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Abstract

We present next-to-next-to-leading-order (NNLO) results for an exclusive soft function that ap-

pears in a recently developed factorization theorem for transverse momentum distributions. The

factorization theorem, derived using the Soft Collinear Effective Theory, involves both a soft func-

tion and unintegrated nucleon distribution functions fully differential in momentum coordinates.

The soft function is given by the vacuum matrix element of soft Wilson lines and is also fully differ-

ential in all components. We give results and relevant technical details for the NNLO calculation of

the soft function, including finite parts, and derive the corresponding anomalous dimension. These

results are necessary for achieving low transverse momentum resummation at next-to-next-to-

leading-logarithmic accuracy in this effective field theory approach with unintegrated distribution

functions.
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I. INTRODUCTION

Factorization plays a crucial role in collider physics by allowing for a more predictive

framework through the separation of perturbative and non-perturbative effects. For pro-

cesses such as fully inclusive Drell-Yan production of lepton pairs, factorization expresses the

theoretical prediction as the convolution of a perturbatively calculable partonic cross-section

with universal non-perturbative parton distribution functions (PDFs). Large logarithms of

the hard and soft scales are resummed by evolving the PDFs from ΛQCD up to the hard scale,

of order the invariant mass of the final-state leptons, via the DGLAP renormalization-group

equations. For more exclusive processes, restrictions on the final state can introduce new

functions associated with intermediate momentum scales. In such cases, additional resum-

mation is required and often new non-perturbative functions beyond the standard PDFs can

arise.

An important example of such an observable is the low transverse momentum (pT ) dis-

tribution of electroweak gauge bosons and the Higgs boson. It plays an important role in

the precision measurement of the W -boson mass, Higgs boson searches, tests of perturbative

Quantum Chromodynamics (QCD), and in probing non-perturbative transverse momentum

dynamics in the nucleon. For perturbative values of pT , three distinct scales appear in this

problem, M ≫ pT ≫ ΛQCD, leading to a more intricate factorization formula. Large log-

arithms of M/pT and pT/ΛQCD must be resummed. In the non-perturbative region where

pT ∼ ΛQCD, new non-perturbative structures that probe transverse momentum dynamics in

the nucleon appear.

Low pT distributions have been extensively studied in the traditional QCD literature [1–

12, 35] and have also been explored [13, 14] in the context of the Soft-Collinear Effective

Theory (SCET) [15–17]. Recently, a new approach, based on SCET and on fully uninte-

grated nucleon distribution functions, was developed in Refs. [18–20], resulting in a new

factorization and resummation theorem for low-pT distributions. This approach allows one

to predict the perturbative pT distribution entirely in terms of perturbatively calculable

functions and the standard PDFs, avoiding the difficulties in matching the low and high

pT regions [11, 21] associated with treating the Landau pole in traditional approaches. The
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factorization theorem in this new approach takes the schematic form

d2σ

dp2T dY
∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1, (1)

where H denotes a hard function, B̃n,n̄ are Impact-parameter Beam Functions (iBFs), and

S−1 is the Inverse Soft Function (iSF). All objects have well-defined operator definitions,

as shown in Refs. [18, 19]. The hard function H is perturbatively calculable and encodes

hard physics of the Drell-Yan production vertex. The iBFs are fully unintegrated nucleon

distribution functions and the soft function S is given by the vacuum matrix element of soft

Wilson lines. The iSF S−1 appears instead of S because of zero-bin subtractions [22–24],

necessary to avoid double counting the soft region, as explained in Refs. [18, 19]. Similar

soft-subtractions [25, 27] appear in the formalism based on transverse-momentum dependent

PDFs (TMDPDFs) [25–35]. For non-perturbative values of pT , the iBFs and the iSF are

non-perturbative functions that encode the physics of non-perturbative pT emissions and

transverse momentum dynamics in the initial state nucleons. For perturbative values of pT ,

the iBFs describe the evolution and shattering of the initial state nucleon into an initial

state beam-jet of high energy pT radiation. Analogous beam functions were first shown

to arise in other contexts [36, 37] and correspond to a special case of the iBF. The iSF

describes the emission of low energy pT radiation from the initial states. In the standard

approaches, rapidity divergences arise in perturbative computations of the TMDPDFs that

are not regulated in dimensional regularization and are instead regulated with additional

external regulators. In contrast, the iBF, which is more differential in momentum coordinates

than the TMDPDF, can be computed in standard dimensional regularization with rapidity

divergences regulated by the physical kinematics of the process.

For perturbative values of pT , the iBFs can be perturbatively matched onto the standard

PDFs, thus factorizing the non-perturbative dynamics of the initial state nucleon from the

perturbative pT emissions. In this case, the factorization theorem for the cross-section,

differential in the pT and rapidity (Y ) of the electroweak gauge boson, takes the form

d2σ

dp2T dY
=

π2

Nc

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× Hq
Z(x1x2Q

2, µQ;µT ) G
qrs(x1, x2, x

′
1, x

′
2, pT , Y, µT )fr(x

′
1, µT )fs(x

′
2, µT ),

(2)

where Q denotes the hadronic center of mass energy and the Transverse Momentum Function
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(TMF) function Gqrs is given by

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT ) =

∫

d2b⊥
(2π)2

J0

[

b⊥pT
]

∫

dt+n dt
−
n̄ In;qr(

x1

x′
1

, t+n , b⊥, µT )

× In̄;q̄s(
x2

x′
2

, t−n̄ , b⊥, µT )S
−1(x1Q− eY

√

p2
T +M2 −

t−n̄
x2Q

, x2Q− e−Y
√

p2
T +M2 −

t+n
x1Q

, b⊥, µT ).

