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We show that in the multi-Higgs extension of minimal supersymmetric standard model, which has
N-pairs of Higgs doublets (called NHMSSM), it is impossible to break CP spontaneously, if we do
not allow for fine-tuning relations between parameters. The result holds true even in the presence
of spontaneous R-parity breaking.

I. INTRODUCTION

Evidences for the existence of fundamental forces that distinguish between matter and anti-matter (CP violating
forces) are abundant, both in laboratory and in cosmology. In the laboratory, there are the celebrated discoveries of
CP violation in K- and B-systems whereas in cosmology, CP violation is an essential ingredient in our understanding
of a fundamental mystery of the Universe, i.e., the asymmetry between its matter and anti-matter content. While
these informations have been accumulating for over half a century, understanding of the origin and nature of these
forces responsible for them has eluded physicists. What is known is that in the standard model, CP violation can
be parameterized in terms of a single phase in the Cabibbo-Kobayashi-Maskawa quark rotation matrix. However, we
do not know where the phase comes from. For instance it is not known whether it resides as an intrinsic phase in
the interactions of Higgs bosons responsible for particle masses (Yukawa interactions) or it arises dynamically in the
ground state of the theory, even though all interactions in the model are CP symmetric prior to symmetry breaking.
The latter class of models go by the name of “spontaneous CP violation”[1] (SCPV) and is the subject of this article.
The fact that spontaneous CP violation can occur in multi-Higgs extensions of the standard model is very well

known[2]. Typically, it is highly dependent on the structure of the Higgs potential. For instance in the Standard
Model (SM) which has only one Higgs doublet, there is no physical phase in its vacuum expectation value (VEV) and
hence no spontaneous CP violation. With two Higgs doublets [1], the ground state can break CP only if there are

both quartic (φ†
1φ2)

2 as well as quadratic terms φ†
1φ2 present in the potential. When either of them is absent, the

ground state corresponds to real VEVs of the Higgs doublets and there is no spontaneous CP breaking. In three Higgs
extensions of SM, even if the quadratic terms are absent, there can be spontaneous CP breaking[3, 4] — manifested
through both the exchange of charged [3] or neutral [5] Higgs bosons. Since there is a wide spread belief that the new
scale physics includes supersymmetry, it is of interest to study CP breaking in MSSM and its multi-Higgs extensions.
It is well known that in supersymmetric theories, holomorphy of the superpotential, which is a requirement for the

theory to be supersymmetric, considerably restricts the terms in the Higgs potential. It is therefore important to
study whether in such theories, spontaneous CP violation can occur. Such studies have indeed been carried out in
simple extensions of MSSM and it has been shown that if we do not allow fine-tuning relations between the parameters
of the superpotential, it is impossible to have spontaneous CP violation with only one additional singlet added to
MSSM[6] or with four and six Higgs doublet superfields (two or three pairs of Hu, Hd) extensions of MSSM [7]. The
four Higgs case remains incapable of spontaneously breaking CP even if one singlet is added provided that there are
no dimensionful parameters in the superpotential involving the singlet [7]; otherwise SCPV is in fact possible [8].
The proof in the four and six Higgs case given in [7] uses geometric constructions. In this paper, we provide an

alternative algebraic proof of the same result for the four Higgs doublet extension of MSSM and further show that
our technique has the advantage that it can be extended to the N-Higgs extension for arbitrary N with the result
that there is no spontaneous CP breaking even in this case. We then show that this result remains true even in the
presence of spontaneous R-parity breaking, where the sneutrino fields acquire nonzero VEVs[9].
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This paper is organized as follows: in section II, we discuss the general strategy for treating this question; in Sec. III,
we apply this to the general N-HMSSM, which has N/2 pairs of (Hu, Hd) fields, and to the general N-HMSSM with
spontaneous R-parity breaking; in particular, the 4-HMSSM is treated in more detail in Sec. III C as an illustration
of the method. We present our conclusions in Sec. IV.

