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In this article we present a simple theoretical framework where the origin of the µ-term and
the matter-parity violating interactions of the minimal supersymmetric standard model can be
understood from the spontaneous breaking of new Abelian gauge symmetries. In this context the
masses of the Z′ gauge bosons, the M -parity violating scale and the µ-term are determined by the
supersymmetry breaking scale. The full spectrum of the theory is discussed in detail. We investigate
the predictions for the Higgs masses in detail showing that it is possible to satisfy the LEP2 bounds
even with sub-TeV squark masses. The model predicts the existence of light colored fields, lepton
and baryon number violation, and new neutral gauge bosons at the Large Hadron Collider.

I. I. INTRODUCTION

Whether low energy supersymmetry (SUSY) in the
guise of the minimal supersymmetric standard model
(MSSM) is a good description of nature or not is cur-
rently being aggressively tested at the Large Hadron Col-
lider (LHC). One thing that is certain is that it has
withstood the test of time as a strong candidate for
new physics in the minds of many due to its elegant so-
lution to the hierarchy problem, the unification of the
gauge couplings and its accommodation of a dark mat-
ter candidate. The current proliferation of experimen-
tal results make this an exciting time to consider non-
canonical SUSY phenomenologies, especially when such
phenomenologies stem from solutions to fundamental is-
sues in SUSY. For a review of the phenomenological as-
pects of the MSSM see Ref. [1].

In this paper we will address two such issues in the con-
text of a single model and outline some of its interesting
phenomenology. The first is the status of the baryon-
and lepton-number violating terms allowed by the gauge
symmetries of the MSSM but whose presence, in gen-
eral, would lead to unacceptably fast proton decay. The
second is the so-called µ-problem, referring to the only di-
mensionful parameter in the MSSM superpotential (the
mass term for the Higgsinos), whose value can be ex-
pected to be arbitrarily large but must be fixed at or
below the SUSY scale for successful electroweak symme-
try breaking.

Typically, one appeals to discrete symmetries to fix
both issues. Proton decay is typically assumed to be ab-
sent due to the discrete M -parity (or R-parity) symmetry
which forbids tree-level baryon and lepton number vio-
lating terms while also guaranteeing the stability of the

lightest supersymmetric particle (LSP). This has impor-
tant consequences for both colliders (detectable missing
energy) and cosmology (the LSP is a candidate for the
dark matter of the universe). Meanwhile, a discrete Z3

symmetry is typically imposed to forbid the bilinear µ-
term, which is replaced by singlet field, whose vacuum
expectation value (VEV) generates the µ-term after sym-
metry breaking. This model is referred to as the next
to minimal supersymmetric standard model (NMSSM)
and it and its deviations are reviewed in Ref. [2]. Such
a scenario expands the Higgs sector thereby potentially
changing expectation for collider physics and causing cos-
mological concerns related to domain walls.

Our approach in this paper is to understand the
possible origin of the discrete symmetries mentioned
above from the spontaneous breaking of local symme-
tries. While it is maybe true that this simply amounts
to replacing one symmetry by another, we think that
the corresponding Z ′ gauge bosons associated with lo-
cal symmetries allow for a better handle on testing such
ideas. Therefore, we propose a simple model where the
origin of the µ-term and the matter-parity violating inter-
actions of the MSSM can be understood from the spon-
taneous breaking of two new Abelian gauge symmetries:
U(1)B−L and U(1)S where only the third generation car-
ries U(1)S charge. In order to define an anomaly free
theory new colored triplets exotics are needed. B − L
is broken by the VEV of the “right-handed” sneutrino
giving rise to lepton number violating M -parity viola-
tion and U(1)S is broken by the VEV of a SM singlet, S,
which generates the µ-term. The new Z ′ associated with
U(1)S give rise to flavor violation without experimental
conflict. Symmetry breaking also allows for a consistent
scenario for fermion masses predicting the mixings be-
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tween the third generation and the others is very small.
The numerical predictions for the lightest Higgs boson
are investigated up to one-loop level showing the possi-
bility to satisfy the experimental bounds from the LEP2
experiment with squark masses below 1 TeV. Finally, we
make a brief discussion of how one could observe lepton
and baryon number violation at the LHC in agreement
with the experimental bounds on proton decay.

The remainder of this article is organized as follows:
In Section II we expand on the issues of M -parity and
the µ-term and past attempts to address them. In Sec-
tion III we propose our new theoretical framework where
both issues can be solved and discuss the necessary sym-
metry breaking in Section IV. The properties of the full
spectrum are presented in Section V, while in Section VI
the main phenomenological aspects are presented. Our
findings are summarizes in Section VII.

II. II. THE µ-PROBLEM AND M-PARITY

As mentioned above, different approaches to the µ-
problem and M -parity have significantly different conse-
quences and it’s especially the presence or absence of the
latter that answers one of the most important questions
of the MSSM: the stability of the LSP. A brief review is
therefore in order.

A. A. M-Parity Violating Interactions

The fate of M-parity in the MSSM has important cos-
mological and phenomenological implications. M-parity
is defined as M = (−1)3(B−L), where B and L stand for
total baryon number and lepton number, respectively. In
general, the MSSM contains lepton and baryon number
violating interactions in the superpotential:

WMV = εL̂Ĥu + λL̂L̂êc + λ
′
Q̂L̂d̂c + λ

′′
ûcd̂cd̂c(1)

In most phenomenological studies it is assumed that M -
parity is conserved by hand, i.e. the above interactions
are absent, or that only some of them are present: explicit
M -parity breaking. Since these terms affect the most
significant features of the MSSM, the origin of M -parity
conservation or violation must be understood dynami-
cally. It has long been realized that the simplest forum
for this is B − L symmetric theories [3]. Since M -parity
is a subgroup of B − L, at the B − L scale all the above
interactions are absent. Local B−L further requires the
existence of right-handed neutrinos for anomaly cancel-
lation which also provide the most minimal way of break-
ing B − L [4]: the VEV of the right-handed sneutrino1.

1 A scenario further motivated by string theory [5, 6]

Therefore, in the simplest theory of M -parity, it is spon-
taneously broken and the B-L and the M-parity violating
scales are determinate by the soft SUSY breaking scale.
As has been emphasized in Ref. [4] after symmetry break-
ing only bilinear lepton number violating interactions are
present and there are no dimension four contributions to
proton decay. For a review on proton decay see Ref. [7].

