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This paper seeks to demonstrate that many of the existing mass-measurement variables proposed
for hadron colliders (mT , meff , mT2, missing ~pT , hT ,

√
ŝmin, etc.) are far more closely related

to each other than is widely appreciated, and indeed can all be viewed as a common mass bound
specialized for a variety of purposes. A consequence of this is that one may understand better the
strengths and weaknesses of each variable, and the circumstances in which each can be used to best
effect. In order to achieve this, we find it necessary first to revisit the seemingly empty and infertile
wilderness populated by the subscript “T” (as in “pT ”) in order to remind ourselves what this
process of transversification actually means. We note that, far from being simple, transversification
can mean quite different things to different people. Those readers who manage to battle through
the barrage of transverse notation distinguishing “⊤” from “∨” or from “◦”, and “early projection”
from “late projection”, will find their efforts rewarded towards the end of the paper with (i) a better
understanding of how collider mass variables fit together, (ii) an appreciation of how these variables
could be generalized to search for things more complicated than supersymmetry, (iii) will depart
with an aversion to thoughtless or näıve use of the so-called “transverse” methods of any of the
popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be
explicit about which of the 61 identified variants of the “transverse mass” they are employing.

I. INTRODUCTION

Almost every analysis of data from hadron colliders
uses at some point a variable which represents a “pro-
jection” of an energy or momentum into the plane trans-
verse to the beams. The typical reason for performing
these projections is that one does not wish the analysis
to be sensitive to the unknown momentum – along the
direction of the beams – of the quarks or gluons which col-
lide in the ‘hard’ interaction. Given the widespread use
of such variables it is perhaps surprising that many col-
lider physicists are probably unaware that there exist at
least two commonly-used ways of projecting of a Lorentz
energy–momentum vector into the transverse plane, and
that these two different methods have very different prop-
erties when the mass is non-zero (see Section III below).
Furthermore, as explained later in Section V, for each of
those transverse projections, there are at least two in-
equivalent ways that transverse vectors can be “added
together”, each of which has benefits and weaknesses. A
careful definition of what we mean by a transverse pro-
jection forms the first part of this paper.

The later part of the paper (Sections VI–XI) deals
with mass-scale (or energy-scale) variables, a variety of
which have been proposed in the run-up to the LHC data-
taking1. Though some of these variables have been con-
structed from careful consideration of the Lorentz sym-
metries of space-time, others have been created in a some-

1 For a recent review see [1].

what ad-hoc process, after simulations demonstrate that
they provide good signal-to-background discrimination,
or that they are highly correlated with the mass of some
particle or particles. The main aim of this part of the
paper is to demonstrate that many of these seemingly ad-
hoc definitions are in fact not only well-motivated from
the kinematical perspective, but also that the associated
variables are more closely related than one might have
thought.

Figure 1 illustrates some of the variables that are found
to be connected in ways that are not widely appreciated.
One might argue that we add little to the sum total of
human knowledge by merely showing the relationships
between existing variables which are already known to
work well in particular roles. However, careful study of
their similarities and differences not only gives insights
into why (and under what circumstances) these choices
are appropriate, it also fits them into a common frame-
work – from which it is straightforward to make general-
izations to more complex decay topologies.

The paper is organized as follows; first we carefully
define our notation for Lorentz 1+3 vectors and their
transverse projections in Section II. Then in Section III
we describe the two common but inequivalent transverse
projections, which we shall denote by subscripts ⊤ or ∨.
We also introduce the special case of a “massless” trans-
verse projection, denoted by ◦. In Section IV we compare
the results from the three different types of projections:
⊤, ∨ and ◦. In Section V we highlight the differences
between projecting into the transverse plane before or af-
ter forming composite objects. Section VI describes the
general event topology targeted by new physics searches
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ŝ

(sub)

min

mTeν

mT2‖

M
.
.
.

FIG. 1: The stretched, webbed limbs of the Glaucomys volans
have been adapted by generations of natural selection to pro-
vide an ideal visual illustration of the various different, yet
related, transverse mass variables (and incidentally provide
an appropriate aerodynamic shape for gliding flight).
Photograph c© Joe McDonald.

in channels with missing momentum.
All of those ingredients are put to work in Sections VII

to X, which contain the main results of this paper.
In Section VII we introduce the general class of mass-
constraining variables which can be usefully applied for
studying events containing invisible particles. The set
of possible transverse mass variables is extended in Sec-
tion VIII, where we consider additionally projected one-
dimensional objects. Some mathematical properties of
these mass-constraining variables are discussed in Sec-
tion IX. Some of the variables have previously appeared
elsewhere in the literature and we clarify the correspond-
ing connections in Section X. In Section XI we illustrate
the use of these variables with two simple examples: an
s-channel resonant production process, for which we take
inclusive Higgs boson production pp → h → W+W− →
ℓ+ℓ− + /ET , and a pair-production process represented
by top quark production pp → tt̄ → bb̄ℓ+ℓ− + /ET . Sec-
tion XII contains a short summary and conclusions.
Appendix A contains a short guide to the currently ex-

isting computer libraries and codes which can be used for
computing some of the variables described in the main
body of the text. Appendix B provides derivations of
extremal mass-bound results and other general mathe-
matical proofs which are used elsewhere in the paper.

II. NOTATION AND CONVENTIONS

A. Labelling momenta and their components

In general, capital letters (P , Q, M , E, etc.) will refer
to genuine 1+3 dimensional vectors, while lowercase let-

zpzbeam axis

x

y

~pT

transverse
plane

~P
P sin θ

P | cos θ|

θ

FIG. 2: The standard geometry of a collider experiment. The
z axis (in blue) is oriented along the beam, while the x and y
axes (in red) define the transverse plane. Any 3-dimensional

vector ~P can be uniquely decomposed into a longitudinal com-
ponent pz and a transverse component ~pT .

ters (p, q, m, e, etc.) will refer to “less than 1+3” dimen-
sional constructs. Lower indices i, j, . . . label individual
final state particles, while lower indices a, b, . . . are used
for parent particles and the corresponding collections of
final state particles defined below in Sec. VI. We also use
upper indices µ, ν, . . . to label the components of 1+3 vec-
tors, and upper indices α, β, . . . to label the components
of the projected 1+2 dimensional transverse “vectors” of
the types defined in Section III. The 1+3 metric gµν is
diag(1,−1,−1,−1) and the 1+2 dimensional metric gαβ
is diag(1,−1,−1). Thus the 1+3 energy-momentum vec-

tor for some particle is written Pµ =
(

E, ~P
)

and the

corresponding mass denoted by a capital M :

M2 = PµPµ = E2 − ~P 2. (1)

As illustrated in Fig. 2, any 3-dimensional vector ~P
can be trivially decomposed into a transverse and a lon-
gitudinal component:

~P ≡ (~pT , pz) . (2)

The transverse momentum ~pT = (px, py) of the parti-
cle is, of course, 2-dimensional, so it has a lowercase
“p”. Similarly, the longitudinal momentum pz is 1-
dimensional, and is also lowercase. By contrast, the en-
ergyE measured in the detector is a component of a “1+3
dimensional thing”, since it is given in terms of the 1+3
dimensional mass M and the 3-dimensional momentum
~P :

E =

√

M2 + ~P 2 =
√

M2 + ~p 2
T + p2z. (3)

When it comes to projecting geometric 3-vectors like
~P , the decomposition shown in eq. (2) and Fig. 2 is un-
ambiguous. One has no other choice – the very definition
of the transverse plane requires one simply to dispose of
the z-component to arrive at ~pT = (px, py). All the trans-
verse projections considered in this paper (and any others
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that one might invent) must share this property, or else
they cannot justify being so named.
However, “projecting” the time-like component E is

not, in itself, a well defined operation. What does it
mean? There is not a single correct answer, but rather a
number of different answers, each with different proper-
ties and motivations. How one should (and even whether
one should) project time-like components of 1+3 Lorentz
vectors is dependent on what one is trying to achieve.

B. Labelling transverse projections

In the particle physics literature, one can find evidence
of at least three different types of “transverse projection”
being applied to (1+3)-Lorentz vectors – although this
diversity is not obvious at first glance, as the majority of
papers do not explicitly state which projection they are
using.2 Even those papers which define the projection
explicitly, usually neither comment on why the particular
choice was made, nor comment on what would happen
were another projection to have been used.
One of the main objectives of this paper is to place

these three main types of projection side-by-side so that
their differences, the things that they share, and their
respective uses can be directly compared. Before we de-
scribe them in more detail, we make some remarks about
notation.
In the literature, all of the types of projection are la-

belled by the same symbol: the letter “T ”. Since in this
document we need to clearly distinguish the three types
of projection, it is necessary for us to create our own no-
tation for each - and we use the three symbols “⊤”, “∨”
and “◦” for that purpose.
We will continue to use the letter “T ” to indicate

“generic” transverse quantities, i.e. quantities which are
either common to all projections (e.g. the transverse
momentum (2)-vector ~pT already commented upon, the
missing tranverse momentum vector /~pT , or the transverse
upstream visible momentum vector ~uT defined below in
Section VIA) or for quantities which for historical rea-
sons carry a transverse subscript, but which may not be
tied to one type of projection to the exclusion of others
(e.g. hT ).
Note that certain quantities, such as the so-called

“transverse energy” and “transverse mass”, are differ-
ent in each of the projections. For this reason the sym-
bol “eT ” is effectively meaningless, and should appear
nowhere in this document (outside this sentence) un-
like e⊤, e∨ and e◦ (which are all different and all well-
defined). Similarly, mT is also ambiguous, and should
be specified as being m⊤, m∨ or m◦. In contrast, “~pT ”
is perfectly legitimate, and indeed (as we have already

2 This may be because all forms turn out to be equivalent for
massless particles.

noted) is equivalent to ~p⊤, ~p∨ and ~p◦:

~pT ≡ ~p⊤ ≡ ~p∨ ≡ ~p◦ . (4)

III. TRANSVERSE PROJECTIONS

In this Section we describe the three different types of
projections “⊤”, “∨” and “◦”. While reading this and
the following sections, the reader may find it helpful to
refer to Table I for notational reference, and also to see
how the results for each projection compare to those of
the others.

A. The mass-preserving “⊤” projection

The first approach we will describe, which will be de-
noted by a “⊤” subscript, is the most common in the
mass measurement literature. For example it is found in
the early literature on the transverse mass when it was
used to measure the W mass [2–6] and in the generaliza-
tion of the transverse mass to pair production, namely
MT2 (the stransverse mass) [7–29] as well as in literature
relating to MCT [30–35] and in reviews of the field [1].
In the ⊤ projection one defines the 1+2 dimensional

transverse energy3 e⊤ and transverse momentum ~p⊤ in
terms of the 1+3 dimensional mass M and 1+3 dimen-
sional components according to

e⊤ ≡
√

M2 + ~p 2
T ≡

√

E2 − p2z, (5)

~p⊤ ≡ ~pT , (6)

m⊤ ≡ M. (7)

In this case, the components of the 1+2 dimensional
quantity

pα⊤ ≡ (e⊤, ~p⊤) (8)

satisfy the mass shell condition

e2⊤ − ~p 2
⊤ = m2

⊤ = M2 (9)

with the 1+3 dimensional mass M .
The equivalence class for this projection function – the

set of 1+3 vectors which map to the same 1+2 projected

3 Note that in equation (5), it is the middle expression
√

M2 + ~p 2
T

that we use to justify our “calling” the LHS a (transverse) “en-
ergy” – since it is square root of a “mass squared plus a trans-
verse momentum squared”. Someone who saw the right hand
expression first,

√

E2 − p2z, could argue differently, and might
reasonably expect us to call the whole quantity a ”longitudinal
mass” – since it is a square root of an “energy squared minus a
longitudinal momentum squared”. All this really goes to show
is that the “name” of the quantity is to some extent a matter of
convention rather than physics.
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Transverse projection method

Quantity Mass-preserving ‘⊤’ Speed-preserving ‘∨’ Massless ‘◦’
Original (4)-momentum Pµ = (E, ~pT , pz)

(1+3)-mass invariant M =
√

E2 − ~p 2
T − p2z

Transverse momentum ~pT ≡ (px, py)

(1+2)-vectors pα⊤ ≡ (e⊤, ~p⊤) pα∨ ≡ (e∨, ~p∨) pα◦ ≡ (e◦, ~p◦)

Transverse momentum
under the projection

~p⊤ ≡ ~pT ~p∨ ≡ ~pT ~p◦ ≡ ~pT

Transverse energy
under the projection

e⊤ ≡
√

M2 + ~p 2
T e∨ ≡ E |sin θ| = |~pT |/V e◦ ≡ |~pT |

Transverse mass
under the projection

m2
⊤ = e2⊤ − ~p 2

⊤ m2
∨ ≡ e2∨ − ~p 2

∨ m2
◦ ≡ e2◦ − ~p 2

◦ = 0

Relationship between
transverse quantity and its

(1+3) analogue

m⊤ = M m∨ = M |sin θ| m◦ = 0

1
v⊤

= 1
V

√

1 + (1− V 2)
p2
z

p2
T

v∨ = V v◦ = 1

Equivalence classes under

(1 + 3)
proj7−→ (1 + 2)

All Pµ with the same
px, py and M

All Pµ with the same
px, py and V

All Pµ with the same
px and py

TABLE I: A comparison of the three transversification methods introduced in Section III.

vector under ⊤ – consists of the set of 1+3 vectors with
the same ~pT and M :

(

√

M2 + p2T + p2z, ~pT , pz

)

⊤7−→
(

√

M2 + p2T , ~pT

)

.

(10)
The fact that all members of the equivalence class share
the same mass is what motivates us to call this the “mass
preserving” ⊤ projection.

Given its dominant use in the literature, it is something
of a surprise that the nomenclature of the ⊤ projection
is not adopted in the commonly used high-energy physics
computer libraries such as CLHEP [36] or ROOT [37] which
instead implement the alternative ∨ projection intro-
duced below in Section III B. The ⊤ projection is, how-
ever, used in the “Oxbridge stransverse mass library” [38]
and the U.C. Davis MT2 library [39]. See Appendix A
and Table VII in it for a summary of library conventions.

B. The speed-preserving “∨” projection

Alternatively one can follow the method of the CLHEP

[36] and ROOT [37] libraries and “project” the energy on
the transverse plane, using the same angle θ as for the
momentum vector. As alteady seen in Fig. 2, the mag-
nitude pT of the transverse momentum ~pT is related to

the magnitude P of the 3-dimensional momentum ~P by

pT = P sin θ, (11)

with

tan θ ≡ pT
pz

. (12)

Thus by analogy with (11) one can define the transverse
energy in terms of its 1+3 dimensional counterpart E as

e∨ ≡ E sin θ. (13)

Then for any individual 1+3 momentum vector we have
the ∨ version of the “transverse” components

e∨ ≡ E sin θ =
pT

√

p2T + p2z
E, (14)

~p∨ ≡ ~pT , (15)

m∨ ≡ M sin θ =
pT

√

p2T + p2z
M. (16)

We can take the angle θ to be defined in (0, π), so that
e∨ and m∨ are always nonnegative.
In this ∨ method of projection we can also introduce

1+2 “vectors” which now have components

pα∨ ≡ (e∨, ~p∨) . (17)

The ∨ projected components obey a different mass shell
relation than the ⊤ projected components in (9):

e2∨ − p2∨ = m2
∨ ≤ M2, (18)

with the 1+2 dimensional ∨ projected mass m∨.
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Just as an aside, one could also define the “longitudi-
nal” components in complete analogy to (14)-(16)

ez ≡ E | cos θ| = |pz |
√

p2T + p2z
E, (19)

pz ≡ pz, (20)

mz ≡ M | cos θ| = |pz|
√

p2T + p2z
M, (21)

although in what follows we shall not be making any use
of those. The connection between the 1+3 dimensional
quantities and the ∨ 1+2 dimensional components is

E2 = e2∨ + e2z, (22)

M2 = m2
∨ +m2

z . (23)

For massive vectors4 the equivalence classes of the ∨
projection are different from those of the ⊤ projection.
The mass-shell relation (18) implies that all the 1+3 vec-
tors which map to the same 1+2 vector under the ∨ pro-
jection share the same value of m∨ = M sin θ and thus
generally do not preserve the usual invariant mass M ,
since m∨ 6= M for any θ 6= π

2 .
A more physical picture of the equivalence class of vec-

tors for the ∨ projection can be found by considering the
3-speed of the particle

V ≡ P

E
. (24)

After the ∨ projection, the corresponding 2-speed is given
by

v∨ ≡ p∨
e∨

=
pT
e∨

=
P sin θ

E sin θ
=

P

E
. (25)

Eqs. (24) and (25) reveal that the ∨ projection is “speed
preserving”, i.e.

v∨ = V, (26)

which justifies our choice of subscript notation for this
kind of transverse projection. The equivalence class for
the ∨ projection therefore consists of all 1+3 vectors with
the same ~pT and speed V :

(

√

p2T + p2z
V

, ~pT , pz

)

∨7−→
(pT
V

, ~pT

)

. (27)

Note that members belonging to the same equivalence
class under the ∨ projection (27) have the same speed,
but different masses, while members of the same equiv-
alence class under the ⊤ projection (10) have the same
mass, but different speeds.

4 See section IVB for comments concerning the massless case.

C. The massless “◦” projection

The massless “◦” projection defines components

e◦ ≡ |~pT | , (28)

~p◦ ≡ ~pT (29)

and thereby defines a massless 1+2 vector of the form

pα◦ = (|~pT |, ~pT ) . (30)

The main feature of this projection is that the 1+2 vector
pα◦ always has a null invariant

gαβ p
α
◦ pβ◦ ≡ m2

◦ = 0. (31)

It should be noted that pα⊤ and pα∨ have three degrees of
freedom ({e⊤, px, py} and {e∨, px, py}, correspondingly).
Therefore their equivalence classes are one-dimensional,
and can be parameterized by the coordinate pz, as in-
dicated in (10) and (27). In contrast, our ‘◦’ projected
vector pα◦ has only two degrees of freedom, px and py —
the time-like component being fully specified from px and
py through e◦ = |~pT |. The equivalence class of any pα◦
vector is therefore also a 4 − 2 = 2-dimensional object,
parameterized by, say, pz and E:

(E, ~pT , pz)
◦7−→ (|~pT | , ~pT ) . (32)

IV. COMPARISON OF THE DIFFERENT
TRANSVERSE PROJECTIONS

The three different projections discussed in Section III
are pictorially represented in Fig. 3. For a given fixed
value of pT , the white region in the figure depicts all pos-
sible allowed values of the energy E and the longitudinal
momentum pz. (The yellow-shaded region E2 < p2T + p2z
is forbidden because it corresponds to a tachyonic par-
ticle with M2 < 0, travelling with superluminal speed.)
In this figure, we consider the plane of energy squared
versus momentum squared, and in order to retain the in-
formation about the sign of the longitudinal momentum
component, we plot sign(pz)p

2
z, so that the mapping from

the (E, pz)-plane to the (E2, sign(pz) p
2
z)-plane is one-to-

one.
Each of the three transverse projections maps a point

with some given5 values of E and pz onto the pz = 0
axis as shown. In the case of ⊤, the projection is along a
line of constant mass M and results in transverse energy
squared e2⊤ = M2 + p2T . In the (E2, sign(pz) p

2
z)-plane,

lines of constant M are straight lines, which explains our
choice of quadratic power scale on the axes. Fig. 3 il-
lustrates that the equivalence class of vectors under the

5 For definiteness, in Fig. 3 we have chosen an illustration point
with pz < 0.
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FIG. 3: A pictorial representation of the three transverse pro-
jections discussed in Section III. The colored arrows represent
the mappings under the ⊤, ∨ and ◦ projections. The blue and
green dotted lines represent the equivalence classes of the pro-
jected points under the ⊤ and ∨ projections, respectively.

⊤ projection is one-dimensional: it is represented by the
two blue dotted straight lines, which can be simply pa-
rameterized by the value of pz.
The ∨ projection, on the other hand, projects along

a line of constant speed V , as indicated in Fig. 3. In
the (E2, sign(pz) p

2
z)-plane, lines of constant V are also

straight lines, albeit with a different slope. The result-
ing value of the transverse energy is e∨ = pT /V . The
corresponding equivalence class of vectors is given by the
two green dotted lines, and can also be parameterized in
terms of a single parameter, say pz.
Finally, the massless “◦” projection maps any allowed

point in the (E, pz)-plane to the massless 1+2 vector with
transverse energy e◦ = pT . The equivalence class of vec-
tors in this case is two-dimensional, and is represented
by the whole white shaded region in Fig. 3.
All of the previous discussion can be recast in the lan-

guage of the (M2, sign(pz) p
2
z)-plane, as shown in Fig. 4.

In this case, the whole M2 ≥ 0 half-plane is allowed, and
the ⊤ projection projects horizontally onto the pz = 0
axis, following the blue arrow. The ∨ projection is also
done along a straight line, following the green arrow. As
before, the equivalence classes for the ⊤ and ∨ operations
are straight lines, while the equivalence class for the “◦”
case is given by the whole M2 ≥ 0 half-plane.

A. A hierarchy among projections

As illustrated in Fig. 4, the definition of each projection
imposes a hierarchy among the projected masses of the
form:

M = m⊤ ≥ m∨ ≥ m◦ = 0. (33)

FIG. 4: The same as Fig. 3, but plotted in the
(M2, sign(pz) p

2
z)-plane.

We draw attention to this hierarchy here as it will have
very close analogues in the more complicated experimen-
tal mass bounds derived from each type of projection in
the later sections.
Given the mass hierarchy (33), eqs. (9), (18) and (28)

imply that a similar hierarchy exists for the projected
energies:

E ≥ e⊤ ≥ e∨ ≥ e◦ = pT , (34)

which is illustrated in Fig. 3.

B. Equivalence in the massless limit

We note that in the special (but common) case in which
the original four-vector is massless (M = 0) all projec-
tions are equivalent since

lim
M→0

e⊤ = lim
M→0

e∨ = e◦ = |~pT | (35)

and thus

lim
M→0

pα⊤ = lim
M→0

pα∨ = pα◦ = (|~pT |, ~pT ) . (36)

Clearly the projections are not equivalent for massive
particles, nor for collections of massless particles (unless
they be collinear) since collections of massless particles
can have large total invariant mass – the equivalence ex-
tends only to application to individual massless particles.
In practice, the statement above may also be taken as

saying that all the projections are equivalent in the high-
energy limit – i.e. the limit in which the momentum of
a particle is much greater than its mass – again only at
the level of individual high-energy particles.
Since all the projections are equivalent in the above

limits, and since most individual reconstructed particles
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in high-energy physics experiments satisfy one of those
limits due to the small masses of the leptons and light
quarks, one might wonder what all the fuss is about.
However, the importance of the distinctions will be seen
to arise and become very large when we consider com-
posite particles, i.e. collections of massless “daughter”
particles6. Composite particles are expected to have non-
negligible masses, even when they consist of sums of (ap-
proximately) massless particles. As we already learned
from the simple example considered in Figs. 3 and 4, not
only do these composite particles generate very differ-
ent projected 1+2 vectors, but the classes of equivalent
four-vectors associated with those projections are very
different as well.