II. GENERAL MULTI-HIGGS MODELS AND CONDITIONS FOR SPONTANEOUS CP VIOLATION

We consider extensions of standard model with N Higgs doublets φa with a = 1, . . . , N , denoted here as N-Higgs-
doublet-models (NHDMs). In general we can assume that only the neutral members of the Higgs doublets acquire
VEVs, which we parameterize as:

〈φa〉 = (0, vae
iδa)T . (1)

We can fix one of the phases δ1 = 0 from hypercharge invariance. Then, there will be SCPV (in the real basis) if
δa 6= 0, π for some a ≥ 2 and nonzero va. Such violation breaks the canonical CP transformation

φa(t,x)
CCP→ φ∗

a(t,−x) . (2)

For some cases, there might be other inequivalent CP transformations that could remain as a symmetry (multiple CP
symmetries). We do not treat this case here.
We are interested to study the minima of the potential involving the N Higgs doublets and their CP properties. To

build a SCPV model, it is necessary to begin with a CP invariant potential before SSB. There is a basis where CP
invariance implies that all parameters of the potential are real when written in terms of φ†

aφb. This is the real basis.
Let us suppose that a CP invariant NHDM potential in this basis has the form

V = V1(|φa|2) +W (φ†
aφb) , |φa|2 ≡ φ†

aφa . (3)

Hence we are avoiding terms such as |φ1|2φ†
1φ2. We also assume we are seeking neutral minima and terms such as

|φ†
1φ2|2 are equivalent to |φ1|2|φ2|2, hence we include them in V1.
This form of the potential covers a large class of theories such as the Weinberg model [3, 4] for SCPV and supersym-

metric models where the terms φ†
aφb, a 6= b, are only contained in the quadratic parts [7]. This can be also adapted

for potentials, without trilinear terms, made up of the neutral components of different multiplets.
Let us derive the extremum equations for (3),

∂V

∂φ∗
ak

= φak

∂V1

∂Kaa

+
∑

b6=a

φbk

∂W

∂Kba

= 0 . (4)

We have used the shorthand

Kba ≡ φ†
aφb . (5)

If we contract (4) with φ∗
ak, we obtain

∑

k=1,2

φ∗
ak

∂V

∂φ∗
ak

= Kaa

∂V1

∂Kaa

+
∑

b6=a

Kba

∂W

∂Kba

= 0 . (6)

The imaginary part of (6) yields

∑

b6=a

Im
(

Kba

∂W

∂Kba

)

= 0 . (7)

Spontaneous CP violation (SCPV) will be possible only if a solution for (7) is nontrivial, i.e.,

Im(Kab) 6= 0 for some a 6= b, (8)

without the need for any fine-tuning of parameters.
To comply with a successful EWSB, it is necessary that

∑

a

Kaa ≈ 246GeV√
2

, (9)
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which requires at least one of Kaa non-null. Let us choose, without loss of generality, K11 6= 0.
In the following, we will restrict the part of the potential that depends on the relative phases of the VEVs, i.e., W ,

to be either quadratic or quartic in the doublet fields. The quadratic case includes all general terms but the quartic

case excludes further terms such as φ†
1φ2φ

†
1φ3. To specify further the class of NHDM potentials we are considering

here, we use the following parametrization for the potential:

V =
∑

a

µa|φa|2 + 1
2

∑

a,b

cab|φa|2|φb|2 +W . (10)

The parameters (matrix) cab are real and symmetric.

A. Quadratic W

Let us choose

W =
∑

a<b

λabφ
†
aφb + h.c. =

∑

a,b

λabKba . (11)

The parameters λab (matrix) are real and symmetric, λba = λab, but we adopt λaa = 0. The terms in (11) are
generic quadratic terms containing φ†

aφb, a 6= b. We will refer to this choice as quadratic W . It is the case of some
supersymmetric models [7]. For special potentials with 4, 5 and 6 Higgs doublets, it was shown that SCPV is not
possible [7]. We are interested in generalizing this result to an arbitrary number of doublets.
Firstly, we compute the derivatives for (11):

∂W

∂Kba

= λab . (12)

Then, Eq. (6) yields

Kaa

∂V1

∂Kaa

+
∑

b

λabKba = 0 , a = 1, . . . , N . (13)

Its imaginary part gives

∑

b

λab Im(Kba) = 0 , a = 1, . . . , N . (14)