B. B. The µ-Problem and New Symmetries

The µ parameter is part of the M -parity conserving
MSSM superpotential:

WMC = YuQ̂Ĥuû
c + YdQ̂Ĥdd̂

c

+ YeL̂Ĥdê
c + µĤuĤd, (2)

and defines the mass of the Higgsinos and plays a very
important role in electroweak symmetry breaking.This
relates the Z boson mass (which we can use to define the
weak scale), the µ term and the soft terms in the Higgs
sector:

1

2
M2
Z = −|µ|2 −

(
m2
Hu

tan2 β −m2
Hd

tan2 β − 1

)
, (3)

where mHu and mHd are the soft terms for the MSSM
Higgses and tanβ = vu/vd. Notice that in order to satisfy
the above equation the second term on the right-handed
side must be negative and its magnitude must be larger
than the µ-term, for large tanβ, this translates into the
condition that µ must be smaller in magnitude than the
soft terms. At the same time µ is a mass dimensionful
parameter in the superpotential and in principle it could
be very large. This is the so-called µ-problem. From
chargino searches the µ lower bound is approximately
µ & 100 GeV.

Many scenarios have been proposed to explain the ori-
gin of a SUSY-scale µ-term [8–13]. In the NMSSM one
introduces a new singlet, S, and replaces the µ term in
the superpotential by the term λŜĤuĤd. Then, the µ-
parameter is defined by the VEV of S which is around
the SUSY scale. In order to achieve this scenario a new
discrete symmetry, a Z3 symmetry, is introduced which
forbids the mass term in the superpotential. See Ref. [2]
for a review of the NMSSM. However, the question of a
dynamical origin for the µ-term remains.

As in the M -parity case it is possible to find a gauge
origin to the µ-term by introducing a new abelian sym-
metry which is spontaneously broken at the TeV scale.
However, unlike B − L for M -parity, it is hard to pin-
point the simplest model. Various possibilities have been
investigated by many groups [10, 12]. Since the Z3 sym-
metry is replaced by a gauge symmetry, the cosmological
problems associated with the spontaneous breaking of the
discrete symmetry is avoided. We see such an approach
as appealing because it connects the µ term to the exis-
tence of a new gauge boson which could experimentally
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relate to the mechanism for the dynamical generation of
the µ-term.

Combining the two possible solutions, discrete and lo-
cal symmetries, to these two issues ofM -parity and the µ-
problem affords four different frameworks for approach-
ing these issues. Typically, most of the phenomenological
studies have been performed in a model where a Z2 (mat-
ter parity) and Z3 is assumed. A second possibility is a
simple extension of the model in Ref. [4], where M -parity
is spontaneously broken along with B−L and a Z3 sym-
metry is assumed to explain the µ-term. A third scenario
was quoted as an example in Ref. [10] where the gener-
ation of the µ-term is defined by the scale where a new
U(1)

′
symmetry is broken and a Z2 symmetry is assumed

to avoid fast proton decay. Finally, one can consider a
more complete framework with two Abelian symmetries
for understanding dynamically the generation of the M -
parity violating terms and the µ-term.

The difficulty in flagging a simplest gauge solution to
the µ-problem is due to three issues that usually arise.
Since the Higgs fields will now have a new charge, it is not
a priori clear that Yukawa couplings generating fermion
masses will be gauge invariant thus making fermion mass
generation non-trivial. Anomaly cancellation usually re-
quires the existence of new exotic color states. These
will either couple to matter and induce rapid proton de-
cay or form a separate sector with no couplings to matter
resulting in the lightest exotic being stable. The latter
scenario would lead to relic bound states, which could
disagree with current cosmological data. We have found
that several papers in the literature contain such traits,
with a noteworthy example of the last one being Ref. [11],
which solves both issues in a nice way but contains stable
colored particles.

Due to these possible complications, we take this op-
portunity to state our goals in addressing the µ-term:

• No dimensionful parameters in the superpoten-
tial which would affect the electroweak symmetry
breaking (EWSB) condition, Eq. (3). This includes
the µ-term as well as the ε-term.

• Explain the long lifetime of the proton.

• No stable colored fields.

• Generation of all fermion masses and mixings.

Now, we are ready to discuss the simplest theoretical
framework where these issues are addressed.

III. III. THEORETICAL FRAMEWORK

In order to investigate how M -parity violating terms
and the µ-term are generating dynamically we introduce
two extra Abelian symmetries, U(1)B−L and U(1)S . The
first is needed to understand the origin of M -parity while
the second symmetry governs how the µ-term is gener-
ated. Therefore, the model will be based on the local

gauge symmetry

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B−L ⊗ U(1)S (4)

Inspired by the 27 of E6, we introduce four new fields:
three generations of right-handed neutrinos necessary to
gauge B −L, S whose VEV generates the µ-term and T
and T̄ needed to cancel the U(1)S anomalies.

We assume a non-zero z charge (the charge under
U(1)S) only for the third generation so that only one
set of the latter three fields need be introduced (as op-
posed to one per generation). This further restricts the
coupling of the exotics to third generation fermions only,
significantly suppressing their contribution to proton de-
cay. The anomaly cancellation conditions can be satisfied
by the charges in Table I, where zu is the charge of ûc3 and
zT is the charge of T . These the are most general charges
given the additional assumption that the top mass term
is gauge invariant.

The most general superpotential that can be written with
these charges is:

W1 = Yt Q̂3 Ĥu û
c
3 + Yb Q̂3 Ĥd d̂

c
3

+ Yτ L̂3 Ĥd ê
c
3 + Yν3 L̂3 Ĥu ν̂

c
3

+ λ Ŝ Ĥu Ĥd + λ1 Ŝ T̂
ˆ̄T

+ λ2 Q̂3 L̂3 T̂ + λ3 û
c
3 d̂

c
3 T̂ + λ4û

c
3 ê

c
3

ˆ̄T

+ λ5 d̂
c
3 ν̂

c
3

ˆ̄T + λ6Q̂3Q̂3
ˆ̄T. (5)

The first and second rows allow for mass terms for the
third generation only, the third for trilinear terms that,
once S acquires a VEV, generate mass terms for the
MSSM Higgsinos and the colored exotics. The fourth
and fifth rows sport third generation baryon and lep-
ton number violating trilinear terms. These destabilize
the proton but the lifetime can still be safe as it is sup-
pressed by several CKM-like factors as will be discussed
in a later section. In addition, the typical MSSM non-
renormalizable terms which violate baryon and lepton
number are also allowed for the first and second genera-
tion.

This still leaves the first and second generation masses
to be desired. However, as can be appreciated from Ta-
ble I, there are still two degrees of freedom left: zT and
zu. This allows a choice between tree-level down- or up-
type quark masses. We opt for tree-level up-type quark
masses, which require zHu = 0 and yields the relationship
zT = −1− 2zu and new contributions to the superpoten-
tial of the form:

W2 = Y abu Q̂a Ĥu û
c
b + Y abν L̂a Ĥu ν̂

c
b

+ λabd
Ŝ

Λ
Q̂a Ĥd d̂

c
b + λabe

Ŝ

Λ
L̂a Ĥd ê

c
b, (6)

where a, b = 1..2 only. In addition to the tree-level up-
type masses, we can also generate down-type masses at
the non-renormalizable level for the first and second gen-
eration. At this point, the only aspect of the fermionic
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TABLE I: Field Content (a = 1..2).

