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Abstract

We explore the possibility that the dark matter is a condensate of a very light vector
boson. Such a condensate could be produced during inflation, provided the vector mass
arises via the Stueckelberg mechanism. We derive bounds on the kinetic mixing of the
dark matter boson with the photon, and point out several potential signatures of this
model.

1 Introduction

In the past decades there has been mounting evidence that approximately 20% of the energy
density in the universe is nonbaryonic, pressureless, and very weakly interacting. Structure
formation, baryon acoustic oscillations, galactic rotational curves, the Bullet cluster – all of
these theories or observations point towards nonbaryonic invisible stuff, with the same equa-
tion of state as nonrelativistic matter. Unfortunately, there is no compelling experimental
evidence that dark matter has any nongravitational interaction with the standard model.
At present there are two popular large classes of dark matter theories: Axions and Weakly
Interacting Massive Particles. Both are well motivated and potentially detectable using spe-
cific techniques. It is however possible that neither is chosen by nature. Amongst some
of the less canonical candidates lie several variants of light massive vector particles [1–3].
Quite a few authors have already considered some of the consequences of the existence of
such particles [3–8]. However, the conclusion of these authors is that it is difficult to obtain
sufficiently cold dark matter from a light vector particle.

We propose a variation that allows us to generate an extremely cold light vector com-
ponent of the Universe, with a pressureless equation of state. We make essential use of the
Stueckelberg mechanism for generating the vector mass [9, 10]. This theory is economical
and renormalizable. It is easy to populate the Universe with this particle: like the axion [11],
during inflation, the expectation value of a light boson fluctuates. Immediately after infla-
tion the value of the field in our horizon is a randomly selected (or perhaps anthropically
selected [12–14]) initial condition. After inflation, when the Hubble constant is of order of
the boson mass, the field begins to oscillate. This oscillating field may the thought of as a
Universe-sized Bose-Einstein condensate, as described in section 3. Such a particle is allowed
to kinetically mix with the photon via a renormalizable interaction. Therefore, at some level,
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it presumably does mix, although no lower bound on the mixing parameter is required for
the model to work. In section 5 we find the upper bounds on the kinetic mixing parameter
such that the Early Universe neither thermalizes nor evaporates this condensate. We also
ensure that the vector boson lifetime is sufficiently long, and consider constraints on the
coupling from possible apparent Lorentz violating effects.

2 A Model of Light Vector Dark Matter

Our massive vector will be represented by φµ in a Lagrangian of the form:

−L =
1

4
(F µνFµν + φµνφµν + 2χφµνFµν) +

M2

2
φµφ

µ + JµA
µ (2.1)

where Aµ and F µν represent the field strength of ordinary photon, Jµ is the ordinary charged
current and φµν = ∂µφν − ∂νφµ. Applying a non-unitary transformation (A→ A− χφ and
φ → φ +O(χ2)) we can redefine our fields in terms of the mass eigenstates called massless
photon and heavy photon:

−L =
1

4
(F µνFµν + φµνφµν) +

M2

2
φµφ

µ + Jµ(Aµ − χφµ) (2.2)

By rotating (Ã = A − χφ and φ̃ = φ + χA) we can reach the flavor eigenstates, called
interacting and sterile photon. These two mix through their mass term:

−L =
1

4

(
F̃ µνF̃µν + φ̃µνφ̃µν

)
+
M2

2
(φ̃µ − χÃµ)(φ̃µ − χÃµ) + JµÃ

µ (2.3)

Unless otherwise stated, we will use the mass eigenstate basis1. In this basis, the heavy
photon couples to the electromagnetic current with the coupling constant scaled by e→ χe.