(3)

The functions In;qr and In̄;qs are Wilson coefficients that arise from the perturbative match-

ing of the iBFs onto the PDFs and are given by the finite part of the iBF computed in

pure dimensional regularization. The leading-order (LO) and next-to-leading-order (NLO)

expressions for the iBFs and the iSF were computed in Ref. [19] and were used to calculate

the next-to-leading-log (NLL) perturbative pT spectrum for the Z-boson. A resummation

at the next-to-next-leading-log (NNLL) level requires a computation of the iBFs and the

iSF at next-next-to-leading-order (NNLO) in perturbation theory.

In this paper, we take the first step towards achieving a NNLL resummation of the Drell-

Yan pT -spectrum, using the effective field theory approach with unintegrated distribution

functions, by computing the soft function S that appears in Eqs. (2) and (3) at NNLO. We

perform several consistency checks on our calculation. Both the result for this exclusive soft

function, and the techniques used in deriving it, should be of use in other investigations of

resummation to high accuracy within effective field theory. Recently [38–41], two-loop results

for a related soft function that appears in thrust distributions [42–51] of e+e− collisions were

given, demonstrating the the arising need for studying higher-order corrections to multi-scale

objects appearing in factorization theorems. Our paper is organized as follows. We formulate

the problem and introduce our notation in Section II. We present both the techniques for

and results of our calculation, including a comparison with known results, in Section III.

Finally, we conclude in Section IV.

II. NOTATION AND NLO RESULTS

The operator definition of the soft function in position space is given by

S(b, µ) =
1

Nc
Tr〈0|T̄ [S†

nSn̄](b) T [S
†
n̄Sn](0)|0〉, (4)
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where Nc = 3 denotes the number of colors. Sn,n̄ denote soft Wilson lines along the nµ, n̄µ

directions respectively and are defined as

Sn = P exp

[

ig

∫ 0

−∞

ds n · As(x+ sn)

]

, S†
n = P̄ exp

[

−ig

∫ 0

−∞

ds n · As(x+ sn)

]

, (5)

with analogous definitions for Sn̄ and S†
n̄. The four-vectors nµ, n̄µ are light-like and satisfy

n · n̄ = 2. The symbols P, P̄ denote path-ordering and anti-path-ordering respectively, and

similarly T , T̄ denote time-ordering and anti-time-ordering.

One can define a hybrid soft function with light-cone momentum coordinates and position

space impact-parameter coordinates as the Fourier transform of S(b, µ) with respect to the

light-cone coordinates as

S(q−, q+, b⊥, µ) =

∫

db+db−

16π2
eiq

−b+/2eiq
+b−/2 S(b, µ), (6)

It is this hybrid soft function that appears in the factorization theorem in Eq. (2). Similarly,

the full momentum space soft function is defined as

S(q, µ) = 2

∫

dd−2b⊥
(2π)d−2

ei~q⊥·~b⊥ S(q−, q+, b⊥, µ) (7)

or equivalently, is related to the full position space soft function in the standard manner

S(q, µ) =

∫

ddb

(2π)d
eiq·b S(b, µ). (8)

We will present results for the exclusive NNLO position-space soft function S(b, µ) and

the hybrid impact-parameter space soft function S(q−, q+, b⊥) that appears directly in the

factorization theorem of Ref. [19]. The momentum-space soft function S(q) of Eq. (8) is

used in intermediate stages of the calculations, and is simple to derive using the presented

formulae. We note that the position-space soft function of Eq. (4) by definition is equal to a

gauge invariant soft function but evaluated in covariant gauges. In non-covariant or singular

gauges such as the light-cone gauge, additional transverse gauge links are required in the

definition of the soft function [52, 53]. These transverse gauge links are unity in covariant

gauges and thus do not appear in the definition of Eq. (4). Similar arguments also appear

in Ref. [26, 30] where the TMDPDFs were calculated in non-singular gauges. We restrict

our analysis here to covariant gauges so that gauge invariance is fully respected.
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A. Renormalization

Here we discuss the renormalization conventions for the hybrid impact-parameter space

soft function S(q−, q+, b⊥, µ) that appears in the factorization theorem of Eq. (2) and for

the position-space soft function S(b, µ) of Eq. (4). We regulate infrared and ultraviolet

divergences using pure dimensional regularization with d = 4 − 2ǫ and work in the MS

renormalization scheme.