Field SU(3) SU(2) U(1)Y U(1)B−L U(1)S
Q̂a 3 2 1/6 1/3 0

ûca 3̄ 1 -2/3 -1/3 0

d̂ca 3̄ 1 1/3 -1/3 0

L̂a 1 2 -1/2 -1 0

êca 1 1 1 1 0

ν̂ca 1 1 0 1 0

Q̂3 3 2 1/6 1/3 1+zT
2

ûc3 3̄ 1 -2/3 -1/3 zu
d̂c3 3̄ 1 1/3 -1/3 −zu − zT
L̂3 1 2 -1/2 -1 − 1+3ZT

2

êc3 1 1 1 1 1− zu + zT
ν̂c3 1 1 0 1 1 + zu + 2zT
Ĥd 1 2 -1/2 0 1

2 (−1 + 2zu + zT )

Ĥu 1 2 1/2 0 1
2 (−1− 2zu − zT )

Ŝ 1 1 0 0 1

T̂ 3̄ 1 1/3 2/3 zT
ˆ̄T 3 1 -1/3 -2/3 −1− zT

sector missing is the mixings between the third genera-
tion and the others two. Fortunately, we have yet another
charge degree of freedom.

There are three possible scenarios that give CKM-like
mixings: zT = −3, zu = 1; zT = 1, zu = −1; and
zT = −1, zu = 0. Unfortunately, the latter two solutions
introduce couplings between the colored exotic fields and
the first two generations making proton decay unsafe.
This leaves the first solution as the unique realistic case
with charges given by

Q̂3 ∼ −1, ûc3 ∼ 1, d̂c3 ∼ 2, L̂3 ∼ 4, êc3 ∼ −3,

ν̂c3 ∼ −4, Ĥd ∼ −1, Ĥu ∼ 0, Ŝ ∼ 1, T̂ ∼ −3, and ˆ̄T ∼ 2.

Then, the additional superpotential terms allowed are

W3 = λa7
Ŝ

Λ
Q̂3 Ĥu û

c
a + λa8

Ŝ4

Λ4
L̂a Ĥu ν̂

c
3

+ λa9
Ŝ2

Λ2
Q̂3 Ĥd d̂

c
a + λa10

Ŝ4

Λ4
L̂a Ĥd ê

c
3, (7)

where the first and third terms allow for a realistic CKM
matrix while the second and fourth terms are relevant
for the mixing matrix in the leptonic sector, the PMNS
matrix, given the appropriate scale, Λ. In order to
generate the right value for the mass of strange quark
(ms(MZ) ≈ 56 MeV, see for example Ref. [14]) we need
a ratio, 〈S〉 /Λ ≈ 10−4 − 10−3. This means one needs
new degree of freedom not very far from the TeV scale
to understand the origin of these higher-dimensional op-
erators. For example, one could integrate out some new
fermions and generate the mass terms listed above. In
this paper we will ignore the origin of these terms and

consider an effective theory where we can understand the
origin of the µ-term and M -parity violating interactions.

IV. IV. SYMMETRY BREAKING

Symmetry breaking proceeds through the following
VEVs:

〈
H0
u

〉
≡ vu/

√
2 and

〈
H0
d

〉
≡ vd/

√
2, responsi-

ble for EWSB; 〈ν̃c〉 ≡ vR/
√

2 (we will assume only one
generation of right-handed sneutrinos acquires a VEV),

breaking B−L [4]. The VEV 〈S〉 ≡ vS/
√

2 breaks U(1)S ,

and 〈ν̃〉 ≡ vL/
√

2 is also generated. Due to the non-
universality of the U(1)S charges, the minimization con-
ditions and Higgs spectrum depend on which generation
of right-handed sneutrino acquires a VEV. We will pro-
ceed in the most general way, designating the charges of
the right-handed and left-handed sneutrino as zνc and
zL, respectively. This is of course zero for the first two
generations and ∓4 for the third. We also elucidate the
relevant soft parameters:

−LSoft =
(
aνL̃Hu ν̃

c + aλS HuHd + h.c.
)

+ m2
S |S|

2
+m2

Hu |Hu|2 +m2
Hd
|Hd|2

+ m2
L̃

∣∣∣L̃∣∣∣2 +m2
ν̃c |ν̃c|

2
. (8)

The VEVs of the potential in the phenomenologically
appropriate limit of very small vL and Yν and in the one
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family approximation are

〈VF 〉 = −1

2
Yν λ vL vd vR vS +

1

4
λ2
(
v2
u + v2

d

)
v2
S

+
1

4
λ2 v2

d v
2
u, (9)

〈VS〉 =
1

2
m2
Huv

2
u +

1

2
m2
Hd
v2
d +

1

2
v2
Lm

2
L̃

+
1

2
v2
Rm

2
ν̃c

+
1

2
m2
Sv

2
S +

1√
2
aν vL vu vR −

1√
2
aλ vd vu vS ,

(10)

〈VD〉 =
1

32

(
g2

1 + g2
2

) (
v2
u − v2

d − v2
L

)2
+

1

32
g2
S

(
v2
S − v2

d + zνc v
2
R − zνc v2

L

)2
+

1

32
g2
BL

(
v2
R − v2

L

)2
. (11)

Focusing now on the scenario where the first or second
generation sneutrinos acquire a VEV and assuming that
vS , vR � vu, vd, so that the two sector decouple, yields
the following familiar MSSM-like results:

2b

sin 2β
= M2

Hu +M2
Hd

+ 2 |µ|2 , (12)

1

2
M2
Z = − |µ|2 −

(
M2
Hu

tan2 β −M2
Hd

tan2 β − 1

)
, (13)

where the difference from the MSSM is in the definition
of MHu and MHd

M2
Hd

= m2
Hd
− 1

8
g2
S

(
v2
S − v2 cos2 β

)
+

1

2
λ2v2 sin2 β,

(14)

M2
Hu = m2

Hu +
1

2
λ2v2 cos2 β, (15)

b =
aλ vS√

2
, (16)

µ =
1√
2
λ vS . (17)

Here, v2 ≡ v2
u + v2

d. The non-MSSM VEVs can be ap-
proximated as

v2
R = −8

m2
ν̃c

g2
BL

, (18)

v2
S = −

(
8m2

S + 4λ2v2 − g2
Sv

2 cos2 β
)

g2
S

, (19)

vL =
vR
(
λYν vd vS −

√
2 aνvu

)
2
(
m2
L̃
− 1

8g
2
BLv

2
R + 1

8 (g2
1 + g2

2) v2 cos (2β)
) .(20)

Notice that using Eqs. (17) and (19) one can understand
that the µ term generated after symmetry breaking is
determinate by the soft mass mS . Then, in this way one

can say that SUSY breaking scale sets the size of this
mass term in the MSSM superpotential.

