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Abstract

We consider the effect of the coupled variations of fundamental constants on the nucleon
magnetic moment. The nucleon g-factor enters into the interpretation of the measurements
of variations in the fine-structure constant, α, in both the laboratory (through atomic clock
measurements) and in astrophysical systems (e.g. through measurements of the 21 cm tran-
sitions). A null result can be translated into a limit on the variation of a set of fundamental
constants, that is usually reduced to α. However, in specific models, particularly unification
models, changes in α are always accompanied by corresponding changes in other fundamen-
tal quantities such as the QCD scale, ΛQCD. This work tracks the changes in the nucleon
g-factors induced from changes in ΛQCD and the light quark masses. In principle, these cou-
pled variations can improve the bounds on the variation of α by an order of magnitude from
existing atomic clock and astrophysical measurements. Unfortunately, the calculation of the
dependence of g-factors on fundamental parameters is notoriously model-dependent.

1 Introduction

Any definitive measurement of a temporal or spatial variation in a fundamental constant, such as
the fine-structure constant α, would signal physics beyond the standard model, and in particular
a violation of the equivalence principle which is one of the foundations of general relativity. In
many cases, such an observation would indicate the existence of a new light (usually scalar)
degree of freedom [1]. Indeed, there has been considerable excitement during the last decade over
the possible time variations in α from observations of quasar absorption systems [2, 3, 4, 5, 6, 7].

In effectively all unification models of non-gravitational interactions, and certainly in models
in which one imposes gauge coupling unification at some high energy scale, a variation in α is
invariably accompanied by variations in other gauge couplings [8, 9]. In particular, variations
in the strong gauge coupling, αs, will induce variations in the QCD scale, ΛQCD, as can be seen
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from the low energy expression for ΛQCD when mass thresholds are included

ΛQCD = µ

(

mcmb mt

µ3

)
2
27

exp

[

− 2π

9αs(µ)

]

, (1)

for a renormalization scale µ > mt up to the unification scale [8, 9, 10], where mc,b,t are the
masses of the charm, bottom, and top quarks. Because fermion masses are proportional to hv
where h is a Yukawa coupling and v is the Higgs vacuum expectation value (vev), variations in
Yukawa couplings will also affect variations in ΛQCD so that

∆ΛQCD

ΛQCD

= R
∆α

α
+

2

27

(

3
∆v

v
+

∆hc
hc

+
∆hb
hb

+
∆ht
ht

)

. (2)

Typical values for R are of order 30 in many grand unified theories, but there is considerable
model-dependence in this coefficient [11].

Furthermore, in theories in which the electroweak scale is derived by dimensional transmuta-
tion, changes in the Yukawa couplings (particularly the top Yukawa) lead to exponentially large
changes in the Higgs vev. In such theories, the Higgs expectation value is related to the Planck
mass, MP, by [9]

v ∼ MP exp

(

−2πc

αt

)

, (3)

where c is a constant of order 1, and αt = h2t/4π. For c ∼ ht ∼ 1,

∆v

v
∼ S

∆ht
ht

, (4)

with S ∼ 160, though there is considerable model-dependence in this value as well. For example,
in supersymmetric models, S can be related to the sensitivity of the Z gauge boson mass to the
top Yukawa, and may take values anywhere from about 80 to 500 [12]. This dependence gets
translated into a variation in all low energy particle masses [13].

In addition, in many string theories, all gauge and Yukawa couplings are determined by the
expectation value of a dilaton and we might expect [9]

∆h

h
=

1

2

∆α

α
, (5)

assuming that all Yukawa couplings vary similarly, so that they all reduce to h. Therefore, once
we allow α to vary, virtually all masses and couplings are expected to vary as well, typically
much more strongly than the variation induced by the Coulomb interaction alone.

Irrespective of the purported observations of a time variation in α, many experiments and
analyses have led to limits on possible variations [14, 15]. Furthermore, the use of coupled
variations has led to significantly improved constraints in a wide range of environments ranging
from big bang nucleosynthesis [9, 16, 17, 18, 19, 20, 21], the Oklo reactor [22, 24], meteoritic
data [22, 23, 24], the microwave background [25, 20] and stellar evolution [26].

This article explores the possibility that the strongest existing limits on the fine-structure
constant, namely those derived from atomic clock measurements, can also be enhanced by con-
sidering such coupled variations. We expect the effect of induced variations in ΛQCD and the
light quark masses to enter through the nucleon magnetic moment. Existing experimental limits
on α from atomic clock experiments assume constant µp,n. Indeed, limits on the variations of
quark masses in units of the QCD scale, i.e. mq/ΛQCD, from atomic clock measurements have
been derived [27, 28]. Given a (model-dependent) calculation of the nucleon magnetic moment
(or equivalently its g-factor), we can derive sharper bounds on the variation of α from existing
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data. Unfortunately, because of the model-dependence, we find that while the limits are gener-
ally improved (by as much as an order of magnitude), there is considerable uncertainty in the
precise numerical limit. As a corollary, we apply our results to astrophysical measurements such
as those which rely on the 21 cm line which also depends on µp,n.

The article is organized as follows: In section 2, we outline the procedure of obtaining limits
on α from atomic clock experiments. In particular, we examine the detailed dependence on the
nuclear g-factors which will be subject to variation. In section 3, we derive the dependence of
the nucleon magnetic moment on ΛQCD and the light quark masses. Because there is no unique
(or rigorous) method for calculating baryon magnetic moments, we consider several different
approaches. The most straightforward employs the constituent quark model. Surprisingly, this
model is quite effective in matching the observed baryon magnetic moments. Even within this
broad approach, our result will depend on the calculation of the nucleon mass, as well as the
calculation of the constituent quark mass; each carrying a significant degree of uncertainty. We
also consider an approach based on chiral perturbation theory, and a method based partially
on lattice results. In section 4, we apply these results to atomic clock measurements and de-
rive “improved” limits on the variation of α. Finally, in section 5, we extend these results to
measurements involving the 21 cm line and summarize our results.

2 Atomic clock constraints

2.1 From frequency shifts to constants

The comparison of atomic clocks provides a constraint on the relative shift of the frequencies
of the two clocks as a function of time, on time scales of the order of a couple of years. This
observation (or lack thereof) can be translated into a constraint on the time variation of a
fundamental constant. Using QED, the frequency of the atomic transitions can be expressed
(see e.g. [29]) in terms of the fine structure constant α, the electron-to-proton mass ratio,
µ ≡ me/mp and the gyromagnetic factor gi = 2µi/µN, where µi is the nuclear magnetic moment,
and µN = e

2mp
is the nuclear magneton.

The hyperfine frequency in a given electronic state of an alkali-like atom is given by

νhfs ≃ R∞c×Ahfs × gi × α2 × µ× Fhfs(α), (6)

where R∞ the Rydberg constant, Ahfs is a numerical factor depending on the atomic species and
Fhfs(α) is a factor taking into account relativistic corrections (including the Casimir contribution)
which depends on the atom. We omitted the effect of the finite nuclear radius on hyperfine
frequency in Eq. (6), since the effect of varying the nuclear radius is shown to be smaller [30, 31]
than the effects of varying other parameters which we consider in this work. Similarly, the
frequency of an electronic transition is well-approximated by

νelec ≃ R∞c×Aelec × Felec(Z,α), (7)

where, as above, Aelec is a numerical factor depending on each particular atom and Felec is the
function accounting for relativistic effects, spin-orbit couplings and many-body effects. Even
though an electronic transition should also include a contribution from the hyperfine interaction,
it is generally only a small fraction of the transition energy and thus should not carry any
significant sensitivity to a variation of the fundamental constants.

Relativistic corrections are important [32] and are computed by means of relativistic N -body
calculations [33, 34, 35, 36]. These can be characterized by introducing the sensitivity of the
relativistic factors to a variation of α defined by

κα =
δ lnF

δ lnα
. (8)
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Table 1: Sensitivity of various transitions on a variation of the fine structure constant. From
Refs. [33, 34, 35, 36].

Atom Transition Sensitivity κα

1H 1s− 2s 0.00
87Rb hf 0.34
133Cs 2S1/2(F = 2)− (F = 3) 0.83
171Yb + 2S1/2 − 2D3/2 0.9
199Hg + 2S1/2 − 2D5/2 –3.2
87Sr 1S0 − 3P0 0.06
27Al + 1S0 − 3P0 0.008

The values of these coefficients for the transitions that we shall consider below are summarized
in Table 1.

2.2 Experimental constraints

Over the past several years, many comparisons of atomic clocks have been performed. We
consider only the latest result of each type of comparison for our analysis.

• Rubidium: The comparison of the hyperfine frequencies of rubidium and caesium in their
electronic ground state between 1998 and 2004 [29] yields

d

dt
ln

(

νCs

νRb

)

= (0.5± 5.3) × 10−16 yr−1. (9)

From Eq. (6), and using the values of the sensitivities κα, we deduce that this comparison
constrains

νCs

νRb
∝ gCs

gRb
α0.49. (10)

• Atomic hydrogen: The 1s− 2s transition in atomic hydrogen was compared to the ground
state hyperfine splitting of caesium [37] in 1999 and 2003, setting an upper limit on the
variation of νH of (−29 ± 57) Hz within 44 months. This can be translated in a relative
drift

d

dt
ln

(

νCs

νH

)

= (32± 63) × 10−16 yr−1. (11)

Since the relativistic correction for the atomic hydrogen transition nearly vanishes, we
have νH ∼ R∞ so that

νCs

νH
∝ gCs µα2.83. (12)

• Mercury : The 199Hg+ 2S1/2 − 2D5/2 optical transition has a high sensitivity to α (see
Table 1) so that it is well suited to test its variation. The frequency of the 199Hg+ electric
quadrupole transition at 282 nm was thus compared to the ground state hyperfine tran-
sition of caesium first during a two year period [38] and then over a 6 year period [39] to
get

d

dt
ln

(

νCs

νHg

)

= (−3.7 ± 3.9)× 10−16 yr−1. (13)

While νCs is still given by Eq. (6), νHg is given by Eq. (7). Using the sensitivities of
Table 1, we conclude that this comparison test the stability of

νCs

νHg
∝ gCs µα6.03. (14)
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• Ytterbium: The 2S1/2 − 2D3/2 electric quadrupole transition at 688 THz of 171Yb+ was
compared to the ground state hyperfine transition of caesium. The constraint of [40] was
updated, after a comparison over a six year period, which leads to [41]

d

dt
ln

(

νCs

νYb

)

= (0.78 ± 1.40) × 10−15 yr−1. (15)

This tests the stability of
νCs

νYb
∝ gCs µα1.93. (16)

• Strontium: The comparison of the 1S0 − 3P0 transition in neutral 87Sr with a caesium
clock was performed in three independent laboratories. The combination of these three
experiments [42] leads to the constraint

d

dt
ln

(

νCs

νSr

)

= (1.0 ± 1.8) × 10−15 yr−1. (17)

Similarly, this tests the stability of

νCs

νSr
∝ gCs µα2.77. (18)

• Atomic dyprosium: The electric dipole (E1) transition between two nearly degenerate
opposite-parity states in atomic dyprosium should be highly sensitive to the variation of
α [34, 35, 43, 44]. The frequencies of two isotopes of dyprosium were monitored over a 8
months period [45] showing that the frequency variation of the 3.1-MHz transition in 163Dy
and the 235-MHz transition in 162Dy are 9.0±6.7 Hz/yr and -0.6±6.5 Hz/yr, respectively.
This provides the constraint

α̇

α
= (−2.7± 2.6) × 10−15 yr−1, (19)

at 1σ level, without any assumptions on the constancy of other fundamental constants.