The renormalized hybrid-impact-parameter space soft function S(q−, q+, b⊥, µ) is related

to the bare function Sb(q
−, q+, b⊥) as

S(q−, q+, b⊥, µ) =

∫

dω1

∫

dω2 Z−1
S (q− − ω1, q

+ − ω2, µ) Sb(ω1, ω2, b⊥),

(9)

where ZS(q
− −ω1, q

+ − ω2, µ) is the ultraviolet renormalization constant with an expansion

around the ǫ → 0 limit given by

ZS(ω1, ω2, µ) = δ(ω1)δ(ω2) +

∞
∑

k=1

1

ǫk
ZS,k(ω1, ω2, µ),

Z−1
S (ω1, ω2, µ) = δ(ω1)δ(ω2) +

∞
∑

k=1

1

ǫk
Z̄S,k(ω1, ω2, µ).

(10)

The ZS,k and Z̄S,k can be related to each other from the condition
∫

dω′
1

∫

dω′
2 Z−1

S (ω1 − ω′
1, ω2 − ω′

2, µ)ZS(ω
′
1 − ω′′

1 , ω
′
2 − ω′′

2 , µ) = δ(ω1 − ω′′
1)δ(ω2 − ω′′

2).

(11)

The bare and renormalized strong couplings αb
s and αs respectively are related by the renor-

malization constant Zg as

αb
s = µ2ǫ

0 Z
2
gαs(µ), Zg = 1 +

∞
∑

j=1

[αs(µ)

π

]j

zgj , µ2
0 =

µ2

4πe−γE
. (12)

where zg1 = (NF/12− 11CA/24)/ǫ at NLO.

The renormalization group evolution of the soft function is determined by the equation

µ
d

dµ
S(q−, q+, b⊥, µ) =

∫

dω1

∫

dω2 γS(q
− − ω1, q

+ − ω2, µ) S(ω1, ω2, b⊥, µ),

(13)
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where the anomalous dimension is defined as

γS(ω1, ω2, µ) = −

∫

dω′
1

∫

dω′
2 Z

−1
S (ω1 − ω′

1, ω2 − ω′
2, µ) µ

d

dµ
ZS(ω

′
1, ω

′
2, µ).

(14)

From the finiteness of the anomalous dimension it can be shown that at any order in per-

turbation theory it is given by

γS(ω1, ω2, µ) = −2αs
∂

∂αs
Z̄S,1(ω1, ω2, µ) = 2αs

∂

∂αs
ZS,1(ω1, ω2, µ). (15)

The αs expansion of the anomalous dimension is defined as

γS(ω1, ω2, µ) =

∞
∑

n=1

[αs(µ)

π

](n)

γ
(n)
S (ω1, ω2, µ) (16)

Including the αs expansion for each pole term in Eq. (10), we can write an expansion for

ZS(ω1, ω2, µ) and Z−1
S (ω1, ω2, µ) in αs and ǫ as

ZS(ω1, ω2, µ) = δ(ω1)δ(ω2) +
∞
∑

k=1

∞
∑

j=1

1

ǫk

[αs(µ)

π

]j

Z
(j)
S,k(ω1, ω2, µ).

Z−1
S (ω1, ω2, µ) = δ(ω1)δ(ω2) +

∞
∑

k=1

∞
∑

j=1

1

ǫk

[αs(µ)

π

]j

Z̄
(j)
S,k(ω1, ω2, µ).

(17)

The renormalized and bare soft functions have perturbative expansions given by

S(q−, q+, b⊥, µ) =
∞
∑

j=0

[αs(µ)

π

]j

S(j)(q−, q+, b⊥, µ),

Sb(q
−, q+, b⊥) =

∞
∑

j=0

[αb
s

π

]j

S
(j)
b (q−, q+, b⊥).

(18)

The renormalized soft function can be obtained at each order in perturbation theory by

using Eq. (12) to write the bare coupling in terms of the renormalized coupling and then

equating powers of αs in Eq. (9). The resulting consistency conditions at LO, NLO, and
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NNLO are given by

S(0)(q−, q+, b⊥, µ) = S
(0)
b (q−, q+, b⊥) = δ(q−)δ(q+),

S(1)(q−, q+, b⊥, µ) = µ2ǫ
0 S

(1)
b (q−, q+, b⊥) +

∞
∑

k=1

1

ǫk
Z̄

(1)
s,k (q

−, q+, µ),

S(2)(q−, q+, b⊥, µ) = 2zg1µ
2ǫ
0 S

(1)
b (q−, q+, b⊥) + µ4ǫ

0 S
(2)
b (q−, q+, b⊥)

+

∞
∑

k=1

1

ǫk
Z̄

(2)
S,k(q

−, q+, µ)

+ µ2ǫ
0

∫

dω1

∫

dω2

∞
∑

k=1

1

ǫk
Z̄

(1)
S,k(q

− − ω1, q
+ − ω2, µ) S

(1)
b (ω1, ω2, b⊥).

(19)

In the MS scheme the renormalization constants Z̄
(1)
S,k and Z̄

(2)
S,k are determined by requiring

a cancellation of all pole terms of the RHS above in order to yield a finite result for the

renormalized soft function.

