGRA terms in the scalar potential will be suppressed by the Planck

scale, and we will keep only the lowest order (quadratic and quartic) contributions from this

source.

Putting this all together, we may write the inflationary potential as

V = Vglobal(|φ| =
M√
2ξ

) + ∆VSUGRA +∆V1-loop +∆Vsoft,

= κ2m4

[
A+

1

2
B
(

m

mP

)2

x2 +
1

4
C
(

m

mP

)4

x4 +
κ2

4π2
F (x)

]

+
1√
2
am3/2κm

3x+
1

2
M2

σm
2x2 +M2

φ

(
M2

ξ

)
. (14)

3 Since the corrections to the Kähler potential are unknown and not directly accessible to observation, one

may alternatively absorb them into a phenomenological parameter in the potential. See Ref. [20].
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The effective coefficients A,B, C are complicated functions of the couplings κi in the Kähler

potential, and of the quantity φP ≡ |φ|/mP = (M/mP )/
√
2ξ (for explicit expressions, see

Appendix). We will find it convenient to work directly with these parameters, since many

different arrangements of the values of the κi couplings can lead to degenerate results. If

we take all the non-minimal couplings in the natural range −1 . κi . 1, we obtain the

following extremal functions:

Amax = 1 + 4φ2
P + 13φ4

P , (15)

Amin = 1− 2φ4
P , (16)

Bmax = 1 + 16φ2
P , (17)

Bmin = −1− 4φ2
P , (18)

Cmax =
19

4
, (19)

Cmin = −113

64
. (20)

The behavior of these functions is depicted in Fig. 2. Note that the vacuum potential is now

V0 = κ2m4A, so we require that A & 0. In order that perturbativity be preserved, we also

enforce |B|, |C| < A.

Having written down the potential, we may now calculate predictions for observable

quantities via the usual slow roll formulation. The slow roll parameters relevant to our

discussion are written in terms of x as

ǫ =
1

2

(mP

m

)2(V ′

V

)2

, (21)

η =
(mP

m

)2(V ′′

V

)
, (22)

where primes denote differentiation with respect to x. The slow-roll approximation corre-

sponds to ǫ, |η| ≪ 1, and the duration of inflation is parametrized in terms of the number

of e-foldings

N0 =

(
m

mP

)2 ∫ x0

xe

(
V

V ′

)
dx, (23)

where a subscript ‘0’ denotes a value taken when the pivot scale k0 = 0.002 Mpc−1 crosses

the horizon. In principle, the value xe at the end of inflation is specified by the waterfall

transition at the value xc = 1. In practice, the slow roll parameter η blows up in the limit

x → xc; inflation ends when |η| ∼ 1, which may occur very close to x = xc. It is also possible
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FIG. 2. The upper and lower bounding curves for the effective couplings A (red), B (blue), and

C (green). The solid lines signify the upper bounding function for each parameter according to

Eqs. (15)–(20), while the dashed curves represent the lower bounding function. These parameters

may be further constrained by other considerations, as explained in the text.

for the slow roll approximation to break down earlier along the inflationary trajectory, in

which case the value xe is fixed at the field value where this occurs. To leading order in

the slow roll parameters, the scalar spectral index, tensor-to-scalar ratio, and primordial

curvature perturbation appear as

ns ≃ 1− 6ǫ+ 2η, (24)

r ≃ 16ǫ, (25)

∆2
R ≃ m2

12π2m6
P

(
V 3

(V ′)2

)
. (26)

These quantities will be evaluated at the pivot scale x0, in order to compare with the

experimental measurements from WMAP7 [5].

From Eq. (14), the similarities between this shifted model and the standard hybrid sce-

nario are now manifest. Indeed, by comparing potentials, it is a straightforward matter to

transform one model into the other by a suitable redefinition of various parameters. The

most important difference is that the mass parameter m in the shifted model has taken the
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place of M in the vacuum potential, and also in specifying the location of the waterfall.

Owing to Eq. (6), we have m ≤ M , so this will tend to reduce the vacuum potential relative

to the standard case.4 On the other hand, if A is allowed to be significantly greater than

unity, we will also have an enhancement in V0. The size of Amax is limited by the size of

φP , which in turn is limited by M . But M should not be too close to the Planck scale for

reasons of consistency; if we take M . 0.1mP , we have φP . 0.2, and we see from Fig. 2

that the system is confined in a region where A ∼ 1 is forced upon us.

