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Obscuration due to Galactic emission complicates the extraction of information from cosmological
surveys, and requires some combination of the (typically imperfect) modeling and subtraction of
foregrounds, or the removal of part of the sky. This particularly affects the extraction of information
from the largest observable scales. Maximum-likelihood estimators for reconstructing the full-sky
spherical harmonic coefficients from partial-sky maps have recently been shown to be susceptible
to contamination from within the sky cut, arising due to the necessity to band-limit the data
by smoothing prior to reconstruction. Using the WMAP 7-year data, we investigate modified
implementations of such estimators which are robust to the leakage of contaminants from within
masked regions. We provide a measure, based on the expected amplitude of residual foregrounds, for
selecting the most appropriate estimator for the task at hand. We explain why the related quadratic
maximum-likelihood estimator of the angular power spectrum does not suffer from smoothing-
induced bias.

I. INTRODUCTION

It is unavoidable that we observe the Universe through
the galaxy we inhabit. The foreground contamination in-
jected by the Milky Way into full-sky cosmological data-
sets must be modeled and removed, or the regions most
conspicuously contaminated must be excised. Where no
precise model of the foregrounds is available, cutting the
sky is the most robust option, with the regrettable conse-
quence that part of the signal is discarded along with the
contamination. This includes information on the largest
scales, which are valuable for a variety of reasons, includ-
ing measurement of the integrated Sachs-Wolfe effect [1]
and constraining primordial non-Gaussianity using trac-
ers of large-scale structure [2].

It is impossible to uniquely recover the cosmological
signal discarded in the sky cut. However, by writing
down the likelihood for the region of the sky in which
one trusts the data, it is possible to reconstruct an es-
timate of the signal at large scales which maximizes the
likelihood of the residual noise [3]. An alternative recon-
struction scheme maximizes the posterior probability [4–
8] of measuring the underlying cosmological signal given
the available data and a prior theoretical expectation on
the signal.

The reconstructions estimate the large-scale (low-`)
spherical harmonic coefficients, a`m, by treating the sig-
nal at small scales as noise and only considering data
external to the sky cut. If, as with the cosmic mi-
crowave background (CMB), the field to be reconstructed
is not band-limited, the proliferation of small-scale sig-
nal makes the reconstruction noisy to the point of be-
ing useless. Input maps are therefore smoothed – nec-
essarily prior to cutting the sky – to truncate the signal
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and remove sources of confusion below a chosen angular
scale [9]. However, smoothing leaks contamination from
the masked region into the trusted data [10, 11], and the
reconstructed spherical harmonic coefficients, â`m, are
biased. In this work we explore the causes and expected
magnitudes of this bias, and discuss how it can be miti-
gated.

II. MAXIMUM-LIKELIHOOD
RECONSTRUCTION

We begin with a description of the standard imple-
mentation of maximum-likelihood CMB a`m reconstruc-
tion. The first step of the reconstruction process is to
band-limit the temperature field by smoothing, typically
with a Gaussian kernel of width 10◦ FWHM. As this
removes information on the smallest scales, the map
resolution can be downgraded to reduce computation
time. The â`ms in the range 2 ≤ ` ≤ `max, rec (rep-
resented for ease as the na`m

-element vector â, where
na`m

= (`max, rec−1)(`max, rec+3)) are then reconstructed
from the npix unmasked pixel temperatures, x, using [3]

â = Wx. (1)

The reconstructed spherical harmonic coefficients maxi-
mize the likelihood of the residual noise, given the avail-
able data, if the reconstruction matrix, W, is

W = [YtC−1Y]−1YtC−1. (2)

Here, Y are the spherical harmonics calculated at each
unmasked pixel1, and C is the pixel-space noise covari-

1 Without loss of generality, the reconstruction matrix in this work
is formed from the real spherical harmonics.
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ance matrix

Cij = Rij +

`max∑
`=`max, rec+1

2`+ 1

4π
C̄`P`(r̂i · r̂j), (3)

where R is uncorrelated, low-amplitude regularizing
noise added to prevent C from becoming singular, C̄` is
the smoothed theory CMB angular power spectrum, and
P` are the Legendre polynomials at unmasked pixels i, j.
The sum over the multipoles `max, rec < ` ≤ `max ensures
that the small-angular-scale CMB multipoles we do not
wish to reconstruct are treated as noise. As stated above
the CMB power must be artificially truncated to restrict
the number of ambiguous modes accessible to the recon-
struction. The smoothing kernel is deconvolved from the
â`ms after reconstruction by dividing the â`ms by the
kernel’s spherical harmonic transform.