A similar analysis can be done for the position-space soft function, and we outline the

main features below to establish notation. In position space, the renormalized and bare

soft functions S(b, µ) and Sb(b) respectively are related by a multiplicative renormalization

constant so that

S(b, µ) = Z−1
s (b, µ)Sb(b). (20)

The anomalous dimension of S(b, µ) is defined as

µ
d

dµ
S(b, µ) = γS(b

+, b−, µ) S(b, µ), γS(b, µ) = −Z−1
S (b+, b−, µ) µ

d

dµ
ZS(b

+, b−, µ),

(21)

with an expansion in αs given by

γS(b
+, b−, µ) =

∞
∑

n=1

[αs(µ)

π

](n)

γ
(n)
S (b+, b−, µ). (22)

The expansion in αs and ǫ of the renormalization constants are defined as

Zs(b
+, b−, µ) = 1 +

∞
∑

k=1

∞
∑

j=1

1

ǫk

[αs(µ)

π

]j

Z
(j)
S,k(b

+, b−, µ),

Z−1
s (b+, b−, µ) = 1 +

∞
∑

k=1

∞
∑

j=1

1

ǫk

[αs(µ)

π

]j

Z̄
(j)
S,k(b

+, b−, µ),

(23)
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where once again the Z
(j)
S,k(b

+, b−, µ) and Z̄
(j)
S,k(b

+, b−, µ) coefficients will be related to each

other by the condition Z−1
s (b+, b−, µ)Zs(b

+, b−, µ) = 1. The perturbative expansion for the

bare and renormalized position-space soft functions are defined as

S(b, µ) =

∞
∑

j=0

[αs(µ)

π

]j

S(j)(b, µ), Sb(b) =

∞
∑

j=0

[αb
s

π

]j

S
(j)
b (b),

(24)

and the joint expansion in αb
s and ǫ of the bare soft function is defined as

Sb(b) = 1 +

∞
∑

k=1

∞
∑

j=1

1

ǫk

[αb
s

π

]j

S
(j)
b,k(b).

(25)

Following the same procedure as in the case of the hybrid impact-parameter space soft

function S(q−, q+, b⊥, µ), consistency conditions analogous to Eq. (19) can be derived for

the position-space soft functions S(b, µ) as well.

B. NLO Soft Function

We calculate the soft function by inserting a complete set of states using the identity

1 =
∑

|Xs〉〈Xs| in Eq. (26) to get

S(b, µ) =
1

Nc

∑

Xs

Tr〈0|T̄ [S†
nSn̄](b)|Xs〉〈Xs| T [S

†
n̄Sn](0)|0〉, (26)

and then compute the resulting product of matrix elements in each term above. At LO in

QCD perturbation theory, only the vacuum state |Xs〉 = |0〉 contributes. At NLO, both

virtual corrections to the vacuum insertion and the single gluon final state |Xs〉 = |ǫAg (k)〉

contribute. In pure dimensional regularization the virtual graphs are scaleless and a non-

vanishing contribution arises only from the real emission of a gluon into the final state.

From the results of Ref. [19], the LO and NLO terms of the bare soft function

Sb(q
−, q+, b⊥) of Eq. (18) are known to be

S
(0)
b (q+, q−, b⊥) = δ(q+)δ(q−),

S
(1)
b (q+, q−, b⊥) = CF

(4π)ǫ

Γ(1− ǫ)

(

q+q−
)−1−ǫ

0F1

(

1− ǫ;−
b2⊥q

+q−

4

)

. (27)
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We note that q± are constrained to be positive quantities. Using the NLO consistency

condition corresponding to the second equation in Eq. (19) and using Eq. (15), the anomalous

dimension at one loop γ
(1)
S is given by

γ
(1)
S (q−, q+, µ) = −

2αs

π
CF

[

1

µ

[

µ

q−

]

+

δ(q+) +
1

µ

[

µ

q+

]

+

δ(q−)

]

. (28)

We note that we have also performed this NLO calculation using an off-shell regulator for

infrared divergences and have obtained the same results as above.

In full momentum space, the LO and NLO coefficients of the bare soft function Sb(q, µ)

are given by

S
(0)
b (q) = δ(d)(q),

S
(1)
b (q) =

2CF

π1−ǫ
(4π)ǫ

δ+(q
2)

q+q−
, (29)

where the + subscript on the delta function denotes that only the positive energy solution

is taken. It is straightforward to check that the Fourier transform of these coefficients with

respect to ~q⊥ give the coefficients of Eq. (27) in hybrid-impact-parameter space.

