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We show that in supersymmetry one can obtain inflationary potentials in the observable sector
that are sufficiently flat at sub-Planckian field values. Structure of the supersymmetric scalar po-
tential along a flat direction combined with the existence of higher order terms in an effective field
theory expansion allows one to find scales below the effective field theory cut off where two or a
higher number of the potential derivatives may vanish. As an explicit example, we demonstrate
that inflection point inflation within a broad range of scales O(TeV) ≪ Hinf < 3× 109 GeV can be
accommodated within weak scale supersymmetry. The fine tuning of model parameters needed for
successful inflation is considerably improved in this scenario.

Inflation is the dominant paradigm in early universe
cosmology to solve the problems of the hot big-bang
model and create the seeds for structure formation. Al-
though observations strongly support a period of infla-
tion [1], a natural embedding of inflation within particle
physics [2] has remained as a challenge. At the heart of
the problem is identifying the inflaton with a scalar field
that has a natural place in particle physics and has a suf-
ficiently flat potential that is not destroyed by unknown
effects above the Planck scale.
Attempts have been made in recent years to realize in-

flation in realistic extensions of the Standard Model. In
particular, it has been shown that inflation can be suc-
cessfully embedded within the Minimal Supersymmet-
ric Standard Model (MSSM) [3, 4] and its simple exten-
sions [5]. If appropriate relations hold between the super-
symmetry (SUSY) breaking parameters, one finds a point
of inflection in the scalar potential along D-flat direc-
tions [6] in these models. Inflation occurs in the vicinity
of the inflection point and, for specific flat directions, it
generates acceptable density perturbations and leads to
successful post-inflationary cosmology [7–10]. For weak
scale SUSY, the Vacuum Expectation Value (VEV) of the
inflection point is a few orders of magnitude below MP.
The sub-Planckian field value makes the model rather
insensitive to the details of an ultraviolet completion.
On the other hand, it implies a severe fine tuning be-
tween the SUSY breaking parameters in order to have
successful inflation (for various aspects of this problem,
see [9, 11]). The fine tuning gets alleviated in high scale
SUSY where the inflection point has a larger VEV, but
this is not appealing from the point of view of particle
physics phenomenology.
In this letter we provide a new and general prescription

for constructing potentials in the observable sector that
are suitable for inflation at sub-Planckian VEVs. We
show that the structure of the SUSY preserving part of
the scalar potential alone allows us to find points along a
flat direction where two or more of the potential deriva-
tives may vanish. Successful inflation can occur around
these points within a broad range of scales. These points
can be very close to the Planck scale even for TeV scale

SUSY, a byproduct of which is considerable amelioration
of the fine tuning problem.
We start by considering the superpotential W and

scalar potential V for a D-flat direction φ that is rep-
resented by a cubic gauge-invariant monomial:

W (φ) =
∑

n

λn

3n

φ3n

M3n−3

P

, (1)

V (φ) = |f(φ)|2 , f(φ) ≡
dW (φ)

dφ
. (2)

The lowest order term (n = 1) is a typical Yukawa cou-
pling (in MSSM or beyond), and higher order terms
(n > 1) are induced by new physics at high scales. If
we take this scale to be MP, then λn ≤ 1 and the effec-
tive field theory expansion is valid at |φ| ≪ MP (taken
at least an order of magnitude below MP).
First we consider the case where the first three terms

in (1) are dominant:

f(φ) = λ1φ
2 + λ2

φ5

M3
P

+ λ3

φ8

M6
P

. (3)

Then ∂V/∂φ = f ′(φ)f∗(φ) vanishes at the points φ =
(0, a1/3, b1/3)MP, where a + b = −5λ2/8λ3 and ab =
λ1/4λ3 (also ∂V/∂φ∗ = f ′∗(φ)f(φ) = 0 at these points).
These solutions exist for any values of λ1,2,3 since φ is
complex.
If a = b, we will have ∂V/∂φ = ∂V/∂φ∗ = ∂2V/∂φ2 =

∂2V/∂φ∗2 = 0. This happens when

λ2
2 =

64

25
λ1λ3. (4)

We note that phase of λ1 can be always rotated away,
while the relative phase between λ1, λ2 can be absorbed
by a redefinition of φ. Therefore we can choose λ1 and
λ2 to be real and positive, and then the above condition
implies that λ3 > 0. For λ1,2,3 > 0, the first and second
derivatives of the potential vanish along both the radial
and angular direction in the complex φ plane at:

φ = φ0 exp[i
π

3
, iπ, i

5π

3
] , φ0 =

(

5

16

λ2

λ3

)1/3

MP. (5)
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The validity of this result within the effective field theory
expansion is ensured if φ0 ≪ MP, which leads to the
condition λ2 ≪ λ3 <∼ 1.
Focusing on the radial direction, the dynamics of infla-

tion is governed by the potential V0 = 81λ2
1φ

4
0/400 and

its 3rd derivative V ′′′

0 = 162λ2
1φ0/5 at these points. The

slow-roll conditions for inflation are satisfied within an
interval ∆φ ∼ φ3

0/80M
2
P around φ0.

The amplitude of observationally relevant density per-
turbations generated during inflation is given by δH =
V ′′′

0 N 2
COBE/30πHinf [4]. Here Hinf = (V0/3M

2
P)

1/2 is the
Hubble expansion rate during inflation, and NCOBE =
66.9 + (1/4)ln(V0/M

4
P) [12] (assuming rapid transition

from inflation to a radiation-dominated universe, which is
the case when the inflaton is a MSSM flat direction [10]).
Obtaining the correct amplitude for perturbations re-
quires that

λ1

(

16

5

λ3

λ2

)1/3

∼ 10−8. (6)

This gives rise to an absolute upper bound λ1 < 10−8,
which is saturated when φ0 → MP, leading to an upper
bound of Hinf < 3× 109 GeV.
Satisfying all of the conditions for a successful infla-

tion requires small values for λ1,2,3. In Figure 1 we show
the allowed region of the parameter space by projecting
to the λ3/λ1 − λ2/λ1 plane. The solid line satisfies the
condition given in (4). The dashed lines show the con-
dition in (6) for λ1 = 1 × 10−8, 5 × 10−9, 1 × 10−9

respectively (from bottom to top). From the figure,
one acceptable choice of parameters can be as follows:
λ1 ∼ 10−9, λ2 ∼ 10−6, λ3 ∼ 10−3, which results in
φ0 ∼ 10−1MP. φ0 becomes closer to MP as we move
down along the solid line.
One can see that n ≥ 4 terms in (1,2) are negligible

around φ0 (with the contribution from the n = 4 term
being marginal) for λn ∼ O(1). It is also seen that the
soft mass term and the A-terms associated with the n ≤ 3
terms in Eq. (1) make tiny contributions to the potential
around φ0, and hence can be neglected, for TeV scale
SUSY. As a matter fact, the contribution of any mass
term ≤ 108 GeV will be insignificant.
Deviations from the relation in Eq. (4) will result in

a non-vanishing V ′ along the radial direction . Param-
eterizing the deviation as α ≡ 1 − (25λ2

2/128λ1λ3), we
find that φ0 → φ0 − (2/9)αφ0 and V ′

0 = (9/5)αλ2
1φ

3
0.

Obtaining a scalar spectral index ns < 1 requires that
0 < α ≪ N−2

COBE
(φ0/MP)

4 [4, 13]. A considerable im-
provement in the fine tuning is evident, as compared with
MSSM inflation, since much larger values of φ0 are found
in this case. For the above choice of parameters one has
φ0 ∼ 10−1MP, which is larger by three orders of magni-
tude than that in the case of the MSSM inflation [4], and
the resulting α is 12 orders of magnitude larger.
Inclusion of more terms in (1,2) provides further possi-

bilities to obtain a flat potential. For example, if we also
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FIG. 1: The solid line corresponds to the condition in Eq. (4).
The dashed lines. The dashed represent λ1 = const. contours
corresponding to density perturbations condition (6) for λ1 =
1 × 10−8, 5 × 10−9, 1 × 10−9 respectively (from bottom to
top).