Note that the model has 2 free parameters: M and χ. Fundamental theory gives us little
guidance for their values. The theory is technically natural for any values of M and χ, in the
sense that for a cutoff of order the Planck scale, the renormalized values are of similar size
to the bare values. If we assume that the U(1) of the standard model is grand-unified into a
semi-simple or simple group, then χ can only be induced via loop corrections. In this case,
if the mass of the particles in the loops mC is below the grand unification scale ΛGUT , the
natural size of χ is of order (g2/(16π2))n, where n is the number of loops required to induce
the kinetic mixing, and g is the relevant combination of coupling constants in the loops. We
will see that for φ to be viable dark matter, χ has to be tiny, less than 10−7 over the entire
mass range, so for g ∼ 1, n should be greater than or equal to about 3. If the particles in
the loops are heavier than the grand unification scale, there is an additional suppression of
at least (ΛGUT/mC)2.

1For M = 0, we could work in a basis where one state is completely decoupled. However, in the light
photon dark matter model, the number density is inversely proportional to M so a smooth M → 0 limit
does not exist.

2



3 Misalignment Mechanism for Vector Dark Matter

genesis during Inflation

The misalignment mechanism for producing a boson condensate has been considered in
connection with the axion [11, 15–18] and various other light scalar fields such as moduli.
Spatially varying modes of a bosonic field will be smoothed by the expansion of the universe.
However the zero-momentum component of the scalar field A in the FRW background has
the equation of motion:

Ä+ 3H(t)Ȧ+m2A = 0 (3.1)

which is reminiscent of harmonic oscillator, with a time dependent damping term H(t). In
the early Universe, H(t)� m, the scalar is effectively massless and its Compton wavelength
does not fit into the horizon. The field is stuck: it does not go through a single oscillation
and therefore we observe no particles. The value of the field is assumed to take on some
random nonzero value, because when the mass term is negligible there is no reason to prefer
a field value of φµ = 0. An episode of inflation will generally produce a spatially uniform
field, but for m � H in any causally connected patch of the universe the mean value of
the field takes on some random, non zero value. After inflation, the Hubble constant begins
to decrease. As soon as the discriminant 9H2 − 4m2 becomes negative, the field A begins
to oscillate and we can quantize the different modes and call them particles. Since, up to
the small perturbations in the temperature, H(η) is everywhere the same, the transition
happens everywhere in the Universe at the same time (in the rest frame of A). We are left
an energy density which may be thought of as a coherent state of a macroscopic number
of particles. The particles are extremely cold and nonrelativistic, whatever their mass. An
adiabatic perturbation spectrum arising from the fluctuations of the inflaton field [18,19] will
imprint adiabatic spatial variations on the density of the scalar particles, as is needed to fit
the WMAP data. On large distance scales compared with the particle Compton wavelength
1/m the dynamics of gravitational structure formation is identical to that for any weakly
interacting massive particle.

Note that inflation will produce isocurvature perturbations arising from fluctuations of
the scalar field A. Such perturbations are highly constrained, and will place an m dependent
upper bound on the inflation scale [11,13,18,20–24] for this scenario.

We can show that the same scenario applies to a light massive vector in a FRW Universe.
As shown in the appendix, the equation of motion for such a vector is:

−∂ν
(
φµν
√
−g
)

= −M2φµ
√
−g (3.2)

As inflation blows up a small patch of space, we can assume the dark photon is uniformly
distributed and picks a particular polarization. This means that in the Cosmic frame ∂iφ

µ =
0, and the time component of (3.2) implies φ0 = 0 as long as M 6= 0. The spatial component
of (3.2) satisfies:

φ̈i + 3Hφ̇i +M2φi = 0 (3.3)

We see that each spatial component of the vector satisfies the same equation of motion as
the scalar A in the previous example and so has the same dynamics. After entering the
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lightly damped oscillation regime the vector behaves just like dust with d(ρa3)/dt = 0 where
ρ = 〈M2φ2〉. Taking the upper bound of φ = mpl when M ∼ H we can see that the mass of
φµ should satisfy M ≥ Ω2

DMH0~ = 6.6× 10−35eV. This mass corresponds to a wavelength of
about 1011pc. This lower bound on the mass is weaker than the one implied by the existence
of compact galaxies [25] with L ∼ 1 kpc and MCG ∼ 2 × 1011M�. Requiring that the
Compton wavelength of the dark matter is low enough to allow structure formation on the
kpc scale gives a sharper bound on the lowest mass:

1 kpc <
~

∆p
=

~
Mvesc

⇒ M ≥ 1.67× 10−24 eV (3.4)

The amount of dark matter produced by this mechanism becomes simply a randomly
chosen initial condition for the value of the field in our patch of the universe. In other
regions of the universe, which are beyond our current horizon, the dark matter abundance
is different. In ref. [14] it was shown, that for an axion or similar dark matter condensate
produced during inflation, assuming other parameters do not vary, the regions of universe
with dark matter abundance of order the abundance in our observed universe are the most
highly correlated with physical features of our universe that seem favorable for existence of
observers, allowing for an “anthropic” explanation of the dark matter density.

4 Stueckelberg versus the Higgs mechanism

The vector mass M2φµφµ is not manifestly gauge invariant. In the Standard Model of particle
physics, all massive vector particles acquire their mass due to a Higgs mechanism. However,
if the φ were to get its mass from the Higgs mechanism, the inflationary misalignment
mechanism will not work to produce a condensate. Assuming the Higgs Lagrangian is:

L = [(∂µ + igφµ)ϕ]2 + λ(ϕ2 −m2/(2λ))2 (4.1)

the mass term for φ is M2φ2 = g2m2φ2/(2λ), however, the symmetry breaking happens
around T 2 ∼ m2/g2, which implies that the φ is massless above this temperature. Therefore,
in order to make sure that there exists a time when M ≤ H(T ) while φ is not massless, we
need to satisfy:

1 ≤ H/M =
T 2

Mmpl

=
m2

Mg2mpl

=
2λM

g4mpl

(4.2)

Therefore we need:
M

mpl

≥ g4

2λ
(4.3)

We can look at the Z boson to illustrate this condition: the right hand side is of the order
2g4v2/m2

h ∼ 10−3 even for a heavy Higgs (500 GeV) and so a condensate of W and Z bosons
could not have been created by a misalignment mechanism. However, one could imagine
taking the limit in which M2 = g2v2 = g2m2/2λ is fixed, but both mh →∞ and λ→∞. In
this case the right hand side of (4.3) can be made arbitrarily small and the vector retains its
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mass for arbitrarily high temperature. The limit mh →∞ can be handled in a better way:
parametrize the Higgs in polar coordinates ϕ = (v + h)eiθ/v and integrate out the heavy h.
The effective Lagrangian of the light degrees of freedom takes the form:

L = −1

4
F 2 − 1

2
(MAµ + ∂µθ)2 (4.4)

which is identical to the Stueckelberg Lagrangian [9,10], with θ filling the role of the Stueck-
elberg scalar field which fixes the correct number of degrees of freedom for a massive vector.
This Lagrangian is still invariant under:

∆λA = A+ ∂λ

∆λθ = θ −Mλ (4.5)

A redefinition φµ = Aµ + ∂µθ leads to F µν = φµν = ∂µφν − ∂νφµ and gives us a massive
vector described by:

LS = −1

4
φµνφµν −

M2

2
φµφµ (4.6)

Naturally, this Lagrangian is still invariant under ∆λ, although it is not invariant under the
naive gauge transformation φµ → φµ + ∂µλ. Unlike the nonabelian case, for a U(1) gauge
theory, the Higgs boson is not needed to unitarize the scattering of the longitudinal mode of
a massive vector boson, and is unnecessary for renormalizability.