Instead of considering the real and imaginary parts independently, we can rewrite (13) as

v2a
∂V1

∂Kaa

+
∑

b

λabe
iθbavavb = 0 , a = 1, . . . , N , (15)

where we have used

Kab = vavbe
iθab , va ≡

√

Kaa , θab ≡ θa − θb . (16)

After some straightforward manipulation we can rewrite (15) as

∑

b

e−iθa
(

vavb
∂V1

∂Kaa

δab + λabvavb

)

eiθb = 0 , a = 1, . . . , N . (17)

In matricial notation the equation is equivalent to

B











1
eiθ21

...
eiθN1











=









0
0
...
0









, (18)
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where the N ×N real symmetric matrix B is defined by

(B)ab = vavb
∂V1

∂Kaa

δab + λabvavb . (19)

Explicitly,

B =











v21
∂V1

∂K11

λ12v1v2 · · · λ1,Nv1vN
λ21v2v1 v22

∂V1

∂K22

· · · λ2,Nv2vN
...

. . .
...

λN,1vNv1 λN,2vNv2 · · · v2N
∂V1

∂KNN











. (20)

Equation (18) implies that B as a function of {va} should be a singular matrix.
A noteworthy consequence of (18) should be pointed out: the N equations define N polygons in the complex plane.

Each polygon, corresponding to the a-th row of (18), is made up of N sides |(B)a1|, |(B)a2|, . . . , |(B)aN |, with (external)
angles θi,i−1 = θi1 − θi−1,1 between the i-th side |(B)ai| and the extension of the |(B)a,i−1| side; if some of (B)ai is
not positive, we need to consider the angle θi1 + π instead of θi1. Thus we have a nontrivial solution (SCPV) if we

can find a set of N polygons with the same angles θi,i−1. Notice that among of the 1
2
N(N − 1) sides (B)ai, only N

of them can vary independently due to the independent {va}.

B. Quartic W

Let us now choose

W = 1
2

∑

a,b

λab(φ
†
aφb)

2 = 1
2

∑

a,b

λabK
2
ba , (21)

where λba = λab, a 6= b, is real and λaa = 0. We will refer to this choice as quartic W . We assume terms such as
|φ†

aφb|2 = |Kab|2 are equivalent to KaaKbb for neutral VEVs and we include them into V1. Notice we are excluding

terms such as φ†
1φ2φ

†
1φ3 or φ†

1φ2φ
†
3φ4. This can be achieved by imposing a (Z2)

N symmetry on the potential. In this
case

∂W

∂Kba

= λabKba . (22)

Equation (6) is now

Kaa

∂V1

∂Kaa

+
∑

b

λabK
2
ba = 0 , a = 1, . . . , N . (23)

If we use (16), we obtain

v2a

( ∂V1

∂Kaa

+
∑

b

λabv
2
be

i2θba
)

= 0 . (24)

After some manipulations we can read

∑

b

e−i2θa
(

v2a
∂V1

∂Kaa

δab + λabv
2
av

2
b

)

ei2θb = 0 . (25)

We can rewrite the last equation as

B











1
ei2θ21

...
ei2θN1











=









0
0
...
0









, (26)
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where

(B)ab = v2a
∂V1

∂Kaa

δab + λabv
2
av

2
b . (27)

In complete analogy with Eq. (18), Eq. (26) defines N polygons with the only difference that now the angles are
2θa1 and the off-diagonal terms Bab depend quadratically on the VEVs. The N sides of the a-th polygon are
|(B)a1|, |(B)a2|, . . . , |(B)aN |, with angles 2θi,i−1 between the i-th side |(B)ai| and the extension of the |(B)a,i−1| side.
We may have a nontrivial solution (SCPV) if we can find a set of N polygons with the same angles 2θa1 and sides
defined by (B)ai.