V. SUMMING AND PROJECTING: EARLY
VERSUS LATE PROJECTIONS

In forming transverse kinematic variables for compos-
ite particles, one needs to perform two separate opera-
tions: summation of the momentum vectors of the daugh-
ter particles, and projecting into the transverse plane.
The order of these operations does not matter for the
two space-like vector components:

∑

i

~pi⊤ =

(

∑

i

~Pi

)

⊤

, (37)

∑

i

~pi∨ =

(

∑

i

~Pi

)

∨

, (38)

∑

i

~pi◦ =

(

∑

i

~Pi

)

◦

, (39)

where we use an index i to label the momenta of the
individual daughter particles and the sums run over all
such daughter particles7.

However, projecting before or after the sum can make
a very significant difference to the value of the time-like
(e⊤, e∨ or e◦) component of the final 1+2 vector – and
therefore the operations of projecting and summing do

6 The need for considering composite particles arises when dealing
with short-lived heavy resonances, which decay promptly to a
certain collection of daughter particles, which in turn are seen in
the detector. The energy and momentum of the parent resonance
are correspondingly obtained by summing the measured energies
and momenta of the daughter particles.

7 Recall our convention that lowercase letters refer to 1+2 dimen-
sional quantities and capital letters refer to 1+3 dimensional
quantities. Thus in the left-hand-sides of eqs. (37)-(39) we are
adding 2-dimensional transverse vectors, while in the right-hand-
sides we are first adding the corresponding 3-vectors, then pro-
jecting their sum onto the transverse plane.

not generally commute:

∑

i

ei⊤ 6=
(

∑

i

Ei

)

⊤

, (40)

∑

i

ei∨ 6=
(

∑

i

Ei

)

∨

, (41)

∑

i

ei◦ 6=
(

∑

i

Ei

)

◦

. (42)

One can see clearly how the order makes a difference
if one considers an extreme case consisting of a pair of
massless daughter particles travelling in opposite direc-
tions along the beam pipe, i.e. with 1+3 momenta

Pµ
1 = (E, 0, 0,+E) , (43)

Pµ
2 = (E, 0, 0,−E) . (44)

If one were to project these 1+3 momenta into the trans-
verse plane before summing (a combined operation here-
after called early projection), one would find that the re-
sulting 1+2 dimensional vector

∑

i

pαi⊤ = pα1⊤ + pα2⊤ (45a)

= (E, 0, 0, E)⊤ + (E, 0, 0,−E)⊤ (45b)

= (0, 0, 0) + (0, 0, 0) (45c)

= (0, 0, 0) (45d)

is null. A null sum would also be obtained if we had used
the ∨ or ◦ projections.8 However if one were first to sum
the Lorentz 1+3 vectors Pµ

i and then later project into
the transverse plane (hereafter denoted late projection)
one would find that

(

∑

i

Pµ
i

)

⊤

= (Pµ
1 + Pµ

2 )⊤ (46a)

= ((E, 0, 0, E) + (E, 0, 0,−E))⊤(46b)

= (2E, 0, 0, 0)⊤ (46c)

= (2E, 0, 0) , (46d)

which is clearly not the same as was found in (45d). This
extreme case shows that while projecting early has the
effect of reducing dependence on longitudinal momenta,
projecting late means that the resultant projected com-
posite retains much more sensitivity to the original rela-
tive momenta along the beam directions.
This concludes this section, whose main purpose was

simply to highlight the difference between the “early”
and the “late” transverse projection. It also underscores

8 In fact for this example we have chosen massless vectors for which
the ‘⊤’, ‘∨’, and ‘◦’ projections are identical.
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the need to develop the proper notation to distinguish be-
tween these two types of transverse projections, which we
shall do below in Section VIC. The differences between
the two projections will be further illustrated with the
physics examples considered in the later sections. One
may reasonably wonder which one of the two projections
is more appropriate and should be used. In principle,
the answer to this question will depend on the analysis
being performed. If one is initially building a compos-
ite particle from two leptons, e.g. from a Z-boson decay
Z → e+e−, then the relative longitudinal momentum of
the positron and the electron is probably a safe quantity
to retain full sensitivity to in one’s calculations. However,
in cases where jets at large rapidity |η| are concerned, the
probability of QCD radiation grows rapidly as one gets
closer and closer to the beam direction. One will often
prefer not to have the high-energy end of the composite-
particle spectrum dominated by combinations of low |pT |,
high-energy forward-going jets with other low |pT |, high-
energy backward-going jets, so in this latter case, early
projection would probably be appropriate. Nevertheless,
giving a universal prescription for selecting the “correct”
transverse projection for collections of particles is beyond
the scope of this paper. The best method will depend
on non-kinematic factors, such as the size of any back-
grounds, the detector resolution, and other factors that
will vary from case to case.

VI. INTERPRETING EVENTS

A. Characterizing an event

Analysis of an event is a game. The aim of the game
is to interpret the available information within a par-
ticular framework or hypothesis. In this paper we wish
to employ a very general framework that will be useful
for searches and mass measurements at hadron colliders
(pp, pp̄ or even p̄p̄ for that matter). Specializations of
this framework will then be useful in a wide variety of
different contexts. The general layout of an event is rep-
resented in Fig. 5. The figure comprises: two incoming
objects, denoted by the proton lines on the left hand side;
an interaction, represented by an oval ‘blob’; and some fi-
nal state objects, contained within the rectangles on the
right hand side. Since it is the final state objects that
provide the kinematic information about the event, we
now take some time to explain rather carefully what we
mean by them.
We define final state objects of two types. A visible fi-

nal state object is one that leaves a signal in the detector
that betrays its presence. Those signals may then be re-
constructed and interpreted as an individual particle – for
example as photon, electron or muon – or the signals may
be indicative of a composite object, such as a QCD or tau
jet. The “visible object” category is deliberately allowed
to be sufficiently broad as to permit the inclusion of very
heavy, visibly decaying, composite objects such as Z, W

p(p̄)

p(p̄)

Upstream

visible momentum
Uµ =

(

U0, ~uT , uz

)

Visible daughters V1

Invisible daughters I1

Visible daughters V2

Invisible daughters I2

Visible daughters VN

Invisible daughters IN

Parent P1

Parent P2

Parent PN

FIG. 5: The event topology for new physics searches and
measurements used in this paper.

or top quarks. The classification of a final state object
as ‘visible’ here implies not only that a signal consistent
with the presence of some particle has been observed,
but also that the full Lorentz energy-momentum vector
of that particle can be reconstructed from the observed
signal (to within some experimental precision). For most
heavy visible objects (jets, W , Z, H bosons, . . . ), the
four-momentum of the visible object must be calculated
from the vector sum of its constituents.

By contrast, an invisible final state object is one that
leaves no direct signal, but the existence of which is de-
manded by the interpretation of the event being imposed
by the analyst. The numbers, types and masses of any in-
visible final state particles form part of the interpretation
of the event. The 3-momentum vectors of all invisible
particles are a priori unknown, and are constrained only
by conservation of the total momentum of the event in
the plane transverse to the beam. The general framework
can accommodate a final state hypothesis in which invis-
ible particles have particular known (or rather assumed)
masses, but it can also be applied when some or indeed
all of those invisible particles have unknown masses.

As illustrated in Fig. 5, the next step in interpreting
the event is to partition the combined set of all final state
objects (visible and invisible) into subsets, which are rep-
resented by rectangles in the figure. Each final state
object must be found in one and only one such subset.
There is one subset per parent plus one further subset,
the latter being labelled “upstream visible momentum”
in the figure.

In our interpretation a parent is any short-lived ob-
ject that is believed to have decayed to produce the vis-
ible and invisible final state objects in its associated set.
The term ‘parent’ is usually associated with a short-lived
heavy state, most often a reasonably narrow resonance
(whether produced directly in the “hard scatter” or from
decays of even heavier objects).
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The general framework presented permits a variety of
different interpretations for any given event. For any
particular interpretation there is a corresponding par-
titioning of the final state into subsets. For example
an event which contains evidence of an electron and a
positron, and which is hypothesized to also contain a
neutrino and an anti-neutrino, could be partitioned into
parent/daughter combinations: W+ → {e+, νe} and
W− → {e−, ν̄e} for one analysis; however another anal-
ysis might find it more appropriate to partition those
objects according to the interpretation Z0 → {e+, e−}
and Z0 → {νe, ν̄e}.
The subset corresponding to any parent may contain

any number (including zero) of visible particles and any
number (including zero) of invisible particles — though
it is not meaningful to have a totally empty set of daugh-
ters. The framework is very general, in that the number
of parents can be arbitrary, and the nature, mass and
decay mode of any parent need not be related to those
of any other. There is therefore a great deal of freedom
in performing the partition into subsets. We shall later
be constraining the masses of the parents so the subsets
should be chosen to correspond to the descendants of the
parents whose invariant masses we are interested in.

Figure 5 also shows the one special (non-‘parent’) sub-
set into which visible final state particles may be allo-
cated. That set is labelled “upstream visible momentum
(UVM)”, and is designed to be a ‘catch-all’ that will ac-
commodate any visible particle not allocated to any of
the parent sets. This is a special set in the following
senses: firstly it is permitted to contain (by assertion)
only visible objects; and secondly, and crucially, final
state objects allocated to this set are not used directly to
constrain the mass of any parent. Objects in this set are
only used to keep track of overall energy-momentum con-
servation. We do not specify the elements found in this
UVM set, but in practical applications it almost always
contains some contribution from “soft” particles that are
unallocated to any parent. Such soft components usually
include calorimeter energy found outside of jets, and low
energy jets from multiple parton interactions, and per-
haps from initial state radiation (ISR). As well as these
soft components, one must include any other visible ob-
jects not associated with any parent. The UVM set will
often contain more than just ‘soft’ activity — since any
type of visible particle can end up therein — possibly
including decay products (of heavy progenitor particles)
that the analyst chose not to allocate to any parent. In
practice, every hadron collider event has some amount
of UVM. Furthermore, as discussed in [10, 12, 21, 24–
26, 34], the presence of a significant amount of UVM can
in fact be beneficial in mass reconstruction studies.

Apart from the reconstructed physics objects, another
important experimental quantity is the missing trans-
verse momentum in the event. This quantity is the exper-
imental collaboration’s best estimate of the amount (and
direction) of momentum in any particular event that has
been carried away in the plane transverse to the beam

by invisible particles. It is an important quantity insofar
as we will wish to apply the constraint that the missing
momentum in an event is entirely due to the invisible
final state objects.

B. Notation used to characterize events

We require considerable amount of notation to describe
events and the hypotheses and interpretations that we
layer on top of them. We have summarized the nota-
tion we have adopted in Table II — and we recommend
that readers immediately compare the first section of that
table with any of the three small concrete examples pro-
vided in Figures 6, 7 and 8 in order to follow later sec-
tions. For the simplest pieces of notation, Table II serves
as the primary definition. Notation that requires more
explanation will be described in more detail either below
or at first point of use.
The N parents are labelled Pa, (a = 1, 2, . . . , N). The

set of observed visible (hypothesized invisible) daughters
associated with Pa is labelled Va (Ia). Since no visible
or invisible particle has more than one parent, we have
Va

⋂Vb = 0 and Ia
⋂ Ib = 0 when a 6= b, and so the num-

ber of visible (invisible) particles may either be written
as the sum of the number of visible (invisible) daughters

of each parent NV =
∑N

a=1 |Va|, (NI =
∑N

a=1 |Ia|) or as
the number of elements from the set of all visible (invis-

ible) daughters NV = |V| (NI = |I|) where V =
⋃N

a=1 Va

(I =
⋃N

a=1 Ia).
As seen in Table II, in our conventions the letter “P”

(“p”) will be used to denote measured momenta, and the
letter “Q” (“q”) will be used for the momenta of any
invisible or hypothesized particles. Correspondingly, the
individual 4-momenta Pµ

i , (i ∈ V), of the visible daugh-
ters are measured and known, while the individual 4-
momenta Qµ

i , (i ∈ I), of the invisible daughters are not
measured and remain unknown. We denote the masses
of the visible final state particles by Mi and those of the
hypothesized invisible final state particles by M̃i. Simi-
larly, we will find it convenient to denote the 3-speeds of
the visible final state particles as Vi and the 3-speeds of
the hypothesized invisible final state particles by Ṽi. In
some places we will need to refer to sets of these masses
or speeds, and so we define: (i) the set consisting of the
hypothesized masses of all invisible particles:

µ̃ =
{

M̃i | i ∈ I
}

, (47)

(ii) the set containing only the hypothesized masses of
the invisible particles assocated with parent Pa:

µ̃a =
{

M̃i | i ∈ Ia
}

, (48)

(iii) the set consisting of the hypothesized 3-speeds of all
invisible particles:

ṽ =
{

Ṽi | i ∈ I
}

, (49)
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Symbol Meaning See also

o
b
je
ct
s
a
n
d
se
ts

|A| Cardinal number (number of elements) of any finite set A.

F
ig
u
re
s
6
,
7
a
n
d
8

Pa ath parent (a ∈ {1, 2, . . . , N})
P Set of all parents P ≡ {P1, P2, . . . ,PN}
Va Set of visible final state objects associated with the ath parent

Ia Set of invisible final state objects associated with the ath parent

V ≡ ⋃

a Va Set of all visible final state objects (V ≡ {V1,V2, . . . ,VNV })
I ≡ ⋃

a Ia. Set of all invisible final state objects (I ≡ {I1, I2, . . . , INI})
N ≡ |P| Number of parents assumed for the interpretation being applied

NV ≡ |V| Total number of visible final state objects

NI ≡ |I| Total number of invisible final state objects

indices











For notational purposes, indices are used interchangably with the
names of the particles they identify. For example: “Va” and “VPa” are
equivalent; “i ∈ V” and “i ∈ {1, 2, . . . , NV}” are equivalent; “a ∈ P”
and “a ∈ {1, 2, . . . , N}” are equivalent, etc.











1
+
3
m
o
m
en

ta

Pµ
i = (Ei, ~piT , piz)

µ 1+3 momentum components of the ith final state visible object (i ∈ V)
Qµ

i = (Ẽi, ~qiT , qiz)
µ Hypothesized 1+3 momentum components of the ith final state invisible (i ∈ I)

Pµ
a ≡ ∑

i∈Va
Pµ
i Sum of 1+3 momentum components of visible objects belonging to parent Pa (53)

Qµ
a ≡ ∑

i∈Ia
Qµ

i Sum of 1+3 momentum components of invisible objects belonging to parent Pa (57)

Uµ ≡
(

U0, ~uT , uz

)µ
Total 1+3 momentum components of the ‘UVM’ set (51)

d
er
iv
ed

q
u
a
n
ti
ti
es

/~pT Missing transverse momentum two vector (magnitude |/~pT | = /pT ) (51)

Ma ≡ MPa Mass of the ath parent (a ∈ P)

Mi ≡ MVi
Mass of the ith visible final state object (i ∈ V)

M̃i ≡ MIi
Hypothesized mass of the ith invisible (i ∈ I)

µ̃a ≡
{

M̃i | i ∈ Ia

}

Set of hypothesised masses of the invisibles associated with parent Pa

µ̃ ≡ ⋃

a µ̃a Set of the hypothesised masses of all invisibles

Ma Hypothesized 1+3 dim. invariant mass of the composite parent particle Pa (62)

Ma 1+3 dim. invariant mass of the visibles in Va (63)

M̃a 1+3 dim. invariant mass of the invisibles in Ia (64)

Vi 3-speed of the ith visible (i ∈ V)
Ṽi Hypothesized 3-speed of the ith invisible (i ∈ I)

ṽa ≡
{

Ṽi | i ∈ Ia

}

Hypothesised 3-speeds of the invisibles associated with parent Pa (50)

ṽ ≡ ⋃

a ṽa Set of hypothesised 3-speeds of all the invisibles (49)

/Ma ≡ ∑

i∈Ia

[

M̃i

]

Sum of the masses of those invisibles associated with parent Pa (93)

/M ≡
{

/Ma | a ∈ P
}

Set of all ‘invisible particle mass sum parameters’ (94)

/Va ≡ maxi∈Ia

[

Ṽi

]

Largest hypothesised 3-speed of any invisible associated with parent Pa (117)

/V ≡
{

/Va | a ∈ P
}

Set of all ‘maximum invisible 3-speed parameters’ (118)

1
+
2
d pαiT = (eiT , ~piT )

α 1+2 dim. projected energy-momentum vector for the ith visible
Sec. III

qαiT = (ẽiT , ~aiT )
α Hypothesized 1+2 dim. projected energy-momentum vector for the ith invisible

TABLE II: Notation used in the description of events.
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FIG. 6: This figure illustrates the notation used to label
physics objects and their assignments to parent hypothe-
ses. The figure shows a hypothesis in which six (NV = 6)
visible physics objects V = {V1,V2,V3,V4,V5,V6} and five
(NI = 5) invisible physics objects I = {I1, I2, I3, I4, I5} have
been assigned to three (N = 3) parents P = {P1,P2,P3}
according to the assignments V1 = {V2,V4}, V2 = {V3},
V3 = {V1,V5,V6}, I1 = {I1}, I2 = {I2, I3} and I3 = {I4, I5}.
The number of visible physics objects assigned to each parent
in turn are therefore |V1| = 2, |V2| = 1 and |V3| = 3 and the
number of invisible physics objects assigned to each parent in
turn are |I1| = 1, |I2| = 2 and |I3| = 2.

and (iv) the set containing only the hypothesized 3-
speeds of the invisible particles assocated with parent
Pa:

ṽa =
{

Ṽi | i ∈ Ia
}

. (50)

We denote the missing transverse momentum two-
vector by the symbol9 /~pT and its magnitude thus /pT .

Note that some authors use variants of the symbol “ /ET ”
to denote the missing transverse momentum,10 but the
distinction is necessary in this paper as we shall (as oth-
ers should) make important distinctions between energy
and momentum.

We wish to apply the constraint that the missing mo-
mentum in an event is entirely due to the NI invisible
particles with momenta Qµ

i , rather than to jet mismea-
surement, for example. In other words, we use the rela-

9 Note that due to its status as an experimentally measurable
quantity, for the missing transverse momentum /~pT we use the
letter “p” as opposed to “q”, even though at high values /~pT is
interpreted as the total transverse momentum of invisible parti-
cles.

10 By right, since its meaning is derived from conservation of mo-

mentum in the transverse plane, the missing transverse momen-
tum ought universally to be known as /~pT . Alas, much of the
hadron-collider literature, especially that from the experimental
collaborations, calls the missing transverse momentum the “miss-
ing energy” or “missing transverse energy” and denotes its mag-
nitude “/ET ” and its two vector by some variant of “/~ET ”. This
is perhaps a result of history (a hang over from e+e− or LEP
terminology where the collision of point-particles from mono-
energetic beams meant that one really could talk about missing
energy) and the fact that /~pT is often reconstructed, at least in
part, from calorimetric energy deposits under the assumption
they were produced by massless physics objects.

tionships expressed in:

NI
∑

i=1

~qiT = /~pT ≡ −~uT −
NV
∑

i=1

~piT . (51)

in which the first equality represents our desire to con-
strain the momenta of the invisible particles (and only
those particles) using /~pT , while the second equality re-
minds us of our assumptions of how /~pT is constructed as
an experimentally measurable quantity. These relation-
ships also remind us that we have assumed (i) that there
are no sources of invisible momentum other than those
coming from the parent decays, and (ii) that we have de-
fined the “Upstream visible momentum” to contain all
visible momentum deposits which did not originate from
the decay of any parent.
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FIG. 7: This figure is provided for the benefit of readers un-
able to imagine a simpler version of Figure 6. (Readers finding
this figure helpful need not admit this to close friends, rela-
tives or colleagues.) The figure shows a hypothesis in which
four (NV = 4) visible physics objects V = {V1,V2,V3,V4}
and two (NI = 2) invisible physics objects I = {I1, I2} have
been assigned to two (N = 2) parents P = {P1,P2} according
to the assignments V1 = {V1,V3}, V2 = {V2,V4}, I1 = {I1}
and I2 = {I2}. The number of visible physics objects assigned
to each parent in turn are therefore |V1| = 2, |V2| = 2 and the
number of invisible physics objects assigned to each parent
in turn are |I1| = 1, |I2| = 1. An explicit physics example
corresponding to this figure is discussed in Section XIB.

When considering the decay of a single parent Pa

Pa −→ Va ∪ Ia. (52)

it is useful to have notation that can refer to composite
quantities, e.g. the total four momentum posessed by the
visible daughters of Pa, or the total invariant mass of that
collection of visible daughters. Accordingly, as illustrated
in Figures 6, 7 and 8, we denote by Pµ

a the total (1+3)-
momentum of the visible daughters of parent Pa:

Pµ
a ≡

(

Ea, ~paT ,paz

)

≡
∑

i∈Va

Pµ
i , (53)

or in components

~paT ≡
∑

i∈Va

~piT , (54)

paz ≡
∑

i∈Va

piz, (55)
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FIG. 8: This figure is provided for the benefit of readers un-
able to imagine an even simpler version of Figure 6 than was
shown in Figure 7. (Readers finding this figure helpful are ad-
vised to seek gainful employment in some other field.) The fig-
ure shows a hypothesis in which two (NV = 2) visible physics
objects V = {V1,V2} and two (NI = 2) invisible physics ob-
jects I = {I1, I2} have been assigned to one (N = 1) parent
P = {P1} according to the assignments V1 = {V1,V2} and
I1 = {I1, I2}. For completeness we note |V1| = |I1| = 2.
An explicit physics example corresponding to this figure is
discussed in Section XIA.

Ea =
∑

i∈Va

√

M2
i + ~p 2

iT + p 2
iz (56a)

=
∑

i∈Va

|~Pi|
Vi

=
∑

i∈Va

√

~p 2
iT + p 2

iz

Vi
, (56b)

where the former (latter) expression for Ea will be rele-
vant later on for ⊤ (∨) transverse projections since it is
written in a form which depends explicitly on the masses
(speeds) of the visible particles.
Similarly, we denote the total hypothesized (1+3)-

momentum of the invisible daughters of parent Pa by

Qµ
a ≡

(

Ẽa, ~qaT ,qaz

)

≡
∑

i∈Ia

Qµ
i , (57)

or in components

~qaT ≡
∑

i∈Ia

~qiT , (58)

qaz ≡
∑

i∈Ia

qiz , (59)

Ẽa =
∑

i∈Ia

√

M̃2
i + ~q 2

iT + q 2
iz , (60a)

=
∑

i∈Ia

| ~Qi|
Ṽi

=
∑

i∈Ia

√

~q 2
iT + q 2

iz

Ṽi

, (60b)

where again the former (latter) expression for Ẽa will
be relevant for ⊤ (∨) transverse projections since it is
written in a form which depends explicitly on the masses
(speeds) of the invisible particles.
As already indicated in eqs. (53-60), we shall use bold-

face script to label “composite” momenta. Each parent

is thus also treated as a composite particle, which has
(1+3) momentum

Pµ
a +Qµ

a (61)

with (a priori unknown) (1+3) dim. invariant mass

Ma ≡
√

gµν (Pa +Qa)
µ (Pa +Qa)

ν . (62)

The important distinction between the bold-face nota-
tion for composite momenta and the ordinary notation
for the momenta of individual particles is pictorially il-
lustrated in Figures 6, 7 and 8.
Note that Ẽa in (57) (whose tilde is necessary to dis-

tinguish it from the energy Ea of the visible composite
daughter of parent a) might legitimately be termed the
missing energy11 of the parent Pa. We also introduce
masses for the respective composite daughter objects as
follows

Ma ≡
√

E2
a − ~p2

aT − p2
az, (63)

M̃a(Q
µ
i ) ≡

√

Ẽ2
a − ~q 2

aT − q 2
az , (64)

where again a tilde refers to the invisible object. Note
that the invariant mass (64) of any composite invisible
daughter is not “constant” or a fixed function of mea-
sured momenta. It depends on the hypothesized invisible
momenta Qµ

i and so is part of the event hypothesis.