• Aluminium and mercury single-ion optical clocks: The comparison of the 1S0− 3P0 transi-
tion in 27Al+ and 2S1/2−2D5/2 in

199Hg+ over a year allowed one to set the constraint [46]

d

dt
ln

(

νAl

νHg

)

= (−5.3 ± 7.9)× 10−17 yr−1. (20)

Proceeding as previously, this tests the stability of

νAl

νHg
∝ α3.208, (21)

which, using Eq. (21) directly sets the constraint

α̇

α
= (−1.65 ± 2.46) × 10−17 yr−1, (22)

since it depends only on α.
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Experiments with diatomic molecules, as first pointed out by Thomson [47] provide a test
of the variation of µ. The energy difference between two adjacent rotational levels in a di-
atomic molecule is inversely proportional to Mr−2, r being the bond length and M the reduced
mass, and the vibrational transition of the same molecule has, in first approximation, a

√
M

dependence. For molecular hydrogen M = mp/2 so that the comparison of an observed vibro-
rotational spectrum with a laboratory spectrum gives an information on the variation of mp

and mn. Comparing pure rotational transitions with electronic transitions gives a measurement
of µ. It follows that the frequency of vibro-rotation transitions is, in the Born-Oppenheimer
approximation, of the form

ν ≃ EI (celec + c
vib

√
µ+ crotµ) , (23)

where c
elec

, c
vib

and crot are some numerical coefficients.
The comparison of the vibro-rotational transition in the molecule SF6 was compared to a

caesium clock over a two-year period, leading to the constraint [48]

d

dt
ln

(

νCs

νSF6

)

= (−1.9± 0.12 ± 2.7) × 10−14 yr−1, (24)

where the second error takes into account uncontrolled systematics. Now, using Table 1 again
and Eq. (6) for Cs, we deduce that for a vibrational transition,

νCs

νSF6
∝ gCs

√
µα2.83. (25)

2.3 Nuclear g-factors

All the constraints involve only 4 quantities, µ, α and the two gyromagnetic factors gCs and gRb.
It follows that we need to relate the nuclear g-factors that appeared in the constraints of the
previous subsection, with the proton and neutron g-factors that will be calculated in Section 3.

An approximate calculation of the nuclear magnetic moment is possible in the shell model
and is relatively simple for even-odd (or odd-even) nuclei where the nuclear magnetic moment
is determined by the unpaired nucleon. For a single nucleon, in a particular (l, j) state within
the nucleus, we can write

g =

{

2lgl + gs
j

j+1 [2(l + 1)gl − gs]
for

{

j = l + 1
2

j = l − 1
2

(26)

where gl = 1(0) and gs = gp(gn) for a valence proton (neutron).
From the previous discussion, the only g-factors that are needed are those for 87Rb and

133Cs. For both isotopes, we have an unpaired valence proton. For 87Rb, the ground state
is in a p3/2 state so that l = 1 and j = 3

2 , while for 133Cs, the ground state is in a g7/2 state

corresponding to l = 4 and j = 7
2 . Using Eq. (26), the nuclear g-factor can easily be expressed

in terms of gp alone. Using gp = 5.586, we find g = 7.586 for 87Rb and g = 3.433 for 133Cs,
while the experimental values are g = 5.502 for 87Rb and g = 5.164 for 133Cs.

The differences between the shell model predicted g-factors and the experimental values
can be attributed to the effects of the polarization of the non-valence nucleons and spin-spin
interaction [27, 31]. Taking these effects into account, the refined formula relevant for our
discussion of 87Rb and 133Cs is

g = 2 [gn b 〈sz〉o + (gp − 1)(1− b)〈sz〉o + j] , (27)

where gn = −3.826, 〈sz〉o is the spin expectation value of the single valence proton in the shell
model and it is one half of the coefficient of gs in Eq. (26), and b is determined by the spin-spin
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interaction and it appears in the expressions for the spin expectation value of the valence proton
〈szp〉 = (1 − b)〈sz〉o and non-valence neutrons 〈szn〉 = b〈sz〉o. Following the preferred method
in [27, 31], it is found

〈szn〉 =
g
2 − j − (gp − 1)〈sz〉o

gn + 1− gp
, (28)

and
〈szp〉 = 〈sz〉o − 〈szn〉. (29)

Therefore, the variation of the g-factor can be written as

δg

g
=

δgp
gp

2gp〈szp〉
g

+
δgn
gn

2gn〈szn〉
g

+
δb

b

2(gn − gp + 1)〈szn〉
g

. (30)

From Eq. (28), (29) and (30), we find, by using the experimental g-factors,

δgRb

gRb
= 0.764

δgp
gp

− 0.172
δgn
gn

− 0.379
δb

b
, (31)

δgCs

gCs
= −0.619

δgp
gp

+ 0.152
δgn
gn

+ 0.335
δb

b
. (32)

2.4 Summary of the constraints

Given the discussion in the two previous subsections, and in particular Eqs. (31) and (32), the
atomic clock experiments give constraints on the set {gp, gn, b, µ, α} and thus variations in the
relative frequency shift νAB = νA/νB are given by

δνAB

νAB
= λgp

δgp
gp

+ λgn

δgn
gn

+ λb
δb

b
+ λµ

δµ

µ
+ λα

δα

α
, (33)

or equivalently
ν̇AB

νAB
= λgp

ġp
gp

+ λgn

ġn
gn

+ λb
ḃ

b
+ λµ

µ̇

µ
+ λα

α̇

α
, (34)

with the coefficients {λgp , λgn , λb, λµ, λα} summarized in Table 2.
For the sake of comparison, the shell model gives

δgRb

gRb
≃ 0.736

δgp
gp

(35)

and
δgCs

gCs
≃ −1.266

δgp
gp

. (36)

The main difference arises from the dependence in gn and b but the order of magnitude is similar.

3 Nucleon magnetic moments, current quark masses and ΛQCD

In this section, we will review several approaches in the literature in calculating the nucleon
magnetic moments, including the non-relativistic constituent quark model (NQM), chiral per-
turbation theory (χPT), and a method combining the results of χPT and lattice QCD. We will
try to extract the dependence of the nucleon magnetic moments on the current quark masses
and ΛQCD from the expressions given by each of these approaches.
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Table 2: Summary of the constraints of the atomic clock experiments and values of the coeffi-
cients {λgp , λgn , λb, λµ, λα} entering the decomposition (34).

Clocks νAB λgp λgn λb λµ λα ν̇AB/νAB (yr−1)

Cs - Rb gCs
gRb

α0.49 −1.383 0.325 0.714 0 0.49 (0.5± 5.3) × 10−16

Cs - H gCs µα2.83 −0.619 0.152 0.335 1 2.83 (32± 63) × 10−16

Cs - 199Hg+ gCs µα6.03 −0.619 0.152 0.335 1 6.03 (−3.7 ± 3.9) × 10−16

Cs - 171Yb+ gCs µα1.93 −0.619 0.152 0.335 1 1.93 (0.78 ± 1.40) × 10−15

Cs - Sr gCs µα2.77 −0.619 0.152 0.335 1 2.77 (1.0± 1.8) × 10−15

Cs - SF6 gCs
√
µα2.83 −0.619 0.152 0.335 0.5 2.83 (−1.9± 0.12 ± 2.7) × 10−14

Dy α 0 0 0 0 1 (−2.7 ± 2.6) × 10−15

199Hg+ - 27Al+ α−3.208 0 0 0 0 −3.208 (5.3± 7.9) × 10−17

3.1 The non-relativistic constituent quark model approach

The NQM, which approximates hadrons as bound states of their constituent quarks gives a
good approximation to the measured baryon magnetic moments [49]. In this model, the baryon
magnetic moments are expressed in terms of the Dirac magnetic moments of their constituent
quarks, with the coefficients given by the baryon spin/flavor wave functions. For the proton and
neutron, the magnetic moments are

µp =
4

3
µu −

1

3
µd and µn =

4

3
µd −

1

3
µu , (37)

where µu = 2
3

e
2Mu

and µd = −1
3

e
2Md

. Here, Mu and Md are the constituent u and d quark masses,
respectively, with their values around a third of the nucleon mass, to be compared with the much
smaller u and d current quark masses, mu and md, which are several MeV. For the three light
flavors (u, d and s), the main part of their constituent quark masses have a strong interaction
origin, with the dynamics of the virtual gluons and quark-antiquark sea being responsible for
the large masses [50], while the current quark masses which contribute only a small portion of
their corresponding constituent quark masses are of pure electroweak origin.

From Eq. (37), the nucleon magnetic moment in units of the nuclear magneton µN = e
2mp

,
that is, the g-factor of the nucleon, can be written as

gNQM = 2

(

cu
mp

Mu
+ cd

mp

Md

)

, (38)

where cu = 8/9 and cd = 1/9 for the proton, and cu = −2/9 and cd = −4/9 for the neutron.
In the study of hadron properties, the constituent quark masses are usually taken as fitting pa-
rameters, with Mu = Md often assumed [49], since isospin is a good approximate symmetry. We
will assume this relation in the following calculations to simplify the algebra, but we emphasize
that δMu may not necessarily be equal to δMd. By differentiating Eq. (38), we obtain a general
expression for the variation of the g-factor

δgNQM

gNQM

=
δmp

mp
−
(

cu
cu + cd

δMu

Mu
+

cd
cu + cd

δMd

Md

)

. (39)

The proton mass, mp, and Mu,d are functions of the fundamental constants, and they can
be formally written as mp = mp(v1, v2, · · · , vn) and Mu,d = Mu,d(v1, v2, · · · , vn), where the vi’s
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are fundamental constants including mu, md, ms, ΛQCD, etc.. Therefore, Eq. (39) becomes

δgNQM

gNQM

=

n
∑

i=1

δvi
vi

[

vi
mp

∂mp

∂vi
−
(

cu
cu + cd

vi
Mu

∂Mu

∂vi
+

cd
cu + cd

vi
Md

∂Md

∂vi

)]

≡
n
∑

i=1

δvi
vi

κi. (40)

This is our key equation in studying the dependence of the g-factors on fundamental constants
in the NQM approach, and the problem amounts to finding the expressions for mp(v1, · · · , vn)
and Mu,d(v1, · · · , vn).