If a foreground signal bi is now introduced, so that
x = Ya + b + n and a is the CMB signal uncorrelated
with b and the noise n, the mean and variance of the
reconstruction error ε`m = â`m − a`m are

〈ε〉 = Wb (4)

and

〈εεt〉 − 〈ε〉〈εt〉 = WCWt, (5)

respectively.
Throughout this work, we reconstruct the spherical

harmonic coefficients up to `max, rec = 10. The noise
covariance matrix includes CMB power in the range
`max, rec < ` ≤ `max = 32 unless explicitly stated; this
value is chosen such that modes with ` > `max are sup-
pressed to O(few %) by the smoothing. The WMAP
5-year best-fit C`s [12] are chosen for the theory CMB
angular power spectrum2. Input maps are smoothed at
HEALPix [13] resolution Nside = 512 before being down-
graded to Nside = 16 to retain the information required
for the reconstruction while minimizing the number of
pixels included in the noise covariance matrix. Diagonal
regularizing noise R is added at the level of 2µK2 to al-
low the inversion of the noise covariance matrix despite
the presence of some null modes (which are irrelevant to
the reconstruction).

III. SMOOTHING-INDUCED BIAS

This section outlines how a bias arises from smoothing-
induced contamination of the unmasked pixels [10, 11].
For clarity, we illustrate the smoothing-induced bias in
the maximum-likelihood reconstruction (and, later, our

2 Our results are not sensitive to the small differences between
different WMAP releases in the best-fit cosmology.

proposed solutions) with results plotted in both harmonic
and pixel space.

It is beyond the scope of this work to estimate accurate
foreground residuals resulting from different component
separation methods; instead, we choose some residuals
for the purpose of illustration. Following Ref. [14], the
residual foregrounds are taken to be 1% of the differ-
ence between the WMAP 7-year Internal Linear Com-
bination (ILC) [15] and V-band [16] temperature maps.
The resulting map is indicative of the extent and ampli-
tude of the residual foregrounds in the WMAP 7-year
ILC, the data-set for which the smoothing-induced bias
was first described [9–11]. It is important to note that a
considerably higher level of contamination is present in
the foreground-reduced maps for each individual WMAP
frequency band provided by the WMAP team: contam-
inants of ∼ 50 times those used here are visible in these
maps. The residual foregrounds are restricted to the pix-
els within the sky cut, which in this work masks only the
Galaxy and not individual point-sources. These degree-
scale point-source cuts are, unsurprisingly, not found to
significantly bias the large-scale reconstructed â`ms, and
so for clarity Galaxy-only contaminants and masks are
considered.

The addition of simulated residuals and the spherical
harmonic transform are linear, so the smoothing-induced
bias is given by the reconstructed â`ms of the simu-
lated residual map. We take the “standard” 10◦-FWHM-
Gaussian-smoothed maximum-likelihood reconstruction,
using data outside the Galaxy-only part of the WMAP 7-
year KQ85 mask, as our fiducial maximum-likelihood es-
timator (hereafter the “Gaussian ML” â`ms). The Gaus-
sian ML â`ms generated from the simulated residual fore-
grounds are plotted (deep-blue solid line) in Fig. 1, along
with the full-sky a`ms (dotted line) for comparison. The
smoothing-induced leakage from within the sky cut is
clear to see: the reconstruction picks up about half of
the power in the foreground residuals, even though the
simulated residuals are entirely confined to the sky cut.