C. Constraints from nontrivial angles

Let us analyze the polygon equations (18), and, equivalently, (26). The equations themselves imply B must be
singular:

rankB ≤ N − 1 . (28)

However, if at least one polygon angle is nontrivial (θ21 6= 0, π) the singularity is such that

rankB ≤ N − 2 . (29)

In fact, one nontrivial angle implies at least another nontrivial angle. The reason for (29) is that we can write the
first column of B as a linear combination of the N − 1 other columns as consequence of the real part of (18). For the
same reason, the imaginary part of (18) — which does not depend on the first column of B — allows us to write the
second column of B in terms of the N − 2 other columns to the right of the second column.
The equality in Eq. (28) can be recovered in the absence of SCPV where all eiθi1 = ±1, i.e., a degenerate polygon

confined to the real line. In this case, there is no relation among the rows of B, except from (28). Therefore, the
N equations corresponding to the N rows of B are independent and can be used to find the N quantities va. This
fact summarizes the relation between nontrivial angles (CP phases) and constraints on the sides (VEVs). These
relations constrain the moduli va and ultimately determines them. If there is not enough structure in the potential to
allow nontrivial polygons, then there would be no CP breaking extremum. In particular, for N = 2 with either only
quadratic or quartic potential, a two-sided polygon always resides in the real line and then SCPV is not possible.
For the simplest nontrivial polygon, i.e., a triangle, (29) is enough to find the nontrivial solution. To form a nontrivial

triangle (finite area) we need rankB = 1. The geometrical counterpart of such a requirement is that triangles with the
same external (or internal) angles must be similar. Conversely, similar triangles imply rankB = 1. This requirement
can be translated to the fact that any 2× 2 minor of the 3× 3 matrix B is zero. If we take the relations coming from
the vanishing of the three minors that only depend on one diagonal entry, then we get three equations that defines
v1, v2, v3. Once we get a solution for the VEVs (sides of the triangles) we easily find the solutions for the CP phases
(angles of the triangles). This solution is unique when it exists.
Polygons with the same external angles are no longer guaranteed to be similar for quadrilaterals or polygons with

more sides. The converse, however, remains true: if N similar and noncontractible N -gons are solutions for (18), then

rankB = 1 . (30)

This case is only possible if all λab have the same sign. The latter is just a necessary condition and, possibly for
N > 3, a solution satisfying (30) would require a special choice for the parameters of the potential; see Sec. II E.

D. Algebraic consequences

We have seen in (29) that nontrivial CP phases require rankB ≤ N − 2. Let us analyze its consequences.
Let us assume rankB = N − 2. That means that N − 2 rows of B are linearly independent. Let them be the first

N − 2 rows. Since B is symmetric, we can take the following set as the (N − 2)(N + 3)/2 independent elements of B:

Bai , a = 1, . . . , N − 2, i = 1, . . . , N (i ≥ a) . (31)

The elements Bab, with a, b > N − 2, can be written in terms of (31) as [10]

Bba = χT

b

(

B
(N−2)

)−1
χa , (32)
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where B
(N−2) is the upper-left (N − 2)× (N − 2) submatrix of B and

χa = (B1a,B2a, · · · ,BN−2,a)
T , a, b = N − 1, N . (33)

Equations (32) and (33) are the key equations in our discussion of whether a multi-Higgs supersymmetric theory can
support spontaneous CP violation or not. If rankB < N − 2, more elements can be written in terms of a smaller set
of independent elements. Equations (31) and (32) change accordingly. The extreme case of rankB = 1 is trivially
satisfied by (32).

E. Avoiding fine-tuning

Let us show here some situations that could lead to a fine-tuning of the parameters of the potential unless they are
imposed as a consequence of symmetries. For that, we should notice that the off-diagonal elements of B depend on
the VEVs either as λabvavb (quadratic W ) or λabv

2
av

2
b (quartic W ). The diagonal elements of B depends on the VEVs

in more complex ways. Let us assume quadratic W to be specific; we only need to replace va → v2a in the terms that
contain λab.
We know that for triangles (N = 3) Eq. (29) implies there is only one possible solution for Eq. (32). Let us think

in the case of the next simplest case: N = 4. To have polygons with nontrivial angles, we need rankB to be 1 or 2.
If rankB = 1 — the case of similar quadrilaterals — all rows of B are proportional to the first row. Then any minor
of order two (2× 2 submatrix) is null. In particular, we can find a 2× 2 submatrix above the diagonal that does not
contain elements from the diagonal of B itself. Such a minor is

det

(

B13 B14

B23 B24

)