C. Notation for “early” and “late” transverse
projections

When forming transverse kinematic variables corre-
sponding to composite parent or daughter objects, one
needs to construct the transverse 1+2 dim. analogues of
(53) and (57). In doing so, one inevitably has to face the
issue discussed in Section V — whether the agglomera-
tion of individual particles into a composite object is done
before or after projecting into the transverse plane. As
we already saw in Section V, the two outcomes are gener-
ally quite different, since the composite object is usually
massive. This is why we shall need to develop some ad-
ditional notation to help us keep track of the order in
which those operations are performed. Correspondingly,
for the remainder of this paper we shall adopt the follow-
ing principle: in forming transverse quantities for com-
posite objects, the order in which the various operations
of agglomeration and projection are taken will be speci-
fied by the order (from left to right) of the corresponding
subscript indices.
Let us illustrate this principle with a few relevant ex-

amples. The “late-projected” (or “early-partitioned”)

11 Really the missing energy rather than the missing momentum!
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version of the composite visible momentum (53) is de-
noted by pα

aT

pα
aT ≡ (eaT , ~paT ) (65)

while the alternative “early-projected” (or “late-
partitioned”) version is denoted by pα

Ta:

pα
Ta ≡ (eTa, ~pTa) . (66)

We remind the reader that the generic index “T ” in (65)
and (66) stands for either “⊤”, “∨” or “◦”, as discussed
in Section III.
We already saw in Section V (eqs. (37-39)) that the

space-like components of (65) and (66) are equivalent for
any choice of “T ”:

~paT ≡ ~pTa =
∑

i∈Va

~piT , (67)

but the time-like components eaT and eTa are gener-
ally different. For example, in the case of T = ⊤, the
late-projected (early-partitioned) transverse energy ea⊤
is given by

ea⊤ =
√

M2
a + ~p 2

aT =
√

E2
a − p2

az (68a)

=

√

√

√

√

(

∑

i∈Va

√

M2
i + ~p 2

iT + p 2
iz

)2

−
(

∑

i∈Va

piz

)2

,(68b)

while the early-projected (late-partitioned) transverse
energy e⊤a is given by

e⊤a =
∑

i∈Va

ei⊤ =
∑

i∈Va

√

M2
i + ~p 2

iT . (69)

In the case of T = ∨ projections, the corresponding trans-
verse energies are given by

ea∨ =
paT

√

p2
aT + p2

az

Ea , (70)

e∨a =
∑

i∈Va

ei∨ =
∑

i∈Va

piT
Vi

. (71)

Finally, for T = ◦, the two transverse energies are

ea◦ =

∣

∣

∣

∣

∣

∑

i∈Va

~piT

∣

∣

∣

∣

∣

, (72)

e◦a =
∑

i∈Va

piT . (73)

The same conventions apply to the transverse projec-
tions of the composite momentum of a collection of invis-
ible daughter particles: the “late-projected” (or “early-
partitioned”) version of the composite invisible momen-
tum (57) is denoted by qα

aT

qα
aT ≡ (ẽaT , ~qaT ) , (74)

while the alternative “early-projected” (or “late-
partitioned”) version is denoted by qα

Ta:

qα
Ta ≡ (ẽTa, ~qTa) . (75)

Again, the space-like components of (74) and (75) are the
same:

~qaT ≡ ~qTa =
∑

i∈Ia

~qiT , (76)

but the time-like components are not. Altogether, there
are 6 different possibilities:

ẽa⊤ =

√

M̃2
a + ~q 2

aT =

√

Ẽ2
a − q 2

az (77a)

=

√

√

√

√

(

∑

i∈Ia

√

M̃2
i + ~q 2

iT + q 2
iz

)2

−
(

∑

i∈Ia

qiz

)2

, (77b)

ẽ⊤a =
∑

i∈Ia

ẽi⊤ =
∑

i∈Ia

√

M̃2
i + ~q 2

iT , (78)

ẽa∨ =
qaT

√

q2
aT + q2

az

Ẽa (79a)

=

∣

∣

∑

i∈Ia
~qiT
∣

∣

∑

i∈Ia

√
q2
iT

+q2
iz

Ṽi
√

(
∑

i∈Ia
~qiT
)2

+
(
∑

i∈Ia
qiz
)2

, (79b)

ẽ∨a =
∑

i∈Ia

ẽi∨ =
∑

i∈Ia

qiT

Ṽi

, (80)

ẽa◦ =

∣

∣

∣

∣

∣

∑

i∈Ia

~qiT

∣

∣

∣

∣

∣

, (81)

ẽ◦a =
∑

i∈Ia

qiT . (82)

In general, our principle of index ordering will extend
to any transverse invariant mass or transverse energy
variable. For example, in analogy to (68-73) and (77-
82) there will be six different versions of the transverse
masses of the composite parent particles and they will be
denoted by MaT or MTa, with T ∈ {⊤,∨, ◦}.

D. Comments on the characterization framework

Note that we do not place any a priori restrictions on
the values of N , NI or on the way invisible particles
are partitioned into the subsets Ia. In contrast, many
studies on supersymmetry (SUSY) or Universal Extra
Dimensions (UED) in the hadron collider literature are
predicated on the following assumptions:
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• N = 2. This assumption is motivated if the new
particles are charged under a conserved Z2 par-
ity, like R-parity in supersymmetry or KK-parity
in UED. However, other discrete symmetries are
also possible, e.g. Z3 [40, 41] and higher [42, 43],
which could in principle allow for N > 2. Even
in models with a Z2 parity one could still consider
the production of any even number of parents, e.g.
N = 4, N = 6, etc.

• |Ia| = 1 for all a. In the conventional models with
conserved Z2 parity, this assumption implies that
the decay of each parent generates one and only
one massive invisible particle, excluding the pos-
sibility of any neutrinos appearing among the in-
visible particles. However, this assumption is not
guaranteed — even in the conventional SUSY mod-
els with conserved R-parity, SM neutrinos can eas-
ily appear among the decay products of charginos,
sleptons, W -bosons, heavy flavor quarks (especially
top), taus, etc. Furthermore, R-parity conservation
only guarantees that a given SUSY parent must
decay into an odd (not necessarily 1) number of
SUSY particles. Finally, a Z3 symmetry could al-
low two massive invisible particles per parent, see
e.g. [44, 45].

Because of all these caveats, we prefer to keep our discus-
sion as general as possible, and first define our invariant
mass variables below in Sec. VII for any N and NI , be-
fore specializing to N = 1 and N = 2 for illustration
purposes only.
One might ask whether the methods proposed here can

be usefully applied to events with “the wrong” value of
N . The answer to this question is “yes”, and we shall
demonstrate this explicitly below in Section XIB (see
in particular Figure 12) where we shall apply N = 1
variables in an example where not one, but two parents
were produced in the hard scatter. That study will show
that one can sometimes obtain useful information from
variables with “the wrong” value of the parent number
N .

E. Choosing the partitioning

In conclusion of this section, one more comment re-
garding the partitioning is in order. One may wonder how
one should decide whether a given visible particle should
be counted among the set of visible daughters or whether
it should be included in the “Upstream visible momen-
tum” category. The answer to this question depends on
the particular case at hand. There are simple cases of
final states where the outgoing particles can be unam-
biguously associated with the particle sets Va that match
the expected decay products of an assumed parent. For
example, a high pT , isolated reconstructed lepton is un-
likely to have come from the typical sources of UVM such
as initial state radiation (ISR), multiple parton-parton

interactions (MPI), multiple hadron-hadron interactions
(pileup) etc., and can probably be safely counted as a
visible daughter. On the other hand, there are also cases
(typically involving jets of hadrons) where the correct
partitioning is not obvious at all. In such cases, one pos-
sible approach is to consider all possible partitions, see
e.g. [9]. Another possible approach would be to devise a
certain set of cuts, using the generic differences between
the kinematics of ISR jets and jets from heavy parent
decays [28, 46–48]. Examples of choices for particular
physical examples can be found in Section X.

VII. THE MASS-BOUND VARIABLES

A. Guiding principles

The guiding principle we employ for creating useful
hadron-collider event variables, is that: we should place
the best possible bounds on any Lorentz invariants of in-
terest, such as parent masses or the center-of-mass en-
ergy ŝ1/2, in any cases where it is not possible to deter-
mine the actual values of those Lorentz invariants due to
incomplete event information. Such incomplete informa-
tion could take the form of lack of knowledge of the lon-
gitudinal momentum of the primary collision, or lack of
knowledge of the 4-momenta of individual invisible par-
ticles, or lack of knowledge of the number of invisible
particles which were present, etc.
We contrast this principle with the alternative ap-

proach that is used to motivate event variables without
any explicit regard to whether they have an interpreta-
tion as an optimal bound of a Lorentz invariant. This
alternative approach tends to recommend the use of vari-
ables that are somewhat ad-hoc, but by construction pos-
sess useful invariances (such as invariance under longitu-
dinal boosts) which are designed to remove sensitivity to
quantities that are unknown. One example of this lat-
ter class of variables, which are usually considered to be
simply “made up” without reference to our guiding prin-
ciple, would include the missing transverse momentum
/~pT (aready seen in (51)) obtained by adding all trans-
verse visible momenta vectorially. Another would be the
so called hT variable12 which is defined as the scalar sum

12 Note that the definition of hT in the literature is not well stan-
dardized. Indeed even one LHC experiment has managed to
define it in three different and inequivalent ways in the space of
just a few years, and sometimes even inconsistently in a single
document (see Section 2 of [1] for further details). The defini-
tion we adopt in equation (83) is the definition which appears,
at present, to be the most widely used in the literature. We
note that a conceivable consequence of this paper might be that
purists will in the future settle on a definition in which hT is
defined as a sum of transverse energies eT instead of transverse
momenta, whereby three different variants would be possible:
h⊤, h∨ and h◦ (though these three definitions will be almost
equivalent under most practical experimental conditions, where
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of the transverse momenta of some class of visible objects
(typically jets) in the event:

hT ≡
NV
∑

i=1

piT . (83)

Another example is the sum of these two variables:

meff ≡ hT + /pT , (84)

a quantity which can be traced back to the original liter-
ature [49] and has become known as an “effective mass”,
even though it is not a mass.13

The main disadvantage of variables like hT and meff ,
is that they do not utilize all the information available;
for example they are completely insensitive to all angles
in the transverse plane. This is why here we would like
to construct a more optimal class of variables, to wit,
those which bound the invariants of interest. These too
must be invariant under global longitudinal boosts since
a bound cannot depend on unknown quantities. However
by explict construction we can ensure that they also make
best use of any available kinematic information.

B. Construction of mass-bounding variables

We are now ready to define the general procedure that
can be used to construct the mass-bound variables. In
fact, we shall describe a broad class of such variables,
where each individual variable M{indices} will be labelled
by a certain set of indices {indices} indicative of the way
the particular variable was constructed, namely:

• Since we are targeting the general event topology
of Fig. 5, where we imagine the inclusive produc-
tion of N parents, each one of our variables will
necessarily carry a corresponding index N . In the
process of constructing such a variable, we will
have to partition (and then agglomerate) the ob-
served visible particles in the event into N groups
Va, (a = 1, 2, . . . , N), as already explained in Sec-
tion VIA. We will then form the 1+3 dimensional
invariant mass of each parent Pa

Ma ≡
√

gµν (P
µ
a +Qµ

a)(Pν
a +Qν

a), (85)

which is constructed out of the 1+3 momenta Pµ
a

and Qµ
a of the respective composite daughter par-

ticles (see Section VIB).

the visible particles are approximately massless).
13 In keeping with our conventions from Section II, we use lowercase

letters for both hT and meff , since they are not 1+3 dimensional
quantities.

• Optionally, instead of the 1+3 dimensional parent
mass (85), we may choose to consider the corre-
sponding early-partitioned (late-projected) trans-
verse mass

MaT ≡
√

gαβ (pα
aT + qα

aT )(p
β
aT + qβ

aT ), (86)

or the late-partitioned (early-projected) transverse
mass

MTa ≡
√

gαβ (pα
Ta + qα

Ta)(p
β
Ta + qβ

Ta), (87)

where pα
aT , p

α
Ta, q

α
aT and qα

Ta are the 1+2 dimen-
sional momentum vectors defined in (65), (66), (74)
and (75), correspondingly, and the index T takes
values in {⊤,∨, ◦}, as explained in Section III.14

• The last step is to consider the largest hypothesized
parent mass (max [Ma], max [MaT ] or max [MTa]
as appropriate) and minimize it over all possible
values of the unknown invisible momenta consistent
with the constraints. This minimization is always a
well-defined, unambiguous operation, which yields
a unique numerical answer [50], which we shall de-
note as

MN ≡ min∑
~qiT=/~p

T

[

max
a

[Ma]
]

, (88)

MNT ≡ min∑
~qiT=/~p

T

[

max
a

[MaT ]
]

, (89)

MTN ≡ min∑
~qiT=/~p

T

[

max
a

[MTa]
]

, (90)

14 We should point out that the projection specification T ∈
{⊤,∨, ◦} refers to operations on the visible particles. One should
keep in mind that the visible and the invisible composite parti-
cles are a priori independent and so could, in principle, be treated
differently, both in terms of the order of the operations, as well
as regarding the type of transverse projections. For example,
consider the MNT class of variables, where one first forms com-
posite visible particles and transversifies later. In principle, for
the invisible particles, one could perform those operations in the
opposite order and instead of (86) consider

√

gαβ (pα
aT + qα

Ta)(p
β
aT + q

β
Ta)

instead. Furthermore, one could choose a different type of trans-
verse projection for the invisibles than for the visible sector, e.g.

√

gαβ (pα
a⊤ + qα

a∨)(p
β
a⊤ + q

β
a∨)

and so on. One might therefore wonder whether projected vari-
ables need to carry additional indices indicating how the invisible

sector is being handled. In the following, for simplicity we shall
assume that the invisible particles are always projected in exactly
the same way as the corresponding visible particles, so that the
transversification indices uniquely describe the transverse pro-
jections of both visible and invisible daughters. Those readers
who are curious about the remaining cases (when the visibles
and the invisibles are projected differently) can easily infer the
corresponding results from the formulas given below.
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Type of Operations

variables First Second Third Notation

Unprojected Partitioning Minimization — MN

Early partitioned
(late projected)

MNT

Partitioning T = ⊤ projection Minimization MN⊤

Partitioning T = ∨ projection Minimization MN∨

Partitioning T = ◦ projection Minimization MN◦

Late partitioned
(early projected)

MTN

T = ⊤ projection Partitioning Minimization M⊤N

T = ∨ projection Partitioning Minimization M∨N

T = ◦ projection Partitioning Minimization M◦N

TABLE III: Method of constructing the mass-bound variables and corresponding notation. The Table lists the sequence of
operations performed in the calculation of each variable. “Partitioning” refers to the operations discussed in Sec. VIA and
VIB of partitioning the final state particles into daughter sets and then adding the momenta in each set to form corresponding
composite daughter particles. “Minimization” implies minimizing the largest (suitably projected) parent mass with respect to
(the relevant components of) the missing momenta of all invisible particles; while the remaining operations involve the different
types of transverse projections defined and discussed in Section III.

as indicated in Table III. The minimization over the
unknown parameter is performed in order to guar-
entee that the resultant variable cannot be larger
than the mass of the heaviest parent, resulting in
an event-by-event lower bound on the mass of the
heaviest parent.

These are the basic steps, leading to the variables dis-
played in Table III. This basic set of variables will be
further extended in Section VIII below, by considering
a second level of projections within the transverse plane.
For the remainder of this section, however, we shall stick
to the basic procedures above and focus on the simplest
classes of variables displayed in Table III, namely the
“unprojected” MN and the “singly projected” MNT and
MTN variables.

C. The variables: MN , MNT and MTN

In this subsection we provide analytic formulas (where
available) for calculating each of the basic mass-bound
variables from Table III on an event-by-event basis.

1. The usual (“unprojected”) invariant mass: MN

Here we work directly with the usual (1+3)-
dimensional invariant masses Ma of the parent particles
Pa:

M2
a(Pa,Qa, µ̃a) ≡ (Pa +Qa)

2 (91a)

=
(

Ea + Ẽa

)2

− (~paT + ~qaT )
2 − (paz + qaz)

2 . (91b)

The unprojected invariant mass variableMN is defined

by the right hand side of

MN ( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[Ma(Pa,Qa, µ̃a)]
]

, (92)

where the minimization needs to be performed over 3NI

degrees of freedom (~qiT and qiz for i = 1, 2, . . . , NI),
subject to the two scalar constraints (51) supplied by
transverse momentum conservation. The invisible parti-
cle momenta ~qiT and qiz are fixed by the minimization
and MN does not depend on them.
Note that we have emphasized in the left hand side of

(92) that MN turns out not to be a function of the NI

individual invisible mass hypotheses M̃i in µ̃ =
⋃

a µ̃a,
but instead turns out (see proof in Section IXA) to be a
function of the set

/M =
{

/Ma | a ∈ P
}

. (93)

containing the N “invisible mass-sum parameters, /Ma”
defined by

/Ma ≡
∑

i∈Ia

M̃i. (94)

These mass parameters are simple arithmetic sums of the
hypothesized masses of the individual invisible particles
associated with any given parent Pa.
Notice the simplification in going from the individual

parent masses Ma to the variable MN . The individ-
ual parent masses Ma collectively depend on all invisi-
ble particle masses M̃i, (a total of NI parameters), while
the invariant mass variable MN defined in (92) only de-
pends on the N summed-invisible-mass parameters /Ma,
(a = 1, 2, . . . , N), which are simply related to the indi-

vidual particle masses M̃i via (94). In the most common
cases of N = 1 or N = 2, we will therefore have to
deal with only one or two unknown invisible mass-sum
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parameters. A similar reduction in complexity will be
found when we consider the ∨ projected variables, but
there the mass bound will end up depending on a speed-
related parameter for each parent. We see that from now
on the index N can be interpreted not only as the number
of parents, but also as the number of relevant indepen-
dent mass inputs characterizing the invisible sector.
The preceding discussion is best illustrated with a spe-

cific example. Let us consider the simplest case of N = 1.
The minimization of the corresponding variable M1 with
respect to ~qiT and qiz is straightforward. One finds that
the minimum is located at [50]

~qiT = /~pT
M̃i

/M1

, (95)

qiz = p1z
M̃i

/M1

√

√

√

√

/M
2
1 + /p

2
T

M2
1 + p2

1T

, (96)

and its value (see [46]) is given by

M2
1 ( /M1) ≡

(

√

M2
1 + p2

1T +

√

/M
2
1 + /p

2
T

)2

− u2
T (97)

in which, to save space, we have slightly abused our no-
tation by writing M2

1 ( /M1) in place of M2
1 (
{

/M1

}

) —
a convention we will adopt throughout this document
wherever N = 1. We remind the reader that M1 is the
measured (1+3)-mass of the (single) visible composite
daughter (see also eq. (63))

M1 ≡
√

E2
1 − ~p2

1T − p2
1z, (98)

while /M1 is the only invisible mass parameter needed15

defined in (94)

/M1 ≡
NI
∑

i=1

M̃i. (99)

In Ref. [46], the quantity M1( /M1) defined in (97) was

labelled
√
ŝ
(sub)

min :

M1( /M1) ≡
√
ŝ
(sub)

min ( /M1), (100)

since it provides a lower bound on the parton-level center-
of-mass energy of the parent subsystem V1 ⊕ I1, not
counting the uninteresting upstream visible momentum

15 Note the analogy between /~pT and /M1. /~pT measures the total

transverse momentum of the whole collection of missing particles.
Similarly, /M1 measures the total mass of the whole collection of
missing particles. Both /~pT and /M1 are given by simple sums

of the corresponding quantities ~qiT and M̃i of the individual
missing particles, compare (51) and (99).

Uµ. In the special case of a vanishing upstream momen-
tum (uT = 0), M1( /M1) reduces to the global variable√
ŝmin from [50]:

lim
uT →0

M1( /M1) =
√
ŝmin( /M1). (101)

We will not consider the next simplest example (M2)
until Section XH, as simple analytic (as opposed to nu-
merical or iterative) formulae for it are only known to
exist in certain special cases [51], such as when /M1 =
/M2 = M1 = M2 = 0, or when the upstream visible mo-
mentum ~uT is either zero or (anti-)parallel to the missing
transverse momentum /~pT .

2. The early partitioned, ⊤-projected invariant mass: MN⊤

Here the momenta Pµ
a and Qµ

a of the composite par-
ticles are first formed in 1+3 dimensions, as in (53) and
(57), then afterwards are projected on the transverse
plane according to the mass-preserving ⊤ method de-
fined in eq. (8) of Sec. III A. This results in transverse
masses of the parents given by

M2
a⊤(p

α
a⊤,q

α
a⊤, µ̃a) ≡ (pa⊤ + qa⊤)

2 (102a)

≡ (ea⊤ + ẽa⊤)
2 − (~paT + ~qaT )

2, (102b)

where the transverse momenta ~paT and ~qaT are given by
(54) and (58), while the transverse energies ea⊤ and ẽa⊤
are given by (68) and (77).
Then the “early partitioned, ⊤-projected” variable

MN⊤ is defined in a manner very similar to (92)

MN⊤( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[Ma⊤(p
α
a⊤,q

α
a⊤, µ̃a)]

]

.

(103)
Just like MN , this variable also depends only16 on the
N summed-invisible-mass parameters /Ma within /M as
opposed to the NI individual invisible masses M̃i within
µ̃. Eq. (103) again represents a constrained minimization
problem for the 3NI variables ~qiT and qiz . Note that in
spite of its “transverse” index, MN⊤ still depends on the

16 At this point readers who are familiar with the Cambridge mT2

variable [7, 8] have probably recognized that for the special case
of N = 2, the MN⊤ variable (103) recovers the Cambridge mT2.
Note that the original literature [8] on the Cambridge mT2 vari-
able also defined more general variables mTX , e.g. mT3, mT4,
etc. However, we caution readers to make the distinction between
the index “N” in MN⊤, which refers to the number of hypothe-
sized parents, and the index “X” in the Cambridge mTX , which
stood for the total number of invisible particles (in this paper
denoted by NI). For example, the index “2” in the Cambridge
mT2 notation implies the presence of exactly two invisible parti-
cles, the number of parents already being implicitly assumed to
be two. In contrast, the variable M2⊤ defined in (103) does not
imply any particular number of invisible particles, and in this
sense is equivalent to the whole class of mTX for any X.
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longitudinal momenta qiz through the transverse energy
ẽa⊤, see (77b).
In order to gain some intuition, let us again consider

the simplest case of N = 1. The minimization of (103) is
once again straightforward and the minimum is found at

~qiT = /~pT
M̃i

/M1

, (104)

qiz = q1z
M̃i

/M1

, (105)

with an arbitrary choice of q1z . This leads to

M2
1⊤( /M1) ≡

(

√

M2
1 + p2

1T +

√

/M
2
1 + /p

2
T

)2

− u2
T .