3.1.1 The current quark mass and ΛQCD dependence of mp

To get the coefficients of
δmp

mp
, that is, the first term in the square bracket of Eq. (40), we follow

the procedure of [51, 52, 53], by defining Bq (q = u, d, s) and the π-nucleon sigma term, ΣπN, in
terms of proton matrix elements,

mqBq ≡ 〈p|mqq̄q|p〉 = mq
∂mp

∂mq
, (41)

ΣπN ≡ 〈p|m̂(ūu+ d̄d)|p〉 = m̂
∂mp

∂m̂
, (42)

where m̂ ≡ 1
2(mu + md). The latter equalities of the above two equations come from the

Hellmann-Feynman theorem [54] as noted by Gasser [55].
By using the strangeness fraction of the proton,

y ≡ 2Bs

Bd +Bu
= 1− σ0

ΣπN
, (43)

where σ0 is the shift in the nucleon mass due to nonzero quark masses, and a relation from the
energy-momentum tensor trace anomaly [56] for the baryon-octet members [57, 51, 58],

z ≡ Bu −Bs

Bd −Bs
=

mΞ0 +mΞ− −mp −mn

mΣ+ +mΣ− −mp −mn
≈ 1.49, (44)

we can derive from Eqs. (41) and (42) the current quark masses dependence of mp, denoted as
fTq ’s, as

fTu ≡ muBu

mp
=

2ΣπN

mp

(

1 + md
mu

)(

1 + Bd
Bu

) ,

fTd
≡ mdBd

mp
=

2ΣπN

mp

(

1 + mu
md

)(

1 + Bu
Bd

) , (45)

fTs ≡
msBs

mp
=

(

ms
md

)

ΣπN y

mp

(

1 + mu
md

) ,

where
Bd

Bu
=

2 + y(z − 1)

2z − y(z − 1)
. (46)
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Motivated by the trace anomaly expression for mp,

mp = muBu +mdBd +msBs + gluon term , (47)

we will write the remaining fundamental constants dependence of mp as

fTg ≡ ΛQCD

mp

∂mp

∂ΛQCD

= 1−
∑

q=u,d,s

fTq , (48)

which is the coefficient of δΛQCD/ΛQCD in δmp/mp. The argument behind Eq. (48) is the follow-
ing: the gluon term has its origin in the strong interaction, and ΛQCD, which is approximately
the scale at which the strong interaction running coupling constant diverges, is the only mass
parameter of the strong interaction in the chiral limit mu = md = ms = 0, and therefore in
this limit all of the other finite mass scales of the strong interaction phenomena, including pion
decay constant, the spontaneous chiral symmetry breaking scale, etc., are related to ΛQCD by
some pure number of order one [59]. Note that the heavy quark (c, b, t) masses do not explicitly
appear in Eq. (47) as discussed in [57]. Then as the only other variable besides the light current
quark masses, we get Eq. (48) for the ΛQCD dependence in mp. We note that the fTq ’s and
the fTg are also needed in the next section when we vary the electron-to-proton mass ratio,
µ ≡ me/mp.

In calculating the fTq ’s and the fTg , we take the central values given in [60] for the current
quark mass ratios, mu

md
= 0.553 and ms

md
= 18.9, the central value of the π-nucleon sigma term

suggested in [53], ΣπN = 64MeV, and we take σ0 = 36MeV [61, 62] and mp = 938.3MeV. The
results are

fTu = 0.027, fTd
= 0.039, fTs = 0.363, fTg = 0.571. (49)

In the isospin-symmetric limit such that mu = md = m̂, which will be needed in subsections
3.2 and 3.3, Eqs. (45) and (48) take simpler forms,

fTm̂ =
ΣπN

mp
, fTs =

ms
m̂ ΣπNy

2mp
, fTg = 1− fTm̂ − fTs . (50)

In calculating the values for this isospin-symmetric limit case, we take ms
m̂ = 25 [63], and the

results are
fTm̂ = 0.068, fTs = 0.373, fTg = 0.559. (51)

3.1.2 Expressions for Mu,d without an explicit quark sea

To get the coefficients of δMu
Mu

and δMd
Md

, we need to model the constituent quark masses. Intu-
itively, Mu,d can be written as

Mq = mq + aq,intΛQCD (q = u, d), (A) (52)

where aq,int’s are pure dimensionless numbers. The argument behind this form is the following:
if the strong interaction were switched off, the constituent quark mass would be identical to
its corresponding valence current quark mass which is obtained from the electroweak symmetry
breaking. On the other hand, in the chiral limit, mu = md = ms = 0, the strong interaction
is responsible for the entire constituent quark mass. The above intuitive expression for the
constituent quark masses does not explicitly take into account the sea quark contribution, which
if included will depend on the current quark masses, similar to the termsmqBq in the proton mass
trace anomaly formula Eq. (47) [51]. However, one could argue that the sea quark contribution
is already included implicitly in the second term of Eq. (52) together with the virtual gluons
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contribution, since the dynamics of the quark sea and virtual gluons are determined by strong
interaction, which is characterized in the second term.

From Eq. (52), we obtain the coefficients of δMu
Mu

and δMd
Md

as

mu

Mu

∂Mu

∂mu
=

mu

Mu
,

md

Mu

∂Mu

∂md
=

ms

Mu

∂Mu

∂ms
= 0,

ΛQCD

Mu

∂Mu

∂ΛQCD

= 1− mu

Mu
,

md

Md

∂Md

∂md
=

md

Md
,

mu

Md

∂Md

∂mu
=

ms

Md

∂Md

∂ms
= 0,

ΛQCD

Md

∂Md

∂ΛQCD

= 1− md

Md
. (53)

In calculating the above coefficients, we will use mu
md

= 0.553, the central value of md = 9.3MeV

in the modified minimal subtraction (MS) scheme at a renormalization scale of 1GeV [60], and
we will choose Mu = Md = 335MeV.

3.1.3 Expressions for Mu,d with an explicit quark sea – linear form

A method explicitly taking into account the sea quark contribution can be traced back to
the internal structure of the constituent quarks [50]. Then, for mp(ΛQCD,mu,md,ms) a linear
realization of this method is

Mu = alinΛQCD + bu,linmu + bd,linmd + bs,linms ,

Md = alinΛQCD + bd,linmu + bu,linmd + bs,linms , (B) (54)

where we have related the coefficients in Md with those in Mu following [50]. The coefficients
alin and bq,lin’s are pure numbers. Each of the four terms of Mu,d can be obtained by inserting
Eq. (54) into an expression for the NQM based proton mass, mp,NQM, which we will discuss
shortly (see e.g., Eq. (57), (59) or (61)). Then, applying the Hellmann-Feynman theorem

∂mp,NQM

∂mq
=

∂mp,NQM

∂Mu

∂Mu

∂mq
+

∂mp,NQM

∂Md

∂Md

∂mq
= Bq (q = u, d, s). (55)

An example of the application of the Hellmann-Feynman theorem within the NQM is given
in [64]. From Eqs. (54) and (55), the coefficients of δvi/vi (vi = mu,d,s,ΛQCD) of δMu/Mu and
δMd/Md can be obtained as

mu

Mu

∂Mu

∂mu
=

ku mpfTu − kd mpfTd

(

mu
md

)

Mu

(

k2u − k2d
) ,

md

Mu

∂Mu

∂md
=

ku mpfTd
− kd mpfTu

(

md
mu

)

Mu

(

k2u − k2d
) , (56)

ms

Mu

∂Mu

∂ms
=

mpfTs

Mu (ku + kd)
,

ΛQCD

Mu

∂Mu

∂ΛQCD

= 1−
∑

q=u,d,s

mq

Mu

∂Mu

∂mq
,

where ku,d =
∂mp,NQM

∂Mu,d
. The vi

Md

∂Md
∂vi

(vi = mu,d,s,ΛQCD) are obtained from the corresponding
vi
Mu

∂Mu
∂vi

by switching Mu ↔ Md and ku ↔ kd.
To get ku,d, we consider the following NQM based proton mass formulae as examples. To

zeroth order, the proton mass is the sum of the masses of its two constituent u quarks and one
constituent d quark

mp = 2Mu +Md , (57)
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so that
ku = 2, kd = 1. (58)

We will use Mu = Md = 1
3 mp in Eq. (56) when Eq. (57) is taken as the NQM based proton

mass formula.
Without some interaction between the constituent quarks, hadrons with the same constituent

quark compositions would have a same mass, a phenomenon which is not observed in nature.
To break the mass degeneracy, a spin-spin hyperfine term is introduced [65], and the resulting
proton mass is

mp = 2Mu +Md +A′

(

1

4M2
u

− 1

MuMd

)

, (59)

where A′ is a constant usually determined to allow an optimal fit to the baryon octet and decuplet
masses [49]. This spin-spin hyperfine term is commonly attributed to one-gluon exchange [65],
or, in the chiral quark model [66], it is explained as the interaction between the constituent
quarks mediated by pseudoscalar mesons [67]. Although interpreted with relating to different
degrees of freedom (gluon or pseudoscalar mesons) [58], this term nevertheless has a strong
interaction origin, and therefore we will write the parameter A′ as ahypΛ

3
QCD, with ahyp a pure

dimensionless number. From this formula, we get

ku = 2 +A′

(

1

MdM2
u

− 1

2M3
u

)

, kd = 1 +
A′

MuM2
d

. (60)

We will use Mu = Md = 363MeV and A′ = (298.05MeV)3 in Eq. (56) when Eq. (59) is taken as
the NQM based proton mass formula. Note that we have tuned A′ a bit compared to the value
given in [49] to allow an exact fit to the proton mass.