5 Bounds

5.1 Early Universe - Compton Evaporation

In order to be a successful dark matter candidate, the dark photon has to be a stable particle
both in vacuum and in the dense, ionized early Universe. For light φ bosons, we need to
ensure that the dark photon population does not get thermalized, otherwise it would become
ultra relativistic and fail to be a good dark matter candidate. As with photons and plasmas,
the main process for thermalization is the Compton-like scattering process: φe± → φe±.
However, this process will be suppressed by a factor of χ2 with respect to two other processes:
φe± ↔ γe±. We will call the right going process Compton evaporation and the left going
Inverse Compton evaporation. Therefore in order to ensure there are enough dark photons
left after interaction with plasma, we need to require that Compton evaporation rate Γ is
smaller than the expansion rate of the universe H(T ). Such condition will also imply that
the thermalization rate from Compton-like scattering will be small and we will be left with
enough cold dark matter to populate our Universe. In order to investigate this bound we
need to know the product of the velocity and cross-section vσ(M, p) as a function of the dark
photon mass M and electron three momentum p, which can be re-expressed for M � me:

vσ(M, p) =
8α2χ2π(3m2 + 2p2)

9m2(m2 + p2)
+O(M) (5.1)
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The width of the dark photon in plasma is then given by the thermal average over the
electron momentum density distribution for a given temperature of the Universe. We would
like this width to be smaller than the characteristic expansion rate of the Universe at given
temperature:

H(T ) > Γ(T ) =

∫
dp3σ(M, p)v(p)n(p, T, µ(T )) (5.2)

Where we have used the exact σ(M, p), not the approximate expression (5.1), n(p, T, µ) is
the Fermi-Dirac distribution with chemical potential µ. We have chosen µ = 0 for T & me

and after T drops below me it was picked to be consistent with today’s electron co-moving
density. Given that the early Universe is growing less and less dense, the strongest bound
on χ is in effect at the earliest time the dark photon is present, that is at the time when
the misalignment mechanism kicks in at M ∼ H. This guarantees that if the dark photon
survives the first characteristic time period, then it will not evaporate anymore during the
subsequent time. The condition H ∼ Γ does not guarantee this, but is a lower bound
on such survival. We find it is unnecessary to consider other particles than the electron,
since the contribution of all other charged particles with mass mi and charge qi will be
suppressed by a factor gi(me/mi)

2(qi/qe)
4 which together with their suppressed thermal

momentum distributions will make their contribution small. Likewise, it is unnecessary to
consider other evaporation processes such as φγ → γγ since they become important for dark
photon mass of order M = (mplm

2
e)

1/3 ∼ 1013 eV - well above the range we consider in this
paper. The bound imposed by Compton evaporation is plotted in Figure 2 and labeled Early
Universe. We would like to point out two features. When the Universe reaches temperatures
of order T ∼ 0.1me, its free charge density significantly drops and the evaporation process
becomes much less effective. This temperature marks the generation of dark photon with
mass M ∼ T 2/mpl ∼ 10−18 eV, hence the sharp dip in the bound on χ in this region. On
the other hand, since the cross-section starts dropping off when

√
s ∼ m2

e/M and
√
s ∼ T ,

we can estimate a change in the slope of the bound around M ∼ (m4
e/mpl)

1/3 which agrees
with the observed dip at M ∼ 10−2 eV.

5.2 Decays

Apart from Compton evaporation, we can consider pure vacuum decay processes, which
become significant once M > me or M > MW . Requiring that the dark photon is stable on
cosmological timescales requires that

∑
Γi < H0:

Process Width Notes

φ→ l+l− Γ1 = χ2α
M2+2m2

l

2M2

√
M2 − 4m2

l M > 2ml, Exact

φ→ νν̄ Γ2 = χ2α3

16π

(
M
MW

)4√
M2 − 4m2

ν Estimate of the loop process

φ→ γγγ Γ3 = 17χ2α4M
11664000π3

(
M
me

)8
See [4], valid for M < me
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The bounds imposed by these decays are plotted in Figure 2.

5.3 Earth Detection

Although φµ does not satisfy Maxwell’s equations, its coupling to ordinary matter is the
same as that of the photon Aµ. Therefore, a nonzero φµ will appear as a combination of
electric and magnetic fields with strength suppressed by a factor of χ. Such fields will be
detectable in various precision experiments and it is our desire to quantify the expected
phenomena as accurately as possible.