(106)
Comparing (106) to (97), we see that

M1⊤ = M1. (107)

This is in fact a special case of the more general mathe-
matical identity

MN⊤ = MN , (108)

for which a proof is provided in the appendix — see equa-
tion (B49). This identity reveals that “transverse” quan-
tities do not necessarily “forget” about relative longitudi-
nal momenta. In particular, (108) teaches us that when-
ever the composite particles are formed before the trans-
verse projection, the information about the relative lon-
gitudinal momenta is retained, and the result is the same
as if everything was done in 1+3 dimensions throughout.
As a result, MN⊤ automatically inherits all the advan-
tages and disadvantages of its 1+3 cousin MN .

3. The late partitioned, ⊤-projected invariant mass: M⊤N

This is the first example of an “early projected”, “late
partitioned” variable. We follow the procedure of the pre-
vious subsection VIIC 2, only this time we switch the or-
der of the operations, and we first ⊤-project the momen-
tum of each individual particle on the transverse plane,
before forming composite particles. The transverse in-
variant mass of each composite parent is then given by

M2
⊤a(p

α
⊤a,q

α
⊤a, µ̃a) ≡ (p⊤a + q⊤a)

2
(109a)

≡ (e⊤a + ẽ⊤a)
2 − (~paT + ~qaT )

2, (109b)

with ~paT and ~qaT still given by (54) and (58), while the
composite transverse energies e⊤a and ẽ⊤a are given by
(69) and (78), correspondingly. Notice that these ex-
pressions do not contain the longitudinal momenta piz
and qiz . This is in contrast to the “early partitioned”
case represented by (68) and (77), where the longitudi-
nal momenta appear explicitly. The comparison between

(68) and (77) on the one hand, and (69) and (78) on the
other, nicely illustrates the main point of Section V —
that by adding the momenta before the projection, one
retains sensitivity to the relative longitudinal momenta.
Conversely, when the operations are performed in reverse
order and the transverse projection is done first, the lon-
gitudinal momenta completely drop out of the game.
Now we are ready to apply the usual definition and

obtain

M⊤N ( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[M⊤a(p
α
⊤a,q

α
⊤a, µ̃a)]

]

.

(110)
Let us again investigate the simplest case of N = 1.

With the help of the transverse momentum conservation
constraint (51), eq. (110) reduces to

M2
⊤1 = min∑

~qiT=/~p
T





(

NV
∑

i=1

ei⊤ +

NI
∑

i=1

ẽi⊤

)2

− u2
T





=

(

NV
∑

i=1

ei⊤ + min∑
~qiT=/~p

T

[

NI
∑

i=1

ẽi⊤

])2

− u2
T .

The minimum is once again found at (104) and we get

M2
⊤1( /M1) =

(

NV
∑

i=1

√

M2
i + ~p 2

iT +

√

/M
2
1 + /p2T

)2

− u2
T .

(111)
As expected, this result differs from (106), although the
two formulas follow a similar pattern. The difference
is only in the term corresponding to the visible sector,
where the transverse energy of the composite visible par-
ticle is computed differently, compare (68a) and (69).
An interesting result emerges if we consider the fur-

ther simplification that all visible particles are massless,
i.e. Mi = 0, ∀ i. This, in fact, is a very good approxima-
tion for the leptons and quarks/gluons of the SM, whose
masses can be safely neglected. Setting Mi = 0 in (111)
and using (83), we get

lim
Mi→0

M2
⊤1( /M1) =

(

hT +

√

/M
2
1 + /p

2
T

)2

− u2
T . (112)

This result is quite interesting. It allows us to reinterpret
the usual hT variable in terms of a bona fide invariant
mass variable like M⊤1, properly accounting for the ef-
fects of upstream visible momentum uT and the total
mass /M1 of the invisible particles present in the event.
We shall return to this point in the next Section IX.
Another interesting result follows from eq. (112) in the

special case when we set /M1 = 0. Using (84), we get

lim
Mi→0

M2
⊤1( /M1 = 0) =

(

hT + /pT

)2

− u2
T = m2

eff − u2
T ,

(113)
providing a connection between the “effective mass” meff

and M⊤1(0).
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4. The late partitioned, ∨-projected mass: M∨N

This is the second example of an “early projected” vari-
able, only this time we use the speed-preserving ∨ pro-
jection described in Section III B. Correspondingly, the
individual visible (invisible) particles will be character-

ized by their 3-speeds Vi (Ṽi) instead of their masses Mi

(M̃i) and so we remind the reader of the notation intro-
duced in (49) and (50).

The 1+2 momentum vectors of the individual particles
after the ∨ projection are obtained from (17)

pαi∨ ≡ (ei∨, ~pi∨) =

(

piT
Vi

, ~piT

)

, (114)

qαi∨ ≡ (ẽi∨, ~qi∨) =

(

qiT

Ṽi

, ~qiT

)

. (115)

Then we form composite particles with ∨ projected 1+2
momenta pα

∨a and qα
∨a given by (66) and (75), respec-

tively.

The transverse parent masses are now formed in terms
of pα

∨a and qα
∨a as follows

M2
∨a(p

α
∨a,q

α
∨a, ṽa) ≡ (p∨a + q∨a)

2
(116a)

≡ (e∨a + ẽ∨a)
2 − (~paT + ~qaT )

2, (116b)

where the transverse energies e∨a and ẽ∨a are specified
by (71) and (80) and the transverse momenta ~paT and
~qaT are given by (54) and (58).

This is a convenient place to introduce another two
small pieces of notation.17 Firstly we will need to define
a “maximum invisible velocity parameter” /Va for each
parent Pa according to

/Va ≡ max
i∈Ia

[

Ṽi

]

. (117)

Then we would like to denote by /V the set of all the
above velocity parameters, i.e.

/V =
{

/Va | a ∈ P
}

. (118)

Now we are in a position to state (see proof in Sec-
tion IXA) that the only dependence of the “late parti-
tioned”, ∨-projected mass variable M∨N on the velocity
parameters of the invisible particles is through /V, i.e.:

M∨N( /V) ≡ min∑
~qiT=/~p

T

[

max
a

[M∨a(p
α
∨a,q

α
∨a, ṽa)]

]

. (119)

Once again, it is instructive to consider the special case

17 Contrast with the definition of /Ma in equation (94) and the
definition of /M in equation (93).

of N = 1. With the help of (51), eq. (119) becomes

M2
∨1( /V1) = min∑

~qiT =/~p
T





(

NV
∑

i=1

ei∨ +

NI
∑

i=1

ẽi∨

)2

− u2
T





=

(

NV
∑

i=1

ei∨ + min∑
~qiT =/~p

T

[

NI
∑

i=1

ẽi∨

])2

− u2
T

=

(

NV
∑

i=1

ei∨ + min∑
~qiT =/~p

T

[

NI
∑

i=1

qiT

Ṽi

])2

− u2
T .

The minimization selects the invisible particle with the
largest speed, whose transverse momentum becomes /~pT ,
while all other invisible particles have qiT = 0. This
configuration leads to the final answer

M2
∨1( /V1) =

(

NV
∑

i=1

piT
Vi

+
/pT
/V1

)2

− u2
T . (120)

When we make the approximation that all visible par-
ticles are massless (Vi = 1), we again obtain a relation to
hT :

lim
Vi→1

M2
∨1( /V1) =

(

hT +
/pT
/V1

)2

− u2
T , (121)

which is the analogue of (112) for the case of ∨ transverse
projections. But note that unlike (112), here the un-
known parameter characterizing the invisible sector is the
maximum speed parameter /V1 instead of the summed-
invisible-mass parameter /M1.
Finally, if in addition we also assume that all invisible

particles are massless as well, then

Ṽi = 1, ∀i =⇒ /V1 = 1,

so that

lim
Vi→1

M2
∨1( /V1 = 1) =

(

hT + /pT

)2

− u2
T = m2

eff − u2
T ,

(122)
which is the analogue of (113). The fact that (113) and
(122) are the same should not come as a surprise: recall
from Sec. IVB that the two transverse projections ⊤ and
∨ are equivalent in the massless limit.

5. The early partitioned, ∨-projected mass: MN∨

Here we follow a procedure analogous to that of
Sec. VII C 2, where the composite momenta Pµ

a and Qµ
a

are first formed in 1+3 dimensions, before being pro-
jected on the transverse plane, only this time we use the
∨ projection for this purpose:

∑

i∈Va

Pµ
i −→ Pµ

a
∨−→ pα

a∨ = (ea∨, ~pa∨) , (123)

∑

i∈Ia

Qµ
i −→ Qµ

a
∨−→ qα

a∨ = (ẽa∨, ~qa∨) . (124)
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The transverse parent masses are now formed in terms
of pα

a∨ and qα
a∨ as usual

M2
a∨(p

α
a∨,q

α
a∨, ṽa) ≡ (pa∨ + qa∨)

2
(125a)

≡ (ea∨ + ẽa∨)
2 − (~paT + ~qaT )

2.(125b)

Here the composite transverse momenta ~pa∨ and ~qa∨ are
still given by (54) and (58), while the transverse energies
ea∨ and ẽa∨ are given by (70) and (79), correspondingly.
Then the early-partitioned, ∨-projected variable is de-

fined as usual:

MN∨( /V) ≡ min∑
~qiT =/~p

T

[

max
a

[Ma∨(p
α
a∨,q

α
a∨, ṽa)]

]

.

(126)
Once again, let us specify this to the case of N = 1.

Using (51), we get

M1∨ = min∑
~qiT=/~p

T

[

(e1∨ + ẽ1∨)
2 − u2

T

]

(127a)

=

(

e1∨ + min∑
~qiT =/~p

T

[ẽ1∨]

)2

− u2
T . (127b)

The minimization is performed over the 3NI variables
~qiT and qiz , i = 1, 2, . . . , NI and the result is

M1∨( /V1) =

(

e1∨ +
/pT
/V1

)2

− u2
T (128a)

=

(

p1T
√

p2
1T + p2

1z

E1 +
/pT
/V1

)2

− u2
T ,(128b)

which is similar, but not equivalent to (120).

6. The late partitioned, ◦-projected mass: M◦N

Here we follow the procedure of Secs. VII C3 and
VIIC 4, only this time we use the ◦ transverse projec-
tion from Sec. III C. One first forms the 1+2 momenta of
the individual particles

pαi◦ ≡ (ei◦, ~pi◦) = (piT , ~piT ) , (129)

qαi◦ ≡ (ẽi◦, ~qi◦) = (qiT , ~qiT ) , (130)

then the composite momenta

pα
◦a ≡ (e◦a, ~p◦a) =

(

∑

i∈Va

piT ,
∑

i∈Va

~piT

)

, (131)

qα
◦a ≡ (ẽ◦a, ~q◦a) =

(

∑

i∈Va

qiT ,
∑

i∈Va

~qiT

)

. (132)

The transverse parent masses are now formed in terms
of pα

◦a and qα
◦a as usual:

M2
◦a(p

α
◦a,q

α
◦a) ≡ (p◦a + q◦a)

2 (133a)

≡ (e◦a + ẽ◦a)
2 − (~paT + ~qaT )

2, (133b)

and the “late partitioned”, ◦-projected mass variable
M◦N is defined as before:

M◦N ≡ min∑
~qiT =/~p

T

[

max
a

[M◦a(p
α
◦a,q

α
◦a)]
]

. (134)

Notice that the M◦N variables do not depend on any un-
known parameters related to the invisible sector (i.e. we
need no “ /O” where previously we needed an /M or a /V)
and so can be uniquely computed in terms of the mea-
sured momenta of the visible particles and the missing
transverse momentum alone.
Specializing (134) to the simplest case of N = 1, we

get

M2
◦1 = min∑

~qiT =/~p
T





(

NV
∑

i=1

ei◦ +

NI
∑

i=1

ẽi◦

)2

− u2
T





=

(

NV
∑

i=1

ei◦ + min∑
~qiT =/~p

T

[

NI
∑

i=1

ẽi◦

])2

− u2
T

=

(

NV
∑

i=1

piT + min∑
~qiT=/~p

T

[

NI
∑

i=1

qiT

])2

− u2
T .

The minimization over the 2NI variables ~qiT is straight-
forward and we obtain several equivalent expressions for
the answer

M2
◦1 =

(

NV
∑

i=1

piT + /pT

)2

− u2
T (135a)

=
(

hT + /pT

)2

− u2
T , (135b)

= m2
eff − u2

T . (135c)

showing the close connection between M◦1 and the usual
hT and meff variables. We see that in the absence of any
upstream visible momentum (~uT = 0), the variable M◦1

itself is nothing but the effective mass meff . However,
these two variables differ if (as is typically the case) the
event also has some nonzero upstream momentum uT .
The importance of the result (135c) is that it teaches us
how to properly account for the presence of UVM in such
cases: uT should be subtracted in quadratures from meff

in order to obtain the proper invariant mass variable (in
this case M◦1). Furthermore, it also reveals the phys-
ical meaning of the widely used meff variable (see also
Sec. XB below): it is the minimum allowed transverse
mass constructed out of “◦”-projected momenta, for a
semi-invisibly decaying parent, whenever that parent is
produced exclusively with uT = 0 (i.e. with no additional
upstream momentum in the event).

7. The early partitioned, ◦-projected mass: MN◦

Finally, we discuss the early partitioned, ◦-projected
version MN◦, where the composite momenta are first
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formed in 1+3 dimensions, then transversified via the
“◦” projection:

∑

i∈Va

Pµ
i −→ Pµ

a
◦−→ pα

a◦ = (ea◦, ~pa◦) , (136)

∑

i∈Ia

Qµ
i −→ Qµ

a
◦−→ qα

a◦ = (ẽa◦, ~qa◦) , (137)

where in light of (72) and (81)

pα
a◦ = (ea◦, ~pa◦) =

(
∣

∣

∣

∣

∣

∑

i∈Va

~piT

∣

∣

∣

∣

∣

,
∑

i∈Va

~piT

)

, (138)

qα
a◦ = (ẽa◦, ~qa◦) =

(∣

∣

∣

∣

∣

∑

i∈Ia

~qiT

∣

∣

∣

∣

∣

,
∑

i∈Ia

~qiT

)

. (139)

These (1+2) composite momenta are now used to form
the corresponding transverse parent masses

M2
a◦(p

α
a◦,q

α
a◦) ≡ (pa◦ + qa◦)

2 (140a)

≡ (ea◦ + ẽa◦)
2 − (~paT + ~qaT )

2. (140b)

Now the “early partitioned”, ◦-projected mass variable
MN◦ is defined as before:

MN◦ ≡ min∑
~qiT =/~p

T

[

max
a

[Ma◦(p
α
a◦,q

α
a◦)]
]

. (141)

Just like its cousin M◦N defined in (134), MN◦ does not
depend on any unknown parameters like /Ma or /Va.
Specifying (141) to the simplest case of N = 1, we get

M2
1◦ = min∑

~qiT=/~p
T

[

(e1◦ + ẽ1◦)
2 − u2

T

]

=

(

e1◦ + min∑
~qiT =/~p

T

[ẽ1◦]

)2

− u2
T

=

(

e1◦ + min∑
~qiT =/~p

T

[
∣

∣

∣

∣

∣

NI
∑

i=1

~qiT

∣

∣

∣

∣

∣

])2

− u2
T .

The minimization over the 2NI variables ~qiT gives

M2
1◦ =

(∣

∣

∣

∣

∣

NV
∑

i=1

~piT

∣

∣

∣

∣

∣

+ /pT

)2

− u2
T (142a)

=
(

|/~pT + ~uT |+ /pT

)2

− u2
T (142b)

= 2
(

/~pT · (/~pT + ~uT ) + /pT |/~pT + ~uT |
)

,(142c)

providing a connection between our M1◦ variable and the
usual missing transverse momentum /pT . In order to see
the physical meaning of /pT , let us take the “no upstream

momentum” limit uT → 0 in (142b) or (142c), resulting
in

lim
uT →0

M2
1◦ = 4/p

2
T
. (143)

T‖

T⊥

~uT

~pT

~qT

~pT⊥

~pT‖

~qT⊥

~qT‖

FIG. 9: Transverse vector decomposition onto the direction
T‖ specified by the UVM transverse momentum vector ~uT and
the direction T⊥ orthogonal to it [25, 34]. All vectors shown
are in the plane perpendicular to the beam axis.

One can thus interpret the variable 2/pT (and not just

the /pT !) as the minimum allowed “◦”-projected trans-
verse mass of a semi-invisibly decaying parent, whenever
the parent is produced exclusively with uT = 0, i.e. with
no additional upstream momentum in the event. How-
ever, in situations when the parent is produced inclu-
sively, with uT 6= 0, the relevant variable to consider
would be M1◦ as given by (142b) or (142c), which prop-
erly accounts for the uT effect (see also Sec. XA below).

VIII. ADDITIONALLY PROJECTED
VARIABLES

A. Momentum decompositions with respect to ~uT

An additional level of projection within the plane
transverse to the beam has been shown to be useful in
certain circumstances [25, 34]. To orient such projec-
tions we note that the total transverse momentum ~uT

of the UVM category breaks the rotational symmetry of
the transverse plane and selects two preferred directions
T‖ (along ~uT ) and T⊥ (transverse to ~uT ), as shown in
Fig. 9. Having projected the 1+3 momentum vectors
onto the transverse plane as in Fig. 2, one may then ad-
ditionally project the resulting 1+2 transverse momen-
tum vectors onto these special directions, as illustrated
in Fig. 9. The corresponding momentum components
resulting from such “double transverse” projections will
carry a “double transverse” index: “T⊥” for components
along T⊥ and “T ‖” for components along T‖ (see Fig. 9).
For example, the /~pT vector can be decomposed into a T⊥

component /~pT⊥

/~pT⊥ =
1

u2
T

~uT ×
(

~pT × ~uT

)

, (144)

and a T‖ component /~pT‖

/~pT‖ = /~pT − /~pT⊥ =
1

u2
T

(

/~pT · ~uT

)

~uT . (145)
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By definition, the upstream transverse momentum vector
~uT has only a T‖ component, i.e.

~uT‖ = ~uT , (146)

~uT⊥ = 0. (147)

In view of (51) and (147), momentum conservation in the
T⊥ direction reads

NI
∑

i=1

~qiT⊥ = /~pT⊥ = −
NV
∑

i=1

~piT⊥ . (148)

It is precisely the absence of a ~uT⊥ term in this equation
which allows one to derive exact analytical formulas for
the T⊥ doubly projected variables defined next in Section
VIII B.

B. Doubly-projected mass bound variables

1. Homogeneously-doubly-projected mass bound variables

For our purposes, the additional projections in Fig. 9
allow us to extend the original set of mass-bound vari-
ables from Table III by considering the “doubly pro-
jected” variables shown in Table IV18. The benefit of such
additionally projected varibles has been noted and dis-
cussed in [25, 34]. For example, the shapes and the kine-
matic endpoints of the distributions of T⊥-projected vari-
ables can be independent of the value of uT . Therefore,
such distributions can be constructed from the whole
event sample, without any loss in statistics due to a spe-
cific uT selection. Furthermore, the relation (147) leads
to significant simplifications in the analytical treatment
of T⊥ doubly projected variables. For example, for singly
projected variables, the case of N = 2 is untractable
by analytical means, and (apart from some special cases
[51]) has to be treated numerically [38, 39]. In contrast,
one can derive exact analytical formulas for calculating
N = 2, T⊥ doubly projected mass bound variables on
an event-per-event basis, without any need for numerical
minimizations [25, 34].
In general, the variables in Table IV are independent,

with one exception:

MN◦⊥ ≡ M◦N⊥. (149)

Later on in Section XIB (see in particular Fig. 13(b)),
we shall consider a specific example illustrating some of
the homogeneously-doubly-projected variables from Ta-
ble IV.

18 To save space, Table IV lists only T⊥ projected variables. An
analogous set of T‖ projected variables is obtained by replacing
the T⊥ projection in Table IV with a T‖ projection.

2. Heterogeneously-doubly-projected mass bound variables

Notice that in defining the mass bound variables in
Table IV, we have chosen the second level of projection
(along T⊥) to be performed with the same type of trans-
verse projection (“⊤”, “∨” or “◦”) which was used to
project into the transverse plane. Of course, this does
not have to be the case — and by allowing for differ-
ent types of transverse projections for T and for T⊥,
one would obtain 18 additional variables with “mixed”
transverse projections. These heterogeneously-doubly-
projected variables are listed in Table V, where the addi-
tional subindex on ⊥ specifies the type of T⊥ projection
as being of the “⊤”, “∨” or “◦” type.19 As usual, the
sequence of indices in both Tables IV and V represents
the order in which the operations are to be performed.
For example, M◦N⊥⊤

means

• project all objects using the massless ‘◦’ projection,
then

• partition and agglomerate into N parents, then

• project into the direction perpendendicular to ~uT

using the mass-preserving ‘⊤’ projection, then, as
ever,

• minimize over all values of the unknown momenta
that satisfy the constraints.

Interestingly, most of the “⊥◦” heterogeneously-
doubly-projected variables turn out to be related to each
other and to the corresponding homogeneously-doubly-
projected variables from Table IV. For example:

MN◦⊥ ≡ MN◦⊥◦
= MN⊤⊥◦

= MN◦⊥⊤
= M⊤N⊥◦

,(150)

M◦⊥N ≡ M◦⊥◦N = M◦⊥⊤N = M⊤⊥◦N , (151)

M◦N⊥ ≡ M◦N⊥◦
= MN⊤⊥◦

= MN◦⊥⊤
= M⊤N⊥◦

,(152)

where the last line (152) follows from (149) and (150).
The one remaining variable M◦N⊥⊤

is rather similar to
M⊤N⊥⊤

≡ M⊤N⊥, since the difference between them
may arise only due to nonzero masses (Mi 6= 0) of the
individual visible particles.

IX. PROPERTIES OF THE MASS-BOUND
VARIABLES

We should stress that proliferating the number of kine-
matic variables in the literature is certainly not among
the goals of this paper — on the contrary, we empha-
sise that these variables are different implementations of

19 Another set of 18 additional variables can be trivially obtained
from Table V by considering a T‖ type of projection at the second
level instead.
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Type of Operations

variables First Second Third Fourth Notation

Early partitioned Partitioning T = ⊤ projection ⊥= ⊤ projection on T⊥ Minimization MN⊤⊥

doubly projected Partitioning T = ∨ projection ⊥= ∨ projection on T⊥ Minimization MN∨⊥

MNT⊥ Partitioning T = ◦ projection ⊥= ◦ projection on T⊥ Minimization MN◦⊥

Late partitioned, T = ⊤ projection ⊥= ⊤ projection on T⊥ Partitioning Minimization M⊤⊥N

doubly projected T = ∨ projection ⊥= ∨ projection on T⊥ Partitioning Minimization M∨⊥N

MT⊥N T = ◦ projection ⊥= ◦ projection on T⊥ Partitioning Minimization M◦⊥N

In-between partitioned, T = ⊤ projection Partitioning ⊥= ⊤ projection on T⊥ Minimization M⊤N⊥

doubly projected T = ∨ projection Partitioning ⊥= ∨ projection on T⊥ Minimization M∨N⊥

MTN⊥ T = ◦ projection Partitioning ⊥= ◦ projection on T⊥ Minimization M◦N⊥

TABLE IV: An extended version of Table III, containing the additional variables found by including the option of a T⊥

projection shown in Fig. 9. An analogous set of variables is obtained by considering a T‖ projection instead.