Eq. (59) can be further refined by adding to it the kinetic term of the constituent quarks
and a constituent quark mass independent term M0, which represents the contributions of the
confinement potential and the short-range color-electric interaction [68, 64]

mp = 2Mu +Md +A′′

(

1

4M2
u

− 1

MuMd

)

+B′

(

1

Mu
+

1

2Md

)

+M0 . (61)

From the physical meaning of these two new terms, it may be reasonable to write the constants
B′ and M0 as akinΛ

2
QCD and acceΛQCD, respectively, since the internal dynamics of a baryon is

dominated by the strong interaction and the confinement is a strong interaction phenomenon.
The constant A′′ needs to be re-fit after introducing the two new terms, and we write it as
A′′ = a′hypΛ

3
QCD. The parameters akin, acce and a′hyp are pure dimensionless numbers. We find

that ku,d from this formula are

ku = 2 +A′′

(

1

MdM2
u

− 1

2M3
u

)

− B′

M2
u

, kd = 1 +
A′′

MuM2
d

− B′

2M2
d

. (62)

We will use Mu = Md = 335MeV, A′′ = (4
1
3176.4MeV)3, B′ = (175.2MeV)2 and M0 =

−57.4MeV in Eq. (56) when Eq. (61) is taken as the NQM based proton mass formula. Note
that we have tuned M0 a bit compared to the value given in [64] to allow an exact fit to the
proton mass.

3.1.4 Mu,d expressions with an explicit quark sea – NJL model

As can be seen from Eq. (56), the explicit inclusion of the sea quark contribution in the linear
form Eq. (54) encodes the information of both the NQM based proton mass formula and the
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fTq ’s. However, different realizations from the NQM alone are also possible. Moreover, although
the constituent quark masses are usually taken as fitting parameters in the study of hadron
properties, it is certainly more illuminating if some concrete physical origin of these quantities
can be given and encoded in their mass formulae. As suggested in [66, 69], the constituent
quark masses are closely related to spontaneous chiral symmetry breaking. An example of the
constituent quark mass formulae applying this idea is given by the three flavor Nambu-Jona-
Lasinio (NJL) model [70, 71], where the constituent quark masses are obtained from a set of
gap equations

Mu = mu − 2gs 〈ūu〉 − 2gD

〈

d̄d
〉

〈s̄s〉 ,
Md = md − 2gs

〈

d̄d
〉

− 2gD 〈ūu〉 〈s̄s〉 , (63)

Ms = ms − 2gs 〈s̄s〉 − 2gD 〈ūu〉
〈

d̄d
〉

, (C)

where 〈ūu〉,
〈

d̄d
〉

and 〈s̄s〉 are the quark condensates which are the order parameters of the
spontaneous chiral symmetry breaking, and they are calculated by one loop integral

〈ūu〉 = −iNcTr

∫

d4p

(2π)4
1

/p−Mu + iǫ
,

and
〈

d̄d
〉

(〈s̄s〉) is obtained by changing Mu to Md (Ms). The Nc is the number of colors, and
we take it to be the real-world value 3. This integration can be performed by introducing a
three-momentum cutoff Λ3, and the result is

〈ūu〉 = − 3

2π2
Mu

[

Λ3

√

Λ2
3 +M2

u −M2
u ln

(

Λ3 +
√

Λ2
3 +M2

u

Mu

)]

. (64)

The gs and gD in Eq. (63) are the coupling constants of the effective four-point and six-point
interactions of the quark fields in the NJL Lagrangian, and they are fixed, together with ms

and the cutoff Λ3, by the meson properties as explained in [64, 71]. We simply quote the result
given in [64] 1

ms = 135.7MeV, gsΛ
2
3 = 3.65, gDΛ

5
3 = −9.47, Λ3 = 631.4MeV, (65)

which we will use for our calculation. The other parameters we need in order to solve Eq. (63) are
the u and d current quark masses, which we take mu = md = 5.5MeV following [64]. Note that
the form of Eq. (63) requires mu = md if we assume Mu = Md. The cutoff Λ3 characterizes the
spontaneous chiral symmetry breaking scale, while the latter is related to ΛQCD, as we explained
in the paragraph below Eq. (48). Therefore, we will write Λ3 = ac,NJLΛQCD, gs = as,NJLΛ

−2
QCD and

gD = aD,NJLΛ
−5
QCD, where the coefficients are pure dimensionless numbers. With these inputs, the

constituent quark masses are solved from Eq. (63), with the values Mu = Md = 335MeV and
Ms = 527MeV, and we get

mu

Mu

∂Mu

∂mu
=

md

Md

∂Md

∂md
= 0.0351,

md

Mu

∂Mu

∂md
=

mu

Md

∂Md

∂mu
= 0.0074,

ms

Mu

∂Mu

∂ms
=

ms

Md

∂Md

∂ms
= 0.0628,

ΛQCD

Mu

∂Mu

∂ΛQCD

=
ΛQCD

Md

∂Md

∂ΛQCD

= 0.8947. (66)

1We have tuned the values of gs and gD relative to the values given in [64] to allow Mu = Md = 335MeV and
Ms = 527MeV as exact solutions of Eq. (63).
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3.1.5 Results and discussion of the NQM approach

We can now calculate the dependence of the nucleon magnetic moments on mu,d,s and ΛQCD, by

δgNQM

gexp
=

gNQM

gexp

δgNQM

gNQM

, (67)

where gexp is the measured value of the g-factor, which equals 5.586 for proton, and −3.826 for

neutron [63]. The first term in the square bracket of
δgNQM

gNQM
(Eq. (40)) is given in section 3.1.1,

while the second term in that square bracket can be obtained from section 3.1.2, 3.1.3 and
3.1.4 for each of the three different constituent quark mass models we have considered. The
calculated coefficients of δvi

vi
(vi = mu,d,s, ΛQCD) of

δgNQM

gexp
for proton and neutron are listed in

Table 3, where the constituent quark mass formula used for each row is labeled as A, B or
C, representing Eqs. (52), (54) or (63), respectively, while the 1, 2, or 3 following the label B
represents Eq. (57), (59) or (61), respectively. In all of the cases listed in Table 3, we use the
fTq given in Eq. (49). Note that for case C, there is a slight inconsistency due to our choice of
mu = md, though this has only a minor numerical effect on the resulting κ’s.

Table 3: The coefficients κi of δvi
vi

(vi = mu,d,s, ΛQCD) in
δgNQM

gexp
for the proton (left) and the

neutron (right); see Eq. (40) for their definition.

κu κd κs κQCD

A 0.013 0.036 0.36 −0.41
B1 −0.0039 0.0070 0 −0.0031
B2 0.0029 0.021 0.11 −0.13
B3 −0.0029 0.022 0.070 −0.089
C −0.0050 0.029 0.30 −0.32

κu κd κs κQCD

A 0.021 0.020 0.35 −0.40
B1 0.0056 −0.010 0 0.0045
B2 0.012 0.0033 0.11 −0.12
B3 0.011 −0.0043 0.068 −0.075
C 0.010 0.013 0.29 −0.32

The coefficients in Table 3 show a relatively strong dependence on the constituent quark
mass models used. Most of the coefficients in A and C are closer and much larger compared to
their corresponding values in B. While the first and the second terms in Eq. (40) are independent
of each other for A and C, the same fTq ’s appear in both terms of Eq. (40) for B, as can be seen
from Eq. (56) and thus these two terms are largely canceled due to a relative sign. We can also
see a relatively strong dependence of the coefficients on the NQM based proton mass formulae
when comparing the rows B1, B2 and B3.

Furthermore, there is an uncertainty in the coefficients listed in Table 3 due to the uncertainty
of the π-nucleon sigma term ΣπN. A discussion of the impact of the uncertainty of ΣπN on the
interpretations of experimental searches for dark matter can be found in [53]. We plot the
dependence of the coefficients in row A for the proton on ΣπN in the left panel of Fig. 1. A
similar plot of the coefficients for the proton in row B3 is given in the right panel of Fig. 1.
As can be seen from these plots, the coefficients of δms/ms and δΛQCD/ΛQCD show a strong
dependence on the value of ΣπN. Therefore it is important to pin down the value of ΣπN if this
quantity is used in the study of the current quark mass and ΛQCD dependence of the proton
g-factor. The same conclusion applies for the neutron g-factor, for which the behavior of the
plots are similar to that shown in Fig. 1.

In addition to the relatively strong dependence of the κi on the proton and constituent quark
mass formula as well as the value of ΣπN we have discussed above, some other comments for
this NQM approach in the study of the dependence of the nucleon g-factors on the fundamental
constants are in order. Our assumption that the various parameters in the constituent quark
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Figure 1: The dependence of the coefficients in A for the proton on ΣπN (left) and of the
coefficients in B3 (right).

mass formulae and the NQM based proton mass formulae take power law forms for ΛQCD may
be valid only in the chiral limit. Therefore, some current quark mass dependence may be lost
and the ΛQCD dependence may not be very accurately determined from these formulae. To get
a more accurate dependence, one may also wish to consider relativistic corrections [72] and/or
corrections based on higher-dimension terms in the chiral quark model [66] for Eq. (37), and then
the dependence on the current quark masses and ΛQCD will change correspondingly. Finally, in
the above analysis, we did not consider the electromagnetic contribution to the proton mass or
the constituent quark mass formulae, and thus we may have missed some dependence on the
fine structure constant in this approach.

3.2 The chiral perturbation theory approach

The second approach we consider is χPT, which provides a systematic method of addressing
the low energy properties of the hadrons [73, 74]. In contrast to the strong model-dependent
NQM approach we considered in the previous subsection, χPT can give model-independent
calculations of the nucleon magnetic moments within a perturbative field theory framework in
terms of the hadronic degrees of freedom. However, as we will see, our goal of extracting the
current quark mass and ΛQCD dependence is limited by our lack of knowledge of the accurate
values of the coupling constants, the so called low energy constants (LECs), appearing in the
effective Lagrangians of χPT. These Lagrangians, and the Feynman diagrams generated by
them, are organized according to a power counting scheme, and the number of LECs we will
have to deal with increases as we include higher order contributions to the nucleon magnetic
moments.

By construction, the LECs in the SU(3) χPT which we will consider do not depend on the
light quark (u, d and s) masses, and they should in principle be calculable in terms of the
heavy quark (c, b and t) masses and ΛQCD. Without the ability to solve non-perturbative QCD,
the LECs are usually determined by fitting to experimental data for the pertinent physical
observables, or estimated theoretically by QCD-inspired models and some other approaches
(e.g., the resonance saturation method), and they can also be fixed by lattice calculations (for
a discussion of the LECs, see for example, [75] and the references therein). Most of the LECs
are renormalization scale dependent in such a way that they cancel the renormalization scale
dependent loop integrals so that the final results for the physical observables are renormalization
scale independent. Furthermore, the values of the LECs are expected to be given by dimensional
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analysis [66, 76] up to numerical factors of order one. Since the two quantities involved in such
an analysis, namely, the Goldstone boson decay constant (for the meson octet) and the typical
mass of the light but non-Goldstone states, are both pure numbers times ΛQCD in the chiral limit,
we will assume that all the LECs under discussion are functions of ΛQCD and the renormalization
scale, and by this assumption we neglect the heavy quark mass dependence in the LECs.