The first two VEVs require the numerator to be posi-
tive meaning in general that m2

S ,m
2
ν̃c < 0, i.e. tachyonic

right-handed sneutrino and singlet masses. A tachyonic
S can easily be generated through a radiative mecha-
nism if its coupling to the exotic triplets is large enough,
while — for non-universal right-handed sneutrino masses
— a tachyonic right-handed sneutrino can be generated
via the mechanism discussed in Ref. [6]. Alternatively,
its possible that λ5 is of order one, which will drive the
right-handed sneutrino negative in the traditional way,
however this would require much smaller values for the
exotic triplet couplings to quarks to compensate for pro-
ton decay. Regardless of how the tachyonic masses are
generated, the VEVs and therefore the symmetry break-
ing scales are defined by the SUSY breaking mass scale.
This is very appealing since it tethers the correspond-
ing Z ′ masses to this scale as well, giving hope that the
underlying mechanism for the µ-term and M -parity vio-
lation can be tested at the LHC.

V. V. SPECTRUM

In this section we will outline the spectrum in the dif-
ferent sectors of this theory.

A. 1. Charged Fermion Masses

It is crucial to show that a consistent scenario for
fermion masses is possible in this context. A detailed
analysis is beyond the scope of this article but a brief
discussion is presented. The charged fermion masses are
generated after the symmetry breaking and are given by

Mu =

(
Au 0

Bu Cu

)
(21)

where Au = Yuvu/
√

2 is a 2 by 2 matrix, Bu =

λ7vSvu/2Λ is a 2 by 1 matrix, and Cu = Ytvu/
√

2. In
the case of the down sector we find

Md =

(
Ad 0

Bd Cd

)
(22)

where Ad = λdvsvd/2Λ is a 2 by 2 matrix, Bd =

λ9v
2
Svd/2

√
2Λ2, and Cd = Ybvd/

√
2. The mass matrix

for charged leptons reads as

Me =

(
Ae 0

Be Ce

)
(23)

with Ae = λevsvd/2Λ is a 2 by 2 matrix, Be =

λ10v
4
Svd/4

√
2Λ4, and Ce = Yτvd/

√
2.
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There are two interesting results we should discuss:
The first is that the new gauge symmetry U(1)S is ba-
sically a flavor symmetry since after symmetry breaking
one obtains specific textures for all fermion mass matri-
ces. Second, the fact that Bd,e � Ad,e � Cd,e implies
that the mass matrices for down-quark and charged lep-
tons can be diagonalized approximately by a matrix con-
taining a submatrix in the 2 by 2 sector. As we will
explain carefully later, this ensures that the new physi-
cal couplings of the gauge boson associated to U(1)S will
never induce large flavor violation is the down sector.
This is important for avoiding the strong bounds from
flavor changing neutral currents and proton decay. No-
tice that the same argument holds also for the up-quark
sector, but with a less strong hierarchy.

B. 2. Neutral Gauge Bosons

We have two new neutral gauge bosons associated with
the two new U(1)-groups. We proceed by assuming a
sneutrino VEV in the first or second generation only and
no kinetic mixing terms. The mass matrix for the four
neutral gauge bosons in the basis (BYµ ,W

3
µ , B

S
µ , B

BL
µ ) is

then
1
4g

2
1v

2 − 1
4g1g2v

2 1
4g1gSv

2
d 0

− 1
4g1g2v

2 1
4g

2
2v

2 − 1
4g2gSv

2
d 0

1
4g1gSv

2
d − 1

4g2gSv
2
d

1
4g

2
S

(
v2
d + v2

S

)
0

0 0 0 1
4g

2
BLv

2
R

 ,

(24)

where v2 ≡ v2
u + v2

d ≈ (246 GeV)2. Thus we can imme-
diately see that the BBLµ gauge boson does not mix with
the other neutral gauge bosons and decouples. We define
the mass eigenstate as ZBL with mass 1

4g
2
BLv

2
R. Rotating

by the weak angle θW projects out the photon zero-mode
which decouples and leaves the two-by-two mass matrix
in the basis (Z0

µ, B
S
µ )

M2
ZZ′

=

(
M2
Z0 ∆

∆ M2
ZS

)
, (25)

where

M2
Z0 =

1

4
v2
(
g2

1 + g2
2

)
, (26)

M2
ZS =

1

4
g2
S

(
v2
d + v2

S

)
, (27)

∆ = −1

4
v2
dgS

√
g2

1 + g2
2

= − gS√
g2

1 + g2
2

M2
Z0 cos2 β . (28)

This matrix describes the Z0
µ-BSµ mixing. The non-

diagonal element is proportional to vd and thus the mix-
ing will be suppressed for large values of tanβ. We label

the physical states Z and Z ′ whose masses are

M2
Z,Z′ =

1

2

[
M2
Z0 +M2

ZS ∓
√

(M2
Z0 −M2

ZS
)2 + 4∆2

]
,

(29)
which in the limit M2

Z0 �M2
ZS

simplifies to

M2
Z ≈ M2

Z0 +
g2
S

g2
1 + g2

2

M4
Z0 cos4 β

M2
Z0 −M2

ZS

, (30)

M2
Z′ ≈ M2

ZS −
g2
S

g2
1 + g2

2

M4
Z0 cos4 β

M2
Z0 −M2

ZS

. (31)

The mixing angle, defined such that

Z0
µ = Zµ cos θZZ′ − Z ′µ sin θZZ′ , (32)

ZSµ = Zµ sin θZZ′ + Z ′µ cos θZZ′ , (33)

θZZ′ =
1

2
arctan

(
2∆

M2
Z0 −M2

ZS

)
≈ gS√

g2
2 + g2

1

cos2 β ε+O(ε2). (34)

Here ε ≡ M2
Z0

M2
ZS

. Notice that the O(ε)-terms in M2
Z,Z′ and

θZZ′ have an additional suppression for large values of
tanβ. For a recent discussion of the constraints on θZZ′
see Ref. [15].

In order to illustrate the possible numerical values for
the mixing angle θZZ′ in Fig. 1 we show the values when
vS = 2 TeV and for different values of gS and tanβ. No-
tice that in the whole parameter space the mixing angle
is very small, i.e. θZZ′ < 10−3. Before going to the next
subsection, let us make some comments about the case
where the third generation sneutrinos acquires a non-zero
VEV. In that case we have the following Z-mass matrix 1

4v
2
(
g2

1 + g2
1

)
− 1

4v
2
dgS
√
g2

2 + g2
1 0

− 1
4v

2
dgS
√
g2

2 + g2
1

1
4g

2
S

(
v2
d + v2

s + 16v2
R

)
−gBLgSv2

R

0 −gBLgSv2
R

1
4g

2
BLv

2
R

 .