Early partition Hedged partition Late partition

MN⊤⊥∨ , MN⊤⊥◦ M⊤N⊥∨ , M⊤N⊥◦ M⊤⊥∨N , M⊤⊥◦N

MN∨⊥⊤
, MN∨⊥◦ M∨N⊥⊤

, M∨N⊥◦ M∨⊥⊤N , M∨⊥◦N

MN◦⊥⊤
, MN◦⊥∨ M◦N⊥⊤

, M◦N⊥∨ M◦⊥⊤N , M◦⊥∨N

TABLE V: The 18 additional heterogeneously-doubly-
projected transverse mass variables for each N , where the
additional subindex on ⊥ specifies the type of T⊥ projection
as being of the “⊤”, “∨” or “◦” type. As was the case in
Tables III and IV, “partition” implies the combined opera-
tion of partitioning the objects and agglomerating them by
summation into composite objects.

the general principle described in Section VII A. What’s
more we will soon begin to reveal further connections of
these variables to each other (in Section IXC) and to ex-
isting proposals (in Section X). But before we proceed,
perhaps now is a good time to summarize what we have
accomplished so far.
The previous discussion has hopefully convinced the

reader that, once the decision on the targeted event
topology (Fig. 5) is made, the choice of relevant invari-
ant mass variables is straightforward and rather unam-
biguous. Following the general recipe outlined in Sec-
tion VII B, one is able to overcome the two main obstacles
in any analysis involving missing momentum:

• The fact that the momenta of the invisible particles
are unknown. To construct a bound, this prob-
lem is solved by performing a minimization over all
possible values of the invisible momenta, consistent
with the measured /~pT . The minimization fixes the
values of the invisible momenta (e.g. as in (95) and

(96)) and from that point on, one works with fully
specified kinematics in the event. Of course, the
momenta found in the process of minimization, are
not equal to the actual momenta of the invisible
particles in the event, although in some cases they
can be close, see [19].

• The fact that the total number and the masses of
the invisible particles are unknown. This problem
is also resolved through the minimization — as we
have seen in the explicit N = 1 examples discussed
in Section VII C, the mass bound resulting from the
minimization turned out to be a function which de-
pends only on a set of N summed mass parameters
(93) or a set of N 3-speeds (118), and is insensitive
to the number of invisible particles or to the fine
structure of the individual masses M̃a or 3-speeds
Ṽa connected to parent Pa. We set out a general
proof for general N in Section IXA below.

It should be recognized that for any practical applica-
tion, there is no need to consider every one of the vari-
ables in Tables III and IV, since some will be better suited
than others to the particular task at hand.
For example, we have seen that the “∨”-projected

quantities assume knowledge of the ~pT and the speed
of the particle, but leave the mass and pz undetermined.
This means that all of the “∨”-projected variables in Ta-
bles III and IV should be considered appropriate only
for experimental situations in which the pT and speed
of the particles are known, but nothing is known about
their masses or longitudinal momenta. Such situations
may exist – for example if pT can be determined from
the particles’ bending radii in a solenoidal magnetic field
and speed can be inferred from time-of-flight information
or from the characteristic angle of any emitted Čerenkov
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radiation. However such cases are the exception, rather
than the norm in current experiments.20 In what follows
we shall therefore give greater attention to the remaining
three classes of variables: “unprojected”, “⊤”-projected,
and “◦”-projected.
We shall denote a generic mass-bound variable as MF ,

where the composite index F is made up from (any num-
ber of) objects taken from the set {N,⊤,∨, ◦}. There are
seven such possibilities21:

F ∈ {N,N⊤,⊤N,N◦, ◦N,N∨, ∨N} . (153)

For later convenience, we also introduce the generic no-
tation F⊤ for the ⊤-projected variables:

F⊤ ∈ {N⊤,⊤N} (154)

F∨ for their two “∨”-projected counterparts:

F∨ ∈ {N∨, ∨N} , (155)

and F◦ for the two “◦”-projected equivalents:

F◦ ∈ {N◦, ◦N} . (156)

The large multiplicity is partially due to the different
possible ways to transversify the energy-momenta of the
composite daughter particles whose masses Ma and M̃a

are typically nonzero. First, one can choose whether or
not to project, and then those projections can be of type
⊤, ∨ or ◦ (see Section III). In addition, as emphasized
in Section V, the operations of partitioning into compos-
ite particles and transversifying do not commute, so that
in general we obtain non-equivalent variables simply by
switching the order of those operations. As illustrated in
Tables III-V, we use the ordering of indices on each vari-
able (from left to right) to indicate the order of the cor-
responding operations. For example M2⊤ means that we
add the 1+3 vectors first to form two composite visible
daughter particles and transversely project later, while
M⊤2 implies the opposite — make a ⊤ transverse pro-
jection before forming the composite daughter particles.

A. Dependence of mass bounds MF on /M, /V, etc.

We have stated that the dependence of the mass bound
variables, MF , on parameters of the hypothesis is always
confined to a set of N parameters contained within /M or
/V etc. We have not yet proved this statement for general

20 Even in those cases, it is usual that ~pT is determined from a mea-
sured track, so one would also expect to be able to reconstruct
the polar angle θ, from that track, which would permit pz and
hence the full 1+3-vector of the particle to be determined. There
would be no need to then restrict oneself to the subset of that
information held by the corresponding “∨”-projected quantities.

21 The number of possibilities increases to 17 if one allows a second
level of projection, as discussed in Section VIII.

values of N , or indicated whether we can demonstrate
this to be true for other classes of projection not already
discussed. All we have proved, so far, are the following
statements, which are specific to N = 1 and consider at
most one projection:

• That M1 depends only on /M =
{

/M1

}

(see (97))

• That M1⊤ depends only on /M =
{

/M1

}

(see (106))

• That M⊤1 depends only on /M =
{

/M1

}

(see (111))

• That M∨1 depends only on /V =
{

/V1

}

(see (120))

• That M1∨ depends only on /V =
{

/V1

}

(see (128))

• That M1◦ depends on no hypothesis parameters22,

• That M◦1 depends on no hypothesis parameters.

We now seek to generalize the proofs of the above to
all other values of N , in a manner that does not make
specific requirements on F . Specifically, we would like to
prove that:

“MF depends only on /SF =
{

/S
F
1 , . . . , /S

F
N

}

” (157)

where /SF is a set of N parameters, of which there is

one (/S
F
a ) for each parent Pa, and where the nature of

/S
F
a depends on the type of projection in F (which may

be arbitrary), and on a, but not on the number N of
parents in total. In particular, we have already seen to
expect /SF =

{

/M1

}

when F ∈ {1,1⊤,⊤1}, and to expect
/SF =

{

/V1

}

when F ∈ {1∨,∨1}, and we are now seek-

ing to generalize these to results like “/SF =
{

/M1, /M2

}

when F ∈ {2,2⊤,⊤2}” or “/SF =
{

/V1, /V2, /V3

}

when
F ∈ {3∨,∨3}”etc.
What we will actually succeed in proving is the

marginally less general statement that:

MF depends only on /SF =
{

/S
F
1 , /S

F
2 , . . . , /S

F
n

}

,

when N = n, provided that MF depends only

on /SF =
{

/S
F
1

}

when N = 1

(158)

which reminds us that the generality of the desired (but
unattainable) result (157) is constrained (for any partic-
ular projection F) by the need to prove the result for
the N = 1 case. In other words, though the proof of
(158) found below will be valid for any projection, the
desired result (157) will only be true for projections that
experience simplification in the N = 1 case.

22 Note that depending on “no hypothesis parameters” is a special
case of depending on a very dull set of parameters /O =

{

/O1

}

which contain no information.
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The proof of (158) is astonishingly simple. Consider
an arbitrary mass-bound variable

MF ≡ min∑
~qiT =/~p

T

[

max
a

[

Ma

(

SF
a

)]

]

. (159)

where each parent mass Ma depends on a corresponding
set of invisible parameters SF

i

SF
a ≡

{

SF
i | i ∈ Ia

}

(160)

(compare this to the analogous relations (48) and (50)).
Let us now perform the minimization in (159) in two
steps. In the first step, for each parent, we hold the sum
of the invisible daughters’ momenta constant, and min-
imize over the internal partition of invisible momentum
between those daughters:

MF = min∑
~qaT =/~p

T



 min∑

i∈Ia

~qiT =~qaT

[

max
a

[

Ma

(

SF
a

)]

]



 .

(161)
Since the internal partitions over the invisible momenta
are done independently for each parent, (161) can be
equivalently rewritten as

MF = min∑
~qaT =/~p

T



max
a



 min∑

i∈Ia

~qiT=~qaT

[

Ma

(

SF
a

)]







 .

(162)
Now we use the assertion that forN = 1 (i.e. for any indi-
vidual parent) the minimization over internal partitions

yields a function of a single parameter /S
F
a as opposed to

the whole set of parameters SF
a :

min∑

i∈Ia

~qiT =~qaT

[

Ma

(

SF
a

)]

≡ Ma

(

/S
F
a

)

. (163)

Substituting (163) into (162), we obtain the desired result

MF

(

/SF

)

= min∑
~qaT =/~p

T

[

max
a

[

Ma

(

/S
F
a

)]]

, (164)

which makes it obvious that MF can only be a function

of the set of parameters /SF =
{

/S
F
1 , /S

F
2 , . . . , /S

F
n

}

.

B. Parental masses and upper kinematic endpoints

By construction, the mass-bound variables of Table III
are designed to provide an event-by-event lower bound on
the true invariant mass Mmax

P of the heaviest parent

Mmax
P ≡ max

a∈P
[Ma] . (165)

Such bounding properties are contingent on us being able
to make appropriate choices when analyzing the events.
We initially restrict our discussion of the bound to the

case where the set of momentum configurations A per-
mitted under our assumptions is equal to the set of mo-
menta E sampled by nature. We observe that to ensure
A = E we must (a) correctly reconstruct the event topol-
ogy (the number of parents, the number and types of
daughters, and the association of daughters to parents)
and (b) employ the true values of the parameters /S used

in constructing of any mF variable — i.e. /V
true

for F∨,

and /M
true

for F⊤ or FN . Under A = E conditions all
MF variables are designed to return values smaller than
the mass of the heaviest parent

MF ≤ Mmax
P (A = E). (166)

From eq. (166), it follows directly that, if we were to
consider the differential distribution of the same variable
MF over all events, the upper kinematic endpoint Mmax

F
of this distribution also satisfies

Mmax
F ≡ max

all events
[MF ] ≤ Mmax

P (A = E), (167)

where we make explicit the requirement that the true
values of the /S parameters are used.
There remains the important question as to the cir-

cumstances under which the inequalities in (166) and
(167) are saturated – i.e. the conditions for which a mea-
surement of the MF kinematic endpoint will provide a
determination of (rather than simply a lower bound on)
the largest parent mass Mmax

P .
We observe that when A = E : (i) that for any se-

lected event ǫ ∈ E the minimization picks out some non-
empty subset of momenta Kǫ that satisfy the global min-
imum; (ii) that Kǫ ⊂ A; (iii) we may define for conve-
nience Mmax

F (c) = maxa∈P [MaF(c)] for any configura-
tion c ∈ A; (iv) that since we minimize over any unknown
momentum components, the value of Mmax

F evaluated
for some minimum configuration k ∈ K cannot exceed
the value that would be obtained elsewhere in A (and
therefore in E); (v) that projections T ∈ {⊤,∨, ◦} do
not increase the invariant mass (33); (vi) that MF can
therefore not exceed the largest parent’s invariant mass
since

MF ≡ Mmax
F (Kǫ) ≤ Mmax

F (ǫ) ≤ Mmax
P (A = E) .

(168)
The necessary and sufficient condition for saturation

of (167) is therefore that there exist some event ǫ for
which two inequalities in (168) simultaneously become
equalities.
Given that Mmax

F ≡ maxa∈P [Ma(Kǫ)] it follows from
(168) that a necessary condition for saturation is that

∃(ǫ ∈ E , a ∈ P) [Ma(ǫ) = Mmax
P ] . (169)

There are cases for which (169) is not satisfied, and
for which the inequality in (167) must therefore remain
unsaturated. For example, if the decay of some Pa pro-
ceeds exclusively via an intermediate on-shell resonance,
then the set of physically observed momenta E is further
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restricted to a subset of A which need not contain any
event satisfying (169).23

The “◦” projection discards all previous information
about the mass of the 1+3 vector being projected, and so
calculation of M◦N will return the same value that would
be obtained if one were to set both Mi = 0 (∀i ∈ V) and
/Ma = 0 (∀a ∈ P). If all events contain massive invisibles
(or indeed massive visibles) in all daughter sets — as
would be the case for models like R-parity conserving
supersymmetry and UED — then (169) cannot be true
for any M◦a and so M◦N can only bound from below,
rather than determine, the mass of the heaviest parent.
In Appendix B 3 we prove the event-by-event inequality
MN◦ ≤ M◦N , so any bound that is unsaturated for M◦N

must also be unsaturated for MN◦.

Compared to the F◦ variables, the F⊤ and F = N
variables are subject to less stringent conditions for sat-
uration, because they retain mass information during the
process of (absence of) projection. Some of the necessary
conditions can be inferred from the results of in App. B 1
and B2. As an example of these less-stringent conditions,
if |Ia| 6= 0 ∀a then a necessary condition for saturation
will include the existence of events ǫ ∈ E with vanishing
relative rapidity between Pµ

a and Qµ
a for some a ∈ P .

As discussed in Section VII C, some of the widely used
collider variables like hT , meff and /pT belong to the F◦

class of mass bound variables, and as such can generally
only place a lower bound on the parent mass if nature
produces heavy invisibles. In order to really measure
the mass scale of the new particles when massive invisi-
ble particles are pervasive, one must work with variables
which retain the dependence on the missing mass param-
eters and therefore belong to either the MN or the MF⊤

class of mass-bound variables. Other than the full 1+3
dim. invariant mass, other common examples of such
variables include

√
ŝmin [50] (discussed below in Sec. XC)

the transverse mass mT in the form [53] that accounts
for the mass of all daughters (shown in Sec. XD) and the
‘stransverse mass’ mT2 [7] (Sec. XH).

Conditions for saturation have been most thoroughly
explored for the N = 1 and N = 2 cases. One might
reasonably ask whether the bounds can still be saturated
for larger N . Saturation is indeed possible for N > 2
topologies with similar kinematical configurations as for
the N = 1 or N = 2 cases. With increasing numbers
of invisible final state particles NI (which may or may
not be a result of increasing N) the density of states
near the boundary is reduced. Saturation is still possible
for any NI , but as the multiplicity of invisible particles
increases, the number of events close to the endpoints
becomes small, and experimentally determining the true
end-point becomes increasingly challenging.

Before concluding this subsection, we note that theMF

23 The conditions for saturation for an N = 1 example containing
on-shell intermediate particles were explored in [52].

variables are still useful even when the true values of the
mass /M (or speed /V) parameters are not known. The
most conservative procedure in these situations of uncer-
tainty is to minimize MF over the complete physically
relevant range of any unknown parameter. This leads to
/Ma → 0 for MN , MF⊤

, and to /Va → 1 for MF◦
. The

resulting, conservative, MF variables still provide lower
bounds on the mass of the heaviest parent – though those
bounds will generally not be saturated.
A more sophisticated treatment is also possible. For

example if the “true” value of the summed-mass param-

eter set /M
true

for the calculation of MN ( /M) or MF⊤
( /M)

were not known — then one could still view the set of
endpoint measurements for all possible values of /Ma as
one constraint among theN+1 unknownsMmax

P and /Ma,
(a = 1, 2, . . . , N). Not only is this valuable information
on its own, the derived functional relationship Mmax

P ( /M)
is, in addition, often sufficient for determining the indi-
vidual mass parameters /Ma. The function Mmax

P ( /M),
when viewed as an N -dimensional hyper-surface in the
(N +1)-dimensional space spanned by Mmax

P and /M, ex-
hibits certain ridge or crease features, which commonly
originate from the point marking the set of true values

of /M
true

[24, 26]. (The one-dimensional version of this
phenomenon was originally discussed in [10–13, 21] and
is known as the mT2 “kink”. Also see [54] for algebraic
singularity in relation to the kink.)

C. Relations among the mass-bound variables

Some of the variables in Table III are related to each
other, either in general24

MN⊤( /M) = MN( /M), (170)

MN◦⊥ = M◦N⊥ = MN⊤⊥◦
= MN◦⊥⊤

= M⊤N⊥◦
, (171)

M◦⊥N = M◦⊥⊤N = M⊤⊥◦N , (172)

or under some special circumstances, e.g. massless par-
ticles:

M⊤N(
{

/Ma = 0
}

, {Mi = 0}) = M◦N , (173)

M⊤N⊥(
{

/Ma = 0
}

, {Mi = 0}) = M◦N⊥⊤
. (174)

Given such exact identities like (170), the reader may
wonder why we even bothered to introduce separately
variables like MN⊤ and MN . In our view, such redun-
dancy is a virtue, since it offers deeper intuitive under-
standing of these kinematic variables, and allows one

24 Previously in (107) we already encountered the N = 1 version of
eq. (170). The general proof for arbitrary N is provided in the
appendix in equation (B49).
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to think about the same fundamental quantity in dif-
ferent contexts, e.g. in (1+3)-dimensions or in (1+2)-
dimensions.
We additionally find (see proof terminating in (B53)

in Appendix B 3) that the mass-bounds from Table III
obey a hierarchy:

MN = MN⊤ ≥ M⊤N ≥ M◦N ≥ MN◦. (175)

Similarly, the doubly-projected mass-bounds from Ta-
ble IV obey the hierarchy

MN⊤⊥ ≥ M⊤N⊥ ≥ M⊤⊥N ≥ M◦⊥N ≥ M◦N⊥ = MN◦⊥.
(176)

From these hierarchies, it becomes apparent that the ⊤-
projected, late-partitioned variables bear a cost associ-
ated with the insensitivity to the longitudinal momenta.
By dropping this information we necessarily weaken the
bound relative to the early-partitioned versions. Inter-
estingly enough, the order of projection and partition
has the opposite effect with the ◦-projection, since both
longitudinal and transverse information is contained in
the masses of the agglomerates, and hence by throwing
away the masses at a later stage, we in fact throw away
maximal information and are forced to produce the worst
possible bound!

X. CONNECTIONS TO OTHER VARIABLES IN
THE LITERATURE

The existing literature is abundant with a number
of (transverse) invariant mass variables which were sug-
gested (at various times and for a variety of reasons) for
the study of missing momentum event topologies (see
[1] for a recent review). At the same time, the mass-
bound variables which we defined earlier in Table III,
were meant to be very general, since they target the
rather generic event topology of Fig. 5, and are intended
to have as few hidden assumptions as possible. It follows
that we should be able to correlate the most useful mass-
scale variables in the literature to one of our mass-bound
variables from Table III.25 The purpose of this subsection
is to demonstrate that this is indeed the case.

A. Missing transverse momentum /pT

The defining feature of any “missing particle” event
is the presence of missing momentum (more precisely,
missing transverse momentum) /pT . This is due to the
production and escape of a certain number of “invisible”

25 A corollary from this statement is that invariant mass variables
which make similar sorts of assumptions but do not fit into the
classification of Table III, are often both poorly motivated and
sub-optimal.

particles, which are either sterile, or very weakly inter-
acting, so that they are not seen in the detector. The

/pT distribution26 is perhaps the most widely studied dis-
tribution in relation to new physics searches, especially
in models with WIMP dark matter candidates like su-
persymmetry, UED and so on. Eq. (142) allows us to
correlate the /pT variable to our M1◦ variable as

M1◦
uT→0−→ 2/pT . (177)

We see that as M1◦ is defined more and more inclu-
sively, it eventually becomes equal to twice the missing
transverse momentum. Thus in the case of a singly pro-
duced parent, eq. (177) allows us to interpret the usual

/pT variable (more precisely, the variable 2/pT ) as a suit-

ably constructed (in the M1◦ sense) transverse invariant
mass of the parent (see also the discussion at the end of
Sec. VIIC 7). In accordance with (166), in the uT → 0
limit the upper kinematic endpoint of the 2/pT distribu-
tion gives a lower bound on the parent mass in events
interpreted as single-parent (N = 1) production.

B. Effective mass meff

The “effective mass” variable defined in (84) can be
also directly related to one of our variables, namely the
late-partitioned, “◦”-projected variable M◦1 discussed in
Sec. VII C 6. The previously derived eq. (135c) reads

M2
◦1 = m2

eff − u2
T . (178)

Therefore, we obtain the correspondence

M◦1
uT→0−→ meff , (179)

allowing us to interpret meff as a suitably constructed
(in the M◦1 sense) transverse invariant mass of a singly
produced, semi-invisibly decaying parent (see also the
discussion at the end of Sec. VIIC 6).

The comparison between eq. (177) and eq. (179) rather
nicely illustrates the main point of Sec. V: that when it
comes to transverse projections and forming composite
particles, performing these operations in different order
yields different results. In the case at hand, when forming
composite particles before the “◦” transverse projection,
one obtains 2/pT , while by forming composite particles
after the “◦” transverse projection, one obtains meff .

26 The missing transverse momentum is often labelled called “miss-
ing transverse energy” and labelled /ET or Emiss

T in experimental
papers. As previously discussed we prefer to recognize the im-
porant distinction between energy and momentum, so use the
symbol /pT .
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C. Florida
√
ŝmin and

√
ŝ
(sub)

min variables

As already seen in eq. (100), in the special case of
N = 1, the unprojected mass-bound variable MN = M1

is nothing but the subsystem
√
ŝ
(sub)

min variable from [46]:

M1( /M1) ≡
√
ŝ
(sub)

min ( /M1)

=

[

(

√

M2
1 + p2

1T +

√

/M
2
1 + /p

2
T

)2

− u2
T

]1/2

.

(180)

Restricting to events with vanishing upstream momen-
tum (uT = 0), one gets the inclusive

√
ŝmin variable from

[50]:

lim
uT→0

M1( /M1) ≡
√
ŝmin( /M1)

=
√

M2
1 + p2

1T +

√

/M
2
1 + /p

2
T
. (181)

As advocated in Refs. [46, 50], practical applications of
M1( /M1) need not be limited to events in which the ac-
tual number of parents was N = 1. The work of [46, 50]
showed that in events with N = 2, the peak in the
M1( /M1) distribution is correlated with the parent mass
threshold

∑

a=1,2 MPa
, even if the two parent particles

P1 and P2 are different.
Note that the mathematical identity (170) also allows

us to write

√
ŝ
(sub)

min ( /M1) = M1⊤( /M1), (182)

√
ŝmin( /M1) = lim

uT→0
M1⊤( /M1), (183)

relating the
√
ŝ
(sub)

min and
√
ŝmin variables to the transverse

invariant mass quantity M1⊤, which is simply the total
transverse invariant mass in the event (after accounting
for the potential presence of any transverse upstream mo-
mentum uT ).