For χPT in the meson-baryon sector, needed for the calculations of nucleon magnetic mo-
ments, there exist several renormalization schemes in the literature to ensure consistent power
counting which is troubled by the introduction of the baryon mass as a new scale which is
non-vanishing in the chiral limit. Among these renormalization schemes, the most studied in
the early days in the calculations of octet baryon magnetic moments is the heavy baryon chi-
ral perturbation theory (HBχPT) approach [77]. Due to a strong cancellation between the
leading order O(q2) and the next-to-leading order O(q3) results for this approach (q denotes
external momentum in the power counting scheme), one is forced to consider still higher order
contributions. We will consider the results for this approach to order O(q4) [78, 79, 80, 81],
with (HBwD) and without (HBw/oD) the explicit inclusion of the baryon decuplet states in
loops. We will also consider a result from a more recently developed extended-on-mass-shell
(EOMS) renormalization scheme [82], which gives more convergent results at O(q3) without [83]
or with [84] the inclusion of decuplet states in loops. We will restrict our attention to the EOMS
without decuplets to avoid the introduction of several new parameters which do not improve
the convergence.

At leading order, the octet baryon magnetic moments can be calculated from the Feynman
diagrams of chiral order O(q2), and the results for both the HBχPT and EOMS approaches
have the same expressions as linear combinations of two LECs µD and µF ,

µ
(2)
B ≡ αB = αD

BµD + αF
BµF , (68)

where αD
p = 1/3 and αF

p = 1 for the proton, and αD
n = −2/3 and αF

n = 0 for the neutron.
Note that we are writing down the magnetic moments (rather than the anomalous magnetic
moments) directly in units of µN, and therefore the µF value we use may differ by 1 compared
to the value given in some of the references.

At O(q3) and higher order, the results of HBχPT and EOMS differ. For the HBw/oD
approach, we use the result given in [78, 79, 80, 81], essentially using the notation of [80]. At
O(q3) it is

µ
(3)
B =

∑

X=π,K

βX
B

mpMX

8πf2
X

, (69)

where

βπ
p = −(D + F )2, βK

p = −2

3
(D2 + 3F 2), βπ

n = (D + F )2, βK
n = −(D − F )2.

D and F are dimensionless LECs. We will use the empirical values mp = 938.3MeV, the pion
decay constant fπ = 93MeV and the kaon decay constant fK = 1.2fπ in our calculations, but we
will consider these quantities take the forms of their corresponding LECs, namely, the average
octet baryon mass, m0 and the Goldstone boson decay constant F0, since the differences between
these quantities and their corresponding LECs give contributions to the octet baryon magnetic
moments beyond O(q4) which is the highest order we will consider. Therefore, in contrast to
the NQM approach we considered in the previous subsection, we do not need to vary the proton
mass in this subsection in calculating the current quark masses and ΛQCD dependence of the
nucleon magnetic moments. For the same reason, we take the pion mass, Mπ, and kaon mass,
MK , at their empirical values of 138MeV and 495MeV, respectively, in our calculations, while
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we only take their lowest order forms Mπ = (2B0m̂)1/2 and MK = [B0(m̂ + ms)]
1/2, where

the B0 is an LEC with mass dimension, when considering light current quark masses and ΛQCD

dependences. We will work in the isospin-symmetric limit in this and the next subsection such
that mu = md ≡ m̂. The expression for the η mass, Mη = [2/3B0(m̂+2ms)]

1/2 is also needed at
O(q4) in the HBχPT approach and at O(q3) in the EOMS approach, and we use its empirical
value of 548MeV.

For the case HBwD, we have the following terms in addition to Eq. (69) [78, 80, 81],

µ
(3)
B =

∑

X=π,K

mp

8πf2
X

F (MX , δ, λ)β′X
B , (70)

where

πF (M, δ, λ) = −δ ln
M2

λ2
+







2
√
M2 − δ2 [π/2− arctan (δ/

√
M2 − δ2)], M > δ,

−2
√
δ2 −M2 ln[(δ +

√
δ2 −M2)/M ], M < δ,

and

β′π
p = −2

9
C2, β′K

p =
1

18
C2, β′π

n =
2

9
C2, β′K

n =
1

9
C2,

where C is a dimensionless LEC, λ is the renormalization scale in dimensional regularization,
and δ is the decuplet-octet mass splitting for which we take to be a number times ΛQCD with a
value of 300MeV.

At O(q4) in the HBχPT approach, more LECs appear in the results and the formulae become
lengthy. For the case HBw/oD, we take [79] 2

µ
(4)
B = µ

(4,c)
B + µ

(4,d+e+f)
B + µ

(4,g)
B + µ

(4,h+i)
B + µ

(4,j)
B , (71)

with

µ(4,c)
p = a3 + a4 +

1

3
a5 +

1

3
a6 −

1

3
a7, µ(4,c)

n = −2

3
a5 −

2

3
a6 −

1

3
a7,

and

µ
(4,d+e+f)
B =

∑

X=π,K

δXB
M2

X

16π2f2
X

ln
MX

λ
+

∑

X=π,K,η

ηXB
M2

X

16π2f2
X

(

ln
MX

λ
+ 1

)

−





∑

X=π,K,η

φX
B

M2
X

8π2f2
X

(

3 ln
MX

λ
+ 1

)



αB ,

with

δπp = −µD − µF , δKp = −2µF , δπn = µD + µF , δKn = µD − µF ,

ηπp =
1

2
(D + F )2(µD − µF ), ηKp = −(

1

9
D2 − 2DF + F 2)µD − (D − F )2µF ,

ηηp = − 1

18
(D − 3F )2(µD + 3µF ), ηπn = −(D + F )2µF ,

ηKn = (−7

9
D2 +

2

3
DF + F 2)µD + (D − F )2µF , ηηn =

1

9
(D − 3F )2µD,

φπ
p,n =

3

4
(D + F )2, φK

p,n =
5

6
D2 −DF +

3

2
F 2, φη

p,n =
1

12
(D − 3F )2,

2There is a misprint in the third term of µ
(4,d+e+f)
B in [79], where the sign in front should be ‘−’.
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and

µ
(4,g)
B =

∑

X=π,K

γXB
mpM

2
X

4π2f2
X

ln
MX

λ
,

with

γπp = 2a9 + 2

(

a10 +
1

8mp

)

, γKp = a8 + 4

(

a10 +
1

8mp

)

,

γπn = −2a9 − 2

(

a10 +
1

8mp

)

, γKn = −2a9 + 2

(

a10 +
1

8mp

)

,

and

µ
(4,h+i)
B =

∑

X=π,K

βX
B

M2
X

16π2f2
X

(

5 ln
MX

λ
+ 1

)

,

and

µ
(4,j)
B = −

∑

X=π,K

θXB
mp

2π2f2
X

(

2 ln
MX

λ
+ 1

)

,

with

θπp = (D + F )2
[

M2
Ka11 +

(

M2
π −M2

K

)

a12
]

, θKp =
1

6

[

(3F +D)2 M2
η + 3(D − F )2M2

π

]

a11,

θπn = −(D + F )2
[

M2
Ka11 + (M2

π −M2
K)a12

]

, θKn = (D − F )2M2
πa11.

In the above formulae, the LECs a8,9,10,11,12 (labeled b9,10,11,D,F in [79]) with their values in
units of GeV−1 are a8 = 0.81, a9 = 0.95, a10 = 0.36, a11 = −0.192 and a12 = −0.210, where
the first three are estimated by the resonance saturation method which takes into account the
contribution from the baryon decuplet while the other two are determined by fitting to the
baryon octet masses, as explained in detail in [79]. We take the value of the η decay constant
to be fη = 1.2fπ, but we will consider it taking the form of its corresponding LEC, F0, for the
same reason explained above for the other Goldstone boson decay constants.

At this order, an uncertainty arises for our extraction of the dependence of magnetic moments
on the current quark masses and ΛQCD due to the uncertainties of the values of the LECs
appearing in the counter term Lagrangian, and they are denoted as a3,4,5,6,7 in Eq. (71). These
dimensionless numbers have actually absorbed the light current quark masses in the counter
term Lagrangian in contrast to their corresponding true LECs which are independent of the
light current quark masses. Therefore these redefined LECs should contain a factor ms/ΛQCD,
if we neglect the contributions from m̂ as its value is much smaller than ms. Two other LECs
in the counter term Lagrangian are also present at this order, and they are combined with the
two LECs appearing in the O(q2) result Eq. (68), as

µD,F → µD,F + 4B0(2m̂+ms)µ̃D,F , (72)

where µ̃D,F are LECs appearing in O(q4) counter term Lagrangian. Then all seven of these
redefined LECs, µD,F and a3,4,5,6,7, are used as fitting parameters to perform an exact fit to the
seven available octet baryon magnetic moments. Since they are used as fitting parameters, and
indeed different values for them are obtained with and without the explicit inclusion of baryon
decuplet states in loops, as well as when different values of other LECs are used for the fittings
(see the discussion below), it is hard to get an accurate extraction of the light current quark
mass and ΛQCD dependence from these redefined LECs. For the light current quark masses
dependence, we will only consider the ms dependence for a3,4,5,6,7, while we will not try to
extract such dependence for the redefined µD,F (denoted as a1,2 in [80]), since we do not know
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the relative size of the two terms on the right hand side of Eq. (72), where only one of the
two terms has the light current quark mass dependence, although such dependence in these two
redefined LECs may be not small, as suggested in [79] when comparing the fitting values up
to O(q3) with the ones up to O(q4). We take the values µD = 3.71, µF = 3.25, a3 = −0.50,
a4 = −0.15, a5 = −0.25, a6 = 0.50 and a7 = −0.46 given in [79], where F = 0.5, D = 0.75 is
used, and the renormalization scale λ is taken to be 0.8GeV.