include the n = 4 term:

f(φ) = λ1φ
2 + λ2

φ5

M3
P

+ λ3

φ8

M6
P

+ λ4

φ11

M9
P

, (7)

then V ′ = 0 at φ = (0, a1/3, b1/3, c1/3)MP, where a +
b+ c = −8λ3/11λ4, ab + bc+ ac = 5λ2/11λ4, and abc =
−2λ1/11λ4. Assuming that |a| ≤ |b| ≤ |c|, we will have
V ′ = V ′′ = 0 if a = b, or if b = c. Note, however,
that for a successful scenario only the former case may
be acceptable. Otherwise, the inflaton may roll toward a
minimum away from the origin and settle there, instead
of the true minimum at φ = 0, after inflation.
The corresponding parameter space can be quantita-

tively understood under the scaling φ → γφ, λ4 → λ4,
λ3 → γ3λ3, λ2 → γ6λ2, λ1 → γ9λ1, which results in
f ′(φ) → γ10f ′(φ). Then it will be sufficient to consider
the cases λ3 = 0,±1. Since the phase of λ3 can be ro-
tated away, it suffices to consider the cases λ3 = 0 and
λ3 = 1. Then

λ3 = 0 =⇒ λ2
1λ4 = −

125λ3
2

297
, (8)

with c = −2a, and

λ3 = +1 =⇒
2λ1

11λ4

= 2a3 + a2 ,
5λ2

11λ4

= −3a2 − 2a, (9)

with c = −2a − 1. In these cases one can have success-
ful inflation about the points φ = a1/3MP as discussed
above.
In the special case that a = b = c, we will have V ′ =

V ′′ = V ′′′ = 0. This happens when

λ2
2 =

48

25
λ1λ3 , λ2

3 =
165

64
λ2λ4, (10)
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at the points (for λ1,2,3,4 > 0)

φ = φ0 exp[i
π

3
, iπ, i

5π

3
] , φ0 =

(

8

33

λ3

λ4

)1/3

MP. (11)

Successful inflation can occur around φ0, similar to the
previous case, if λ1 ≪ λ2 ≪ λ3 ≪ λ4 <∼ 1. The con-
dition to obtain acceptable density perturbations results
in an upper bound λ1 <∼ 10−8 as before. As an inter-
esting consequence, we can show that fine tuning in the
conditions to have successful inflation, see (10), will be

∝ N
−3/2
COBE

(φ0/MP)
3 in this case. This is a significant im-

provement over the previously discussed case, see (4), for
which the fine tuning is ∝ N−2

COBE
(φ0/MP)

4.
Again, the higher order (n ≥ 5) terms in (1) are negli-

gible at the scale of φ0 if the corresponding couplings are
<∼ O(1), and the contribution of SUSY breaking terms to
the potential will also be tiny.
In general, including a number n ≥ 3 of terms in the

superpotential (1) not only allows us to find points at
which V ′ = V ′′ = 0, thus realizing inflection point infla-
tion, but we can also find points where up to the first n−1
derivatives of the potential vanish. This is a direct con-
sequence of the fact that f ′(φ) ∝ φΠn−1

i=1 [(φ/MP)
3 − ai],

and the roots ai always exist for a complex field φ. In-
flection points, or higher degenerate points, arise when
two or more of the roots coincide.
Mathematics of all possible inflationary solutions for

the potential in (2) can be understood in the context of
“Catastrophe Theory”. There the highest order term in
a function is called the catastrophe germ and the coeffi-
cients of the lower order terms are called control param-

eters [14]. The points associated with the lower order
germ can be nested when the function is extended to in-
clude higher order germs by suitably choosing the control
parameters. The whole description can be described rig-
orously in the context of Lie Algebras. It will also allow
us to handle cases with more than one flat direction. An
explicit example of applying catastrophe theory to under-
stand inflation has been presented recently in the context
of racetrack models in type IIB string theory [15].
Having successful inflation about a point φ0 ≪ MP

when a number n of the terms in (1) are included results
in the condition λ1 ≪ ... ≪ λn <∼ 1. Having very small
coupling(s) is a generic issue in inflationary model build-
ing. For example, in the λφ4 chaotic inflation, one needs
to have λ ∼ 10−13.
Small superpotential couplings are technically natural

since radiative corrections to such couplings arise from
the wavefunction renormalization, and hence are propor-
tional to the couplings themselves. Their smallness at the
tree level can be attributed to a symmetry that is broken
at a scale v ≪ MP. Terms of order n can originate from
terms of order m > n, which results in a suppression
∝ (v/MP)

m−n after symmetry breaking. As we pointed
out, the density perturbations condition sets an absolute

upper bound λ1 < 10−8 on the renormalizable coupling
in (1). This is too small to be identified with quark or
lepton Yukawa couplings, but may be easily related to the
Dirac and/or Majorana Yukawa couplings of neutrinos.