This is a more complicated case since the two new Z ′

bosons do mix, and they also mix with the SM Z-boson.
If one of the new Z-boson is much heavier than the other,
then it decouples and we are in the usual Z-Z’ scenario,
whereas if both have similar masses then one has a Z-Z’-
Z” situation where the expressions are more involved (see
Ref. [17] for an analysis of the kinetic and mass mixing
of three neutral gauge bosons). In any case, the mixing
of the heavy states with the SM Z-boson and the con-
tribution to the SM Z-mass are still dominated by the

quantity v2

v2S,R
cosβ in such a way that, as in the previous

case, they are suppressed for large values of tanβ and
vS,R.

The phenomenology of a B − L gauge boson has been
studied extensively in the literature and relevant bounds
can be found in Ref. [16]. The reach at the LHC for a
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FIG. 1: Values for the mixing angle θZZ′ for different values of tanβ and the gauge coupling gS when vS = 2 TeV.

B − L Z ′ is studied in Ref. [18] and the effects of SUSY
decays are shown in Ref. [19]. While a Z ′ that couples
only to the third family does not have as much coverage
it has been studied in Ref. [20].

C. 3. Z
′
Couplings to Fermions

Here we study the case where only the U(1)S Z ′ and
the SM Z boson mix. The neutral current interactions
of the fermions are described by the Lagrangian

−LZ′ = g1J
µ
YBµ + g2J

µ
3 W

3
µ + gSJ

µ
SB

S
µ + gBLJ

µ
BLB

BL
µ

= eJµemAµ + g0J
µ
0 Z

(0)
µ + gSJ

µ
SB

S
µ + gBLJ

µ
BLB

BL
µ

= eJµemAµ + gZJ
µ
ZZµ + gZ′J

µ
Z′Z

′
µ + gBLJ

µ
BLZ

BL
µ ,

(35)

where Jµ3 , J
µ
Y , J

µ
em, J

µ
0 are the well known SM currents.

The electromagnetic and B−L currents are not modified
whereas JµZ and JµZ′ are

JµZ = ūγµ (CuLPL + CuRPR)u

+ d̄γµ (CdLPL + CdRPR) d, (36)

JµZ′ = ūγµ (C ′uLPL + C ′uRPR)u

+ d̄γµ (C ′dLPL + C ′dRPR) d , (37)

where uT ≡ (u, c, t), dT ≡ (d, s, b) and the C matrices
are three-by-three charge matrices in flavor space. The
currents Jµ0 and JµS have the same structure, and the
relation between the C-matrices in the different bases is

the following

gZCx = g0C
0
x cos θZZ′ + gSC

S
x sin θZZ′ , (38)

gZ′C
′
x = −g0C

0
x sin θZZ′ + gSC

S
x cos θZZ′ , (39)

where x = uL, uR, dL, dR. The C0
x matrices are those

of the SM and are proportional to the identity (fla-
vor universal interaction), whereas the CSx matrices are
non-universal because only the third generation feels the
U(1)S interaction. So far we have only taken into ac-
count the effects of the EWSB in the gauge sector, with
the associated mixing among Z bosons, but mixing in the
fermion sector must also be taken into account. Starting
with the Yukawa matrices that have been introduced in
the previous sections and performing the usual rotation
to mass-eigenstates:

uL,R → UL,R uL,R, (40)

dL,R → DL,R dL,R, (41)

we end up with a Lagrangian with the usual CKM matrix

in the charged current sector VCKM = U†LDL (we neglect
possible extra phases). In the neutral current sector we
have the same structures (36) and (37), but making the
substitutions

CuL → C̃uL ≡ U†LCuLUL , (42)

and the same transformation holds for CuR, CdL and
CdR, and for the Z ′-current. As it is well-known, the
SM C0

x matrices remain unchanged by this rotation be-
cause they are proportional to the identity, but things
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are different for the CSx matrices, where we will have

C̃SdL = D†LC
S
dLDL ≈ CSdL , (43)

C̃SdR = D†RC
S
dRDR ≈ CSdR , (44)

C̃SuL = U†LC
S
uLUL ≈ VCKMCSuLV

†
CKM , (45)

C̃SuR = U†RC
S
uRUR . (46)

where we have neglected the non-diagonal elements in
the Yukawa couplings in the down sector involving the
third family and that the CSx matrices are zero except
for the (3,3) element. Thus one can see that, apart from
the very small mixing, the only new effect in the coupling
of the Z-boson to the down quarks is in the diagonal Zbb̄
coupling, which will be slightly modified. We have only
discussed things in the quark sector, but the leptonic
sector is identical.

In the up-quark sector things are different and FCNC
are in principle possible[

C̃SuL

]
ij

= (VCKM )i3
[
CSuL

]
33

(VCKM )∗j3 (47)

= −(VCKM )i3(VCKM )∗j3 , (48)[
C̃SuR

]
ij

= [UR]
∗
3i

[
CSuR

]
33

[UR]3j = − [UR]
∗
3i [UR]3j .

(49)

However, the argument given for the down-quark sector
can be applied also here in the limit where we neglect
the higher dimensional operators. Therefore the FCNC
in the up-quark sector are suppressed by the smallness of
the elements [Mu]i3 and [Mu]3i (i = 1, 2) in our model,
although in the left-handed sector this is related to the
CKM matrix. Thus we see that FCNC in the down-
quark and charged-lepton sector, where the strongest
constraints appear (K0−K̄0 mixing, µ−e conversion, ...)
[21] are suppressed in our model. In the up-quark sector
we have found that the FCNC are suppressed by the tiny
[Mu]i3,3i elements and also either by the small mixing

θZZ′ , or by the mass of the Z ′ boson. One can actually
check that the Yukawa suppression is so strong that even
for a Z ′ boson lighter than the SM Z boson one satisfies
the constraints coming from D0 − D̄0 mixing [22]. A de-
tailed analysis of all the constraints coming from flavor
violation will be published in a future publication.

D. 4. Higgs Sector

The Higgs sector is composed of the MSSM Higgs dou-
blets, Hu and Hd, and the singlet S. After symmetry
breaking lepton number is broken and the Higgses will
mix with the sneutrinos in the theory. Realistic neutrinos
masses constrain this mixing to be quite small hence de-
coupling the left-handed sleptons from the Higgs bosons
(although these effects can be important in the decays of
the LSP). Keeping this in mind, the physical Higgs sector
contains one CP-odd scalar A, similar to the MSSM but
now with some small admixture of S. It also contains

four CP-even scalars: h, the SM-like Higgs; and H1, H2

and H3. The latter three are some combination of the
MSSM Higgs bosons, S and the right-handed sneutrino.
These are labeled from lightest to heaviest. Of course,
there is also the charged Higgs of the MSSM, H±, whose
composition is purely MSSM Higgs bosons.