D. Transverse mass

Perhaps the most popular variable which specifically
targets a semi-invisibly decaying resonance, is the trans-
verse mass mTeν , which, as suggested by our notation,
was first applied in searches for a leptonically decaying
W -boson (see, e.g. [6]):

m2
Teν ≡ (eeT + eνT )

2 − (~peT + ~qνT )
2 (184a)

≈ 2(|~peT ||~qνT | − ~peT · ~qνT ), (184b)

where ~peT (~qeT ) is the transverse momentum of the lep-
ton (neutrino), and in the second line one makes the ap-
proximation that the lepton and the neutrino are ap-
proximately massless. Assuming that the W boson is

produced singly, with zero recoil (i.e. uT = 0 in our lan-
guage), the neutrino transverse momentum ~qeT can be
identified with the measured missing transverse momen-
tum /~pT , and (184b) becomes

m2
Teν ≈ 2peT /pT (1− cosφeν) , (185)

where φeν is the measured opening angle between the
transverse vectors ~peT and /~pT .
In this simple example of a W -decay, the two daughter

particles are massless, but the same idea can be easily
generalized to the case of massive daughters as [53]

m2
Teν(Me,Mν) = M2

e+M2
ν+2(eeT eνT−~peT ·~qνT ), (186)

where Me and Mν are the electron and neutrino masses,
respectively, and

eeT ≡
√

M2
e + ~p 2

eT , (187a)

eνT ≡
√

M2
ν + ~q 2

νT . (187b)

Now let us obtain these results with our formalism. In
general, we have a singly produced (N = 1) parent reso-
nance, which decays to a single (NV = 1) visible daughter
particle and a single (NI = 1) invisible daughter parti-
cle. Since there is only one particle in each daughter set,
V1 = {e} and I1 = {ν}, there is no need to form com-
posite particles, so the order of the operations becomes
unimportant. However, if the daughter particles are mas-
sive, the two different types of transverse projections give
two different versions of the transverse mass variable:

M2
1⊤(Mν) = M2

⊤1(Mν)

=

(

√

M2
e + ~p 2

eT +
√

M2
ν + ~q 2

νT

)2

− ~u 2
T ,

(188)

M2
1◦ = M2

◦1 = (peT + qνT )
2 − ~u 2

T . (189)

Here eq. (188) follows simply from the general formulas
(106) or (111) with the identifications M1 = M1 = Me,
~p1T = ~p1T = ~peT , /M1 = Mν and /~pT = ~qνT . Similarly,
eq. (189) is obtained from either (135a) or (142a).
Now it is trivial to eliminate ~uT using the transverse

momentum relation (51) ~uT = −~peT − ~qνT , and show
that eq. (188) is equivalent to (186):

M1⊤(Mν) = M⊤1(Mν) = mTeν(Me,Mν) (190)

while eq. (189) is equivalent to (184b):

M1◦ = M◦1 = mTeν(Me = 0,Mν = 0). (191)

E. Cluster transverse mass variables

Next we consider a couple of more complicated single
resonance processes. The first example is h → ZZ →
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e+e−νν̄ where each Z-boson is assumed to be on-shell,
one decaying invisibly, the other decaying visibly to a
pair of leptons. For this particular scenario, Ref. [55]
suggested the cluster transverse mass variable

M2
T,ZZ = (ET,Z1

+ ET,Z2
)2 − (~pT,Z1

+ ~pT,Z2
)2 (192a)

=
(√

M2
Z + p2T,e+e− +

√

M2
Z + /p

2
T

)2

−
(

~pT,e+e− + /~pT
)2

.

(192b)

Note that the 1+3-dimenstional invariant mass of the
visible and that of the invisible systems have each been
constrained to be equal to M2

Z . These two constraints
reflect the on-shell hypothesis we have chosen to assume
for each of the two Z bosons.27

Once again, we can obtain this variable from our M1⊤

or M⊤1. In analogy to the case of mTeν , we have a single
parent resonance, the Higgs boson h, decaying to a single
massive visible daughter, the first Z boson and a single
massive invisible particle, the other Z-boson. This cor-
responds to N = 1, NV = 1, NI = 1, V1 = {Z → e+e−}
and I1 = {Z → νν̄}. Correspondingly, we identify
M1 = M1 = MZ , ~p1T = ~p1T = ~pT,e+e− , /M1 = MZ

and /~pT = ~qT,νν̄ . Then (106) and (111) simply give

M2
1⊤(MZ) = M2

⊤1(MZ)

=
(√

M2
Z + ~p 2

T,e+e− +
√

M2
Z + /pT

)2

− ~u 2
T ,

(193)

which is equivalent to (192b) in light of the momentum
conservation relation ~uT = −~pT,e+e− −/~pT . Thus we have
proved

M1⊤(MZ) = M⊤1(MZ) = MT,ZZ . (194)

Another interesting example is provided by the process
h → W+W− → e+e−νν̄, for which Ref. [56] proposed the
cluster transverse mass variable

M2
C,WW ≡

(√

M2
e+e− + ~p 2

T,e+e− + /pT

)2

−
(

~pT,e+e− + /~pT
)2

.

(195)
Here the two leptons are clustered together (even though
they originate from different W -bosons, they have a com-
mon parent in h) and their total transverse momentum is
~pT,e+e− . The definition (195) is similar to (192b), the dif-
ference now being that the two leptons are not correlated,
and their invariant mass does not have to be consistent
with MZ . In addition, the invisible mass parameter /M1

27 We note that if one wishes to relax the assumption of an on-
shell Z leading to the visible e+e− system one may do so by
treating the electron and positron vectors as separate inputs to
the visible system V. Similarly one may relax the assumption
that the invisible system is the result of the decay of an on-shell
Z by treating the neutrinos as independent invisible inputs.

is now set to zero (as opposed to MZ), because the in-
visible particles (the two neutrinos) are massless.
The cluster variable (195) can be readily obtained from

MN⊤ with the following interpretation: N = 1, NV = 2,
NI = 2, V1 = {e+, e−} and I1 = {ν, ν̄}. Correspond-
ingly, we identify M1 = Me+e− , ~p1T = ~pT,e+e− and
/M1 = 2Mν = 0. Then the general formula (106) reduces
to

M2
1⊤(0) =

(√

M2
e+e− + ~p 2

T,e+e− + /pT

)2

− ~u 2
T , (196)

which is the same as (195), so that

M1⊤(0) = MC,WW . (197)

Notice that in this example we are clustering two visible
particles, and the order of operations becomes important.
Therefore, here M1⊤ and M⊤1 in general lead to distinct
variables, unlike the case of (190) and (194).

F. The mtrue
T transverse mass variable

Concerning the same h → W+W− → e+e−νν̄ exam-
ple, Ref. [57] advertized the variable (assuming massless
neutrinos)

(

mtrue
T

)2 ≡ M2
e+e− + 2

(

/pT

√

M2
e+e− + ~p 2

T,e+e−

−/~pT · ~pT,e+e−

)

,
(198)

which can be rewritten as
(

mtrue
T

)2
= M2

e+e− + ~p 2
T,e+e− + /~p

2
T − ~p 2

T,e+e− − /~p
2
T

+2/pT

√

M2
e+e− + ~p 2

T,e+e− − 2/~pT · ~pT,e+e−

=
(√

M2
e+e− + ~p 2

T,e+e− + /pT

)2

−
(

~pT,e+e− + /~pT
)2

≡ M2
C,WW . (199)

From (197) and (199) it now follows that

M1⊤(0) = mtrue
T . (200)

This connection in fact was the primary motivation for
introducing the mtrue

T variable in the first place [57].

G. The mreco
TZ′ transverse mass variable

Our final single resonance example will be taken from
a new physics scenario, namely a generic model with a
new Z ′ gauge boson which decays to a SM Higgs boson
h and a SM Z-boson as Z ′ → hZ → bb̄νν̄. For this
particular topology, Ref. [58] considered the transverse
mass variable

mreco
TZ′ ≡

√

M2
h + p2Th +

√

M2
Z + /p

2
T
, (201)
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where Mh (pTh) is the measured invariant mass (trans-
verse momentum) of the bb̄ jet pair resulting from the
decay h → bb̄.
In our language, the event topology Z ′ → hZ → bb̄νν̄

corresponds to a single parent, the Z ′ boson, thus N =
1. There is a single (NV = 1) visible daughter particle,
which is the reconstructed Higgs boson: V1 =

{

h → bb̄
}

.
There is also a single (NI = 1) invisible daughter particle,
which is the invisibly decaying Z-boson: I1 = {Z → νν̄}.
Thus we identify M1 = M1 = Mh, ~p1T = ~p1T = ~pTh and
/M1 = MZ .
Again, we have chosen to make assumptions about the

1+3-dimensional invariant masses of the visible and the
invisible systems, requiring the former to be equal to Mh,
and the latter to be equal to MZ , reflecting our assump-
tions about the decay topology. As before it would be
possible to independently relax either of both those as-
sumptions by treating the bb̄ and νν̄ as independent in-
puts to the visible and invisible systems respectively.
If we retain the mass-shell constraint for both the h

boson and the Z boson then (106) and (111) give

M2
1⊤(MZ) = M2

⊤1(MZ)

=

(

√

M2
h + ~p 2

Th +
√

M2
Z + /pT

)2

− ~u 2
T .

(202)

Comparing to (201), we see that

lim
uT→0

M1⊤(MZ) = lim
uT→0

M⊤1(MZ) = mreco
TZ′ . (203)

Since mreco
TZ′ was properly defined as a transverse mass

variable, it is not surprising that it can be obtained as
a special case of the mass-bounding variables shown in
Table III. The importance of eq. (202) is that it shows the
proper way to generalize mreco

TZ′ to the case where the Z ′

is produced inclusively, with some non-vanishing UVM
uT in the event.
This concludes our discussion of singly produced reso-

nances. We are hopeful that after all these examples, the
reader is prepared to handle any assumed event topol-
ogy, and will be able to construct the proper transverse
invariant mass variable for the case at hand.

H. Cambridge mT2 variable

The variables considered in our previous examples re-
ferred either to the event as a whole (as in Secs. XA–
XC) or to the production of a single resonance (as in
Secs. XD–XG). We now move on to discussing variables
intended to handle the production of more than one par-
ent resonance (N > 1). Such cases are very common
in new physics scenarios, especially if the new model
contains a dark matter candidate, whose lifetime is pro-
tected by some discrete symmetry (typically a Z2). In
such models (e.g. supersymmetry, extra dimensions, lit-
tle Higgs theories etc.) the main production mechanisms

usually involve the pair-production of new particles, thus
the case of N = 2 has received the most attention so far
in the literature, although N = 3, 4, . . . cannot be ruled
out, and in principle deserve attention as well.

A popular variable of this type is the Cambridge mT2

variable defined as [7]

mT2 ≡ min∑
~qiT=/~p

T

[max [M1⊤,M2⊤]] , (204)

where M1⊤ and M2⊤ are the transverse masses of the
two parent particles, and the minimization is done over
all possible partitions of the transverse momenta of the
invisible particles, consistent with the measured /pT .

We note that if there is only one visible particle belong-
ing to each parent, we can immediately identify the Cam-
bridge variable mT2 with both M2⊤ and M⊤2 (and even
with M2 using (108)) since partitioning and projection
commute for single particles. If, however, we intend to
applymT2 to events in which one or either parent has two
or more physical daughters (e.g. when doing top quark
mass measurements in the di-leptonic tt̄ → bb̄l+l−νν̄
events) then M2⊤ will become inequivalent to M⊤2 and
we should decide which of these is the right thing to use.
The answer to this question is subtle. The original mT2

paper [7] does not explicitly state how parent momenta
should be constructed in the event that they have come
from compound objects, so it is left up to users to decide
which inputs to supply. It was certainly in the minds
of the authors of [7] that users ought always to supply
the maximal amount of trustworthy information to any
analysis of any kind. In the context of mT2 this maxim
would imply projecting only after combining the primary
(1+3) momenta of any constituents of parents, provided
that those constituents could be “trusted”.28 Only when
defined in this manner (i.e. as M2⊤) can the maximum
amount of information be squeezed from the variable in
“clean” events. However, there can be benefits from us-
ing M⊤2 (see for example Ref [9]) in high-multiplicity or
inclusive situations in which the indiviual momenta mak-
ing up each parent have dubiuos provenance or poorly
measured longitudinal momenta. In such cases, one can
benefit from using M⊤2, even though its end point is less
sharp for the signal, simply because it is less sensitive to
longitudinal momenta and momenta at high rapidities.

One might ask which of the two mT2 choices — M2⊤

or M⊤2 — is “better”. Unfortunately, this question does
not allow a “one size fits all” answer. Each of the twomT2

implementations has its unique advantages and disadvan-
tages. The longitudinal correlations among the visible
particles which are preserved by M2⊤ result in steeper,
better defined endpoint structures — see Figs. 11(a) and

28 This might include the case where an experiment that records di-
leptonic top-pairs with good (signed) b-tagging could allow the
l+ to be associated unambiguously with the b and the l− to be
associated with the b̄.
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12(a) below. On the other hand, M⊤2 dampens the ef-
fects of any longitudinal momenta, which would be ben-
eficial in circumstances where forward jet activity due to
ISR may be a problem.
We hope that the current paper will serve as a reminder

that studies using mT2 in which either parent is built
from two or more reconstructed momenta should think
carefully about the advantages and disadvantages of both
approaches before choosing the option that is best for
them. Both versions of mT2, namely M2⊤ and M⊤2,
may prove to be useful, and it can be important to make
the distinction between them.
In conclusion of this subsection, we highlight the anal-

ogy between mT2 and
√
ŝmin, two variables which are

more closely related than one might think. We have
shown that the (1+3) dimensional version of mT2, to-
gether with the mathematical identity (170) implies

m
(1+3)
T2 ( /M) ≡ M2⊤( /M) = M2( /M). (205)

The second equality here emphasizes that, in spite of the
transverse index “T”, the mT2 variable is a bona fide
1+3 dimensional quantity. In other words, the appar-
ent transverse projection in the definition (204) does not
lead to any loss of useful information.29 Of course, the
same cannot be said about the (1+2)-dimensional version

m
(1+2)
T2 ≡ M⊤2.
Now compare (205) to the analogous equation follow-

ing from (180) and (182)

√
ŝ
(sub)

min ( /M1) = M1⊤( /M1) = M1( /M1). (206)

We are reminded that
√
ŝ
(sub)

min andm
(1+3)
T2 have essentially

the same physical meaning: they both give a lower bound
on a mass in (1+3) dimensions as a function of the
corresponding invisible mass parameters. In the case of√
ŝ
(sub)

min that mass is the center of mass energy of the
collision since it views the whole collision as a “single

parent”, while m
(1+3)
T2 hypothesizes that the collision was

a 2 → 2 process, and therefore bounds the mass of the
heavier of the two outgoing particles.

I. The doubly projected variables mT2⊥ and mT2‖

The doubly projected variables mT2⊥ and mT2‖ intro-
duced in [25] are nothing but the one-dimensional ana-
logues of the Cambridge variable mT2 (204), where one
performs an additional projection on the directions T⊥

29 This fact is found to be suprising to people who view mT2 and
similar variables as acting on “projected” quantities. On the
other hand it is no surprise to those who have always viewed mT2

as a variable insensitive to relative rapidity differences beteen the
(total) invisible and (total) visible decay products of each parent
— the line taken in [9].

and T‖, correspondingly. As was the case for mT2 dis-
cussed above, the transverse projection should be inter-
preted in the T = ⊤ sense, and there are three possible
versions of each variable, depending on the order of op-
erations:

mT2⊥( /M) =















M2⊤⊥( /M) in 1 + 3 dims;

M⊤2⊥( /M) in 1 + 2 dims;

M⊤⊥2( /M) in 1 + 1 dims,

(207)

and similarly for mT2‖( /M). The example considered
in [25] was inclusive chargino production, where each
chargino parent decays to a visible lepton and an invisi-
bly decaying sneutrino. In this case, each visible daugh-
ter partition Va has a single massless visible particle (a
lepton) and the distinction between the early partitioned

version m
(1+3)
T2⊥ ≡ M2⊤⊥, the in-between partitioned ver-

sion m
(1+2)
T2⊥ ≡ M⊤2⊥ and the late partitioned version

m
(1+1)
T2⊥ ≡ M⊤⊥2 does not become manifest. However, in

more complicated scenarios with multiple visible daugh-
ter particles, one would in principle obtain different re-

sults from m
(1+3)
T2⊥ , m

(1+2)
T2⊥ and m

(1+1)
T2⊥ , which is why one

is advised to carefully define which particular version of
mT2⊥ (and similarly for mT2‖) is being used.

J. Additionally constrained variables

So far we have been discussing very general variables,
which target the most general event topology of Fig. 5.
Notice that we have made very few assumptions on how
the decays (52) actually take place, and where such as-
sumptions have been made (such as in Section XE), it is
always possible to relax those constraints if desired. Also
we did not use any additional information which may be
available from the preliminary studies of other variables
related to our events, for example the invariant mass dis-
tributions of the visible daughter collections Va. Armed
with such additional information, one may in principle
further constrain the minimization over the unknown mo-
menta, and obtain new, more specialized versions of our
variables. However, the downside is that such additional
information typically comes at a cost: the need to make
additional assumptions about the event topology.
As an example, consider the Oxford M2C variable [14,

17], which is a variant of mT2, subject to the following
additional assumptions:

1. The two parents P1 and P2 are identical, with a
priori unknown mass MP1

= MP2
, therefore the

minimization over invisible momenta is performed
subject to the additional constraint

(P1 +Q1)
2 = (P2 +Q2)

2 (208)

with Pa and Qa given by (53) and (57) correspond-
ingly.
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2. There is only one and only one invisible particle in
each invisible daughter set, i.e. that

|I1| = |I2| = 1.

3. There is more than one visible particle in each vis-
ible daughter set, i.e. that

|V1| = |V2| ≥ 2.

4. There are no intermediate on-shell resonances, so
that the decay (52) is effectively (|Va|+ |Ia|)-body
for each a = 1, 2.

Given a large sample of events S that satisfy these con-
ditions one can study the distribution of the invariant
mass MVa

of the visible particles in each set Va. If
presented with some sufficiently large sample of events
S = {ǫ | ǫ ∈ A} one can measure the upper bound for the
MVa

distribution which will be found at the mass differ-
ence between the parent and the single invisible daughter:

∆max ≡ max
events

[MVa
] = MPa

− /Ma (209)

One can then reuse this measurement for any event ǫ ∈ S
by asserting the constraint

∆max =
√

(Pa +Qa)2 −
√

Q2
a, (210)

during the process of minimization over Qa.
The advantage of such additionally constrained vari-

ables is that they are clearly better adapted for the
study of the corresponding class of more restricted event
topologies. And additional constraints can bring qualita-
tively new features, including otherwise unobtained upper
bounds on parental masses [17, 22]. Their disadvantage
is that they are better adapted (perhaps only suitable)
for the study of those restricted topologies, and it is not
clear how to interpret them once some of the assumptions
hardwired in their definitions cease to be valid.

K. Other variables

In the literature one may sometimes encounter vari-
ables which have the appearance of a (transverse) invari-
ant mass, but cannot be related to any of our variables in
Table III. As an illustrative example, consider the trans-
verse mass variable

M2
TWW

≡
(√

M2
e+e− + ~p2T,e+e−

+
√

M2
e+e− + /p2T

)2

−
(

~pT,e+e− + /~pT
)2

,

(211)

proposed in Ref. [59] in relation to the h → W+W− →
e+e−νν̄ process discussed in Sec. XE. Comparing to the
definition (195) of MC,WW and to the identity (196), we

see that MTWW
can be formally obtained fromMC,WW =

M1⊤(0) with the rather ad hoc replacement

/M1 = 0 → /M1 = Me+e− . (212)

However, there is no good physics justification for this
conjecture and as a result, MTWW

cannot be related to
any of the variables in Table III. Not surprisingly, subse-
quent studies [57] found that MC,WW = M1⊤(0) outper-
forms MTWW

.

XI. SIMULATION: PHYSICS EXAMPLES

In this section we provide an illustration of our pre-
vious discussion with two specific physics examples from
the Standard Model:

• A case with N = 1. Here we consider the inclusive
(single) production of a SM Higgs boson (mostly
from gluon fusion), followed by the decay of the
Higgs to a leptonic W -pair:

pp → h+X

→ W+W− +X

→ ℓ+ℓ− + /pT +X,

(213)

where X plays the role of UVM and stands for jets
from initial state radiation, unclustered hadronic
energy, etc. In terms of our previous notation, this
case involves one parent (N = 1), two visible parti-
cles (NV = 2) and two invisible particles (NI = 2).

• A case with N = 2. Here we consider dilep-
ton events from inclusive tt̄ pair production, where
both W ’s decay leptonically:

pp → tt̄+X

→ bb̄W+W− +X

→ bb̄ℓ+ℓ− + /pT +X.

(214)

This case corresponds to two parents (N = 2), four
visible particles (NV = 4) and two invisible parti-
cles (NI = 2).

In both of those two cases, the events very closely resem-
ble the typical SUSY-like events, in which there are two
missing dark matter particles. Parton-level event sim-
ulation is performed with PYTHIA [60] at an LHC of
7 TeV, including the effects from the underlying event
(using PYTHIA’s default model for it).

A. An N = 1 example: a Higgs resonance

We start with the Higgs production process (213) for
a Higgs boson mass Mh = 200 GeV. In the language of
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Fig. 5, the Higgs resonance is treated as the only heavy
parent particle (N = 1) and the event is partitioned as

V1 =
{

ℓ+, ℓ−
}

,

I1 = {νℓ, ν̄ℓ} .

This partitioning is pictorially represented in Fig. 8. We
now concentrate on the five unprojected or singly pro-
jected variables which are of interest to us, namely MF

with F ∈ {1, 1⊤,⊤1, 1◦, ◦1}. Their distributions are
shown in Fig. 11(a), and for proper comparison, we use
the correct value of the missing mass parameter /M1 = 0
where necessary. In that case, according to the gen-
eral property (167), all MF variables are bounded from
above by the parent mass, in this case Mh. For refer-
ence, Fig. 11(a) also shows the Breit-Wigner distribu-
tion of the Higgs resonance (yellow-shaded histogram).
Fig. 11(a) confirms that the distributions obey the bound
of eq. (167). Furthermore, it also shows that each of the
five distributions appears to be saturated – i.e. that each
has a kinematic endpoint at the value of the Higgs boson
mass Mh (only a very tiny fraction of events is observed
to exceed the bound, but this is due to the finite width
of the Higgs parent).

We can confirm the endpoint is saturated for each of
the variables MF ∈ {1, 1⊤,⊤1, 1◦, ◦1} by explicitly con-
structing an extremal event. We do so under the approx-
imation that Mℓ = Mν = 0. Following the arguments
of Sec. IXB we should construct an extremal event ǫ
from the subset E sampled by nature of the total set
of momentum configurations A that satisfy our general
N = 1, MP1

= MH topology. In the case of the decay
of interest (213) nature obliges us to impose an addi-
tional on-mass-shell condition for the intermediate W±

bosons E =
{

a ∈ A | (Pi +Qi)
2 = M2

W (i ∈ {1, 2})
}

.30

An example of an extremal event ǫ ∈ E that satisfies the
constraints and that also saturates the two inequalities
of (168) is (see also Fig. 10)

Pℓ+ = (E1, E1, 0, 0)

Pℓ− = (E2, E2, 0, 0)

Qν = (E2,−E2, 0, 0)

Qν̄ = (E1,−E1, 0, 0),

where E1,2 = Mh

4 ± 1
2

√

M2
h/4−M2

W .

30 We assume the W to have narrow widths. In fact since we can
construct an extremal event while imposing a strict on-shell re-
quirement for the intermediate W± then we can certainly also
do so when that requirement is relaxed by allowing the W to
sample from its natural width distribution.

h
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W
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FIG. 10: Illustration of an example extremal configuration for
the N = 1 variables when applied to the h example.