By our hypothesis, in the dark matter rest frame, φµ = δµ3A3 cos(Mt) and so it will
mimic an electric field E3 = χA3M sin(Mt). Given that the local density of dark matter is
T00 = M2A2

3/2 = 0.3 GeV/cm3, we can infer that the amplitude of the electric field will be

E =
√

2× 0.3 GeV/cm3/ε0 ≈ 3300χ V/m (5.3)

However, there is no reason to believe that the dark matter rest frame is identical with
the Earth frame and hence we need to perform a Lorentz boost to the right frame. Given
~φ = (φx, φy, φz) cos(Mt) and ~v - the velocity with respect to the dark matter rest frame, the
B-fields in the Earth frame will be:

~B = ~∇× L~v(~φ) = γM~v × ~φ cos(γMt) (5.4)

We should note, that at v = 0.001c, γ = 1 + O (10−6), and that |Mφ| is the magnitude of

electric field in the dark matter rest frame. Therefore the B-field is simply ~B = ~v × ~E -
precisely as expected.

5.3.1 Attenuation

If these fields are to be detected by Earth based experiments we need to check that the dark
photon field is not screened by the atmosphere or by the many shields that experimental
physicists put up in order to protect their experiments from stray electric and magnetic
fields. In materials, bound electrons will only contribute to shielding if M falls close to
some energy gap of a kinematically allowed transition, however, even such transitions will
be suppressed by factor of χ2. On the other hand, free electrons in metals will allow a
continuum of transitions, that would lead to Compton evaporation effects. Therefore, we
will treat the interaction of dark photons with materials as a wall penetration by weakly
interacting particles, similarly to what we have done with the early Universe. The change
in dark photon density will be proportional to:

a = exp

(
−
∫
dx n(x)σ(M, v)

)
(5.5)

where n(x) is the free electron density of the shielding material and σ(M,Mv) is the Comp-
ton Evaporation cross-section and v = 0.001c is the assumed velocity with respect to the
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local dark matter flow. Given that the respective average densities of free electrons in the
ionosphere and copper are nat ∼ 3× 1011 m−3 and nCu ∼ 1029 m−3, it is clear that a whole
column of 1000 km of atmosphere corresponds to a layer of metal about 10−12 m thick, which
is much less than any normal electric shielding of earthborne experiments hence we can dis-
regard this contribution . Moreover, the early Universe bound on χ gives an attenuation
length longer than 1 meter in a copper plate and once combined with the bounds from the
next section the attenuation length is larger than 1010 m.

5.3.2 Atomic Physics

The Stark effect associated with the background dark electric field would induce a shift
in the ground state energy of a hydrogen-like atom of order ∆ES = −me(3a

2
0eEd/2~)2 ∼

χ2 × 10−15 eV which is 5 orders of magnitude smaller than the current limits [26], even if
χ = 1. The Zeeman effect would produce a shift of ∆EZ = 5χ× 10−13 eV. This is still too
small to register. The advantage of the Zeeman effect is that it is first order in the fields,
hence in χ, which makes up for the fact that the magnetic field is suppressed by a factor of
v/c. However, effects linear in fields go as cos(Mt), implying a zero time average, and so
a search without prior knowledge of M would be time consuming. However, in the region
of small mass (M . 10−22 eV ∼ 1 year) the slow oscillations imply no need for averaging.
In this regime the slowly changing background electric field would mimic a slow drift in α.
As an example we can take a system comprised of two clocks: one driven by two photon
transition from 1s → 2s in hydrogen and the other by the hyperfine transition in cesium.
The major correction to the hydrogen clock rate comes as a Stark effect with a relative shift
in the frequency that goes as

δω

ω
=

∆E1s −∆E2s

E1s − E2s

= − ∆E2s

E1s − E2s

=
∑
n≥2

|〈2, 0, 0 |eEz|n, 1, 0〉|2

(E200 − En10)(E200 − E100)
(5.6)

Notice that the n = 2 term dominates the sum since the degeneracy of the 2s and 2p states
is broken by the lamb shift with ∆E(2p− 2s) ∼ 10−6 eV, whereas the rest is on the order of
1 eV. Therefore:

δωH

ωH

=
0.55(χeEa0)2

(∆Elamb)(E1s→2s)
∼ 4χ2 × 10−10 (5.7)

Note that the Zeeman shift is identical for the 1s and 2s orbitals and so there is no contri-
bution linear in χ.