Finally, the soft function in full position space is obtained by Fourier transforming the

result in Eq. (29) to get

S
(0)
b (b) = 1,

S
(1)
b (b) = CF

Γ(1− ǫ)

ǫ2
e−ǫγEµ−2ǫ

0 Lǫ
2F1

(

−ǫ,−ǫ; 1 − ǫ;
b2⊥

b+b−

)

. (30)

where we have defined

L ≡ −b+b−µ2e2γE/4. (31)

Upon taking only a time-like component b → b0, this is in agreement with Ref. [54] (we

note that µ0 must be set to unity when making the comparison of our bare results with

Ref. [54], as our S
(j)
b are defined as coefficients of the bare coupling constant rather than

the renormalized one). The one loop anomalous dimension γ
(1)
S for the position space soft

function S(b, µ) is given by

γ
(1)
S (b, µ) =

2αs

π
CF lnL. (32)
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III. THE SOFT FUNCTION AT NNLO

For the calculation of the soft function at NNLO, we again start with Eq. (26) for the

position-space soft function. Contributions will arise from two-loop virtual corrections to

the vacuum state (S
(2)
V V ), one-loop virtual corrections to single-gluon emission (S

(2)
RV ), and

the real emission of two gluons or a quark-anti-quark pair in the final state (S
(2)
RR) so that

we can write

S(2)(b, µ) = S
(2)
V V (b, µ) + S

(2)
RV (b, µ) + S

(2)
RR(b, µ). (33)

In pure dimensional regulation, the purely virtual contribution S
(2)
V V is scaleless and vanishes

and will not be studied in further detail. Representative diagrams for the remaining non-

vanishing contributions are shown in Fig. 1, where the dark solid lines represent the soft

Wilson lines and the dashed line indicates the insertion of states that puts particles on

their mass shells. These contributions can be further decomposed according to their color

structure so that we can write

S(2)(b, µ) = S
(2)
V V (b, µ) + S

(2)

RR,C2
F

+ S
(2)
RR,CFCA

+ S
(2)
RR,CFNF

+ S
(2)
RV,CFCA

, (34)

where the subscripts C2
F , CFCA, and CFNF denote corresponding the color structures and

NF is the number of massless fermions. We will consider each of these contributions sepa-

rately, presenting both the final result and the relevant technical details. We will first present

results for the bare soft function and then discuss renormalization and the the extraction

of the anomalous dimension. As checks of our results we will use both the comparison with

the b → b0 limit of Ref. [54] and the constraint of non-abelian exponentiation [55, 56]. We

will present results in both position-space and in the hybrid-impact-parameter space.

A. The bare soft function

We begin by first presenting the results for the various contributions to the bare NNLO

soft function in position space. The NNLO calculations are first performed in momentum

space and then converted to position space by inverting Eq. (8). The most difficult integrals

occur in the double real-radiation graphs; the necessary integrals are presented in Appendix

A. The results for these integrals, which typically contain hypergeometric functions, must be

Fourier transformed to position space. To do so, we first series expand the hypergeometric

11



FIG. 1: Example diagrams contributing the the soft function at next-to-next-to-leading order.

From the top left diagram and proceeding in a clockwise fashion, the diagrams are respectively

contributing to the terms S
(2)

RR,C2
F

, S
(2)
RR,CFCA, S

(2)
RV,CFCA

and S
(2)
RR,CFNF

.

functions in their argument, perform the integrals for each term of the series, and then

identify the resulting sum. The relevant integrals for this procedure are presented in the

Appendix.

The results for the various non-vanishing contributions to the bare soft function Sb(b, µ),

in pure dimensional regularization are

S
(2)
b,RR,CFNF

(b) = −CFNF
Γ2(1− ǫ)

ǫ3
1− ǫ

8(1− 2ǫ)(3− 2ǫ)
e−2ǫγEµ−4ǫ

0 L2ǫ
2F1(−2ǫ,−2ǫ; 1 − 2ǫ;

b2⊥
b+b−

),

S
(2)

b,RR,C2
F

(b) = CF
2Γ

2(1− ǫ)

4ǫ4
e−2ǫγEµ−4ǫ

0 L2ǫ

[

3F2(−2ǫ,−2ǫ,−2ǫ; 1 − ǫ, 1− 3ǫ;
b2⊥

b+b−
)

+ 2F1(−2ǫ,−2ǫ; 1− 3ǫ;
b2⊥

b+b−
)

]

+O(ǫ),

S
(2)
b,RR,CFCA

(b) = CACF
Γ2(1− ǫ)

16ǫ4
e−2ǫγEµ−4ǫ

0 L2ǫ

{

(2− ǫ)(3− ǫ)

(1− 2ǫ)(3− 2ǫ)
2F1(−2ǫ,−2ǫ; 1 − 2ǫ;

b2⊥
b+b−

)

+ 2
Γ2(1− 2ǫ)

Γ(1− 3ǫ)Γ(1− ǫ)
3F2(−ǫ,−ǫ,−ǫ; 1 − ǫ, 1− 3ǫ; 1)

12



× 3F2(−2ǫ,−2ǫ; 1− 2ǫ; 1− ǫ, 1− 3ǫ;
b2⊥

b+b−
)− 2 2F1(−2ǫ,−2ǫ; 1 − 3ǫ;

b2⊥
b+b−

)

}

+ O(ǫ),

S
(2)
b,RV,CFCA

(b) = −CACF
Γ2(1− ǫ)

8ǫ4
e−2ǫγEµ−4ǫ

0 L2ǫ
[

Γ(1− 2ǫ)Γ2(1 + ǫ) cos(πǫ)
]

× 2F1(−2ǫ,−2ǫ; 1− ǫ;
b2⊥

b+b−
).