We note that in the cases of M1◦ and M◦1, the kine-
matic endpoint coincides with the mass of the parent only
because the final state objects in this example happened
to be massless. In more general scenarios with massive
particles the endpoints of M1◦ and M◦1 will provide only
an unsaturated lower bound on the parent mass, in line
with (33).

Fig. 11(a) also allows us to compare the different MF

distributions to each other. As expected from the general
property (170), the distributions of M1 and M1⊤ (given
in blue) are identical. As discussed in Section XC and
shown in eqs. (180) and (182), they also coincide with the

distribution of the
√
ŝ
(sub)

min variable from [46]. Similarly,
in line with eq. (173), the distributions of M⊤1( /M1 = 0)
and M◦1 (shown in red) are practically indistinguishable,
since the lepton masses are so tiny. Notice that this is
only true when M⊤1 is calculated with /M1 = 0, as was
done here, otherwise the distributions of M⊤1 and M◦1

would generally be different. Finally, the distribution of
M1◦ (shown in green) is distinct, as this variable is not
related to any of the others.

Upon inspection of the shapes of different distributions
in Fig. 11(a), one observes that M1 and M1⊤ appear to
peak closest to the parent mass Mh, and consequently,
have the best defined endpoint structures. On the other
hand, M1◦ peaks much farther from Mh, and has a rather
low event population in the vicinity of its endpoint. Fi-
nally, the case of M⊤1(0) ≃ M◦1 represents an interme-
diate situation — the peak is found in between the peaks
of M1 = M1⊤ and M1◦; and the endpoint structure is
more pronounced than the case of M1◦, but not as sharp
as the case of M1 = M1⊤. This is an inevitable conse-
quence of the hierarchy (B53) among the mass bounds
which is present in every event.

Next, in Fig. 11(b) we compare the distributions of the
standard variables meff (red solid line) and 2/pT (green

solid line) to their mass-bound counterparts M◦1 (red
dotted line) and M1◦ (green dotted line). Recall from
the discussion in Sec. XB (and in particular eq. (179))
that M◦1 is the analogue of meff , and in the limit of no
upstream momentum the two variables become identical.
This is confirmed in Fig. 11(b), which shows rather simi-
lar distributions for M◦1 and meff . However, the analogy
is not perfect and the meff distribution is slightly shifted
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FIG. 11: (a) Unit-normalized distribution of the five N = 1 mass-bound variables MF , F ∈ {1, 1⊤,⊤1, 1◦, ◦1} for the inclusive
Higgs production process h → W+W− → ℓ+ℓ− + /pT at a 7 TeV LHC, with mh = 200 GeV and /M = 0. The dotted

(yellow-shaded) histogram gives the true
√
ŝ distribution, which in this case is given by the Breit-Wigner h resonance. (b) Unit

normalized distributions of the variables meff and 2/pT = 2/pT (solid lines), contrasted with M◦1 and M1◦ (dotted lines).

to the right. The only31 reason for this effect is the fact
that we allow for initial state radiation in our sample,
so that the Higgs parent is typically produced with some
recoil and uT 6= 0. This is why the the meff distribution
does not terminate at Mh, but shows a long tail extend-
ing to meff > Mh. In contrast, the M◦1 distribution has
an exact endpoint at Mh.
A similar analysis holds for the other pair of dis-

tributions (color coded in green) which are shown in
Fig. 11(b). As explained in Sec. XA and seen from
eq. (177), the variable M1◦ is the analogue of 2/pT , since
the two become identical in the limit of no upstream mo-
mentum (uT → 0). However, in the presence of upstream
momentum, the proper behavior (an endpoint located at
the parent mass) is retained only by theM1◦ distribution,
while the 2/pT distribution picks up a long tail extending
beyond the true value of Mh.
This concludes our discussion of the N = 1 unpro-

jected and singly projected variables in relation to Higgs
production (213). We note that one could also apply
N = 2 variables to this example, this time considering
the two W bosons as the two heavy parent particles, and
partitioning as

V1 =
{

ℓ+
}

, I1 = {νℓ} ,

V2 =
{

ℓ−
}

, I2 = {ν̄ℓ} .

The upper kinematic endpoints of the resulting distribu-
tions will be found at the corresponding parent mass, in

31 We checked that when one restricts the plot only to events with
uT = 0, the distributions of meff and M◦1 become identical, as
required by eq. (179).

this case the mass MW of the W -bosons.

B. An N = 2 example: top quark pair production

As our next example, we consider dilepton events from
the top quark pair production process (214). We assume
that the two b-jets from the top quark decays have been
tagged, which distinguishes them from QCD jets from
initial state radiation. Correspondingly, the tagged b-jets
will be included among the set of visible particles, while
any remaining QCD jets will contribute to the UVM cat-
egory.
We first reconsider the N = 1 variables already studied

in Sec. XIA, and show that they can be useful even when
there are multiple parents in the event. For the purpose
of constructing N = 1 variables, the event is partitioned
simply as

V1 =
{

b, b̄, ℓ+, ℓ−
}

,

I1 = {νℓ, ν̄ℓ} .

Fig. 12(a) displays the distributions of the resulting
N = 1 variables. Those distributions should be con-
trasted with the true

√
ŝ distribution of the tt̄ pair, which

is shown in the figure with the yellow-shaded histogram.
Just like in Fig. 11(a), we find only three distinct dis-
tributions, since M1 = M1⊤ from (170) and M⊤1( /M1 =
0) ≃ M◦1 from (173). The hierarchical ordering of the
three distributions is the same as in Fig. 11(a), the dis-
tribution of M1 = M1⊤ being the hardest, and the distri-
bution of M1◦ being the softest. Since all of our N = 1
variables are defined through minimization, each variable
provides a lower bound on the true center-of-mass energy
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FIG. 12: The same as Fig. 11, but for the tt̄ example. The yellow shaded distribution now gives the true invariant mass of the
tt̄ pair.

√
ŝ in the event. As one might have expected, it is the M1

(or equivalently, the M1⊤) variable which offers the best
(in the sense of being most stringent and meaningful)

bound. Since M1 and M1⊤ are identical to the
√
ŝ
(sub)

min

variable, their distribution exhibits the interesting prop-
erty first noted in [50] in relation to

√
ŝmin: that the peak

of the distribution is located very near the mass threshold
for producing the two heavy parents, in this case the two
top quarks. Indeed, notice how the peak in the (blue)

M1 = M1⊤ =
√
ŝ
(sub)

min histogram coincides with the onset

of the (yellow-shaded) true
√
ŝ distribution. When ap-

plied to searches for new physics, one can then use the

peak in the M1 = M1⊤ =
√
ŝ
(sub)

min distribution as a rough
estimate of the new physics mass scale [46, 50].

In analogy to Fig. 11(b) here we can also perform a
comparison of the usual variables meff and 2/pT to their

mass-bound analogues M◦1 and M1◦. In Fig. 12(b) we
compare meff to M◦1 (in red) and 2/pT to M1◦ (in green).
This time the differences are much less pronounced that
the single resonance case shown in Fig. 11(b). This sug-
gests that for N = 2 processes, the variable meff (2/pT ) is

on an equal footing with M◦1 (M1◦).

We remind the reader that the N = 1 variables shown
in Fig. 12(a) do not exhibit any upper kinematic end-
points, since they are being applied to N = 2 events, i.e.
they have the “wrong” value of N and so the bounding
relations (166) do not apply to any individual parent.
Thus let us now discuss the N = 2 variables, which have
the correct value of N and for which (166) holds. In the

case of N = 2, a tt̄ dilepton event is partitioned as

V1 =
{

b, ℓ+
}

,

V2 =
{

b̄, ℓ−
}

,

I1 = {νℓ} ,

I2 = {ν̄ℓ} .

This partitioning can be pictorially visualized in Fig. 7.
Since we are primarily interested in the kinematical ef-
fects, for this illustrative example we make the simplify-
ing assumption (unlikely to be realized in any real exper-
iment) that each lepton can be associated with its sibling
b-jet.
The distributions of the corresponding five N = 2 vari-

ables are shown in Fig. 13, where for illustrative purposes
we use Monte Carlo truth information to properly as-
sign the correct b-jet to each lepton. According to (166),
these distributions are bounded from above by the in-
dividual parent mass, which in this case is the mass of
the top quark. Correspondingly, in Fig. 13 the reference
yellow-shaded distribution now shows the (average) top
quark mass in the event, which follows the familiar Breit-
Wigner shape (compare to the Higgs resonance shape in
Fig. 11).
As before, we observe three distinct distributions,

M2 = M2⊤ (in blue), M⊤2(
{

/Ma = 0
}

) ≃ M◦2 (in red)
and M2◦ (in green). All of them exhibit an upper end-
point less than or equal to the top quark mass Mt, in
accordance with ((166), but the three shapes are consid-
erably different. As before, and in agreement with the
general hierarchy proven in the arguments leading up to
(B53) for any event, the early partitioned versions M2

and M2⊤ have the steepest endpoint, with the largest
fraction of events near the endpoint.
Again, we can show that we expect theM2, M2⊤, M⊤2,
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FIG. 13: The same as Fig. 12, but for N = 2 variables: (a) the unprojected M2 and the singly projected variables M2⊤,
M⊤2, M◦2 and M2◦; and (b) the doubly projected variables M2⊤⊥ (black), M⊤2⊥ (cyan), M⊤⊥2 (magenta), M2◦⊥ (red), M◦2⊥

(green) and M◦⊥2 (blue). The yellow shaded distribution now gives the average top quark mass in the event. In panel (b),
“⊤”-projected quantities are denoted with solid lines and are evaluated with /M1 = /M2 = 0, while “◦”-projected quantities are
denoted with dotted lines.

M◦2 and M2◦ bounds to be saturated by explicity con-
structing an extremal event ǫ ∈ E that satisfies the on-
shell constraints of the t and t̄ quarks and W± bosons.
An example of such a configuration (see also Fig. 14) is

Pb = Pb̄ = (Eb, pb, 0, 0)

Pℓ+ = Pℓ− = (Eℓ, pℓ, 0, 0)

Qν = Qν̄ = (Eν , −Eν , 0, 0) ,

where,

E2
b = p2b +M2

b E2
ℓ = p2ℓ +M2

ℓ

pb = λ(Mt, Mb, MW ) pℓ = Mℓ sinh(ρ− σ)

Eν = p∗eσ p∗ = λ(MW , Mℓ, 0)

σ = sinh−1

(

pb
MW

)

ρ = sinh−1

(

p∗

Mℓ

)

,

and the two-body momentum function is given by

λ(a, b, c) ≡
√

(a2 − (b+ c)2) (a2 − (b − c)2)

2a
.

!
t

! b
"
"

W
+

"ν !

ℓ
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FIG. 14: Illustration of an example extremal configuration for
the N = 2 variables when applied to the tt̄ example.

Recall from eq. (205) that the early partitioned
variables M2 and M2⊤ are equivalent to the (1+3)-

dimensional version m
(1+3)
T2 of the Cambridge mT2 vari-

able. It appears therefore that for studies like the one
presented here, where the UVM contributions can be

safely identified and accounted for, m
(1+3)
T2 is preferable

over m
(1+2)
T2 .

We use the tt̄ example to also illustrate the doubly
projected variables from Table IV. Fig. 13(b) shows the
doubly projected “⊤”-projections (solid lines) and the
“◦”-projections (dotted lines). All “⊤”-projected quan-
tities are evaluated with /M1 = /M2 = 0. Each type of
projection can be done in three different ways: early par-
titioning, M2⊤⊥ (black) and M2◦⊥ (red); late partition-
ing, M⊤⊥2 (magenta) and M◦⊥2 (blue); or in-between
partitioning, M⊤2⊥ (cyan) and M◦2⊥ (green).

Similarly to the result from Fig. 13(a), Fig. 13(b) also
reveals that the early partitioned, “⊤”-projected variable
M2⊤⊥ has the best defined endpoint structure, which
clearly indicates the value of the parent mass Mt. As
for the remaining variables, two are identically equal:

M2◦⊥ ≡ M◦2⊥, (215)

which is a special case of the general identity (149), while
two others are approximately equal:

M⊤⊥2(
{

/Ma = 0
}

) ≈ M◦⊥2, (216)

where a noticeable difference arises only at low values
due to the finite mass of the b-quark — see eq. (174).
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Mass-bound variable

Existing N = 1 N = 2

variable M1( /M1) = M1⊤( /M1) M⊤1( /M1) M◦1 M1◦ M2( /M) = M2⊤( /M) M2⊤⊥( /M)

2/pT = 2/ET uT → 0

meff /M1 → 0, uT → 0 uT → 0
√
ŝ
(sub)

min ( /M1) X

√
ŝmin( /M1) uT → 0

mTeν(Me,Mν) X X Me,Mν → 0 Me,Mν → 0

MT,ZZ(MZ) X X

MC,WW /M1 → 0

mtrue
T /M1 → 0

mreco
TZ′ (MZ) uT → 0 uT → 0

mT2( /M) X

mT2⊥( /M) X

TABLE VI: Correspondence between some of the existing variables in the literature, which were discussed in Section X, and the
corresponding mass-bound variables. A checkmark (X) implies an exact equivalence, otherwise the relevant limiting condition
is listed. The last variable mT2⊥( /Ma) employs the doubly-projected ⊥ construction described in Appendix VIII.

XII. CONCLUSIONS

The main “result” of this paper is the proposal made in
Section VII of a general scheme for constructing and cate-
gorizing the basic invariant mass variables which are best
suited for the study of missing energy events at hadron
colliders. As a demonstration of the utility of this gen-
eral scheme, in Section X we showed how a wide vari-
ety of widely used kinematic variables discussed in the
literature can be properly accommodated in our frame-
work. A short summary of this discussion is presented
in Table VI, which exhibits the connections between the
variables discussed in Section X and the corresponding
mass-bound variables from Tables III and IV. The table
reveals that one can give a new meaning to well-known
variables like /pT and meff , which were originally intro-
duced and defined in a way unrelated to any invariant
mass considerations. Now we see that the same variables
allow an alternative interpretation in terms of bounds on
Lorentz invariants of interest as long as one is using the
“massless” (◦) type of projection for the transversifica-
tion.

Another lesson from Table VI is that depending on the
specific topology, the same bound may be constructed in
different ways. A perfect illustration is provided by the
variable M1 = M1⊤. As discussed in detail in Sec. XE,
even for the same final state (two leptons and missing
energy), the variable M1 = M1⊤ can emerge as differ-
ing bounds (either MT,ZZ or MC,WW ) depending on the
choice of interpretation of the kinematical information.

But the value of the proposed scheme is not just in

the accommodation of existing techniques and variables.
The primary benefit from our approach is that, having
understood the main principles behind the construction
of a good invariant mass variable, the reader is now pre-
pared to tackle almost any event topology, first by realiz-
ing what are the proper invariant mass variables for the
case at hand, and second, knowing how to construct and
calculate those variables. As discussed in Sections III–VI,
there are a number of choices to be made along the way,
related to the method of transversification, the partition-
ing of the event, and the exact order in which one takes
all those operations. The main guiding principle through
all this is that at the end of the day, one is always going
to construct a bound on the mass of the heaviest parent.
In that sense we are extending the principles and meth-
ods of construction put forth in [7] for mT2 and [50] for√
ŝmin.
As we have seen, many of the generalized mass-bound

variables are already in use at the LHC and elsewhere,
but the majority have, for the moment, the status of
solutions in search of problems.

Appendix A: Computer libraries offering
“transverse” energy and mass variables

Though libraries should be a repository of human
knowledge, any careful experimentalist will already have
recognized that the computer libraries which support
transverse projection methods for Lorentz vectors do not
always produce the expected behavior. A selection of
some of the most commonly used libraries and some of
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Library Object
Method/function name

e⊤ e2⊤ m⊤ m2
⊤ mT2 e∨ e2∨

CLHEP[36] LorentzVector mt() mt2() – – – et() et2()

ROOT [37] TLorentzVector Mt() Mt2() – – – Et() Et2()

Fastjet [61] Pseudojet mperp() mperp2() – – – Et() Et2()

PGS [62] – – – – – – v4et(p) –

Oxbridge LorentzVector ET() ET2() LTV().mass() LTV().masssq() – – –

MT2 [38] LorentzTransverseVector Et() Etsq() mass() masssq() – – –

Mt2 332 Calculator – – – – mT2 332() – –

UCD MT2 [39] mt2 Ea, Eb Easq, Ebsq – – get mt2() – –

Defining equation in this paper (5) (7) (205) (13)

TABLE VII: The versions of the transverse variables used in commonly used high-energy physics computer libraries and codes.
A brief survey of experimental collaborations’ software suggests that most follow the conventions of CLHEP. ‘LTV’ is a shorthand
for the method getLorentzTransverseVector().

their methods for calculating transverse variables can be
found in Table VII. In many cases the method of pro-
jection used (i.e. “⊤” or “∨”) is undocumented and
can only be determined by excavating the implementa-
tion. What is more, the names of the methods and func-
tions in some cases produce output very different from
what the user might expect. The result is that use of
a plausible-sounding method can land the unwary user
with a totally unexpected result – for example the CLHEP
method called mt() returns the ⊤-projected transverse
energy (e⊤ =

√

M2 + p2T ), not the transverse mass they
might have anticipated. Of course, because of the right-
hand expression in eq. (5), one might fittingly call this
quantity a “mass”, but in that case the proper nomencla-
ture should probably be a “longitudinal” mass and not a
“transverse” mass.
To the extent that there is agreement on the conven-

tions, one can see that the most commonly-used libraries
(ROOT and CLHEP) use the ∨ convention when calculat-
ing “transverse energy” quantities. The Tevatron and
LHC experimental collaborations tend to follow the “∨”
conventions when talking about “transverse energy” in
calorimeters. For analyses where the transverse mass re-
ally matters, e.g. for W → ℓν, the (ROOT and CLHEP)
libraries have no function to return the ‘usual’ transverse
mass of Refs [2–5, 55]: mT must instead be calculated
explicitly by the user.

Appendix B: Mass bounds on collections of momenta

In this section we present derivations of mass bounds
on collections of arbitrary momenta, which may be repre-
sented by unprojected vectors and/or vectors transversi-
fied by any of the projections⊤, ∨ and ◦. These cover the
cases mentioned in VII, and justify the representation of

multibody decays to visible and invisible particles in the
form of a pair of composite momenta, where all visibles
are projected identically (if at all) and all invisibles are
likewise projected identically, though not necessarily by
the same method as the visibles.
The question of what goes into the set of momenta from

which we wish to generate the parental mass bound is not
a mathematical question at all. However, once that set
of momenta is formed, the question of how to calculate
the best bound making maximum use of the information
contained in that set is entirely mathematical. It is this
mathematical question that we solve in the this section.
In essence, we try to answer the following question:

Given a particular set of vectors, what is the
greatest possible lower bound that we can
place on the mass of any parent particle which
could have have decayed to daughters charac-
terized by that set? In particular, how does
that bound depend on the dimensionalities
and projection-types of the vectors character-
izing the information about the daughters?

We shall denote the answer to that question asM{. . .},
where {. . .} is the set of vectors. We do not wish to
restrict the set to contain only momenta of the same
type (e.g. only four-momenta). Instead, we permit
the set, if so desired, to be a heterogeneous mixture
containing any number of four-momenta, ⊤-momenta,
∨-momenta, ◦-momenta or 2-momenta. For example,

M{Aµ, Bµ, cα⊤, d
α
⊤, e

α
⊤, f

α
∨ , g

α
◦ ,
~hT } would denote be the

greatest possible lower bound on the mass of a particle as-
sumed to have decayed to (at least) eight daughters, un-
der the assumption that the only information from which
we would wish that bound to be constructed were to com-
prise: the four-momenta of two daughters a and b; the
masses and transverse two-momenta of three daughters c,
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d and e; the three-speed and transverse two-momentum
of daughter f ; and the transverse two-momenta of parti-
cles g and h.32

1. Parental mass bounds from sets containing any
two objects

Before considering parental bounds from arbitrary sets
of momenta, we shall first consider the bound one obtains
for each of the ten pair-wise combinations of the various
types of vectors, i.e.:

M{Aµ, Bµ} M{Aµ, bα⊤} M{Aµ, bα∨} M{Aµ,~bT }
− M{aα⊤, bα⊤} M{aα⊤, bα∨} M{aα⊤,~bT }
− − M{aα∨, bα∨} M{aα∨,~bT }
− − − M{~aT ,~bT }

.

To avoid imposing a physical interpretation on the vec-
tors (other than that they are momenta), we generally
work with A’s and B’s, as opposed to the P ’s and Q’s
used in the main text. The latter carry implications of
visibility/invisibility that are irrelevant to the considera-
tions of this section.
The list above appears to leave out the massless ◦-

projection, but this is simply a special case of the ⊤ and
∨ projections, so the results for ◦ can be derived from the
other two cases. In its place, we allow for combinations

of vectors including transverse two-momenta ~aT ,~bT , in
which the timelike component is simply unspecified. It
will be seen that the bounds from combinations involving

~aT ,~bT simply emerge to be the massless case.

a. The M{Aµ, Bµ} parental mass bound

We start with a straightforward case, taking care to be
explicit about the sequence of operations that will also
be required for the construction of the bound in the less
trivial cases. The best parental mass bound33 given a
pair of daughter 1+3 momenta Aµ and Bµ is given by

M2{Aµ, Bµ} = min
[

M2
]

= min [PµPµ]

= min [(Aµ +Bµ)(Aµ +Bµ)]

= (Aµ +Bµ)(Aµ +Bµ),

≡ (Aµ +Bµ)2 (B1)

32 Note that it makes no difference whether we use ~hT instead of
hα
◦ as an input, as the information content of each is identical.

33 Note that it is simplest to calculate the bound for the squared
of the parental mass M2{. . .} rather than for the parental mass
itself M{. . .}. This difference is of no consequence, and so for
brevity we will talk only of “mass bounds” in the text, ignoring
the square.

where the first equality is simply a rephrasing of the
meaning of M{} as the minimum mass consistent with
the constraints. The second equality is from the defi-
nition of the inner product (or physically the definition
of the mass), and the third equality is from the defi-
nition of a vector space (physically representing energy-
momentum conservation). The fourth equality is a state-
ment that the vectors Aµ and Bµ are fully specified,
so the minimization is trivial (no parameters need be
changed). The hopefully unsurprising outcome, then, is
that the best lower bound on the parental mass is given
by the invariant mass of the two daughter momenta Aµ

and Bµ.

b. The M{Aµ, bα⊤} parental mass bound

To calculate the bound

M{Aµ, bα⊤} (B2)

we note that bα⊤ contains partial information about
some 1+3 vector Bµ which projects to bα⊤ under the
⊤-projetion, about which the x and y components are
known, but the z component, bz is completely unspeci-
fied. The bound (B2) can therefore be rephrased,

M2{Aµ, bα⊤} = min
bz

[

(Aµ +Bµ)2
]

. (B3)

For the minimization we recognise that provided either
MA 6= 0 or |~aT | 6= 0, then M is unbounded above as
bz → ±∞. Provided that we are dealing with particles
produced with non-zero transverse momentum (which we
shall assume hereafter), the solution must then be given
by the local minimum

0 =
∂

∂bz
(Aµ +Bµ)2

=
∂

∂bz

(

M2
A +M2

B + 2
(

EAEB − ~aT ·~bT − azbz

))

.