= det

(

λ13 λ14

λ23 λ24

)

v1v2v3v4 = 0 . (34)

Therefore, if we require that all the VEVs va are nonzero, we are forced to have

det

(

λ13 λ23

λ14 λ24

)

= 0 . (35)

Such a relation can be satisfied only by fine-tuning the parameters unless one finds some symmetry which guarantee
this. Barring such possibilities, one can conclude that the only possibility for SCPV to occur for the case of four Higgs
doublets is to have rankB = 2; it is the maximal value where SCPV is possible. We still have the possibility to set
some VEVs to zero. But that means that the problem reduces effectively to considering an 3× 3 submatrix of B, i.e.,
triangles; see Sec. II F.
We can easily extend (34) to an arbitrary number N of doublets. Many submatrices of the type of (34) can be

constructed by drawing a square inside the upper-right triangle of off-diagonal terms. We can see that the largest of
such submatrices has size n× n for N = 2n or 2n+ 1. Therefore,

no fine-tuning and nonzero VEVs =⇒ rankB ≥ n , for N = 2n or N = 2n+ 1 . (36)

This condition, together with (29), reduces the number of cases we have to treat. In particular, for N > 3, similar
polygons can not be solutions to the extremization problem (18) [and (26)] if we avoid fine-tuning or null VEVs.

F. Null VEVs

Let us treat the case of null VEVs. Suppose vN = 0. Then the matrix B reduces from a N × N matrix to an
effective (N − 1)× (N − 1) matrix B

′ because the N -th row and the N -th column of B is now entirely null. If the rest
of the VEVs va are nonzero, we can use the argument used to obtain the constraint (29) and apply it to the effective
non-null submatrix B

′. We conclude that

rankB′ ≤ (N − 1)− 2 ; (37)

the rank of B′ is reduced by at least two units and the same conditions of Secs. II D and II E apply as if the relevant
quantity were B′. If a number p of VEVs are null, we can extract the effective submatrix B

′ of size m×m, m = N−p,
by eliminating the p rows and columns made entirely of zeros. If we require at least one nontrivial relative angle
(corresponding to two nonzero VEVs), we still need

rankB = rankB′ ≤ m− 2 . (38)

The condition (36) also changes to

no fine-tuning =⇒ rankB ≥ n , for m = 2n or m = 2n+ 1 . (39)
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III. APPLICATIONS TO NHMSSM

Let us show here that there can be no SCPV at tree level in N-Higgs-doublets supersymmetric extensions of the
SM if (i) we avoid fine-tuning of the parameters of the potential and (ii) the quartic terms come solely from D-terms.
The proof is essentially an application of the constraints explained in Sec. II D.
We consider two cases: (A) an arbitrary number of N = 2n Higgs doublets and (B) nf = 3 effective Higgs doublets

coming from the sleptons L̃i, i = 1, 2, 3, in addition to an arbitrary number of 2n Higgs doublets; the effective number
of doublets is N = 2n+ nf . The latter case is usually referred to as R-parity violating models [7].
In both types of models, we label the n+ nf (nf = 0 or nf = 3) doublets with hypercharge Y = −1 with indices

a = 1, . . . , n+ nf , and the n doublets with hypercharge Y = 1 with the indices a = n+ nf + 1, . . . , N ; N = 2n+ nf .

Moreover, for Y = 1 doublets we just denote Ha → φa while for Y = −1 doublets we associate Ha → φ̃a = iσ2φ
∗
a. All

the effective doublets have now hypercharge Y = 1 and they are all denoted by {φa}, a = 1, . . . , N ; N = 2n+ nf .