(35)

For simplicity of presentation, we have expanded some of the results above only up to

the needed order in ǫ. It is straightforward to confirm that in the limit b⊥ → 0, these

expressions are identical to those obtained in Ref. [54]. In addition, the full position-space

result is constrained by non-abelian exponentiation [55, 56], which requires the C2
F terms at

NLO and NNLO to obey the relation S
(2)

RR,C2
F

(b) =
[

S(1)(b)
]2
/2. This relation can be checked

through the finite order in ǫ using the expansions given in Eqs. (B6, B7, B10). These two

checks are strong indications of the correctness of our results.

We now present the results for the soft function in the hybrid impact-parameter space,

that appears directly in the formalism of Refs. [18, 19]. These results can be obtained

through the Fourier transform of the position-space results. As in the case of the position-

space soft function, we separate the results into several components dictated by the color

and cut structure, and obtain the following expressions:

S
(2)
b,RR,CFNF

(q−, q+, b⊥) = −CFNF (4π)
2ǫ Γ2(1− ǫ)

ǫΓ2(1− 2ǫ)

1− ǫ

2(1− 2ǫ)(3− 2ǫ)
(q+q−)−1−2ǫ

× 0F1(1− 2ǫ;−
b⊥

2q+q−

4
),

S
(2)

b,RR,C2
F

(q−, q+, b⊥) = −CF
2(4π)2ǫ

Γ2(1− ǫ)

ǫ2Γ2(1− 2ǫ)
(q+q−)−1−2ǫ

[

0F1(1− 3ǫ;−
b⊥

2q+q−

4
)

+ 1F2(−2ǫ; 1 − ǫ, 1− 3ǫ;−
b⊥

2q+q−

4
)
]

+O(ǫ),

S
(2)
b,RR,CFCA

(q−, q+, b⊥) = CACF (4π)
2ǫ Γ2(1− ǫ)

ǫ2Γ2(1− 2ǫ)
(q+q−)−1−2ǫ

{

(2− ǫ)(3− ǫ)

4(1− 2ǫ)(3− 2ǫ)

× 0F1(1− 2ǫ;−
b⊥

2q+q−

4
) +

Γ2(1− 2ǫ)

2Γ(1− 3ǫ)Γ(1− ǫ)

× 3F2(−ǫ,−ǫ,−ǫ; 1 − ǫ, 1− 3ǫ; 1) 1F2(1− 2ǫ; 1− ǫ, 1− 3ǫ;−
b⊥

2q+q−

4
)

−
1

2
0F1(1− 3ǫ;−

b⊥
2q+q−

4
)

}

+O(ǫ),
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S
(2)
b,RV,CFCA

(q−, q+, b⊥) = −CACF (4π)
2ǫ Γ

2(1− ǫ)

Γ2(1− 2ǫ)

Γ(1− 2ǫ)Γ2(1 + ǫ) cos(πǫ)

2ǫ2
(q+q−)−1−2ǫ

× 0F1(1− ǫ;−
b⊥

2q+q−

4
).

(36)

The C2
F piece again satisfies non-abelian exponentiation, but with a convolution in momenta

rather than a simple product as explained in the next section.

B. Renormalization, exponentiation, and the finite soft function

The soft function is constrained by non-abelian exponentiation [55, 56] so that one can

write the position-space soft function as

S(b, µ) = exp
{

s(b, µ)
}

= exp

{

∑

n=0

(αs

π

)n

s(n)(b, µ)

}

, (37)

with appropriately defined s(b, µ) and s(n)(b, µ). The bare and renormalized position-space

soft functions are related as in Eq. (20). In exponentiated form, this relationship can be

re-expressed as

S(b, µ) = exp
{

z̄S(b
+, b−, µ) + sb(b)

}

,

(38)

where

z̄S(b
+, b−, µ) =

∞
∑

n=1

2n
∑

m=1

[

αs(µ)

π

]n z̄
(n)
S,m

ǫm
, sb(b) =

∞
∑

n=1

2n
∑

m=−∞

[

αb
s

π

]n s
(n)
b,m

ǫm
, (39)

with z̄
(n)
S,m = z̄

(n)
S,m(b

+, b−, µ) and s
(n)
b,m = s

(n)
b,m(b). We have introduced a similar exponentiated

form for the renormalization constant,

Z−1
s (b+, b−, µ) = exp

{

z̄S(b
+, b−, µ)

}

. (40)

The bare and renormalized strong couplings are related by Eq. (12). The non-abelian ex-

ponentiation theorem implies consistency relationships between the coefficients in Eqs.(23)

and (25) and the coefficients s
(n)
b,m and z̄

(n)
S,m.

14



The renormalization-scale independence of the bare soft function determines the anoma-

lous dimension in terms of z̄S as

µ
d

dµ
S(b, µ) = γS(b

+, b−, µ)S(b, µ), γS(b
+, b−, µ) = µ

d

dµ
z̄S(b

+, b−, µ).