The largest peaks in the bias affect the â`ms satisfy-
ing ` = 2n,m = 0 for integer n (in Fig. 1, HEALPix
index `2 + `+m = {6, 20, 42 . . .}) [3], and are positive for
odd n, negative for even n. The pattern of these peaks
can be explained by examining the reconstruction of the
simulated Galactic residuals, plotted in Fig. 2, which
are coldest along the Galactic plane. Smoothing these
residuals reduces the pixel temperature values approx-
imately symmetrically around the Galactic mask, and
therefore pollutes the azimuthal modes which are also
symmetric about the equator. The bias is positive for
modes which have minima at the equator, and negative
for those with maxima. There are also secondary peaks at
` = 2n+1,m = 1 (in Fig. 1, `2+`+m = {13, 31, 57 . . .}),
which again are positive for odd n, negative for even n.
These modes pick out the concentration of reconstructed
foreground power in the Galactic centre.

The leakage of information from within the sky cut can
also be demonstrated in pixel-space. Taking the WMAP
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FIG. 1. The spherical harmonic coefficients of the simulated
foreground residuals, calculated using the Gaussian ML re-
construction (deep-blue solid line), the full-sky data (dotted
line) and the 10◦ Top-Hat ML reconstruction (light-blue solid
line on x-axis). It is clear that the Gaussian ML reconstruc-
tion leaks around half of the information from within the sky
cut; this can be counteracted by smoothing with a top-hat
kernel and using an extended mask. The HEALPix index
`2 + `+m maps each `, m combination to a unique index into
the array of a`ms.

FIG. 2. Clockwise, from top left: simulated Galactic fore-
grounds, smoothed by a 10◦-FWHM Gaussian and masked
with the Galaxy-only KQ85 mask; the ` ≤ 10 Gaussian ML
â`ms reconstructed from the simulated Galactic foregrounds;
the real spherical harmonics Y4 0 and Y5 1. The simulated fore-
grounds yield a negative bias in the Y4 0 mode, and a positive
bias in the Y5 1 mode.

7-year ILC map, the full-sky a`ms are extracted, and the
Gaussian ML reconstruction is performed. The spherical
harmonic coefficients recovered in each case are then used
to reconstruct the input ILC map using only 2 ≤ ` ≤ 10,
as plotted in Fig. 3. The maps formed from the full-
sky-a`ms (top-left) and reconstructed from Gaussian-ML-
â`ms (top-right) are almost identical, even in the Galactic
plane, confirming that the reconstruction has access to
information well inside the sky cut.

FIG. 3. The 7-year ILC 2 ≤ ` ≤ 10 modes, plotted using
(clockwise from top-left) full-sky a`ms, Gaussian ML â`ms, 5◦

Top-Hat ML â`ms, and Top-Hat WF â`ms.

Although the bias illustrated in Fig. 1 looks problem-
atic, its amplitude is at least reduced over using the
contaminated full sky, and so the simple Gaussian-ML
procedure may yet turn out to be useful. To compare
with other possible approaches, we first need to dis-
cuss its standard deviation – i.e. the scatter induced
by the ` > `max, rec modes – which is calculated using
Eq. 5 and plotted (as the deep-blue narrowest band) in
Fig. 4. This is a few µK at most. For a given `, the
modes that are reconstructed with the least precision are
those with |m| = `, with the m = ` modes typically
the worst. This confirms the observation in Pontzen and
Peiris (2010) [14] that the sky cut removes the most infor-
mation from modes with power concentrated towards the
equator, and particularly those with extrema at φ = 0◦,
where the mask is at its widest [11]. The mask is plot-
ted for reference in Fig. 5, along with examples of the
affected modes. We see that, typically, three modes per
` will have increased bias or variance, but for most modes
both the mean reconstruction error and its variance will
be small.

In order to compare estimators, we must first quantify
their performance over the range of multipoles consid-
ered. The performance measure

z`m = 〈ε2`m〉
= mean(ε`m)2 + var(ε`m) (6)

provides the expected size of the reconstruction error ε`m
for each mode: summing over all modes

Z =
∑
`,m

z`m (7)

therefore yields a complete measure of each estimator’s
performance. Any alternative estimator which removes
the smoothing-induced bias should be preferred only
if its Z value is lower than that of the Gaussian ML
reconstruction, and, indeed, the contaminated full-sky
a`ms. In fact, using the 1% ILC-V foreground residu-
als, Z ' 33µK2 using the full-sky a`ms, compared to



4

FIG. 4. The one-standard-deviation ranges of the reconstruc-
tion error ε`m for the Gaussian ML â`ms (narrowest, deep-
blue band), 5◦ Top-Hat ML â`ms (widest, light-blue band),
and Top-Hat WF â`ms (intermediate, mid-blue band).