In addition, we pick up small changes to the contributions from radiative and soft cor-

rections. The coefficient of the radiative correction function contains an extra factor of 2

relative to the standard hybrid model. Also, the factor N corresponding to the size of the

gauge representation of φ, φ in the standard case is missing in the shifted case; this is be-

cause the gauge symmetry G is broken, and we can no longer describe fields in terms of

G-multiplets along the shifted track. Finally, the factor 2 inside the last logarithm in F (x)

is absent in the standard case, as a consequence of defining x in terms of |s| rather than

σ. The primary difference in the soft terms is that the soft mass-squared term for φ, φ is

nonzero in shifted inflation. However, since we take soft masses of order ∼ 1 TeV, we do

not expect this to have a substantial effect on the results.

In the calculations discussed in the following sections, we will make a handful of broad,

mostly general assumptions. We will take all mass scales no larger than mP , usually some-

what smaller, to ensure that series expansions remain perturbative and that quantum gravity

effects do not become important. We will also assume that all physical couplings are at most

unity; in particular, this will involve placing a manual constraint β ≤ 1, since we choose

the alternative ξ as an independent variable. Finally, it can be shown that the inflaton

mass-squared m2
inf at the vev remains positive for the full range of parameters we will use.

4 Note, however, that for successful inflation to occur, we should not see the vacuum potential deviating

too much from the values obtained in the standard hybrid scenario.
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III. SHIFTED INFLATION AND THE SPECTRAL INDEX

In the case of minimal Kähler, we have

A → 1 + 2
[
φ2
P + φ4

P

]
, (27)

B → 2φ2
P , (28)

C → 1

2
. (29)

As mentioned earlier, the cutoff M∗ only appears in the definition of ξ here, as does β.

From general considerations, we expect to have M∗ . mP and β . 1. If we fix one of these

parameters, the other may be calculated for given values of κ, M and ξ, each of which will be

varied independently. If we fix M∗ ≃ mP , it turns out that β should be large (1 . β . 100)

so that ξ does not grow too small. Then, in this version of the model, we will fix β ≃ 1,

which leads to cutoff values below the Planck scale.

With Ref. [8] as our inspiration, we choose a = −1 for the coefficient of the linear soft

term, and hold the soft masses at the TeV scale. In this case, we expect to find regions

of parameter space where the spectral index ns can be smaller than 1 in accordance with

the latest WMAP data. For comparison, choosing a = 0,+1 leads to ns & 0.985, lying just

outside the WMAP 1σ bound.

The results of the calculations for the minimal Kähler case are displayed in Panels (a)–(c)

of Fig. 3. In these plots, we fix ξ and the number of e-foldings N0 at the extremities of their

ranges (with 50 . N0 . 60) for each curve, and a family of curves can be interpolated to

sweep out the allowed region. The behavior exhibited here is indeed very similar to the

analogous results from the standard hybrid case. While there exists a sizable shift in M for

different values of ξ, recall that m is playing the same dynamical role in the shifted case as

that of M in the standard case, and so we expect such a shift.

These results are also quantitatively similar to the standard case, but some subtle shifts

and changes in curve shapes are exhibited. This can be understood by noting that additional

terms exist in the present case. Using Eqs. (27)–(29), it is clear that the values needed to

recover the standard hybrid case (i.e. A = 1, B = 0) are only produced up to some

extra Planck-suppressed contributions. In addition, there are some small differences in the

contribution coming from radiative corrections as previously noted.

Similarly to the standard hybrid case, the use of a negative soft term has enabled the

11



n
s

0.92

0.94

0.96

0.98

1

1.02

κ

10-4 10-3 10-2

ξ=0.23;N0=50

ξ=0.23;N0=60

ξ=0.125;N0=50

ξ=0.125;N0=60

r

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

ns
0.92 0.94 0.96 0.98 1 1.02

ξ=0.23;N0=50

ξ=0.23;N0=60

ξ=0.125;N0=50

ξ=0.125;N0=60

(a) (b)

M
 (

G
e
V

)

1015

1016

κ

10-4 10-3 10-2

ξ=0.23;N0=50
ξ=0.23;N0=60
ξ=0.125;N0=50
ξ=0.125;N0=60

(c)

FIG. 3. Results of our numerical calculations for the shifted hybrid inflation model with a minimal