The mass of the CP-odd Higgs is given by

m2
A =

2b

sin 2β
+
b v2 sin 2β

2v2
S

. (50)

There are two limits in which the Z − Z ′ mixing is phe-
nomenologically viable: M2

Z0/M2
ZS
� 1 (Eq. (34)) which

implies v2/v2
S � 1 and when tanβ is quite large. Both

cases imply the second term in them2
A expression is negli-

gible therefore yielding mA ∼ 2 b/ sin 2β as in the MSSM.
This value is always positive. The goldstone boson asso-
ciated with the U(1)S and U(1)B−L will predominately
be composed of a linear combination of the CP-odd part
of S and ν̃c depending on the kinetic mixing between
those two sectors and which generation of right-handed
sneutrino acquires a VEV.
The most general mass matrix for the CP-even scalars,
M2

S , in the basis
√

2Re (Hd, Hu, S, ν̃
c), has the follow-

ing elements:

M2
S11

=
1

4

(
g2

1 + g2
2 + g2

S

)
v2 cos2 β + b tanβ, (51)

M2
S12

= −b+
1

8

(
4λ2 − g2

1 − g2
2

)
v2 sin 2β, (52)

M2
S13

=
1

4

(
4λ2 − g2

S

)
v vS cosβ − b v

vS
sinβ, (53)

M2
S14

= −1

4
gS (ξ gBL + zνc gS) vR v cosβ, (54)

M2
S22

=
1

4

(
g2

1 + g2
2

)
v2 sin2 β + b cotβ, (55)

M2
S23

= −b v
vS

cosβ + λ2vS v sinβ, (56)

M2
S24

= 0, (57)

M2
S33

=
1

4
g2
S v

2
S +

1

2
b
v2

v2
S

sin 2β, (58)

M2
S34

=
1

4
gS (ξ gBL + zνc gS) vR vS , (59)

M2
S44

=
1

4

(
z2
νcg

2
S + 2 ξ zνcgS gBL + g2

BL

)
v2
R, (60)

where ξ is the kinetic mixing between U(1)B−L and
U(1)S and zνc is the U(1)S charge of νc: zero for the
first two generations and negative four for the third. In
the case where these two parameters are zero, the right-
handed sneutrino has a mass equal to the ZBL mass:
gBLvR/2. For completeness, we also present the impor-
tant one-loop corrections, [23], to the upper-left three-
by-three matrix from top/stop loops presented in Ref. [2]
and repeated here only for the sake of consistent nota-
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tion. Some of these are implemented by the redefinition
in the tree-level mass matrix:

b→ b+
3

16
√

2π2
λY 2

t AtFtvS (61)

while the rest are given by

∆M2
S11

= − 3Y 2
t

32π2
µ2 Gt, (62)

∆M2
S22

=
3Y 2

t

32π2
× (63)(

−A2
t Gt + 4At Et + 4m2

t ln

(
M2

t̃1
M2

t̃2

m4
t

))
,

∆M2
S33

= − 3Y 2
t

64π2
λ2v2 cos2 β Gt, (64)

∆M2
S12

=
3Y 2

t

32π2
µ (At Gt − 2Et) , (65)

∆M2
S13

=
3Y 2

t

32
√

2π2
λ µ v cosβ (4Ft −Gt) , (66)

∆M2
S23

=
3Y 2

t

32
√

2π2
λ v cosβ (AtGt − 2Et) , (67)

where mt is the top mass, Mt̃1
and Mt̃2

are the lighter
and heavier stop masses respectively and At is the
trilinear-a term for the up-type Higgs and stops: VSoft ⊃
YtAt Q̃Hu t̃

c. Finally, the loop functions are given by

Ft =
1

M2
t̃2
−M2

t̃1

(
M2
t̃2

ln
M2
t̃2

M2
SUSY

−M2
t̃1

ln
M2
t̃1

M2
SUSY

)
− 1,

(68)

Gt = sin2 2θt̃

(
M2
t̃2

+M2
t̃1

M2
t̃2
−M2

t̃1

ln
M2
t̃2

M2
t̃1

− 2

)
, (69)

Et = −mt sin 2θt̃ ln
M2
t̃2

M2
t̃1

, (70)

where θt̃ is the mixing angle in the stop sector and MSUSY

is typically taken to be
√
Mt̃1

Mt̃2
. The physical stop

masses are derived by diagonalizing the stop mass matrix:

M2
t̃ =

(
m2
Q̃

+m2
t +DL mtXt

mtXt m2
t̃c

+m2
t +DR

)
, (71)

where

DL =

(
1

2
− 2

3
sin2 θW

)
M2
Z cos 2β, (72)

DR =
2

3
sin2 θWM

2
Z cos 2β, (73)

Xt = At − µ cotβ. (74)

The radiative correction to the Higgs mass is maximized
for maximal mixing, defined as Xt =

√
6MS , where

M2
S ≡ 1

2

(
M2
t̃1

+M2
t̃2

)
and we use notation similar to

Ref. [24].

The SM-like Higgs mass will depend on the various
parameters and the one-loop effects. In Fig. 2 we plot
curves of constant mh in the (a) tanβ − λ plane for µ =
400 GeV, (b) µ−λ plane for tanβ = 10 and (c) µ− tanβ
plane for λ = 0.1; the red curves correspond to the LEP2
bound of 114 GeV. We furthermore use aλ = 100 GeV,
gS = 0.4 and a top mass of 173 GeV. Dashed purple
curves of constant θZZ′ = 1 × 10−3 are also included as
a conservative upper bound. This calculation is done in
the maximal mixing scenario (Xt =

√
6MS), for mQ̃ =

mt̃c = 1000 GeV. This corresponds to mt̃1,2
∼ 800, 1180

GeV. We further assume no mixing between the B − L
and U(1)S sectors, i.e. no kinetic mixing and no VEV for
the third generation sneutrino. Varying aλ also has an
effect the contours, namely elongating the corners of the
curves in (a) in (b) towards the right and in (c) towards
the left but does not influence the maximum Higgs mass
value.