For HBwD at O(q4), we take [80] 3

µ
(4)
B = µ

(4,c)
B +

∑

X=π,K,η

1

32π2f2
X

(γ′XB − 2φ′X
B αB)M

2
X ln

M2
X

λ2

+
∑

X=π,K,η

1

32π2f2
X

[

(γ̃′XB − 2 φ̃′X
B αB)L(3/2)(MX , δ, λ) + γ̂′XB L′

(3/2)(MX , δ, λ)
]

, (73)

where

L(3/2)(M, δ, λ) = M2 ln
M2

λ2
+ 2πδ F (M, δ, λ),

and

L′
(3/2)(M, δ, λ) = M2 ln

M2

λ2
+

2π

3δ
G(M, δ, λ),

with

πG(M, δ, λ) = −δ3 ln
M2

λ2
+ πM3 +







−2(M2 − δ2)3/2 [π/2 − arctan (δ/
√
M2 − δ2)], M > δ,

−2(δ2 −M2)3/2 ln[(δ +
√
δ2 −M2)/M ], M < δ,

and

γ̃′πp =
80

27
C2µC , γ̃′Kp =

10

27
C2µC , γ̃′ηp = 0,

γ̃′πn = −20

27
C2µC , γ̃′Kn = −10

27
C2µC , γ̃′ηn = 0,

γ̂′πp =
8

9
C(D + F )µT , γ̂′Kp =

2

9
C(3D − F )µT , γ̂′ηp = 0,

γ̂′πn = −8

9
C(D + F )µT , γ̂′Kn = −4

9
CFµT , γ̂′ηn = 0,

φ̃′π
p,n = 2C2, φ̃′K

p,n =
1

2
C2, φ̃′η

p,n = 0.

The other coefficients are related to the ones given in Eq. (71), as

γ′π,KB = δπ,KB + ηπ,KB , γ′ηB = ηηB , φ′X
B = 3φX

B ,

and µ
(4,c)
B is the same as the case of HBw/oD.

In this case, since different LECs are used as inputs for the fittings in comparison to the
HBw/oD case, the resulting fit values of the seven redefined LECs are different, and we take
their values from Case (b) in Table II of [80], a1 = 3.946, a2 = 2.353, a3 = −0.001, a4 = −0.172,
a5 = 0.569, a6 = 0.694 and a7 = −1.165, corresponding to the LECs inputs F = 0.5, D = 0.75,
C = −1.5, µT = −7.7 and µC = 1.94. A renormalization scale λ = 1GeV is used.

For the EOMS approach, to minimize the number of LECs involved and thus perhaps the
uncertainties introduced by them, we only consider the result given in Eq. (2) to Eq. (5) of [83]

3There is a misprint in the form of the πG(M, δ, λ) for the case M > δ, where the sign in front should be ‘−’.
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which does not include the baryon decuplet states in loops. The result is up to O(q3), and the
loop integrals are finite. The values µD = 3.82 and µF = 2.20 denoted as b̃D6 and b̃F6 in [83], after
performing the EOMS scheme, are determined by a fit to minimize the χ̃2 =

∑

(µth − µexp)
2 as

explained in that reference. For other quantities in the formula, Fφ = 1.17fπ is the average of
the physical values of fπ, fK and fη, and we still use MB = 938.3MeV, fπ = 93MeV, and the
same values for Mπ,K,η as specified above. We take D = 0.80 and F = 0.46 as used in [83] for
this EOMS approach.

We list the results of the two HBχPT and the one EOMS approaches in Table 4, where
we also need to specify the ratio of ms to m̂, for which we use 25. Note that as we discussed
above, we have assumed that the LECs (a1,2,3,4,5,6,7, correspond to the original LECs before the
re-definition) depend only on ΛQCD and the renormalization scale, λ, i.e., they do not depend
on the light quark masses and there is no dependence on the renormalization scale in the full
result. Therefore, the coefficient of δΛQCD/ΛQCD must be equal and opposite to the sum of the
light quark mass contributions.

Table 4: The coefficients, κi, of
δvi
vi

(vi = m̂, ms, ΛQCD) of
δgχPT

gexp
, defined as in Eq. (40), for the

proton (left) and the neutron (right).

2κu = 2κd κs κQCD

HBw/oD −0.050 −0.50 0.54
HBwD 0.034 0.17 −0.21
EOMS −0.049 −0.031 0.080

2κu = 2κd κs κQCD

−0.16 −0.14 0.30
−0.050 0.32 −0.27
−0.11 0.014 0.097

We see from Table 4, the numbers in each column differ considerably for nucleon magnetic
moment formulae from different renormalization schemes and depend on the explicit inclusion of
baryon decuplet states in loops. As we mentioned in the beginning of this subsection, we believe
this discrepancy comes in a large part from our lack of knowledge of the accurate values of the
LECs. In particular, many of the LECs involved in our calculations are used as fit parameters for
the octet magnetic moments and masses, while their true values may be quite different from the
numbers obtained by these fits. For example, if we use the values for Case (a) F = 0.4, D = 0.61
and C = −1.2 in [80], the resulting values of the a’s also give an exact fit to the seven available
octet baryon magnetic moments, with a prediction for the ΣΛ transition moment similar to the
one given by Case (b). However, one can see that many of the corresponding a’s for Case (a)
and Case (b) differ greatly, and indeed, for Case (a) we get the coefficients from left to right of
Table 4 as 0.014, 0.14 and −0.16 for the proton, and −0.039, 0.26 and −0.23 for the neutron,
which are different from the results of Case (b). Therefore, it is crucial to pin down the values of
LECs before one can make a better extraction of the light quark masses and ΛQCD dependence
in the χPT approach.

One can also estimate the dependence of mp on the current quark masses and ΛQCD from
a formula for mp within χPT. Such dependences can be used when one varies the electron-to-
proton mass ratio, µ ≡ me/mp. However, as we explained at the end of the previous subsection,
we prefer to use a common set of values for the coefficients of κq and κQCD of δmp/mp. Those
values for the isospin-symmetric limit case are listed at the end of section 3.1.1.

3.3 The approach combining χPT and lattice QCD

As another approach to study hadronic physics, lattice QCD provides a promising way to ex-
tract the current quark masses dependence of the nucleon magnetic moments, because one can
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do explicit calculations by assuming a sequence of different current quark masses in lattice com-
putations, although in practice the computational cost is a limitation. Since most of the current
lattice computations are still using input current quark masses much larger than their empirical
values, an extrapolation of the lattice results to the physical point is needed. In the extrapo-

lations for the physical observables, terms having non-analytic behaviors, m
1/2
q and mq logmq,

etc., which are predicted by χPT and have important contributions near the chiral limit, must
be considered.

An earlier study of this combined lattice and χPT approach for the nucleon magnetic mo-
ments uses an encapsulating form which is the Padé approximant [85],

µp,n(Mπ) =
µ0

1− χp,n

µ0
Mπ + cM2

π

, (74)

where χp,n are fixed by the leading non-analytic term given by χPT, while µ0 and c are allowed
to vary to best fit the lattice data.

A later development takes the finite range regulator (FRR) [86] as the regularization method
rather than the traditional dimensional regularization for the results we discussed in the previous
subsection, and the cut-off parameter in the FRR is a mass scale which can be interpreted as
the inverse of the size of the nucleon.

The current quark masses dependence for the nucleon magnetic moments is given in [28],
and we simply quote the result there without going into any detail

δgp
gp

= −0.087
δm̂

m̂
− 0.013

δms

ms
,

δgn
gn

= −0.118
δm̂

m̂
+ 0.0013

δms

ms
. (75)

As the same argument we made for the χPT approach in the previous subsection, all parameters
without light quark masses dependence are either pure numbers or are pure numbers time ΛQCD.
Therefore, we obtain

δgp
gp

= −0.087
δm̂

m̂
− 0.013

δms

ms
+ 0.100

δΛQCD

ΛQCD

,

δgn
gn

= −0.118
δm̂

m̂
+ 0.0013

δms

ms
+ 0.1167

δΛQCD

ΛQCD

. (76)

4 Atomic clock constraints

4.1 Methodology

As we have seen in section 2.4, the frequency shift is related to {gp, gn, b, µ, α} by the relation

ν̇AB

νAB
= λgp

ġp
gp

+ λgn
ġn
gn

+ λb
ḃ

b
+ λµ

µ̇

µ
+ λα

α̇

α
, (77)

where the coefficients λ are given explicitly in Table 2. Then, in section 3, we have expressed
the dependence of the g-factors as

δgp
gp

= κup
δmu

mu
+ κdp

δmd

md
+ κsp

δms

ms
+ κQCDp

δΛQCD

ΛQCD

, (78)

δgn
gn

= κun
δmu

mu
+ κdn

δmd

md
+ κsn

δms

ms
+ κQCDn

δΛQCD

ΛQCD

, (79)
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where the coefficients κi have been calculated for different models and collected in Tables 3 and
4 and Eq. (76), as well as the dependence of the proton mass

δmp

mp
= fTu

δmu

mu
+ fTd

δmd

md
+ fTs

δms

ms
+ fTg

δΛQCD

ΛQCD

, (80)

where the fTi
are given in Eqs. (49) and (51). Also, following [27, 31], b depends on the quark

mass and ΛQCD, and there it is found

δb

b
= γq

δm̂

m̂
+ γQCD

δΛQCD

ΛQCD

, (81)

with
γq = −γQCD = −0.11. (82)

Assuming for simplicity that all Yukawa couplings are varying similarly, i.e., δhi/hi = δh/h,
the expansions (78), (79), (80) and (81) can be inserted in Eq. (77) to obtain

ν̇AB

νAB
= λ̂h

ḣ

h
+ λ̂v

v̇

v
+ λ̂QCD

Λ̇QCD

ΛQCD

+ λ̂α
α̇

α
. (83)

The coefficients λ̂ are easily computed to be given by

λ̂h = λgp(κup + κdp + κsp) + λgn(κun + κdn + κsn) + λbγq + λµ(1− fTu − fTd
− fTs)(84)

λ̂v = λ̂h (85)

λ̂QCD = λgpκQCDp + λgnκQCDn + λbγQCD − λµfTg (86)

λ̂α = λα. (87)

The form (83) makes no assumption on unification and only relies on the fact that all Yukawa
couplings are varying in a similar way. It is important to note here that the dimensionality
constraint on the fTi

, κi and γi parameters implies that λ̂QCD = −λ̂v so that Eq. (83) actually
depends only on the combination of X ≡ hv/ΛQCD and α as

ν̇AB

νAB
= λ̂h

Ẋ

X
+ λ̂α

α̇

α
. (88)

This would not be the case if we had not assumed that δhi/hi = δh/h for all Yukawa couplings.
Our first hypothesis concerning unification allows one to express the variation of the QCD

scale by means of Eq. (2) so that

ν̇AB

νAB
=

(

λ̂h +
2

9
λ̂QCD

)

ḣ

h
+

(

λ̂v +
2

9
λ̂QCD

)

v̇

v
+
(

λ̂α +Rλ̂QCD

) α̇

α

≡ HS

(

ḣ

h
+

v̇

v

)

+Hα
α̇

α
. (89)

The second hypothesis on unification assumes that the variation of v and h are related by Eq. (4)
so that

ν̇AB

νAB
=

(

λ̂h +
2

9
λ̂QCD

)

(1 + S)
ḣ

h
+
(

λ̂α +Rλ̂QCD

) α̇

α

≡ HS(1 + S)
ḣ

h
+Hα

α̇

α
. (90)
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The last hypothesis assumes that the variations of h and α are related by Eq. (5) so that

ν̇AB

νAB
=

[

1

2

(

λ̂h +
2

9
λ̂QCD

)

(1 + S) +
(

λ̂α +Rλ̂QCD

)

]

α̇

α

≡ (
1

2
HS(1 + S) +Hα)

α̇

α
≡ Cα(R,S)

α̇

α
. (91)

The two last equations define the parameter Cα(R,S).
The forms (89-91) imply increasing assumptions on the unification mechanisms and are thus

becoming more and more model-dependent with the advantage of reducing the number of fun-
damental constants, hence allowing one to draw sharper constraints from the same experimental
data.