A. N = 2n Higgs doublets

Let us consider N = 2n Higgs doublets. We are assuming that the quartic part of the potential comes only from
the D-term

VD = 1
2
G
[

|φ1|2 + |φ2|2 + · · ·+ |φn|2 − |φn+1|2 − · · · − |φ2n|2
]2

, (40)

where G = (g2 + g′2)/4. We also assume the VEVs of the doublets do not break electric charge. The potential (40)
is translated, in the notation of (10), into

(cab) = G

(

An −An

−An An

)

, (41)

where An = An×n is an n × n matrix with (An)ab = 1 for all entries. The general potential will have the form (10)
with quadratic W as (11). Except for (cab), which is defined in (41), all parameters of the potential are generic as
long as they can provide a neutral vacuum and a bounded below potential.
One peculiarity of real potentials with quadratic W is that we can rewrite B in Eq. (19) as

B = diag(v1, v2, . . . , vN ) B̃ diag(v1, v2, . . . , vN ) , (42)

where

B̃ab = δab(µa +
∑

d

cadv
2
d) + λab . (43)

The matrix B̃ depends on the VEVs va only in the diagonal terms and such a dependence occurs only through the
terms

∑

d cadv
2
d. In our particular case, the matrix (cab) in Eq. (41) is so restrictive that it allows us to write

∑

d

cadv
2
d = ǫaf(v

2) , (44)

where ǫa = 1 for 1 ≤ a ≤ n and ǫa = −1 for n < a ≤ N . The quantity f(v2) is the combination

f(v2) ≡ G

n
∑

a=1

(v2a − v2n+a) . (45)

We will see that the dependence of B̃ only on the combination f(v2) is too restrictive to allow SCPV, unless a
fine-tuning of the parameters is allowed.
We first allow the possibility that some number p ≥ 0 of VEVs are null, and no more. Let us eliminate the null

rows and columns and extract the effective submatrix B
′ of size m × m, where m = N − p. The requirement of at

least one nontrivial CP phase imposes (38), i.e.,

r ≡ rankB = rankB′ ≤ m− 2 . (46)

The possibility that B′ has more null rows (columns) is excluded because that would require either more null VEVs
or entire rows of (λab) to be null.
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Let us rearrange the rows (columns) of B in such a way that the first m rows (columns) correspond to the rows
(columns) of B′. We also rearrange the rows (columns) of B′ in such a way that the first m − 2 rows (columns) are
linearly independent. We relabel µa, cab, λab accordingly. All this rearrangement maintains the diagonal entries of B
in the diagonal and we still have

Baa = v2a
[

µa + ǫaf(v
2)
]

, a = 1, . . . ,m , (47)

where f(v2) is given in (45) and ǫa = ±1.
Let us suppose now that m ≥ 3. Nontrivial CP phases are not possible for m = 1 or m = 2, even for generic

potentials with quadratic or quartic W . Take B
(r) as the r × r upper-left submatrix of B (or B′); r ≤ m− 2 by (46).

The matrix B
(r) is nonsingular by construction. Then a generalization of Eq. (32) applies at least to Bmm, Bm−1,m−1

and Bm−1,m, i.e.,

Bm−1,m−1 = χT

m−1(B
(r))−1χm−1 ,

Bm,m = χT

m(B(r))−1χm ,

Bm−1,m = χT

m−1(B
(r))−1χm ,

(48)

where

χa = (B1a,B2a, . . . ,Br,a)
T , a = m− 1 or m. (49)

We can also define χ̃a as

χ̃a ≡ (λ1a, λ2a, . . . , λr,a)
T , (50)

so that

χa = va diag(v1, v2, . . . , vr)χ̃a , a = m− 1,m . (51)

Then Eq.(48) can be rewritten as

v2m−1B̃m−1,m−1 = v2m−1 χ̃
T

m−1

(

B̃
(r)

)−1
χ̃m−1 ,

v2mB̃m,m = v2m χ̃T

m

(

B̃
(r)

)−1
χ̃m ,

vm−1vmλm−1,m = vm−1vm χ̃T

m−1

(

B̃
(r)

)−1
χ̃m ,

(52)

where

B̃
(r) =











µ1 + ǫ1f(v
2) λ12 · · · λ1r

λ21 µ1 + ǫ2f(v
2) · · · λ2r

...
...

. . .
...