FIG. 5. Top: the WMAP 7-year Galaxy-only KQ85 mask
(light-blue central region) extended by 2.5◦ (mid-blue) and
5◦ (dark-blue). Bottom: the real spherical harmonics Y4 4

and Y4−4. The concentration of Y`±` mode power towards
the equator results in increased estimator variance in those
modes.

∼ 265µK2 for the Gaussian ML estimator. If the residual
foregrounds employed in this work are an accurate reflec-
tion of those present in the WMAP 7-year ILC map, then
the contaminated full-sky a`ms provide a better estimate
of the cosmological signal than the Gaussian ML recon-
struction. The second form of Eq. 6 shows that both
bias (see Fig. 1) and variance (see Fig. 4) in the recon-
struction increase the value of Z. The variance term is
independent of the contamination, while the bias scales
linearly with the contamination. Therefore, if the am-
plitude of residual foregrounds in the ILC map is higher
than in our illustrative example, the reduction in bias due

FIG. 6. Top: the residual foreground map employed in this
work (left), and a simple model comprising a 3◦-wide −20µK
equatorial band. Bottom: the full-sky a`ms (dotted) and re-
constructed Gaussian ML â`ms (solid) of the residual fore-
ground maps. The simple band model captures most of the
features of the smoothing-induced bias injected by the more-
complex residuals.

to the use of the Gaussian ML â`ms will eventually over-
come the variance introduced by the reconstruction. For
residual levels 3 − 4 times higher than those used here,
the Gaussian ML reconstruction should be used instead
of the contaminated full-sky a`ms. However, as we have
seen, the Gaussian ML estimator (as implemented thus
far) does not eliminate the bias due to smoothing-related
leakage of contaminants from within the masked region.

While our simulated foreground residuals are simply
meant to be indicative, we nevertheless expect that the
smoothing bias is mainly sensitive to the amplitude of the
residuals, and not their precise morphology. This can be
seen in Fig. 6, where we have modeled the residuals as
a simple bar in the Galactic plane, while rescaling the
amplitude to match our 1%(ILC-V) model. This highly
simplified model is able to capture most of the features
of the bias in harmonic space, as seen in the lower panels
of this Figure.

IV. ELIMINATING THE BIAS

At this stage, we are presented with something of a
conundrum: smoothing is essential to the reconstruction
process, but it is exactly this smoothing that is biasing
the results. The simplest solution to this issue is to re-
move the areas of the sky that are within one smoothing
scale of the main Galactic sky cut. However, the smooth-
ing kernel typically used in the standard reconstruction
algorithm is a Gaussian, with support across the full sky
in pixel space, and the set of contaminated pixels is hence
poorly defined. This problem can be solved by using a
kernel with finite pixel-space support – for simplicity we
choose a top-hat – as all contaminated pixels fall within
a kernel’s radius of the mask.
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Näıvely selecting the diameter of the top-hat smooth-
ing kernel to be 10◦, we reconstruct the simulated fore-
ground residuals using the Galaxy-only KQ85 mask ex-
tended by 5◦ – hereafter the “10◦ Top-Hat ML” recon-
struction. The results are plotted in light blue (pale line
along x-axis) in Fig. 1: the smoothing-induced bias has
been eliminated. However, the measure of reconstruction
quality has deteriorated dramatically to Z ' 11 252µK2,
significantly worse than the Gaussian ML reconstruction.
There are two reasons for this increase in Z, which is now
sourced entirely by increased variance in the reconstruc-
tion. Firstly, the top-hat smoothing kernel has support
over a greater range of multipoles than the Gaussian ker-
nel, and so more ambiguous modes contribute to the co-
variance matrix (in this case, and for all further kernels,
we increase `max to 1024 to capture all relevant modes,
even though at 10◦ the smoothing kernel is effectively
band-limited at ` ∼ 100).3 The second factor is that the
reconstruction-error variance increases very rapidly with
the area of the sky that is masked [3]. This suggests the
use of narrower smoothing kernels, although this neces-
sarily increases the power of the high-` noise.