Fig. 2 indicates that the Higgs mass is maximized for
small λ and large tanβ. Small λ is one of the neces-
sary limits to recover the MSSM, while increased Higgs
mass with increased tanβ is a behavior shared with the
MSSM. In fact, in both cases, the maximum is at around
mh ∼ 130 GeV for this value of the stop masses and stop
mixing. The reason for the strong resemblance to the
MSSM is that the NMSSM-like parameter space that al-
lows for a Higgs mass surpassing the MSSM value—large
λ, relatively small µ and small tanβ—is ruled out here
due to θZZ′ , see Fig. 2. However it might be possible to
relax this bound on θZZ′ since ZS couples only to the
third generation. While a more detailed study of this
is required, this part of parameter space could open up
new NMSSM-like possibilities such as the lightest Higgs
being mostly singlet thereby pushing up the mass of the
SM-like Higgs. Since the mostly singlet Higgs and ZS
have correlated masses, this would further mean a light
ZS which could alleviate a tension that usually exists
in models with gauge origins for the µ term: a tension
between requiring a large vS for a large Z ′ mass and a
small vs for a small µ term required for reduced fine-
tuning since. We save further speculations for a future
work.

Finally, the mass of the charged Higgs is

m2
H± =

2b

sin 2β
+M2

W −
1

2
λ2v2, (75)

where MW is the mass of the W boson of the SM and
where in general the above expression could be negative
but will typically be dominated by the positive contribu-
tion from the b-term.
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FIG. 2: Curves of constant mh in the (a) tanβ − λ plane for µ = 400 GeV, (b) µ − λ plane for tanβ = 10 and (c) µ − tanβ
plane for λ = 0.1. We use aλ = 100 GeV, gS = 0.4 and a top mass of 173 GeV. Here B −L is broken by the second generation
sneutrino only and there is no mixing between the B − L and U(1)S sectors. We further assume the maximal mixing scenario
for the stop masses (Xt =

√
6MS) with the soft mass parameters mQ̃ = mt̃c = 1 TeV. The red contour is the LEP2 bound

on mh of 114.4 GeV and the dashed purple lines indicate constant θZZ′ = 10−3: a conservative upper bound on the Z − Z′
mixing.

E. 5. M-Parity Violation, Neutralinos and
Neutrinos

Above the SUSY scale, the B − L symmetry guaran-
tees M -parity conservation. Once the right-handed sneu-
trino acquires a VEV bilinear M -parity violating terms

(which break lepton number) are generated. Schemati-
cally, these include YνvR (LHu), the effective ε term and
the only significant contribution from the superpotential,
and gaugino-lepton mixing, e.g.

gBLvR

(
νcB̃BL

)
, g2vL

(
νW̃ 0

)
, g2vL

(
eW̃+

)
. (76)
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In addition to mediating the decay of the LSP,
these terms mix SUSY and SM particles contribut-
ing to the neutralino mass matrix. In the basis(
ν, νc, B̃BL, S̃, B̃S , B̃, W̃ , H̃d, H̃u

)
the neutralino mass

matrix is given by

Mχ0 =

(
MB-L Γ

ΓT Mχ0

)
, (77)

where

MB-L =

 0 Yνvu√
2
− gBLvL2

Yνvu√
2

0 gBLvR
2

− gBLvL2
gBLvR

2 MBL

 , (78)

Γ =

0 gSzLvL
2 − g1vL2

g2vL
2 0 YνvR√

2

0 gSzνvR
2 0 0 0 YνvL√

2

0 0 0 0 0 0

 , (79)

and

Mχ0 =



0 gSvs
2 0 0 −λvu√

2
−λvd√

2
gSvs

2 MS 0 0 − gSvd2 0

0 0 M1 0 − g1vd2
g1vu

2

0 0 0 M2
g2vd

2 − g2vu2

−λvu√
2
− gSvd2 − g1vd2

g2vd
2 0 −λvs√

2

−λvd√
2

0 g1vu
2 − g2vu2 −λvs√

2
0


,

(80)

where the lower four-by-four block of Mχ0 is the MSSM
mass matrix and MB-L is the B − L part and decou-
ples from the rest if the third generation sneutrino is
not VEVed and there is no significant (B − L)–S mix-
ing. If only one sneutrino acquires a VEV, there will
be one heavy right-handed neutrino and two with active
neutrino masses [25].

In the case of a third generation right-handed sneutrino
VEV, an additional M -parity violating term is generated,
which mixes the right-handed bottom quark (squark)
with the triplino (triplet) via the λ5 couplings in Eq. (5).
Unlike the M -parity violating terms which mix the neu-
trinos with the neutralinos, this mixing term does not
generate neutrino masses and can therefore be large in
comparison (although proton decay would then dictate
smaller baryon number violating interactions for the ex-
otic triplets). Such a large coupling would make this the
most important source of M -parity violation thereby pos-
sibly inducing new lepton and baryon or baryon number
violating decays for the LSP.

F. 6. Colored Triplet

As discussed earlier, a pair of colored triplets, T̂ ∼
(3̄, 1, 1/3, 2/3, zT ) and ˆ̄T ∼ (3, 1,−1/3,−2/3,−6 − zT ),

are necessary for U(1)S anomaly cancellation. The
triplinos acquire mass as do the Higgsinos, from the VEV
of S:

MT̃ = M ˜̄T
= λ1

vS√
2
. (81)

The triplets themselves also accrue mass from the soft
terms:

Lsoft ⊃ −m2
T |T |2 − m2

T̄ |T̄ |
2 +

(
BTT T̄ + h.c.

)
, (82)

where BT is the product of a trilinear a-term and the
VEV of S, and the D-terms. Their physical masses are

M2
T1,2

=
1

2

((
M2
T +M2

T̄

)
∓
√(

M2
T −M2

T̄

)2
+ 4|BT |2

)
(83)

where

M2
T = |λ1|2

v2
S

2
+ m2

T +
g2
BL

12
v2
R −

3

8
g2
Sv

2
S , (84)

M2
T̄ = |λ1|2

v2
S

2
+ m2

T̄ −
g2
BL

12
v2
R +

1

4
g2
Sv

2
S . (85)

and we neglect electroweak D-term contributions. Using
the couplings of the colored triplet fields with matter
allows us to write their interactions with the physical
fermions. For the triplet T :

λ2 U3i E3j ui ej T, (86)

λ2 D3i N3j di νj T, (87)

λ3 U
c
3i D

c
3j u

c
i d

c
j T. (88)

Here we use the standard convention for the diagonali-
sation of the fermion mass matrices, UTYuU

c = Y diagu ,

DTYdD
c = Y diagd , ETYeE

c = Y diage , NTYνN = Y diagν .

We also define V = U†D and VPMNS = E†N . In the
case of the field T̄ we find the following interactions:

λ4 U
c
3i E

c
3j u

c
i e

c
j T̄ , (89)

λ5 D
c
3i N

c
3j d

c
i ν

c
j T̄ , (90)

2λ6 U3i D3j uidj T̄ . (91)

We are now ready to study the proton decay aspect of
this theory in the next section.