λr,1 λr,2 · · · µr + ǫrf(v
2)











. (53)

Now we use the fact that vm and vm−1 are non-null by hypothesis. We then obtain

µm−1 + ǫm−1f(v
2) = χ̃T

m−1

(

B̃
(r)

)−1
χ̃m−1 , (54a)

µm + ǫmf(v2) = χ̃T

m

(

B̃
(r)

)−1
χ̃m (54b)

λm−1,m = χ̃T

m−1

(

B̃
(r)

)−1
χ̃m . (54c)

Notice that these three equations only depend on the VEVs through the combination in f(v2). Therefore if we solve
Eq.(54a) for f(v2) in terms of the parameters of the potential, Eqs. (54b) and (54c) will give us two relations between
the parameters of the potential. Such relations will be only satisfied by fine-tuning the parameters and is not stable
under radiative conditions. Therefore, we conclude that CP phases must vanish and hence there is no spontaneous
CP violation.
If r < m − 2 strictly, we can add to the list of equations in (54) m − 2 − r more relations coming from Eq. (32)

applied to the diagonal entries Baa, r < a ≤ m − 2. We can also add more relations associated to the off-diagonal
entries Bab, r < a ≤ m− 2, r < b ≤ m− 2, a < b. Then more relations have to be satisfied simultaneously by the only
combination in f(v2) and the fine-tuning is worsened.
Therefore, we conclude that the quartic terms — coming from D-terms — in supersymmetric multi-Higgs-doublet

extensions of the SM do not have enough structure to break CP spontaneously, independently of the number of
doublets N = 2n.
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B. R-parity violating models

Let us consider N = 2n+ nf doublets, nf = 3 coming from the sleptons L̃i, one for each family i; see Ref. [7].
We can still assume that the quartic terms, for neutral VEVs, comes solely from the D-term

VD = 1
2
G
[

n+nf
∑

a=1

|φa|2 −
N
∑

a=n+nf+1

|φa|2
]2

. (55)

The matrix (cab) is now

(cab) = G

(

An+nf
−A(n+nf )×n

−An×(n+nf ) An

)

. (56)

As in (41), the matrices An×m are n×m matrices where all entries are unity.

Now, the diagonal entries of B̃ in (43) still depends only on one combination of the VEVs,
∑

d

cadv
2
d = ǫaf(v

2) , (57)

where now

f(v2) ≡ G
[

n+nf
∑

a=1

v2a −
N
∑

a=n+nf+1

v2a

]

. (58)

The factors ǫa are ǫa = +1 for 1 ≤ a ≤ n + nf and ǫa = −1 for n + nf < a ≤ N . Therefore the arguments used
in Eqs. (46)–(54c) still apply and it is not possible to find solutions to the extremum equations with nontrivial CP
phases. Thus it is not possible to have SCPV in supersymmetric multi-Higgs extensions of the SM with spontaneous
R-parity violation.

C. 4-HMSSM

In this subsection, we illustrate the application of our technique to the case of 4-HMSSM (i.e. 4-Higgs-doublet
supersymmetric extension of the SM) [7]. In this case, the quartic part of the potential (40) is simply

VD = 1
2
G
[

|φ1|2 + |φ2|2 − |φ3|2 − |φ4|2
]2

. (59)

This is equivalent to considering the matrix (cab) as

(cab) = G







1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1






, (60)

where G ≡ (g21 + g22)/4. The function f (45) in this case is

f(v2) ≡ G[v21 + v22 − v23 − v24 ] . (61)

Allowing for null VEVs, we need at least three non-null VEVs to have at least two non-trivial CP phases. Therefore,
the effective non-null matrix B

′ would have size m = 3 or m = 4. For both cases, nontrivial CP phases requires
r = rankB ≤ m− 2. That in turn, implies the relations (54).
For m = 4 (no null VEVs) and rankB = 2, considering the first two rows of B to be linearly independent, we have

explicitly

µ3 − f(v2) =
(

λ13 λ23

)

(

µ1 + f(v2) λ12

λ21 µ2 + f(v2)

)−1 (
λ13

λ23

)

,

µ4 − f(v2) =
(

λ14 λ24

)

(

µ1 + f(v2) λ12

λ21 µ2 + f(v2)

)−1 (
λ14

λ24

)

,

λ34 =
(

λ13 λ23

)

(

µ1 + f(v2) λ12

λ21 µ2 + f(v2)

)−1 (
λ14

λ24

)

.