The interplay between the variance injected by de-
creased smoothing and increased masking is shown in
Fig. 7. Here, the total reconstruction-error variance
is plotted for top-hat smoothing kernels of diameter
3◦ − 10◦, and hence mask extensions of 1.5◦ − 5◦. The
reduction in variance due to minimizing the sky cut dom-
inates the added noise from narrower smoothing. We
therefore select the width of the smoothing kernel to be
as small as possible, given the resolution of the degraded
map. At Nside = 16, the pixels are ∼ 3◦ across, so
to avoid injecting bias through pixelization [11] (which
would not be captured by Eq. 5) we choose our optimal
kernel diameter to be just larger: 5◦. Hereafter, we refer
to this reconstruction – using the 5◦ top-hat smoothing
kernel and Galaxy-only KQ85 mask extended by 2.5◦ –
as the “5◦ Top-Hat ML” reconstruction.

The reconstruction-error variance calculated for the 5◦

Top-Hat reconstruction is plotted as the light-blue out-
ermost region of Fig. 4. Even using the minimum pos-
sible mask extension the reconstruction-error variance is
still an order of magnitude larger than that of the Gaus-
sian ML estimator. In terms of the measure of recon-
struction quality, the biased Gaussian ML reconstruc-
tion (Z ∼ 265µK2) should be strongly preferred to the
5◦ Top-Hat ML case (Z ∼ 8466µK2) for residual lev-
els comparable to those used in this work. As the Top-
Hat ML reconstruction is unbiased, this value of Z is
fixed (for a given sky cut). Thus, only if the residuals
are greater than ∼ 25% ILC−V will the 5◦ Top-Hat ML
reconstruction outperform the Gaussian ML reconstruc-
tion. Note that the quality of the reconstruction could

3 Truncating the kernel by selecting a lower `max leads to O(10%)
variations in the results.

FIG. 7. The impact of mask extension and smoothing-kernel
diameter on the quality of the bias-free maximum-likelihood
reconstruction. Reconstruction-error variances are calculated
using top-hat smoothing kernels of varying diameter, and
extending the KQ85 mask by one kernel radius each time.
Smoothing at the lowest-possible scale will produce the most
faithful reconstruction. Note that the curve is not smooth
as both the extent and shape of the mask change as it is ex-
tended.

be improved further if it was performed at higher reso-
lution, as smaller smoothing kernels could be used. This
will necessarily have to be traded off against the increased
computational requirements.

V. REDUCING THE VARIANCE

The increase in variance encountered when using ex-
tended sky cuts is far beyond that expected due to the
reduction in pixel count: reducing fsky from 81% to 74%
should, assuming uncorrelated pixels for simplicity, in-
crease the variance by only ∼ 10%. The dominant issue
is that the maximum-likelihood reconstruction allows the
temperature field in the masked region of the sky to have
infinite variance. For small sky cuts (and small `max, rec)
this is fine: one cannot “hide” large-scale power within
the cut, and so the variance on the large-scale â`ms is low.
Extending the KQ85 mask not only increases its overall
width, but also closes a number of small gaps that allow
the estimator limited access to the poorly-constrained
equatorial modes (see Fig. 5). The estimator is therefore
free to fill the cut with significant low-` power (compare
Fig. 3 top-right and bottom-left), and the estimator vari-
ance rises rapidly.

The variance of the reconstruction error can be reduced
by enforcing a prior on the power within the Galactic
cut using Wiener-filtering (Method 5 in Ref. [7]; see also
Refs. [4–6, 8]). The Wiener-filtered â`ms then maximize
the posterior probability of reconstructing the underly-
ing a`ms, given the trusted data and theoretical power
spectrum. In practice, this is achieved by adding a the-
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oretical (inverse) covariance matrix for the multipoles of
interest to the reconstruction matrix

W = [S−1 + YtC−1Y]−1YtC−1. (8)

S here is a diagonal na`m
× na`m

matrix with elements
equal to the smoothed theory power spectrum C̄`. The
theory prior restricts this “Top-Hat WF” reconstruction
from filling the sky cut with arbitrary power (see Fig. 3
bottom-right), and reduces the variance of the estima-
tor’s reconstruction error accordingly (see the mid-blue
intermediate region in Fig. 4). The analytic expectation
for the reconstruction-error variance is