VI. VI. PHENOMENOLOGICAL ASPECTS

A. A. Proton Stability

In the previous section we have discussed the main
properties of the interactions of the colored fields, T and
T̄ . Integrating out the Higgs T and using the above in-
teractions we find that the amplitude for p → π0e+

α is
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given by

AT (p→ π0e+
α ) ∼ λ2λ3

M2
T

U c31 D
c
31 U31 E3α < 10−30 GeV−2.

(92)
Assuming MT = 1 TeV, U c31 = U31 = Dc

31 = E3α ≈
V 13
CKM , one gets the bound λ3λ2 < 10−12. One can do

something similar using the bound on the decay p →
K+ν̄i:

AT (p→ K+ν̄i) ∼
λ2λ3

M2
T

U c31 (Dc
31 D32 +Dc

32D31)N3i

< 10−30 GeV−2. (93)

The field T̄ can mediate proton decay as well. For the
channels p→ π0e+

α the amplitude reads as

AT̄ (p→ π0e+
α ) ∼ 2λ4λ6

M2
T̄

U c31 D31 U31 E
c
3α < 10−30 GeV−2.

(94)
Then, one gets the bound λ4λ6 < 5 × 10−13 if MT̄ = 1
TeV and assuming U c31 = D31 = U31 = Ec3α ≈ V 13

CKM .
The same happens to the amplitude

AT̄ (p→ K+ν̄i) ∼
2λ6λ5

M2
T̄

U31 (D32 D
c
31 +D31D

c
32)N c

3i

< 10−30 GeV−2. (95)

Notice that it is difficult to set the bounds on the cou-
plings, λ2, ..., λ6 depend on the size of the elements of
flavor matrices for all quarks and leptons. Since the mix-
ing between the third generation and the others two is
very small in the down quark and charged lepton sec-
tors, Dc

3i = D3i = E3i = Ec3i ≈ δ3i, and the bounds
discussed above can be avoided. However, one has to in-
vestigated the bounds coming from proton decay at loop
level. It is important to notice that (V ∗CKM )i3 ≈ U3i

and N3i ≈ (VPMNS)3i, and one has contributions to the
channel p→ π+ν̄ at two loop level:

A(p→ π+ν̄) ∼ 2λ6λ2

(16π2)2M2
Ti

(
V 13
CKM

)3
< 10−30 GeV−2.

(96)
In the case of p→ K+ν̄ one gets

A(p→ K+ν̄) ∼ 2λ6λ2

(16π2)2M2
Ti

(
V 13
CKM

)2
V 32
CKM

< 10−30 GeV−2. (97)

Now, using this equation one can set a bound to the
product: λ2λ6 < 10−12. Unfortunately, the bounds on
λ3, λ4 and λ5 depend of unknown mixing matrices U c

and N c.

B. B. Baryon and Lepton Number Violation at the
LHC

In this model M -parity is spontaneously broken af-
ter symmetry breaking and one expects the typical sig-
nals for bilinear R-parity violation. In this subsection
we will focus mainly on the properties of the new ex-
otic fields needed to define an anomaly free theory. The
high energy analogue of the proton decay mediated by
the new exotic colored triplets is potential exciting sig-
nals of baryon and lepton number violation at the LHC.
While studies have shown that typically detecting lepton
number violation at LHC is manageable, in this case it
will be much more challenging since the exotic triplets
couple only to the tau, which can decay hadronically, ob-
scuring its lepton number. Detecting lepton number vi-
olation would then crucially depend on how well one can
see the τ leptons. Furthermore observing baryon number
violation is always tricky at the LHC due to lack of in-
formation on the initial and final states. Specifically, the
baryon number of the initial state can have one of five
values: 0 for two gluons or for q̄q, ±1/3 for a gluon and a
quark and ±2/3 for two quarks. Therefore, one must be
able to observe a final state with a baryon number differ-
ent than these: an insurmountable task when observing
light jets. Fortunately, the fact that the exotics T and
T̄ couple purely to the third generation of quarks and
leptons in the flavor basis helps here since it is possible
to tag tops and bottoms. While such issues require an
in-depth study, we shall proceed by simply elucidating
the processes that may be amiable to such a study.

Production of the colored triplets in the most effi-
cient manner proceeds through pair production via gluon
fusion. This is of course a strong process with large
cross sections, equivalent to squark pair production from
gluon fusion. Decay proceeds through the coupling to
third generation matter; the possible final states violat-
ing baryon and lepton number are

gg → Ti T
∗
i → t t b τ and gg → Ti T

∗
i → t b b ν,

where baryon and lepton number are both violated by
one unit, as expected from proton decay operators. The
decay width of the colored triplets depend on the size
of the relevant Yukawa couplings discussed in the section
about proton decay. Then, one can have different scenar-
ios for given values of λ2, λ3, λ4, λ5, and λ6 couplings. For
example, one can have a scenario where the main decays
are into quarks and charged leptons if λ2 and λ5 are sup-
pressed. As for detectability, in principle at least baryon
number violation can be observed in this process since
the final baryon number of ±1 is different than any of
the initial state baryon number possibilities listed above.
However, this is crucially dependent on correctly identi-
fying that these are all like-sign quarks. It goes without
saying that lepton number violation can only be mea-
sured in the τ channel. A detailed analysis of the signals
is beyond the scope of this article.
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VII. VII. SUMMARY AND OUTLOOK

We have proposed a simple model where the origin of
the µ term and the matter-parity violating interactions
of the MSSM can be understood from the spontaneous
breaking of two new Abelian gauge symmetries. We have
found the following results:

• The new symmetries are U(1)B−L and U(1)S ,
where the latter is relevant only to the third gen-
eration. In order to satisfy U(1)S anomalies new
exotics, the colored triplets T and T̄ , are needed.

• The local B − L gauge symmetry is broken by the
VEV of the “right-handed” sneutrinos giving rise
to lepton number violating M -parity violation and
U(1)S is broken by the VEV of S, generating the
µ-term.

• The new Z ′ associated to U(1)S gives rise to flavor
violation without conflict with experiments.

• We have shown that it is possible to have a con-
sistent scenario for fermion masses after symme-
try breaking. In this case one has well-defined tex-
tures for charged fermion masses and the mixings
between the third generation and the others is very
small.

• The numerical predictions for the lightest Higgs
boson have been investigated up to one-loop level

showing the possibility to satisfy the experimen-
tal bounds from LEP2 experiment. We have found
that the upper bound on the lightest Higgs mass is
mh ∼ 130 GeV if the stop masses are below 1 TeV.

• We made a brief discussion of how one could ob-
serve lepton and baryon number violation at the
LHC in agreement with the experimental bounds
on proton decay.

In our opinion this framework opens up the possibility
to test the origin of the MSSM interactions (µ term and
lepton number violating interactions) at the LHC. The
collider signals and the predictions for fermion masses
will be investigated in a future publication.
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