(62)
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For m = 4 and rankB = 1, (62) is replaced by

µ2 + f(v2) =
λ2
12

µ1 + f(v2)
, (63a)

µ3 − f(v2) =
λ2
13

µ1 + f(v2)
, (63b)

µ4 − f(v2) =
λ2
14

µ1 + f(v2)
, (63c)

and

λ23 =
λ12λ13

µ1 + f(v2)
, (64a)

λ24 =
λ12λ14

µ1 + f(v2)
, (64b)

λ34 =
λ13λ14

µ1 + f(v2)
. (64c)

For m = 3 and rankB = 1, assuming v4 = 0, the relations for B22 and B33 are the same as Eqs. (63a) and (63b);
the relation for B23 is the same as (64a). If other VEVs are null instead of v4, we obtain similar relations.
In all cases, fine-tuning is necessary to satisfy the requirements of nontrivial CP phases.

IV. CONCLUSIONS

To summarize, we have seen that the possibility of SCPV in NHDM potentials where complex combinations φ†
aφb

appear only on either quadratic (φ†
aφb) or quartic (φ†

aφb)
2 parts can be related to the existence of N nontrivial

polygons defined by a N × N real matrix B which is a function of the moduli |φa| = va as in (19) or (27). These
polygons generalize the triangle described in [4] for the Weinberg’s 3-Higgs-doublet model. For models with not too
large number of doublets, the characterization of the possible extrema through polygons should be still useful to guide
the search for solutions.
As a direct application of these ideas, we have shown that in arbitrary Higgs-doublets extension of MSSM, it is

impossible to break CP spontaneously at tree level unless we allow fine tuned relations between tree level parameters
of the theory. This result remains true even if the sneutrinos acquire VEVs so that R-parity is spontaneously broken.
This generalizes the earlier result in [7] for two or three pairs of Higgs doublets to the case with an arbitrary number
of them. A simple corollary of this result is that in susy left-right models with arbitrary number of bidoublets where
B− L is broken by B− L = 2 triplets, there is no spontaneous CP violation in the bidoublet sector. This result has
application to a solution of the strong CP problem without the need for an axion (see for instance [11]).
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Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp). C.C.N. also thanks
the Maryland Center for Fundamental Physics for the hospitality during the development of this work. The work of
R.N.M. was supported by the NSF grant PHY-0968854.

[1] T. D. Lee, Phys. Rev. D8, 1226-1239 (1973); Phys. Rep. 9, 143 (1974).
[2] G. Branco, L. Lavoura and J. P. Silva, “CP Violation,” Oxford University Press (1999); I. I. Bigi and A. Sanda, “CP

Violation,” Cambridge University Press (2000).
[3] S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).
[4] G. C. Branco, Phys. Rev. Lett. 44 (1980) 504; Phys. Rev. D 22 (1980) 2901.
[5] N. G. Deshpande and E. Ma, Phys. Rev. D 16 (1977) 1583.
[6] J. C. Romao, Phys. Lett. B 173 (1986) 309.
[7] M. Masip and A. Rasin, Phys. Rev. D 58 (1998) 035007 [arXiv:hep-ph/9803271]; Nucl. Phys. B 460 (1996) 449 [arXiv:hep-

ph/9508365]. Phys. Rev. D 52 (1995) 3768 [arXiv:hep-ph/9506471].



11

[8] A. Pomarol, Phys. Rev. D 47 (1993) 273 [arXiv:hep-ph/9208205].
[9] C. S. Aulakh, R. N. Mohapatra, Phys. Lett. B119, 136 (1982).

[10] See appendix B in I. P. Ivanov and C. C. Nishi, Phys. Rev. D 82 (2010) 015014 [arXiv:1004.1799 [hep-th]].
[11] R. N. Mohapatra, A. Rasin, Phys. Rev. D54, 5835-5844 (1996) [hep-ph/9604445].


	Introduction
	General multi-Higgs models and conditions for spontaneous CP violation
	Quadratic W
	Quartic W
	Constraints from nontrivial angles
	Algebraic consequences
	Avoiding fine-tuning
	Null VEVs

	Applications to NHMSSM
	N=2n Higgs doublets
	R-parity violating models
	4-HMSSM

	Conclusions
	Acknowledgments
	References