〈εεt〉 − 〈ε〉〈εt〉 = S [S + N]−1N, (9)

where N is the noise power spectrum, defined to be
N = [YtC−1Y]−1 (i.e. the variance of the Top-Hat
ML reconstruction error). By adding a theory prior to
the power within the sky cut, and hence requiring finite
power in that region, the Wiener-filtered reconstruction
tends to produce â`ms that are closer to zero than the
maximum-likelihood case. While this could be seen as
biasing the â`ms toward lower values4, it can also be in-
terpreted as being conservative, and applying the prior
belief that the information within the mask is similar
to the trusted information outside the mask. In other
words, we should be happy to trade off a small multi-
plicative bias against a significant reduction in variance.

This is automatically encapsulated in the measure of
reconstruction quality Z for the 5◦ Top-Hat WF estima-
tor, which has improved to ∼ 1521µK2. However this is
still worse than that of the Gaussian ML estimator. The
bias arising in the Top-Hat WF reconstruction is not from
smoothing but from a prior, so Z is fixed for a given mask,
and always lower than that of the corresponding Top-Hat
ML reconstruction. For contamination levels of & 10%
ILC−V (such as those found in the foreground-reduced
maps for the individual WMAP frequency bands), the
5◦ Top-Hat WF reconstruction therefore represents the
most reliable estimator considered in this work.

We do not know the precise magnitude or morphology
of the residual foregrounds in the WMAP data. We can,
however, examine the Gaussian ML and Top-Hat WF
reconstructions of the ILC by eye to determine if there
is an obvious impact due to residual foregrounds. The
â`ms generated from these two reconstructions are plot-
ted in Fig. 8, along with the estimator standard deviation
(
√
〈|â`m|2〉 − 〈â`m〉2). Comparing the two plots, we see

that there is very little difference between the â`ms re-
turned in each case. Further, no modes look statistically
anomalous at the 3σ-level, even those that we expect to
be contaminated from the simple residuals model used
here.

4 Assuming for clarity zero noise, the Wiener-filtered reconstruc-
tion yields â = S[S + N]−1a, i.e. a multiplicative bias. Note
that the ensemble average 〈â〉 = 〈a〉 = 0.

FIG. 8. The reconstructed WMAP 7-year ILC â`ms, calcu-
lated using the Gaussian ML reconstruction (top) and the
5◦ Top-Hat WF reconstruction (bottom). The shaded areas
represent the estimator standard deviations. The modes that
are most contaminated by the simulated foregrounds in the
Gaussian ML reconstruction are indicated, along with their
expected sign, by dashed (Yeven 0) and dash-dotted (Yodd 1)
lines.

VI. RELATION OF a`m RECONSTRUCTION TO
THE QML ESTIMATOR FOR THE C`S

We have so far discussed estimating the full-sky a`ms
from cut-sky data, which is equivalent to reconstructing
the smoothed temperature field. However, in the context
under which the smoothing-induced bias was revealed [9–
11] it is in fact only the angular power spectrum C` of
the temperature field which is required.

A popular method for estimating the full-sky angu-
lar power spectrum is to adopt the quadratic maximum-
likelihood estimator as first derived in Ref. [17]. It has
been noted (see e.g. Section 3 of Ref. [9] for a complete
discussion) that the QML estimator can be formed using
the maximum-likelihood â`ms. On the surface, the QML
estimates (henceforth denoted Ĉ`) may therefore seem
to be susceptible to similarly problematic contamination
from a smoothing stage.
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However, this is not the case: in fact the Ĉ`s are far
more robust to the content of the cut because the smooth-
ing can be conducted on vastly smaller scales (e.g. 1◦ in
Pontzen and Peiris (2010) [14]). Note that Copi et al.
(2011) [11] miss this point, because they consider only
two extreme cases: (i) smoothing at 10◦ and (ii) failing
to smooth. They therefore reach the erroneous conclu-
sion that the QML estimator is susceptible to contami-
nation from within the mask. We explicitly verified that
the pipeline used by Pontzen and Peiris (2010) [14] is in-
dependent of any contamination placed fully inside the
mask.