(i.e. canonical) Kähler potential. Here, we have taken fixed values of ξ and N0 at/near the

endpoints of their ranges, and intermediate results can be interpolated between the curves. As

described in the legend for each panel, the light (dark) lines represent 50 (60) e-foldings, whereas

the line pattern specifies the fixed value of ξ.

model to achieve a red-tilted spectrum in agreement with WMAP7, but the tensor-to-scalar

ratio r is quite small (particularly in the region where ns is most favored). The existence

of tensor modes in the Cosmic Microwave Background (CMB) is currently being tested

by the Planck Satellite observatory, and can serve as a discriminatory measure between

similar models of inflation. Indeed, if a precise measurement of r is made by Planck, we will

obtain information on the energy scale of inflation, and if Planck merely sets more stringent

bounds many inflation models may be ruled out. Thus the question of whether the current

model may, under appropriate circumstances, predict large tensor modes is one worth careful
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consideration.

IV. SHIFTED INFLATION AND GRAVITY WAVES

Given the similarities to the standard hybrid inflation model already noted, we may look

to that case for an idea of what to expect in the shifted hybrid inflation model. In Refs. [13,

14], we have examined the case in which SUGRA corrections using a non-minimal Kähler

potential are included in the standard hybrid potential. In that case, two extra parameters

are included in the system versus the minimal case, and the additional freedom leads to the

possibility of large tensor modes. The preferred circumstances for the large-r regime include

a potential with a (+quadratic−quartic) structure, with a negative second derivative (which

also turns out to be favorable for producing ns < 1, as in hilltop inflation models [21, 22]).

In this case, the quartic coefficient needs to be small enough that the quadratic term still

dominates in the region where inflation can take place, so that the potential remains stable

in the regime of physical importance. We expect these properties to also be exhibited in

the shifted model; although we note that the additional freedom introduced by the non-

minimal Kähler terms will involve more than just two extra parameters, we consolidate

their contributions into A,B and C.
As in the standard hybrid scenario, we make one nontrivial assumption in order to elimi-

nate the possibility of a complication. Under certain circumstances, the potential in Eq. (14)

can contain a metastable vacuum along the inflationary track. If the inflaton becomes

trapped in such a false vacuum state, inflation can last for a very long time, ending only

if the system escapes the minimum either classically or via tunneling (either of which may

require a tremendous amount of energy). We are interested only in the situation where suc-

cessful inflation may occur, ending in oscillations about the true (SUSY) vacuum to reheat

the universe. Thus we place a constraint on the potential to ensure that no metastable vacua

appear. We do this by requiring that the potential is essentially monotonic along the entire

inflationary trajectory, i.e. between x0 and xe. In hybrid inflation models, the inflaton rolls

from large to small values, so we take the potential to be monotonically increasing (V ′ & 0).

Before delving into the full numerical calculation, it is worth pausing a moment to consider

the behavior of r at its largest values via analytical approximation. Large values of r occur

for the inflaton close to the Planck scale. It is convenient to define f ≡ σ/mP , which we
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expect to tend toward unity as r increases. Then, the polynomial terms in the potential will

dominate unless κ is quite large, and we may write an effective form of the potential as

V ≃ V0

[
1 +

1

2
B̃f 2 +

1

4
C̃f 4

]
,

where B̃ ≡ B/A, and C̃ is defined similarly. Approximating V (x0) ≈ V0 = κ2m4A in

Eqs. (21) and (22), and using these expressions in Eq. (25), we obtain

r ≃ 8f 2
[
B̃ + C̃f 2

]2
, (30)

which can be rewritten in the alternate forms

r ≃ 8f 2
[
−2C̃f 2 + η

]2
,

r ≃ 8

9
f 2
[
2B̃ + η

]2
.

These expressions are useful in predicting the interdependence between r and various pa-

rameters in the region where r is largest. For example, since we have taken V ′ & 0 during

inflation, we are led to the conclusion that C̃ ∼ C should be negative and tending toward

zero as r approaches its largest values [13]. If we desire a more useful (albeit less compact)

expression in terms of ns, for which we may employ measured values, we may substitute for

η using Eq. (24). This is easily done, but the result is less than enlightening and we will not

write it here.

We have obtained an approximate expression for (large) r, which is reasonably accurate

and useful in a variety of ways, in the regime where the radiative corrections may be reliably

suppressed. However, if κ is sufficiently large, this contribution must be taken into account.