The minimization selects bz/EB = az/EA such that Bµ

has equal rapidity to Aµ,

yB = yA. (B4)

To calculate the value of the mass bound we recognise
that, by the definition of the Lorentz transformation, the
inner product of Aµ and Bµ, which we might denote by
g(A,B) ≡ AµgµνB

ν , is invariant under identical Lorentz
transforms Λ of both vectors

g(A,B) = g(ΛA,ΛB). (B5)

By letting Λ be a boost along the z-axis corresponding to
rapidity change −yA, which will then set both rapidities
to zero, one finds that

g(A,B) = e
(A)
⊤ e

(B)
⊤ − ~a⊤ ·~b⊤. (B6)
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The best lower bound on the parent mass for daughters
specified by a 1+3 momentum Aµ and a ⊤-projected 1+2
momentum bα⊤ is then given by

M2{Aµ, bα⊤} = M2
A +M2

B + 2
(

e
(A)
⊤ e

(B)
⊤ − ~a⊤ ·~b⊤

)

= (a⊤ + b⊤)
α(a⊤ + b⊤)α

≡ (aα⊤ + bα⊤)
2. (B7)

c. The M{Aµ,~bT } parental mass bound

The bound on a 1+3 Lorentz vector with a transverse
two-vector can be found in a similar manner, but the

1+3 vector which projects to ~bT is now given by some
B which has both unknown z component and unknown
mass. The bound is given by

M{A,~bT} = M{A,B} = min
bz ,MB

[A+B] . (B8)

A similar argument to that which led to (B4) shows that
the bz component must be such that yB = yA. The MB

minimization selects MB = 0, so that

M2{A,~bT } = M2
A + 2

(

e
(A)
T |~bT | − ~aT ·~bT

)

≡ (aα⊤ + bα◦ )
2, (B9)

so the bound is formed by turning the transverse two-
momentum into a ◦-projected 1+2 momentum. Compar-
ing with (B7), we see that if bα⊤ is made masslessMB = 0,

then e
(B)
⊤ = |~bT | and (B9) is reproduced.

d. The M{aα
⊤, b

α
⊤} parental mass bound

For each of the 1+2 ⊤-projected vectors, the corre-
sponding set of 1+3 dimensional objects shares the same
transverse components and inner product (mass) as their
⊤-projected counterpart, but has arbitrary z momentum.
The bound is then given by

M2{aT , bT } = min
az ,bz

[

(A+B)2
]

(B10)

This time the minimizations force the rapidities of A and
B to be equal, but leave the value of that rapidity yA =
yB free. Similarly to the previous cases,

M2{aT , bT } = M2
A +M2

B + 2
(

e
(A)
T e

(B)
T − ~aT ·~bT

)

= (aα⊤ + bα⊤)
2. (B11)

e. The M{aα
⊤,~bT } parental mass bound

The limit on M is given by

M2{aT ,~bT} = min
az,bz,MB

[

(A+B)2
]

. (B12)

The minimizations set the rapidities to be equal yA = yB
(but undefined) and MB = 0. The limit again appears
in the form,

M2{aT ,~bT} = M2
A + 2

(

e
(A)
T |~bT | − ~aT ·~bT

)

≡ (aα⊤ + bα◦ )
2. (B13)

f. The M{~aT ,~bT } parental mass bound

The limit on M for a pair of transverse two-momenta
is given by

M2{~aT ,~bT } = min
az ,bz,MA,MB

[

(A+B)2
]

. (B14)

The z minimizations again set the relative rapidities
equal but arbitrary yA = yB, and the mass minimiza-
tions set MA = MB = 0.

M2{~aT ,~bT } = 2
(

|~aT | |~bT | − ~aT ·~bT
)

≡ (aα◦ + bα◦ )
2. (B15)

g. The M{Aµ, bα∨} parental mass bound

The ∨ projection described in section III B maps all

1+3 vectors Bµ with the same transverse momentum ~bT
and velocity VB = |~b|/EB to the same 1+2 vector bα∨.
Therefore the longitudinal momentum component bz is
unspecified and the parental mass bound M{Aµ, bα∨} is
given by

M2{Aµ, bα∨} = min
bz

[

(A+B)2
]

, (B16)

From equations 22 and 23, we see that we can decompose
the full (1+3)-dimensional energy and mass

E2
B = (eB∨ )

2 + (eBz )
2, (B17)

M2
B = (mB

∨ )
2 + (mB

z )
2 . (B18)

each in terms of a transverse quantity (eB∨ , m
B
∨ ) and a

longitudinal quantity (eBz = |~bz|/VB, m
B
z = |~bz|/(VBγB))

with γB denoting the Lorentz factor 1/
√

1− V 2
B .

Using these relations, we can write the Lorentz-
invariant quantity (A+B)2 as

(Aµ +Bµ)2 = M2
A + (mB

∨ )
2 + b2z/(VBγB)

2 (B19)

+ 2

(

EA

VB

√

b2T + b2z − ~aT ·~bT − azbz

)

.

Leaving aside the trivial case of bT = 0, we now at-
tempt the minimization over bz, requiring

0 =
∂

∂bz
(Aµ + Bµ)2 (B20)

= 2

(

EA

VB

bz
√

b2T + b2z
− az +

bz
V 2
Bγ

2
B

)

.
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This gives rise to a quartic in bz,

(b2T + b2z)(bz − α)2 − ǫ2 b2z = 0 , (B21)

where the constants

α = az V
2
B γ2

B, (B22)

ǫ = EA VB γ2
B . (B23)

The need to solve this quartic makes the M2{Aµ, bα∨}
bound intractable in comparison with the similar
M2{Aµ, bα⊤} bound. Similar difficulties are encountered
in the following M2{aµ∨, bα∨} case.
One might guess that the yB = yA condition result-

ing from M2{Aµ, bα⊤} bound could represent the correct
solution, since we are again working with a fully (1+3)-
dimensional vector combined with a (1+2)-dimensional
vector. But the solution this condition gives for bz is not
a root of the quartic in (B21). One can show that b′z = 0
implies

bz =
bTα

√

ǫ2V 2
B − α2

, (B24)

which when substituted into the LHS of (B21) gives

b2Tα
2ǫ2

(α2 − ǫ2V 2
B)

2

(

b2TV
4
B + (V 4

B − 1)(ǫ2V 2
B − α2)

− 2 bT V 4
B

√

ǫ2V 2
B − α2

)

,

which is in general non-zero, i.e. the equal rapidities con-
dition only minimizes bz under certain special conditions.

h. The M{aα
∨, b

α
∨} parental mass bound

In the case of two ∨-projections, the mass bound is
given by

M2{aα∨, bα∨} = min
az,bz

[

(A+B)2
]

, (B25)

the minimization of which involves finding az and bz,
with both VA and VB being held fixed, such that each of
az and bz is a root of a quartic like that in (B21).
In this situation, we can apply the same mass/energy

decompositions (B17) and (B18) to az, to get a variant
of (B19),

(Aµ +Bµ)2 =

= (mA
∨)

2 +
a2z

V 2
Aγ

2
A

+ (mB
∨ )

2 +
b2z

V 2
Bγ

2
B

+ 2

(

√

a2T + a2z
VA

√

b2T + b2z
VB

− ~aT ·~bT − azbz

)

. (B26)

Differentiating by az and by bz separately, the mini-
mization imposes

0 =
∂

∂az
(Aµ +Bµ)2 (B27)

= 2

(

√

b2T + b2z
√

a2T + a2z

az
VAVB

− bz +
az

V 2
Aγ

2
A

)

,

and simultaneously

0 =
∂

∂bz
(Aµ +Bµ)2 (B28)

= 2

(

√

a2T + a2z
√

b2T + b2z

bz
VAVB

− az +
bz

V 2
Bγ

2
B

)

.

Note that the fraction |~a|/|~b| appears in both (B27)
and (B28), albeit as a reciprocal in the latter. So, we can
combine the two minimization constraints in the form of
a quadratic in az and bz:

a2z
V 2
Aγ

2
A

+
b2z

V 2
Bγ

2
B

+ azbz

(

1

V 2
Aγ

2
A

+
1

V 2
Bγ

2
B

)

= 0 . (B29)

This can be solved to give az = −c bz, with

c = 1 or
V 2
Aγ

2
A

V 2
Bγ

2
B

. (B30)

Substituting this solution back into (B26) gives a pleas-
ingly simple result

Aµ +Bµ)2 =

= (mA
∨)

2 + (mB
∨ )

2 + b2z

(

2 c+
c2

V 2
Aγ

2
A

+
1

V 2
Bγ

2
B

)

+ 2

(

√

a2T + c2b2z
VA

√

b2T + b2z
VB

− ~aT ·~bT
)

. (B31)

Since c was chosen to be positive, this expression is
clearly minimised for bz = 0, implying that az = 0 as
well. If we then make the replacements aT /VA = eA∨ and
bT /VB = eB∨ , we find that the choice az = bz = 0 gives,
quite simply and in tune with our intuition and inductive
sense,

M2{aα∨, bα∨} = (aα∨ + bα∨)
2 . (B32)

i. The M{aα
⊤, b

α
∨} parental mass bound

The bound M2{aα⊤, bα∨} requires minimization over
both az and bz.

M2{aα⊤, bα∨} = min
az ,bz

[

(Aµ +Bµ)2
]

, (B33)

with (Aµ + Bµ)2 defined as before in (B19). First the
minimization over az forces the rapidities of A and B to



42

be equal, az/EA = bz/EB. Plugging this into (B19), we
obtain

(Aµ +Bµ)2 = M2
A + (mB

∨ )
2 + b2z/(VBγB)

2 (B34)

+ 2

(

EAEB − ~aT ·~bT − b2z
EA

EB

)

.

= M2
A + (mB

∨ )
2 + b2z/(VBγB)

2 (B35)

+ 2

(

EA

EB
(E2

B − b2z)− ~aT ·~bT
)

.

The expression (E2
B − b2z) can be written one of two ways

– either as (eB⊤)
2 or as (eB∨ )

2 − b2z/(VBγB)
2. We choose

the latter, since we have fixed eB∨ , but if we were to fix
instead eB⊤, we would rederive (B9).
A further simplification is implied by the equal rapidi-

ties condition, since EA = eA⊤EB/
√

E2
B − b2z. Using this

and (B17), we find

(Aµ +Bµ)2 = M2
A + (mB

∨ )
2 + b2z/(VBγB)

2 (B36)

+ 2

(

eA⊤ eB∨

√

1 +
b2z

b2Tγ
2
B

− ~aT ·~bT
)

.

Recognising that b2Tγ
2
B is positive, we see that the bz

minimization simply gives az = bz = 0, and thus

M2{aα⊤, bα∨} = (aα⊤ + bα∨)
2 . (B37)

j. The M{aα
∨,~bT } parental mass bound

This mass bound is similar to M{aα∨, bα⊤} with the ad-
ditional minimization of MB 7→ 0.

M2{aα∨,~bT } = min
az,bz,MB

[

(A+B)2
]

(B38)

= (mA
∨)

2 + 2
(

eA∨ bT − ~aT ·~bT
)

(B39)

= (aα∨ + bα◦ )
2 . (B40)

2. Arbitrarily large sets of (1+3)-, (1+2)⊤- and
2-vectors

The generalization of (B1) to an arbitrarily large set
of fully specified 1+3 vectors A = {Aµ

i | 1 ≤ i ≤ |A|} is

M2{A} = min
[

M2
]

= min
[

P 2
]

= min
[

(ΣiA
µ
i )

2
]

= (ΣiAi)
2. (B41)

Note that in the special case of fully specified 1+3 vec-
tors, the mass bound for the set is the same as the mass
bound of the single object formed of the sum of those
vectors

M{A} = M{ΣiAi}. (B42)

Let us further generalize our results to an arbitrary
set of (1+3)-vectors A and (1 + 2)⊤-projected vectors

B⊤ =
{

bαj⊤ | 1 ≤ j ≤ |B⊤|
}

. Each of the bαj⊤ has a (1+3)-

vector equivalence class Bµ
j for which the z components

can take any value. Writing B =
{

Bµ
j | 1 ≤ j ≤ |B⊤|

}

and Bz = {bjz | 1 ≤ j ≤ |Bz|}, we can therefore write the
mass bound as

M{A,B⊤} = M{A,B} = min
Bz

[

(

ΣiA
µ
i +ΣjB

µ
j

)2
]

.

(B43)
where each of the Bµ

j has a free z component. The result

can be found by induction. The bound M{Kµ
1 , . . . , K

µ
m}

for some set of fully specified (1+3)-vectors is given by
the sum M{Σi=1,mKµ

i } by (B42). Adding a further 1+3
vector Kµ

m+1 which has free z momentum to that set
gives a bound M{Kµ

1 , . . . , K
µ
m+1}. A similar argument

to that which led to (B4) shows that the rapidity ofKµ
m+1

must be equal to that of Σi=1,mKµ
i . With this constraint

appliedKµ
m+1 becomes a fully specified 1+3 vector, so we

can treat it as one of the known 1+3 vectors and proceed
with the next 1+2 (⊤-projected) vector in the set.
Applying this argument sequentially to the Bj we find

that

M{A, bαj⊤} = M{(ΣiA
µ
i ), B

µ
j }, (B44)

where each of the Bj has the same rapidity as ΣiA
µ
i .

Since the set of 1+2 ⊤-projected vectors is isomorphic
to the set of 1+3 vectors with fixed (but arbitrary) rapid-
ity under the operations of addition and inner product,
we can rewrite this bound as

M{A,B⊤} = M{(ΣiA
µ
i ), (Σjb

α
j⊤)}, (B45)

the bound for the summed 1+3 vector (ΣiA
µ
i ) and the

1+2 ⊤-projected vector (Σjb
α
j⊤), the explicit formula for

which is given in (B7).
We can further extend the argument by allowing

some other daughters parameterized only by their two-
momentum to be added to the set,

M{A,B⊤, CT }, (B46)

with CT = {~ckT | 1 ≤ k ≤ |CT |}. Each 2-vector ~ckT has
a corresponding equivalence class which can be repre-
sented by a 1+2 ⊤-projected vector cαk⊤ with unknown
mass. The arguments which led to (B44) apply equally
to the ck⊤, so the corresponding C

µ
k 1+3 vector rapidities

are set equal to ΣiAµi, but now we have the extra min-
imization over the masses which fixes mC = 0 for each
Cµ

k (or indeed cαk⊤) .
Therefore

M{A,B⊤, CT } = M{(ΣiA
µ
i ), (Σjb

α
j⊤ +Σkc

α
k◦)} . (B47)

Now (B47) has the same form as all the previous bounds,
but in obtaining the result we have found out something
non-trivial: one would not get the best bound on M if
one were simply to replace the set of 2-vectors CT by their
sum (Σk~ckT ): One must instead add the corresponding
massless 1+2 vectors cαk◦.
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In principle we could now try to extend our bounds to
include (arbitrarily large numbers of) ∨-projected 1+2
vectors. However we shall not do so for two reasons.
The first reason is that in collider experiments such as
the LHC, situations for which ∨ projection is appropri-
ate are rare. It is only in very unusual cases where we
might find ourselves knowing just the transverse momen-
tum components and the size of the three-velocity, but
not the azimuthal angle θ, the z-momentum, or the mass.

The second reason we do not pursue the ∨ vectors fur-
ther is that one ends up with a real mess, as we have
seen. The most basic pair-wise combination M{A, b∨}
requires solution of a quartic equation in bz. Only if one
is solely interested in combining (⊤, ∨, ◦)-projected vec-
tors might the expressions be tractable, but the utility of
such a combination is unclear.

3. Mass bound hierarchies

The similarity in the expressions for the mass bounds
derived in the preceding sections allows for a further ob-
servation – that as progressively more information is ne-
glected or unknown, the mass bound is lowered. Intu-
itively one would expect this, since the absence of hard
information causes one to have to be progressively more
conservative, but we can, with little additional work,
show this explicitly to be the case.

We set out, therefore, to prove the hierarchy that was
seen earlier in (175). Our proof proceeds in two stages.
In the first stage we demonstrate the result for the case
N = 1, in which the hierarchy becomes:

M1 = M1⊤ ≥ M⊤1 ≥ M◦1 ≥ M1◦. (B48)

In the second stage we extend this to general N .

Using the results of the previous section, we can treat
each of the mass bound variables in terms of the com-
posite visible and composite invisible objects described
in section VIB. The equality in (B48) then results from
the definition of M1 as a concrete case of (B7), where Aµ

represents the visible Pµ, and bα⊤ the invisible qα⊤. Sim-
ilarly, M1⊤ is just (B11), where aα⊤ and bα⊤ stand in for
pα⊤ and qα⊤. On comparing (B7) with (B11), we see that
they are identical, and hence M1 = M1⊤.

For the next statement, M1⊤ ≥ M⊤1, we have to con-
sider the difference between “early” and “late” partition,
i.e. whether we retain information about the relative lon-
gitudinal momenta of the visibles. Let our visible com-
posite Pµ

a of parent Pa be composed of constituents Pµ
i ,

i.e.

Pµ
a =

∑

i∈Va

Pµ
i

= (Ea, ~paT ,paz) ,

with

Ea =
∑

i∈Va

Ei ,

~paT =
∑

i∈Va

~piT ,

paz =
∑

i∈Va

piz .

We form the early-partitioned composite

pα
a⊤ =

(

∑

i∈Va

Pµ
i

)

⊤

= (ea⊤, ~paT ) ,

and the late-partitioned composite

pα
⊤a =

∑

i∈Va

pαi⊤ , = (e⊤a, ~pTa) ,

differing only in their energy components

ea⊤ =
√

E2
a − p2

az

=
√

M2
a + p2

aT ,

e⊤a =
∑

i∈Va

ei⊤

=
√

m2
⊤a + p2

Ta ,

where

M2
a =

(

∑

i∈Va

Pµ
i

)2

,

m2
⊤a =

(

∑

i∈Va

pαi⊤

)2

.

Of course, it is established in the preceding sections B1 a
and B1 b that M2

a ≥ m2
⊤a, since m⊤a could be con-

structed by repeated minimizations of Ma over the lon-
gitudinal momentum components (pz)i. Hence, ea⊤ ≥
e⊤a.
If we now define analogous quantities ẽa⊤, ẽ⊤a and ~qaT

for the composite invisible particle, then all the same
arguments apply. Forming the two mass variables as in
(102) and (109),

M2
1⊤ = (e1⊤ + ẽ1⊤)

2 − (~p1T + ~q1T )
2

≥
(e⊤1 + ẽ⊤1)

2 − (~pT1 + ~qT1)
2 = M2

⊤1 .

Moving next to M◦1, we note that this is simply the
previous case, with an additional minimization over the
massesMi of the constituent particles, which must reduce
the size of the bound, forcing M◦1 ≤ M⊤1.
For the final inequality, we recall the statement due

to (B47), that says the bound is weakened (i.e. made
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smaller) if we base the bound on the sum of the transverse
two-vectors, rather than promoting them to ◦-projected
(1+2)-vectors before summing. The difference is solely
in the energy component – the late-partitioned pα

◦a has
energy component

e◦a =
∑

i∈Va

(pT )i ,

whereas the early-partitioned pα
a◦ has energy component

ea◦ = paT .

By the triangle inequality, e◦a ≥ ea◦, yielding the final
required result, that

M2
◦1 = (e◦1 + ẽ◦1)

2 − (~pT1 + ~qT1)
2

≥
(e1◦ + ẽ1◦)

2 − (~p1T + ~q1T )
2 = M2

1◦ .

Armed with this knowledge, we tackle the hierar-
chy when N > 1. We revisit the definitions of
MN ,MN⊤,M⊤N ,MN◦, and M◦N , from section VIIC, as

MN( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[Ma(Pa,Qa, µ̃a)]
]

,

MN⊤( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[Ma⊤(pa⊤,qa⊤, µ̃a)]
]

,

M⊤N( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[M⊤a(p⊤a,qa⊤a, µ̃a)]
]

,

MN◦( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[Ma◦(pa◦,qa◦, µ̃a)]
]

,

M◦N ( /M) ≡ min∑
~qiT=/~p

T

[

max
a

[M◦a(p◦a,q◦a, µ̃a)]
]

.

At first glance, it might seem alarming that we assert
M1 = M1⊤, when M1 seems to be built of a fully (1+3)-
dimensional object M1(P1,Q1, µ̃1). But in fact, with
the components (qz)i left free, the minimization will (for
reasons identical to those in the discussion of early and
late partitioning) be achieved when all the constituents
of Q1 have equal rapidity to P1, meaning

M1(P1,Q1, µ̃1) = M1⊤(p1⊤,q1⊤, µ̃1).

But this should apply to all N , since the only con-
straint on the invisibles of each parent Qa is on their
transverse momentum components. That is, for each of
the N parents, given our inputs we will get

Ma(Pa,Qa, µ̃a) = M1⊤(p1⊤,q1⊤, µ̃1),

and therefore we immediately see that

MN ( /M) ≡ min∑
~qiT =/~p

T

[

max
a

[Ma(Pa,Qa, µ̃a)]
]

= min∑
~qiT =/~p

T

[

max
a

[Ma⊤(pa⊤,qa⊤, µ̃a)]
]

≡ MN⊤( /M) . (B49)

Next one might ask whether the successive inequal-
ities still hold. The very first one follows straightfor-
wardly. Only in the input vectors to each of the N
parental mass bounds Ma⊤ do MN⊤ and M⊤N differ.
Furthermore, since the late-partitioned input vectors p⊤a

and q⊤a will have smaller energy components than their
early-partitioned counterparts pa⊤ and qa⊤, each of the
individual parental bounds follows the relation

Ma⊤(pa⊤,qa⊤, µ̃a) ≥ M⊤a(p⊤a,q⊤a, µ̃a) , (B50)

for every possible choice of unprojected inputs Pa,Qa.
To complete the argument, we need to establish that

the global minimum considering all trial ~qiT cannot in-
crease if any or all of the parental bounds decrease.
The minimization probes the full space of {~qiT }, sub-

ject to the constraint that their sum is the missing trans-
verse momentum vector, with all other parameters hav-
ing been specified. For the minimization to pick out a
larger value for M⊤N than for MN⊤, we must have

max
a

[M⊤a(p⊤a,q⊤a, µ̃a)] > max
a

[Ma⊤(pa⊤,qa⊤, µ̃a)]

(B51)
for the same values of {~qiT } that give the value of MN⊤,
if nowhere else. But we have already established (B50)
for all a and all inputs. So we are led to the conclusion

MN⊤( /M) ≥ M⊤N( /M) . (B52)

Actually, we have achieved more than that. The same
argument holds for the remaining levels of the hierarchy
involving the ◦-projection. So we can boldly claim our
final result and can retire to a well-deserved cuppa

MN = MN⊤

≥
M⊤N

≥
M◦N

≥
MN◦. (B53)

Appendix C: Pronunciation guide

Following the release of the first version of this note
to the arXiv, a pronunciation guide was requested. The
authors do not wish to stifle innovation in this area, but
tentatively suggest the formulations below.
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Symbol Pronunciation IPA Comment

T tee ti: or ‘generic tea’ (yellow label)

⊤ tee ti: or ‘mass-preserving tea’ (milky)

∨ vee vi:

◦ oh @U as in ‘Oh my, cucumber sandwiches’

z zed zEd
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