(41)

The finiteness of the renormalized soft function S(b, µ) determines the renormalization con-

stants in Eqs. (38), (39). The LO and NLO anomalous dimension contributions are given

by

γ
(1)
S = 2CF lnL,

γ
(2)
S = CFNF

[

−
5

9
lnL−

14

27
+

π2

36

]

+ CFCA

[(

67

18
−

π2

6

)

lnL+
101

27
−

11π2

72
−

7

2
ζ(3)

]

.

(42)

By comparing the coefficients of the αs expansion of the RHS of Eqs. (37) and (38) after

renormalization, the NLO and NNLO terms in the exponent of the renormalized soft function

S(b, µ) in Eq. (37) are determined to be

s(1)(b, µ) = CF

{

1

2
ln2 L+

π2

12
+ Li2(

b2⊥
b+b−

)

}

,

s(2)(b, µ) = CFNF

{

−
1

36
ln3 L−

5

36
ln2 L−

(

7

27
+

1

6
Li2(

b2⊥
b+b−

)

)

lnL−
41

162
−

5π2

432
+

ζ(3)

36

−
5

18
Li2(

b2⊥
b+b−

)−
1

6
Li3(

b2⊥
b+b−

) +
1

6
S1,2(

b2⊥
b+b−

)

}

+

CFCA

{

11

72
ln3 L+

(

67

72
−

π2

24

)

ln2 L+

(

101

54
−

7

4
ζ(3) +

11

12
Li2(

b2⊥
b+b−

)

)

lnL

+
607

324
+

67π2

864
−

11

72
ζ(3)−

π4

48
+

(

67

36
−

π2

12

)

Li2(
b2⊥

b+b−
) +

11

12
Li3(

b2⊥
b+b−

)−
1

2
Li4(

b2⊥
b+b−

)

−
11

12
S1,2(

b2⊥
b+b−

)− S1,3(
b2⊥

b+b−
)−

1

4
Li22(

b2⊥
b+b−

)

}

. (43)

Here, Lin(x) is the usual polylogarithmic function, Sn,p(x) is Nielsen’s generalized polyloga-

rithm, and we remind the reader that L = −b+b−µ2e2γE/4.

Non-abelian exponentiation also holds in the hybrid-impact parameter space but with the

multiplication operation replaced by a convolution in the light-cone momentum coordinates

so that

S(q−, q+, b⊥, µ) = S(0)(q−, q+, b⊥)⊗ exp
{

s(q−, q+, b⊥, µ)
}

,

15



(44)

where the perturbative expansion of the exponent is defined as

s(q−, q+, b⊥, µ) =
∑

n=1

(αS

π

)n

s(n)(q−, q+, b⊥, µ).

(45)

It should be understood that the first term in the expansion of the exponential is δ(q−)δ(q+).

The first few terms obtained after expanding the exponential in Eq. (44) take the form

S(q−, q+, b⊥, µ) = S(0) + S(0) ⊗
[

s+
1

2
s⊗ s+ · · ·

]

, (46)

where we have suppressed the arguments of the functions on the RHS. The convolution

product ⊗ in the light-cone momentum coordinates is defined as

f(q−, q+)⊗ g(q−, q+) ≡

∫

dω1

∫

dω2 f(q
− − ω1, q

+ − ω2) g(ω1, ω2). (47)

Similarly, the relationship between the renormalized and bare soft function in exponentiated

form also involves convolution products and is given by

S(q−, q+, b⊥, µ) = S
(0)
b (q−, q+, b⊥)⊗ exp

{

z̄S(q
−, q+, µ) + sb(q

−, q+, b⊥)
}

,

(48)

where the expansion in αs for the terms in the exponent are defined as

z̄S(q
−, q+, µ) =

∞
∑

n=1

2n
∑

m=1

(αS

π

)n z
(n)
S,m

ǫm
, sb(q

−, q+, b⊥) =

∞
∑

n=1

2n
∑

m=−∞

(α0

π

)n s
(n)
b,m

ǫm
,

(49)

with z̄
(n)
S,m = z̄

(n)
S,m(q

−, q+, µ) and s
(n)
b,m = s

(n)
b,m(q

−, q+, b⊥). The anomalous dimension and the

renormalization constants again satisfy

µ
d

dµ
S(q−, q+, b⊥, µ) =

∫

dω1

∫

dω2 γS(q
− − ω1, q

+ − ω2, µ) S(ω1, ω2, b⊥, µ),

γS(q
−, q+, µ) = µ

d

dµ
z̄S(q

−, q+, µ).

(50)

For simplicity of notation, in the rest of this section we use the following definitions

T (z) = J0(z)
(

ln(
z

2
) + γE

)

−
π

2
Y0(z),
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L0,0 = δ(q−)δ(q+),

L0,1 =
1

µ

[

µ

q+

]

+

δ(q−) +
1

µ

[

µ

q−

]

+

δ(q+),

L0,2 =
1

µ

[

ln(q+/µ)

q+/µ

]

+

δ(q−) +
1

µ

[

ln(q−/µ)

q−/µ

]

+

δ(q+),

L0,3 =
1

µ

[

ln2(q+/µ)

q+/µ

]

+

δ(q−) +
1

µ

[

ln2(q−/µ)

q−/µ

]

+

δ(q+),

L1,1 =
1

µ2

[

µ

q+

]