The coefficients introduced above can be easily calculated from Table 2 for the coefficients
λ, Tables 3 or 4 or Eq. (76) for the coefficients κi, Eq. (49) or Eq. (51) for the coefficients fTi

,
and Eq. (82) for the coefficients γi. As an example, we provide the value of the coefficients
Cα assuming S = 160 and R = 30 for the 9 models considered in this article. It is important
to stress that this coefficient is almost always larger than one and typically of order 5 – 30 in
absolute value.

We can check that the effect of varying the nuclear radius is indeed much smaller than varying
the other parameters. This effect can be included by adding a term ǫr( ˙̂m/m̂ − Λ̇QCD/ΛQCD) to
Eq. (77). Using the values listed in Table IV of [31], we have ǫr = −0.004 for the Cs-Rb clock
system, while ǫr = −0.007 for the other five clock systems involving Cs. These amount to an
adjustment of −0.13 in the numbers in the first column of Table 5, and −0.23 in the other five
columns.

Table 5: The coefficient Cα assuming S = 160 and R = 30 for each of the models for the nucleon
magnetic moment and for the various combinations of clocks discussed in this article.

Cs-Rb H-Cs Hg-Cs Yb-Cs Sr-Cs SF6-Cs

A −16.53 13.86 17.06 12.96 13.80 4.56
B1 −2.26 20.16 23.36 19.26 20.10 10.85
B2 −6.79 18.16 21.36 17.26 18.10 8.85
B3 −5.29 18.82 22.02 17.92 18.76 9.51
C −13.37 15.26 18.46 14.36 15.20 5.95
HBw/oD 19.27 29.33 32.53 28.43 29.27 20.22
HBwD −8.57 17.01 20.21 16.11 16.95 7.89
EOMS 0.49 20.97 24.17 20.07 20.91 11.86
χPT+QCD 1.20 21.29 24.49 20.39 21.23 12.18

4.2 Single Experiment Constraints

We are now in a position to combine our results for the dependence of the nucleon g-factor on
fundamental parameters with the limits imposed from atomic clock measurements. For each
experiment, we can derive a limit on the variation of the fine structure constant under a number
of sets of assumptions.

For example, assuming first that the only dependence of νAB on α is related to the coefficient
λα (i.e., we assume that gp, gn, b and µ remain constant), we can use Table 2 to extract a limit
on α̇/α for each experiment from

α̇

α
=

1

λα

ν̇AB

νAB
. (92)
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In contrast, when we take into account the contributions from coupled variations, and we assume
the relation between ν̇AB/νAB and α̇/α given by Eq. (91) we obtain simply

α̇

α
=

1

Cα

ν̇AB

νAB
. (93)

Thus, the improvement in the limit from each individual experiment due to the theoretical
assumption of coupled variations is given by Cα/λα. These factors are tabulated in Table 6 for
each experiment and model for gp,n.

Table 6: The enhancement factor Cα/λα assuming S = 160 and R = 30 for each of the models
for the nucleon magnetic moment and for the various combinations of clocks discussed in this
article.

Cs-Rb H-Cs Hg-Cs Yb-Cs Sr-Cs SF6-Cs

A −33.73 4.90 2.83 6.72 4.98 1.61
B1 −4.61 7.12 3.87 9.98 7.26 3.83
B2 −13.86 6.42 3.54 8.94 6.53 3.13
B3 −10.80 6.65 3.65 9.28 6.77 3.36
C −27.28 5.39 3.06 7.44 5.49 2.10
HBw/oD 39.32 10.36 5.39 14.73 10.57 7.14
HBwD −17.48 6.01 3.35 8.34 6.12 2.79
EOMS 1.00 7.41 4.01 10.40 7.55 4.19
χPT+QCD 2.45 7.52 4.06 10.56 7.66 4.30

As one can see, there is a strong model-dependence on the resulting limits on α̇/α. Overall
the enhancements range from ∼ 1 to ∼ 10. For example, let us consider the case of the Cs-Rb
atomic clock system. Ignoring the variations in all other constants, this clock would yield a
result

α̇

α
= (1.02 ± 10.82) × 10−16yr−1. (94)

In contrast, coupled variations, according to the factors in Table 6, improve this result by as
much as a factor of 39.32 using the HBw/oD model for gp,n, yielding

α̇

α
= (0.03 ± 0.28) × 10−16yr−1. (95)

Cases A and C also make substantial improvements in the limit for the Cs-Rb clock system.
On the other hand, there is no gain for case EOMS, or even a weaker limit if the nuclear radius
effect is taken into account.

4.3 Combined Experimental Constraints

While the results of individual experiments can be substantially improved by coupled variations,
two clock systems (Dy and Hg-Al) are independent of any assumption on unification and lead to
model-independent limits on α. We next combine the available results to obtain a single limit
on α for each choice of model for gp,n.

Each of the eight experimental results used in this article can be written as

d

dt
ln νAB = ηAB ± δAB, (96)

listed in Table 2. From a theoretical point of view, the expression for νAB depends on a set
of constants, x, chosen as being independent and on our hypothesis on unification schemes.
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If we assume d ln νAB(x)/dt − ηAB to be Gaussian distributed and all the experiments to be
uncorrelated, then the best-fit for the set of constants x is obtained by maximizing the likelihood,
or equivalently by minimizing

χ2(x) =
∑

AB

[

ν̇AB

νAB
(x)− ηAB

]2

δ2AB

. (97)

The 68.27%, 95%, and 99% confidence level (i.e., 1σ, ∼ 2σ and ∼ 3σ) constraints are then
obtained by ∆χ2 = (1, 3.84, 6.63) if dim(x) = 1 and ∆χ2 = (2.30, 5.99, 9.21) if dim(x) = 2.

4.3.1 Constraints on the QED parameters

Let us start by assuming that {gp, gn, b, µ, α} are independent parameters. One can use the
Hg-Al clock to constrain the variation of α and then use the six clock combinations that depend
on the five parameters to set a constraint on {gp, gn, b, µ}. However, from Eq. (30), we note
that the ratio of the coefficients of δgn/gn and δb/b is gn/(gn − gp + 1), which is independent
of the clock systems we are considering. Also, from Table 2, we note that the value of λgp/λgn

for the Cs-Rb clock is very close to that of the other five clock combinations. Therefore, for the
purpose of constraining the QED parameters, gp, gn and b are not independent, and we can only
constrain their combination, namely, gCs. The combined constraint on gCs and µ is depicted on
Fig. 2. Note that if a different method in the calculation of g-factors of 87Rb and 133Cs, and/or
other clock systems, are used, such that the ratio λgp : λgn : λb is not the same for different clock
combinations, then gp, gn and b can be taken as independent parameters.

As we know from our analysis, such a hypothesis is not correct since the variations are ex-
pected to be correlated but this shows the result one would have derived without any knowledge
on QCD.
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Figure 2: Constraints on the variation of parameters {gCs, µ} assumed to be independent once
the constraint from the variation of α from the Hg-Al clock is taken into account. Solid, dashed
and dotted contours correspond to 68.27%, 95% and 99% C.L.
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4.3.2 Constraint on α

As in the previous subsection, we can consider first the constraint obtained using the form (91)
that depends on δα/α alone. Minimizing χ2 for a single variable is equivalent to taking the
weighted mean of ηAB/λα with an uncertainty δAB/λα. This result can be compared with that
assuming coupled variations using the coefficients Cα, given in Table 5. In this case, the weighted
mean replaces λα with Cα.

In order to determine the effect of coupled variations, we compare the constraints arising
from the combination of the eight experiments to the one obtained from the combination of 6
clocks (that is neglecting the Dy and Hg-Al clocks). The results are presented in Table 7 and
shall be compared to the same analysis assuming that only α is varying (i.e., keeping gp, gn, b
and µ constant). We find

α̇

α
= −(2.14 ± 2.30) × 10−17 yr−1 (98)

for the combination of the 8 experiments and

α̇

α
= − (5.24 ± 6.40) × 10−17 yr−1 (99)

for the combination of the 6 experiments. We also remind the reader that the Hg-Al experiment
alone set the constraint

α̇

α
= − (1.65 ± 2.46) × 10−17 yr−1, (100)

which shows that there is little gain in combining the 8 experiments compared to this experiment
alone.

When gp, gn, b and µ are allowed to vary in the combination of the 6 clocks, there is a gain
of a factor of order 4 so that the constraint obtained from the combination of these 6 clocks
assuming unification becomes as strong as the constraint obtained from Hg-Al alone. When
combining the 8 experiments, the gain is less than a factor of 2, due to the fact that the limit
arises mostly from the Hg-Al experiment which does not depend on gp,n. These results are
summarized in Table 7 and each result can be compared to the single Hg-Al result given in
Eq. (100).

Table 7: Constraints on the variation of α assuming the unification relation (91) and the values
of Cα for S = 160 and R = 30. We compare the constraints obtained from the combination of
the 8 clocks and the constraints obtained from the 6 clocks (i.e. without Dy and Hg-Al). All
numbers are in yr−1.

Model 8 clocks 6 clocks

A (−1.32± 1.46) × 10−17 (−1.12± 1.81) × 10−17

B1 (−1.25± 1.34) × 10−17 (−1.07± 1.60) × 10−17

B2 (−1.32± 1.40) × 10−17 (−1.15± 1.71) × 10−17

B3 (−1.30± 1.38) × 10−17 (−1.13± 1.67) × 10−17

C (−1.35± 1.46) × 10−17 (−1.17± 1.81) × 10−17

HBw/oD (−0.76± 0.97) × 10−17 (−0.60± 1.06) × 10−17

HBwD (−1.36± 1.44) × 10−17 (−1.19± 1.78) × 10−17

EOMS (−1.21± 1.31) × 10−17 (−1.02± 1.54) × 10−17

χPT+QCD (−1.19± 1.30) × 10−17 (−1.00± 1.52) × 10−17
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4.3.3 Constraint on hv

As a second application, we can use the constraint (22) arising from the Hg-Al clock to obtain
a bound on the time variation of α that is independent of the other constants and then use the
6 other clocks to set a constraint on the combination of parameters hv, assuming the form (89)
to set a constraint on δhv/hv alone. This requires the knowledge of the coefficients HS and Hα

and we assume that R = 30, but it does not depend on the coefficient S.