In cesium the Stark shift does not distinguish the states, but the Zeeman effect contributes
by splitting the hyperfine triplet into three distinct levels, and induces a change in the clock
frequency on the order:

δωCs

ωCs

= − µeB

∆Ehyp
∼ 1.5χ× 10−8 (5.8)

Clearly the cesium clock effect dominates for small χ. Therefore, as E oscillates very slowly,
the experiment sees a drift in δω/ω which could be (naively) interpreted as drift in α of the
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order:
α̇

α
= M

δω

2ω
∼ 1.5χ× 10−8

(
M

10−22 eV

)
year−1 (5.9)

However, if the frequency of the oscillations is comparable to the time scales of an experiment,
such as sampling rate and averaging times of individual data points, the sensitivity becomes
more complicated. We pick [27] as a model example to illustrate our point. Fisher et al.
made measurements in June 1999 and February 2003, which, given the spacing between
these two dates can be interpretted as two measurements separated by 44 months (T = 1320
days), each averaged over roughly one month (t0 = 30 days). Therefore, the experiment
should perceive a change in the value of the field equal to:

δφ(ϕ0) =
φ0

t0

(∫ t=T

t=0

dt cos [M(t+ T )/h+ ϕ0]−
∫ t=t0

t=0

dt cos [Mt/h+ ϕ0]

)
, (5.10)

where ϕ0 is an unknown phase of the field. Performing the integral and factorizing gives us:

δφ(ϕ0) =
4φ0

Mt0
sin

(
MT

2

)
sin

(
Mt0

2

)
sin

(
ϕ0 +

M(t0 + T )

2

)
(5.11)

This means that for certain finetuned phases ϕ0 ∼ −M(t0 + T )/2 the experiment could see
nothing by simply being unlucky. However, we know that 95% of time |sin (ϕ0 +M(t0 + T )/2)| ≥
sin (0.05/4× 2π) = 0.0785 and so 95% of time δφ is larger than:

|δφ| ≥
∣∣∣∣ 4φ0

Mt0
sin

(
MT

2

)
sin

(
Mt0

2

)
sin

(
5π

200

)∣∣∣∣ (5.12)

We use this expression to put a 95% confidence bound on χ and plot it as α-drift in
Figure 2. Note that in the event that the sampling frequency of the expriment is a harmonic
of the the oscillation frequency of the field, the experiment will also become insensitive to
such a drift. This would show up as an oscillatory behavior in the bound on χ and we have
replaced the region where these oscillations become too narrow to display with a dashed line
in Figure 2.

We would like to conclude the analysis of the fine structure constant drift bounds with
two notes. First, as the cesium contribution dominates and the exact interaction of different
atomic levels in cesium is beyond the scope of this paper, we would like to shelve this bound
as tentative and in need of focused treatment. Second, presence of dark matter in form of
dark photon only mimics a drift in α and could be potentially resolved from an actual drift
if one were to measure different energy splittings which depend on different powers of α.

5.4 Adiabatic Conversion

In the flavor basis, the dark and ordinary photon mix through the off-diagonal mass terms.
In a thermal environment the mass matrix takes the form:

M2 =
1

2

(
mγ(x)2 +O(χ2) −χM2

−χM2 M2 +O(χ2)

)
(5.13)
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where m2
γ(x, t) = e2ne(x, t)/me is the plasma mass, which may depend on time or position.

Should the plasma mass be slowly varying then there could be an adiabatic conversion
between different states. Mirizzi et al. explore this effect in the context of changing electron
density in the Universe as it expands and distorts the CMB through an excess of converted
dark photons [5], and they offer a very useful comparison of this process to the neutrino
MSW effect. We observe that this process could be much more severe in the environment of
ionized gas that forms a significant portion of a typical cluster of galaxies.