Some comments are in order at this point. In our dis-
cussion we have considered superpotential terms of the
form φ3n (1). This is strictly correct for D-flat directions
that are represented by a cubic monomial, as happens
for those corresponding to Yukawa couplings. In gen-
eral, one may have a flat direction that is represented
by a quadratic, quartic, or higher order monomial. In
these cases the superpotential terms will be of the form
φ2n, φ4n, ... respectively. We note, however, that a linear
superpotential term, leading to a constant piece in f(φ),
will not be allowed for a D-flat direction (it is only pos-
sible for a gauge singlet, which has been considered in
the context of new inflation [16]). Our argument above
applies to any superpotential that is a polynomial func-
tion of a flat direction φ. We also note that, if allowed
by symmetries, one may have superpotential terms of the
form φn+2χ/Mn

P (n ≥ 0), where χ is another scalar field.
These terms also make nonzero contributions to V (φ). It
is possible to show that one can still find points at which
V ′, V ′′, ... vanish in the presence of these terms if appro-
priate relations hold among the corresponding couplings.

So far, we have considered the potential for a flat
direction in global SUSY. There are additional contri-
butions to V (φ) in supergravity. One correction is ∝
|W (φ)|2/M2P. For a polynomial superpotential this is
∼ (φ/MP)

2V (φ), which is≪ V (φ) for sub-Planckian field
values, and results in a tiny modification in the relations
among the superpotential couplings for obtaining degen-
erate points (4,10). Another supergravity correction to
the potential is ∝ H2|φ|2, which leads to the supergrav-
ity η problem. Again, for sub-Planckian field values,
the contribution of this term to the potential is smaller
than those of the individual terms in f(φ) by a factor of
(φ0/MP)

2. This implies that one can still find degenerate
points by making slight modifications to the correspond-
ing relations [9, 17]. However, we need to know the size
of the H2|φ|2 term very precisely in order for tunings
in the relations (4,10) be at an acceptable level. Sup-
pressing the H2|φ|2 term by a factor ∼ (φ0/MP)

2, which
is O(10−2) for φ0 ∼ 10−1MP, will get us to the right
ballpark. Such suppressions are generically invoked to
address the η problem of inflationary models.

Finally, we make some comments regarding the post-
inflationary universe in this scenario. After inflation, the
inflaton starts oscillating about the minimum of its po-
tential at φ = 0. The situation is qualitatively similar to
that in MSSM inflation where inflaton oscillations lead
to particle creation via a combination of nonperturtba-
tive and perturbative effects [10]. There are quantitative
differences between the two cases. First, the potential
around the minimum is quartic in this case V (φ) ∼ λ2

1φ
4,

while in the case of the MSSM inflation it is quadratic.
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This can consequently lead to differences in nonpertur-
bative particle creation [18] as well as their subsequent
perturbative decay. Second, in the case of the MSSM
inflation the inflaton energy is transferred to relativistic
particles very efficiently, which in turn thermalize within
a Hubble time. The efficiency of reheating in the scenario
discussed here depends on the nature of the flat direction
φ as well as the ratio of the frequency of inflaton oscilla-
tions, which is ∼ λ1φ0, and Hinf .
Another point to note is that Hinf ≫ O(TeV) is typical

in this scenario. As a result, the MSSM flat directions
may acquire large VEVs during inflation [19]. This can
lead to various cosmological consequences [20], for exam-
ple, Affleck-Dine lepto/baryogenesis [21].
In summary, we have provided a prescription for a

systematic construction of flat inflationary potentials at
sub-Planckian field values in the observable sector within
supersymmetry. Structure of the supersymmetric scalar
potential allows us to obtain points along a flat direction
where any number of potential derivatives may vanish.
Successful inflation can occur around these points within
a broad range of scales O(TeV) ≪ Hinf < 3 × 109

GeV, with the scale of SUSY breaking kept around
TeV. As a consequence, this leads to a considerable
amelioration of the fine tuning of flat direction inflation.
The validity of the construction presented here within
the effective field theory expansion requires that some of
the superpotential couplings be small. This smallness is
technically natural and its origin may be related to the
neutrino sector.
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