As described in detail in Ref. [14], the radiative corrections play a critical role in placing

an upper bound on the value of r in these models. This happens indirectly via the number

of e-foldings N0; as κ increases from small values, r increases until the radiative correction

term becomes comparable to the polynomial terms in the integrand of Eq. (23), then begins

to decrease. Thus r cannot be arbitrarily large in these models. Interestingly enough, as

we will see, the upper limit on r essentially corresponds to the smallest values to which the

Planck Satellite is expected to be sensitive, and so it will be exciting to see what Planck will

have to say about the validity of these models in the near future.

We follow the same calculational techniques as those laid out in Refs. [13, 14]. We generate

random values of the new parameters A,B, C within the ranges specified by Eqs. (15)–(20),
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Fundamental Range Scale Derived Constraining range

parameter type quantity

κ [10−4, 5] log ns [0.920, 1.016]

M/mP [10−4, 10−1] log = 0.968 ± 4σ

ξ [1
8
, 1
4
) linear ∆2

R [2.21, 2.65] × 10−9

A [Amin,Amax] linear = 2.43 × 10−9 ± 2σ

B [10−6,min(Bmax,A)] log r < 1

C [max(Cmin,−A),min(Cmax,A)] linear N0 [50, 60]

a {−1, 0, 1} —

x0 [1, mP

m ] linear

TABLE I. Ranges specified for the fundamental parameters in Eq. (14), and constraints placed

manually on derived quantities. Note that a was considered at discrete values, and x0 can take on

any value between the waterfall point and the Planck scale. Central values and standard deviations

for measured quantities are in reference to the WMAP 7-year analysis [5]. It should be noted that

the constraint placed manually on r is designed only to eliminate spurious results, and is not related

to the bound given by WMAP7.

with the additional constraint that |B|, |C| < A. Given the expectations described above, we

specialize to positive values of B,5 and randomly generate logB to better examine variation

over multiple orders of magnitude. For A and C, we generate random values on a linear scale.

The ranges used to generate values for parameters in the potential are listed in Table I, and

are very similar to those used in the standard hybrid case. Recall also that we fix M∗ = mP

in these calculations; since we expect the largest values of r to occur near the Planck scale,

we make this choice of cutoff in order to better probe how large r may be in these models.

The results of our numerical calculations for the case of shifted inflation with a non-

minimal Kähler potential are displayed in Fig. 4. These plots exhibit many similarities

to the standard hybrid inflation results, but also some (largely quantitative) differences.

Panel (a) of Fig. 4 shows the region in the (ns, r) plane where successful inflation may occur

in this model. We can see that, within the allowed range, these observables are essentially

uncorrelated. This panel also serves to define our color- and symbol-coding. We have

5 From preliminary analyses, we have seen empirically that successful inflation essentially occurs only for

B > 0, even when we have allowed for both signs.
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FIG. 4. Results of our numerical calculations for the shifted hybrid inflation model with a non-

minimal Kähler potential. The color- and symbol-coding is intended to highlight various regions

of interest, as laid out in the legend of each panel.
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highlighted two regions of interest (as well as the overlap between these regions), namely

points with large r-values (& 10−4) and points within a 1σ range of the ns central value as

given by WMAP7.6

As can be seen in various panels of Fig. 4, we obtain values of the tensor-to-scalar ratio

up to r ∼ 0.02. Values of r on this order of magnitude are expected to be measurable by

Planck, in contrast to those values exhibited by the minimal model examined in Section III.

In this way, if Planck collects data with r near the edge of its sensitivity ranges, the shifted

hybrid inflation model may be made viable by the inclusion of higher order terms in the

Kähler potential.

The prediction here for the largest value of r is somewhat smaller than it was in the

standard hybrid case, as given in Refs. [13, 14]. Recall that the largest r-values occur for

field amplitudes closest to the Planck scale (f ≃ 1). In the present case, we have taken this

to mean σ ≃ mP , but in the standard hybrid scenario it is more convenient to discuss the

inflationary dynamics in terms of |s| = σ/
√
2. Thus the previous treatments used |s| ≃ mP

to define the Planck limit, which corresponds to allowing σ values up to a factor
√
2 larger

than those used here.