The constraints for each model are summarized on Table 8. It ranges between
∣

∣

∣

(hv).

hv

∣

∣

∣
<

20.43 × 10−16 yr−1 and
∣

∣

∣

(hv).

hv

∣

∣

∣
< 13.52 × 10−16 yr−1, respectively for models A and HBw/oD

and it turns out that the model-dependence for this constraint is mild.

Table 8: Constraints on the variation of hv once the variation of α alone is constrained from the
Hg-Al clock. It assumes the unification relation (89). All numbers are in yr−1.

Model (hv).

hv

A (−9.64± 10.79) × 10−16

B1 (−8.69± 10.21) × 10−16

B2 (−9.27± 10.52) × 10−16

B3 (−9.11± 10.45) × 10−16

C (−9.65± 10.71) × 10−16

HBw/oD (−6.20± 7.32) × 10−16

HBwD (−9.55± 10.76) × 10−16

EOMS (−8.35± 10.01) × 10−16

χPT+QCD (−8.22± 9.91) × 10−16

4.3.4 Constraint on ( hv
ΛQCD

, α)

As a third application, we use the fact that λ̂QCD = −λ̂h so that the form (88) allows one to set
a constraint on (hv/ΛQCD, α) independent of any hypothesis on unification and thus does not
require knowledge of the parameters R and S.

Figure 3 compares the 99% C.L. constraints obtained from the combination of 6 and 8
experiments for each model. Again, we see that the Hg-Al experiment dominates the collective
limit.

5 Application to astrophysical systems and Discussion

5.1 Astrophysical systems

Several different types of observations of astrophysical systems involving quasar absorption spec-
tra are subject to a similar analysis that has been applied to atomic clocks. Indeed, there are
four distinct combinations of physical parameters which depend on gp.

• The comparison of UV heavy element transitions with the hyperfine H i transition allows
one to set constraints on

x ≡ α2gpµ, (101)

since the optical transitions are simply proportional to R∞. It follows that constraints on
the time variation of x can be obtained from high resolution 21 cm spectra compared to
UV lines, e.g., of Si ii, Fe ii and/or Mg ii. The recent detection of 21 cm and molecular
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Figure 3: Comparison of the 99% C.L. constraints on (hv/ΛQCD, α) for the 9 models with 8
clocks (left) and 6 clocks (right)

hydrogen absorption lines in the same damped Lyman-α system at zabs = 3.174 towards
SDSS J1337+3152 constrains [87] the variation x to

∆x/x = −(1.7± 1.7) × 10−6, z = 3.174. (102)

• The comparison of the H i 21 cm hyperfine transition to the rotational transition frequen-
cies of diatomic molecules allows one to set a constraint on

y ≡ gpα
2 (103)

The most recent constraint [88] relies on the comparison of two absorption systems de-
termined both from H i and molecular absorption. The first is a system at z = 0.6847 in
the direction of TXS 0218+357 for which the spectra of CO(1-2), 13CO(1-2), C 18O(1-2),
CO(2-3), HCO +(1-2) and HCN(1-2) are available. They concluded that

∆y/y = (−0.16 ± 0.54) × 10−5, z = 0.6847. (104)

The second system is an absorption system in the direction of PKS 1413+135 for which
the molecular lines of CO(1-2), HCO +(1-2) and HCO +(2-3) have been detected. The
analysis led to

∆y/y = (−0.2 ± 0.44) × 10−5, z = 0.247. (105)

• The ground state, 2Π3/2J = 3/2, of OH is split into two levels by Λ-doubling and each of
these doubled levels is further split into two hyperfine-structure states. Thus, it has two
“main” lines (∆F = 0) and two “satellite” lines (∆F = 1). Since these four lines arise
from two different physical processes (Λ-doubling and hyperfine splitting), they enjoy the
same Rydberg dependence but different gp and α dependences. By comparing the four
transitions to the H i hyperfine line, one can set a constraint on

F ≡ gp(α
2/µ)1.57. (106)

Using the four 18 cm OH lines from the gravitational lens at z ∼ 0.765 toward PMN J0134-
0931 and comparing the H i 21 cm and OH absorption redshifts of the different components
allowed one to set the constraint [89]

∆F/F = (−0.44 ± 0.36 ± 1.0syst)× 10−5, z = 0.765, (107)
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where the second error is due to velocity offsets between OH and H i assuming a velocity
dispersion of 3 km/s. A similar analysis [90] in a system in the direction of PKS 1413+135
gave

∆F/F = (0.51 ± 1.26) × 10−5, z = 0.2467. (108)

• The satellite OH 18 cm lines are conjugate so that the two lines have the same shape, but
with one line in emission and the other in absorption. This behavior has recently been
discovered at cosmological distances and it was shown [91] that a comparison between the
sum and difference of satellite line redshifts probes the variation of

G ≡ gp(α
2/µ)1.85. (109)

From the analysis of a system at z ∼ 0.247 towards PKS 1413+135, it was concluded [92]
that |∆G/G| = (2.2 ± 3.8)× 10−5, while a newer analysis [93] gave

|∆G/G| = (−1.18 ± 0.46) × 10−5. (110)

It was also applied to a nearby system [94], Centaurus A, to give |∆G/G| < 1.16 × 10−5

at z ∼ 0.0018.

These constraints are summarized in Table 9.

Table 9: Constraints on the variation of different combinations of gp, µ and α from astrophysical
observations.

Combination λgp λµ λα Constraints (yr−1) redshift

x = gpα
2µ 1 1 2 −(1.7± 1.7)× 10−6 3.174

y = gpα
2 1 0 2 (−0.16± 0.54)× 10−5 0.6847

(−0.2± 0.44)× 10−5 0.247
F = gp(α

2/µ)1.57 1 −1.57 3.14 (−0.44± 0.36± 1.0syst)× 10−5 0.765
(0.51± 1.26)× 10−5 0.2467

G = gp(α
2/µ)1.85 1 −1.85 3.70 (−1.18± 0.46)× 10−5 0.247

(0 ± 1.16)× 10−5 0.0018

5.2 Astrophysical constraints

In contrast to our analysis of atomic clocks, we cannot combine the astrophysical observations
because they have been obtained from different systems at different redshifts and at different
spatial locations. However, as we have done previously (but without the gn and b terms), we
show in Table 10 the enhancement factor for the analysis of the 4 types of combinations of
absorption spectra. We emphasize that the enhancement factor is always larger than unity
(except for y in the EOMS and χPT+QCD models). As last example of the power of coupled
variations, Table 11 compares the constraints on the variation of α that can be obtained under
the assumption that gp and µ are constant with the assumption of coupled variations based on
unification. As one can see, in many cases the limits are improved by an order of magnitude.

5.3 Discussion

In this article, we have discussed the effect of a correlated variation of fundamental constants,
focusing on the gyromagnetic factors gp and gn. These parameters are particularly important to
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Table 10: Value of the parameter Cα for the 4 combinations of constants that can be constrained
by astrophysical observations, assuming R = 30 and S = 160 (left) and value of the enhancement
factor Cα/λα (right).

x y F G

A 34.10 15.49 −12.60 −17.25
B1 20.72 2.10 −25.98 −30.64
B2 24.96 6.35 −21.73 −26.39
B3 23.52 4.91 −23.18 −27.83
C 31.21 12.59 −15.49 −20.14
HBw/oD 2.46 −15.76 −43.23 −47.77
HBwD 27.00 8.78 −18.69 −23.23
EOMS 17.63 −0.60 −28.07 −32.61
χPT+QCD 16.96 −1.26 −28.73 −33.27

x y F G

A 17.05 7.74 −4.01 −4.66
B1 10.36 1.05 −8.27 −8.28
B2 12.48 3.18 −6.92 −7.13
B3 11.76 2.45 −7.38 −7.52
C 15.60 6.30 −4.93 −5.44
HBw/oD 1.23 −7.88 −13.77 −12.91
HBwD 13.50 4.39 −5.95 −6.28
EOMS 8.81 −0.30 −8.94 −8.81
χPT+QCD 8.48 −0.63 −9.15 −8.99

Table 11: Comparison of the constraints obtained from astrophysical systems with and without
assumption on unification for model A.

Combination independent (yr−1) correlated (yr−1) redshift

x (−8.50± 8.50)× 10−7 (−4.98± 4.98)× 10−8 3.174
y (−0.8± 2.7)× 10−6 (−1.03± 3.49)× 10−7 0.6847

(−1.0± 2.2)× 10−6 (−1.29± 2.84)× 10−7 0.247
F (−1.40± 3.38)× 10−6 (3.49± 8.44)× 10−7 0.765

(1.62± 4.01)× 10−6 (−0.40± 1.00)× 10−6 0.2467
G (−3.19± 1.24)× 10−6 (6.84± 2.67)× 10−7 0.247

(0 ± 3.14)× 10−6 (0 ± 6.73)× 10−7 0.0018

interpret electromagnetic spectra, and thus to derive constraints on the variation of fundamental
constants from atomic clock experiments and from quasar absorption spectra. As discussed,
there is an important model-dependence in the computation of the gyromagnetic factors in
terms of the quark masses and QCD scale.

When applied to the interpretation of atomic clock experiments, we have shown that in
general the constraints on the variation of α are sharper than that under the assumption that
gp, gn, b and µ are constant, but this is not a systematic conclusion as we have exhibited models
in which the variation of α stays the same or is even weaker due to cancellations in the sensitivity
to α. The constraints on the variation of α should then be taken with care. In many cases, they
may be stronger than reported, but they may be weaker as well. This points to the need to
better understand the fundamental physics needed to calculate baryon magnetic moments. Any
limit which depends on gp,n will be subject to the type of uncertainties discussed here.

Fortunately, the tightest constraint arises from the Hg-Al clock experiments, that does not
depend on gp, gn, b or µ. As a consequence, we have been able to independently set a bound
on the variation of hv from the combination of the other experiments. While this bound is still
model-dependent, we have shown that it is always smaller than

∣

∣

∣

∣

(hv).

hv

∣

∣

∣

∣

< 2.0 × 10−15 yr−1 (111)

for the models we have considered in this article.
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Our analysis also applies to astrophysical system and to quasar absorption spectra. We have
shown that the enhancement factor is almost always larger than unity.
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