The above paragraphs at first appear to be contra-
dictory, since they simultaneously claim (a) that the
QML power spectrum estimates can be formed out of
the ML temperature field reconstruction; and (b) that
the QML power spectrum estimates can still be con-
structed from maps smoothed on degree scales (whereas
the â`ms will necessarily become noisy for sufficiently
high `max, rec). However, this is not a true contradic-
tion because the QML estimates are not formed directly
from the noisy â`ms, but rather through an expression
(Eq. 23 of Ref. [9]) which specifically downweights poorly
constrained modes. It is this cautious treatment of am-
biguous modes which makes power spectrum estimation,
as opposed to a`m reconstruction, so well-behaved, irre-
spective of the shape of the smoothing kernel employed.

VII. DISCUSSION

Maximum-likelihood estimators, â`m, are often used
to reconstruct the large-scale spherical harmonic coeffi-
cients, a`m, from partial-sky data. The technique relies
on smoothing to restrict the amount of small-scale noise
accessible to the reconstruction, but smoothing has been
shown to contaminate “clean” pixels with residual fore-
grounds from within the sky cut. In this work, we have
examined the impact of this smoothing-induced bias on
the maximum-likelihood reconstruction. We have shown
that it is possible to mitigate the bias by removing the
contaminated regions, but these are only well-defined if
smoothing is performed using a kernel with finite sup-
port on the sky. This precludes the use of the commonly
used Gaussian kernel. Cutting a larger portion of the sky
greatly increases the variance of the reconstruction, but
it is possible to counteract this effect by enforcing a prior
on the reconstructed coefficients using a Wiener filter.
We have therefore proposed an estimator – using top-hat
smoothing, extended masks and a Wiener-filtered recon-
struction – which does not suffer from smoothing-induced
bias. By considering the expectation of the square of the
reconstruction error, Z =

∑
`,m〈(â`m − a`m)2〉, we have

compared the performance of the maximum-likelihood
and Wiener-filtered estimators in the presence of sim-
ulated CMB foreground residuals.

The reconstruction performance measure Z scales
with the estimators’ bias and variance, which in turn

are governed by the amplitude of contamination and
the size of the sky cut, respectively. The fiducial
maximum-likelihood reconstruction is performed using
relatively small sky cuts, but is susceptible to con-
tamination through smoothing-induced bias; the finite-
smoothing Wiener-filtered reconstruction does not suffer
from smoothing-induced bias, but makes use of extended
masks. Increasing the level of contamination therefore
increases Z for the maximum-likelihood reconstruction
only, which suggests that there is a level of contamina-
tion above which one should switch from the maximum-
likelihood to the Wiener-filtered reconstruction.

Given an estimate of the morphology and amplitude
of the contaminants within the cut sky, one can predict
which modes will be biased and by how much, and hence
determine the threshold at which one should swap esti-
mators. We find that this threshold is relatively insensi-
tive to the precise morphology of foreground residuals at
large scales, and is mainly governed by their amplitude.
Calculating Z for the two estimators in the presence of
estimated foreground residuals, we determine this thresh-
old to be ∼ 10 times the amplitude of the foreground
residuals used in this work. Assuming that the ILC con-
tains similar levels of contamination to those used here,
we therefore recommend the use of either the contami-
nated full-sky a`ms or the fiducial maximum-likelihood
â`ms when handling this data-set. However, when us-
ing foreground-reduced maps for individual WMAP fre-
quencies, which contain much greater foreground resid-
uals, the Wiener-filtered reconstruction will provide the
best estimate of the large-scale underlying CMB signal.
Note that, as the Wiener-filtered â`ms are a maximum-
posterior solution, care must be taken if the reconstruc-
tion output is being used for further model-selection
steps. The reconstruction techniques are, however, most
commonly used to test the null hypothesis, in which case
the prior employed in this work is completely appropri-
ate.

For problems requiring only a power spectrum (as op-
posed to the full temperature field) the issues described in
this paper are essentially irrelevant because the smooth-
ing can be conducted on vastly smaller scales, the result-
ing range of poorly constrained modes being automati-
cally downweighted.
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