Panel (b) shows, to some extent, the limiting behavior on r due to the radiative correction

contribution, as described above. However, the expected decrease of r at large values of κ is

not seen, due to the absence of successful points at sufficiently large κ. As seen in Table I,

we have allowed for κ to be somewhat larger than 1, yet the numerical results yield only

κ . 0.03. This can be understood by considering the relation

κ =
β

ξ

(
M

mP

)2

. (31)

Naively, this seems to suggest that κ increases with decreasing ξ. However, some care must

be taken here. If we fix the value of M , a decrease in ξ will result in an increase in m (up to a

maximum of m = M for ξ = 1/8). For successful inflation, the vacuum potential V0 ≃ κ2m4

is roughly constant near the GUT scale, so an increase in m must in turn lead to a decrease

in κ. Thus the largest values of κ should occur for the largest values of ξ. (Indeed, this

result can be shown more rigorously by eliminating M in favor of V0 in Eq. (31), and noting

that V0 can no longer be treated as constant if ξ becomes too close to 1/4.) Then, using

6 The 1σ range referred to here has been extracted from the WMAP7 bounding curves in the (ns, r) plane.

In contrast, the values in Table I used for the initial cuts were taken from the ‘best result’ error bars

quoted in the WMAP7 Cosmological Interpretation paper [5]. See also footnote 1 of Ref. [13].
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β . 1 and M/mP . 0.1, we obtain the upper limit of κ . 0.04. Comparing to Fig. 4, we

see that this is essentially the limiting value that is exhibited in the results.

Since m varies with κ (roughly) as a power law, an upper bound on κ also leads to a lower

bound on m. The bounding value obtained from V0 ∼ constant is about m/mP & 5× 10−3.

Panel (c) of Fig. 4 shows that this value essentially holds. It turns out that these limits on κ

and m are largely responsible for the differences in the results of the present shifted hybrid

model as compared to those of the standard hybrid scenario. For example, Panel (d) depicts

the behavior of m with respect to the quadratic coefficient B. We anticipate that the model

should reduce to its global SUSY version in the limit where the SUGRA couplings vanish,

which coincides with the limit as B → 0. From Ref. [14], this behavior was exhibited quite

clearly in the standard hybrid model, where the mass parameter M tended toward the global

SUSY prediction of ∼ GUT scale in this limit. We expect that m should also tend toward

a constant value around the same scale; while we do see he beginnings of such behavior, the

point density is low due to the limiting behavior described above, and we cannot draw a

firm conclusion in the present model.

In Panel (e), we display the behavior of r with respect to B. On a log-log scale, this

variation is strikingly linear. We recall that the previous treatments of the standard hybrid

case revealed increasing behavior between r and the quadratic coefficient as well, at which

time this was attributed to the need for increased dominance over the quartic term as f

increases. In that case, though, the plot increased linearly only at the largest values of r; in

the shifted model, we see that this dependence is much sharper.

Other differences versus the standard hybrid scenario may be attributed to small differ-

ences in the definitions of such parameters as x and the coefficients of various terms in the

potential, which we have already noted. There is also a subtle change in the way the quartic

coefficient was generated; in the standard case, the fundamental couplings κS and κSS were

generated (on a log scale) and then served to specify the quartic coefficient, whereas in the

shifted model we have directly generated C (on a linear scale). In addition, the allowed

range here is somewhat more limited by the constraint |C| . A ∼ 1. The variation of this

quartic coefficient with respect to r is displayed in Panel (f) of Fig. 4.

It is worthwhile to comment on possible issues and the difficulties that were experienced

in the standard hybrid inflation model. Given the high degree of similarity between the

inflationary potentials of the standard and shifted hybrid scenarios, many of the issues
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exhibited before will persist here and may be handled in a similar way as in the standard

case. One difficulty (common to both cases) that we did not discuss in Refs. [13, 14] is the

question of how reheating proceeds into SM and MSSM fields. A coupling SHuHd can be

used to decay into higgsinos or Higgs scalars, and has also been shown to solve the MSSM

‘µ-problem’ [23]. Another possibility is to reheat via a coupling such as ΦΦNN in the

superpotential, where N is a right-handed neutrino superfield. This and the term SΦΦ give

cross terms such as sφ2ÑÑ/mP in the scalar potential. When φ attains its vev, this coupling

becomes a decay of s into right-handed sneutrinos Ñ , which in turn decay into MSSM final

states. In addition, the sneutrinos may be involved in leptogenesis [24]. While it is also true

that the gauge singlet S may couple to a multitude of hidden sectors, these couplings are

gravitationally suppressed. Thus we expect decays (and hence reheating) into SM/MSSM

fields to be dominant.