Figure 1 shows the energy of an eigenstate of the mass matrix as a function of radial
distance of a particle from the center of the cluster. As an example we will follow a dark
photon that is infalling into a cluster. If the dark photon infalls adiabatically, that is slowly
enough, then it stays in the same eigenstate of the mass matrix which in fact contains more
of the original photon state after it crosses the point where mγ ∼ M . Therefore, the dark
photon is converted into an ordinary photon, which thermalizes very quickly (the cluster gas
temperatures are in the range 106 − 107 K, [28]). Photons generate pressure and as a result
the cluster loses its gravitational glue holding it together. Since we do observe clusters of
ionized gas, it is imperative that the section of parameter space is excluded.

What does slow enough mean? In order to cross from one level to another we require
that the characteristic time associated with the change in the system needs to be on the
order of the gap between the energy levels. The rate of change of photon plasma mass close
to the point where the energy gap is minimal is:

t−1|mγ(x)=M =
1

mγ(x)

dmγ(x)

dt

∣∣∣∣
mγ(x)=M

=
v

mγ(x)

dmγ(x)

dx

∣∣∣∣
mγ(x)=M

=
v

2

n′(x)

n(x)

∣∣∣∣
mγ(x)=M

(5.14)

On the other hand the mass gap between the states is minimal when M = mγ and turns out
to be:

∆E|M=mγ = χM (5.15)

We take a free electron density curve from [29], replotted in 1, to determine the portion of
(χ,M) parameter space in which this infall turns out to be adiabatic, taking the velocity
of infall to be the escape velocity v(r) =

√
GMc/r. We note that this mechanism will only

work for a mass range of 10−13 eV - 10−11 eV, the lower limit coming from the density of
voids and the upper from the highest densities inside clusters. We have plotted the resulting
region in Figure 2 and marked it AdC.

5.5 Breaking Lorentz and Rotational Invariance

The existence of dark matter necessarily causes apparent Lorentz violation because it defines
a preferred frame - its own rest frame. The effects of this frame can be measured through
its coupling to the standard model particles. However, even if those couplings were zero, in
our case this corresponds to χ = 0, there would be a gravitational interaction. Even in the
dark matter rest frame there is additional Lorentz and rotational symmetry violation due to
the polarization of the dark photon.
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Moreover, we can see the gravitational violation of Lorentz and rotational symmetry
by looking at the stress-energy tensor: assuming the polarization points in the z-direction
Ai = δi3A cos(Mt), we get:

Tµν =
M2A2

2


−1

cos(2Mt)
cos(2Mt)

− cos(2Mt)

 (5.16)

The time average of Tµν corresponds to pressureless dust, just as we concluded from 3.3.
Moreover, at late times the frequency of oscillations is shorter than the expansion rate of the
Universe. The field begins to oscillate when M ∼ H, and at this time the oscillations cannot
be averaged over a period and the dark matter contribution to the Stress-Energy tensor is not
rotationally invariant. However, at that early time radiation dominates the energy density
of the Universe and dark matter is a minor perturbation, therefore the lack of rotational
symmetry of Tµν does not produce any significant effect on cosmological evolution. We can
find no observable consequence of the rotational asymmetry of the dark matter contribution
to Tµν .

6 Summary

A nonrelativistic condensate of light vector particles could be produced during inflation and
is a viable candidate for the dark matter component of the Universe. For ultralight vec-
tor particles, a small kinetic mixing term with the photon could allow this particle to be
detectable. After considering the constraints on the mixing parameter from cosmology and
astrophysics, we find that there are some regions of parameter space which could give unusual
laboratory signatures of dark matter, such as apparent time dependent shifts in electromag-
netic properties of matter and dark matter conversion to visible photons in plasmas. This
model offers a unique experimental signature - weak background electric and magnetic fields
that cannot be screened.
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Appendix

A Equations of motion in the Early Universe

The kinetic term in the Lagrangian for a massive vector L = φµνφµν/4 +M2φµφµ/2, can be
simplified to:

1

4
φµνφ

µν =
1

4
(∂µφν − ∂νφµ)(∂µφν − ∂νφµ)

=
1

2
(∂µφν∂

µφν − ∂µφν∂νAµ)

=
1

2
(∂αφβ)(∂γAδ)(gαγgβδ − gαδgβγ)

δL
δ(∂αφβ)

= (∂γφδ)(gαγgβδ − gαδgβγ) = φαβ

Therefore, the equation of motion in curved space reads:

∂α(
√
−gφαβ) = M2φβ

√
−g (A.1)

Where in FRW metric this means:

−∂0a3(t)φ0β + a3(t)∂iφiβ = a3(t)M2φβ

−3ȧa2φ0β − a3(t)∂0φ0β + a3(t)∂iφiβ = a3(t)M2φβ

−a3(t)
(
∂0φ0β + 3ȧ/aφ0β − a2(t)∂iφiβ +M2φβ

)
= 0 (A.2)

Keeping in mind that for our candidate ∂iφα = 0 in the cosmic frame, a(t) 6= 0 after or
during inflation and ȧ/a = H, the last line turns into:

∂0φ0β + 3Hφ0β +M2φβ = 0

∂0(∂0φβ − ∂βφ0) + 3H(∂0φβ − ∂βφ0) +M2φβ = 0 (A.3)

Therefore, the time component β = 0 gives us:

∂0(∂0φ0 − ∂0φ0) + 3H(∂0φ0 − ∂0φ0) +M2φ0 = 0

M2φ0 = 0 (A.4)

On the other hand, the spatial component β = i implies the equation for a Hubble-damped
harmonic oscillator:

∂0(∂0φi − ∂iφ0) + 3H(∂0φi − ∂iφ0) +M2φi = 0

∂0∂0φi + 3H∂0φi +M2φi = 0 (A.5)
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φ(k)

γ(l)e(p)

e(q) φ(k)

γ(l)e(p)

e(q)

a) the s-channel b) the u-channel

B Compton Evaporation Matrix Elements

For reference we have evaluated the matrix elements for the Compton Evaporation. The
momenta were assigned as follows:
With this convention the matrix element becomes:

iT = χe2ε∗µ(l)εβ(k)ū(q)

(
iγµ
−i(m− �p−��k)

(p+ k)2 +m2
iγβ + iγβ

−i(m− �p+ ��l)

(p− l)2 +m2
iγµ
)
u(p)

Which implies that:

〈|T |2〉 =
64π2χ2α2

3

(
2

(m2 +M2)(4m2 − t)− 3m2M2

(m2 − u)(m2 − s)
+

+
m4 + 2m2M2 +m2(3s+ u)− us

(m2 − s)2
+
m4 + 2m2M2 +m2(3u+ s)− us

(m2 − u)2

)
Which agrees, up to a number of polarizations factor, with regular Compton Scattering in
the limit M → 0, χ = 1.
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Figure 1: Mass mixing in plasma: The solid and dashed curves show the eigenvalues of the
mass matrix as a function of the radial position inside the cluster. The dotted line shows
the density of the ionized gas in the cluster also as a function of the radial position. In order
to make the level crossing visible we have adopted M = 10−12 eV and χ = 0.2.
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Figure 2: Summary of Constraints: The early Universe behavior puts a dominant bound
on χ in the higher mass range, for M > 2me the bounds are dominated by decays. The
Shaded region called AdC marks the possible combinations of (χ,M) that could lead to
adiabatic conversions. We have marked out the projection of the limits that can be achieved
by ADMX [30](Orange) - axion search experiment turned into a light shinning through the
wall experiment. The bounds put by shaded regions with dotted lines come from a summary
by [2] and comprise the bounds by both theoretical and experimental considerations such as
lifetime of the Sun (Red), Horizontal branch Star limits (Green), Coulomb law tests (Blue),
CMB pollution by the dark photon (Yellow) and beam dump experiments E141 and E137
(Purple). In the low mass region the dominant bound comes from the drift of fine structure
constant (blue, solid/dashed).
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