On the other hand, there is one aspect in which the shifted model has an advantage over

the standard hybrid model. As we have already noted, the motivation for employing shifted

hybrid inflation is primarily to deal with problematic topological defects. In standard SUSY

hybrid inflation, any topological defect production due to the breaking of the gauge group G

occurs at the end of inflation, when the system undergoes a waterfall transition. Depending

on the gauge group, these defects may be cosmic strings (e.g. from G = U(1)), whose density

must be sufficiently suppressed [25] to agree with observations, or monopoles (from models

such as G = SU(4)×SU(2)×SU(2) and G = SU(5)) which must essentially be inflated away.

By choosing the shifted track for the entire duration of observable inflation, we have ensured

that these objects experience the required suppression in density. Indeed, in this article, we

have shown that this issue may be resolved without a substantial change to the predictions

of observable parameters that are being measured by current satellite observatories.

V. SUMMARY

We have provided an extensive update to models of shifted supersymmetric hybrid infla-

tion, where we have included contributions from the supergravity and soft SUSY-breaking

sectors in addition to the usual radiative corrections. If one of the relevant soft terms is

negative, a red-tilted spectrum with ns spanning the WMAP7 2σ range may be obtained

with the use of the canonical Kähler potential. If higher order corrections are included in
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the Kähler potential, the possibility of a red-tilted spectrum persists, and the tensor modes

can attain values which are substantially larger. Indeed, the tensor-to-scalar ratio in this

version of the model may reach values as large as r ≃ 0.02, which is potentially observable by

the Planck Satellite. In contrast to the standard hybrid scenario, the shifted model ensures

that any topological defects produced in the breaking of the gauge symmetry are inflated

away. It should be interesting to extend our discussion to other inflationary scenarios, such

as smooth hybrid inflation [6, 12, 26] and warm inflation [27] models.
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Appendix: Functional Forms of A,B, C

Before writing down the expressions for A,B, C, it is convenient to define some auxiliary

functions of the couplings in the Kähler potential:

c0 = 1− 1

2
(κSΦ + κSΦ),

c1 = 1 +
1

8

[
4κ2

SΦ − κSΦΦ − 4κSΦΦ + 8κSΦ(−1 + κSΦ)

+4(−2 + κSΦ)κSΦ − κSΦΦ + κΦ + 4κΦΦ + κΦ] ,

c2 = 1 +
1

2
[−κSSΦ − κSSΦ + (−2 + κSΦ)κSΦ + (−2 + κSΦ)κSΦ

+2κS(−1 + κSΦ + κSΦ)] .

Notice that each of these reduces to 1 in the case of minimal Kähler. We may also write the

function

γS = 1− 7

2
κS + 2κ2

S − 3κSS,

which is the same parameter that appears in the quartic coefficient of the standard hybrid

inflation model, and also reduces to 1 for minimal Kähler. In the case of non-minimal Kähler
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with couplings −1 . κi . 1, we obtain the ranges

0 .c0. 2,

−1 .c1.
13

2
, (A.1)

−2 .c2. 8,

−113

32
.γS.
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2
.

This range for the κi couplings is somewhat more restrictive than needed; for perturbativity,

we must only have |κi| . O(1), and there is some ambiguity involved with how the combi-

natoric factors are written down in the Kähler potential. Looking slightly ahead, it will be

most convenient if we are able to treat c0, c1, c2 and γS as independently varying parameters,

so that the quantities A,B, C may be varied independently. From the definitions of these ci’s

above, one can readily verify that this is not quite the case within the specified ranges; there

exist some interdependencies via the underlying couplings, which lead to some regions of the

(c0, c1, c2) being impossible to access. However, relaxing to somewhat larger values of the

|κi|’s (but still order 1) has the effect of c0, c1, c2 becoming essentially independent within

their ranges in Eqs. (A.1). Based on these arguments, and for concreteness and simplicity,

we will take these ranges for c0, c1, c2, and assume that they may vary independently within

these ranges.

Now, we defineA,B, and C as the coefficients of the terms constant, quadratic, and quartic

(respectively) in |s|/mP in the normalized potential V/κ2m4. These quantities appear in

the form

A = 1 + 2c0φ
2
P + 2c1φ

4
P ,

B = −κS + 2c2φ
2
P ,

C =
γS
2
.

Again, we take these parameters as independent of one another (although this assumption

only approximately holds, to within factors of order unity), which makes the numerical

calculations more tractable. Using these expressions with the ranges in Eqs. (A.1), the
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extremal functions in Eqs. (15)–(20) can easily be verified.
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