+

[

µ

q−

]

+

,

L1,2 =
1

µ2

[

ln(q+/µ)

q+/µ

]

+

[

µ

q−

]

+

+
1

µ2

[

ln(q−/µ)

q−/µ

]

+

[

µ

q+

]

+

. (51)

We note that T (0) = 0. The LO and NLO anomalous dimension contributions in the

hybrid-impact-parameter space are given by

γ
(1)
S (q−, q+, µ) = −2CFL0,1,

γ
(2)
S (q−, q+, µ) =

{

CFNF

[

−

(

14

27
−

π2

36

)

L0,0 +
5

9
L0,1

]

+

CFCA

[(

101

27
−

11π2

72
−

7

2
ζ(3)

)

L0,0 −

(

67

18
−

π2

6

)

L0,1

]}

.

(52)

The same results for the anomalous dimension can be derived using Eqs. (14) and (19)

without using the exponentiated form of the soft function, which provides a consistency

check on our calculation. The results for the NLO and NNLO renormalized coefficients of

Eqs. (44) and (45) are

s(1)(q+, q−, b⊥, µ) = CF

{

−
π2

12
L0,0 + L0,2 + J0(b⊥

√

q+q−)L1,1

}

,

s(2)(q+, q−, b⊥, µ) = CFNF

{

−

(

41

162
−

5π2

144
−

5

36
ζ(3)

)

L0,0 +

(

7

27
−

π2

36

)

L0,1

−
5

18
L0,2 +

1

12
L0,3 −

(

1

6
T (b⊥

√

q+q−) +
5

18
J0(b⊥

√

q+q−)

)

L1,1

+
1

6
J0(b⊥

√

q+q−)L0,2

}

+

CFCA

{

ζ(3)

36
L0,0 −

11π2

144
L0,1 +

11

24
L0,3 −

11

12
T (b⊥

√

q+q−)L1,1

+
1

12
J0(b⊥

√

q+q−)L1,2

}

, (53)

where J0(x) is the standard Bessel function.
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IV. CONCLUSIONS

We have described a computation of the exclusive soft function for Drell-Yan production

of electroweak gauge bosons through next-to-next-to-leading order in perturbation theory.

This object is required for the resummation of low pT logarithms through next-to-next-

to-leading logarithmic accuracy in the SCET approach of Refs. [18, 19]. Results for both

the anomalous dimension and the finite soft function have been presented, and all relevant

technical details have been explained. Adapting these techniques to the computation of

the soft function that appears for gluon-initiated production of a Higgs boson should be

straightforward. We expect that the exclusive soft function will have further applications

in precision studies of differential distributions within SCET, and that our result will be an

important step toward enabling these future studies.

We conclude with a few comments on the SCET approach with unintegrated distribution

functions to the low pT distribution, in which the need for this soft function first arose.

In the standard TMDPDF approach [25–29, 31–35], rapidity divergences arise in pertur-

bative computations that require additional regulators beyond the standard dimensional

regularization. The need for similar regulators also arises in SCET approaches to related

observables [57]. In our approach, the Impact-parameter Beam Functions (iBFs) and the

Inverse Soft function (iSF) are more differential in momentum coordinates than the corre-

sponding objects in the TMDPDF formalism. As a result, in perturbative computations of

the iBFs and the iSF the rapidity divergences are regulated by the physical kinematics of the

process. An investigation of the relationship between the our approach with iBFs and the

iSF and the TMDPDF formalism is worth pursuing in future studies. However, some recent

results [58] based on the TMDPDF formalism do not include the soft function needed for

a proper treatment of soft radiation and lack operator definitions, preventing any rigorous

field-theoretic interpretation and rendering comparison with our results difficult.

We have performed the first step needed for NNLO studies of low pT -transverse momen-

tum distributions, using the SCET approach with unintegrated distributions functions, by

computing the relevant exclusive soft function at this order. These results are also the first

step towards achieving low-pT resummation at NNLL accuracy. We look forward to the

further development of our approach to low-pT distributions.
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Appendix A: Auxiliary integrals

We compile here several integrals that appear during the course of our calculation. We

define

[dk] = ddk1 d
dk2 δ+(k

2
1) δ+(k

2
2) δ

d(q − k1 − k2). (A1)

It is straightforward to derive the following by direct integration:

∫

[dk] = π1−ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

1

2(1− 2ǫ)
(q2)−ǫ, (A2)

∫

[dk]
1

k+
1

= −π1−ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

1

2ǫ

(q2)−ǫ

q+
, (A3)

∫

[dk]
1

k+
1 k

−
1

= −π1−ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

1

ǫ

(q+q−)ǫ

(q2)1+2ǫ 2
F1(−ǫ,−ǫ; 1 − ǫ;

q⊥
2

q+q−
), (A4)

∫

[dk]
1

k+
1 k

−
2

= −π1−ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

1

ǫ

(q+q−)ǫ

(q⊥2)1+ǫ(q2)ǫ
2F1(−ǫ,−ǫ; 1 − ǫ;

q2

q+q−
). (A5)

The following integrals are useful in performing Fourier transformations:

∫

dd−2q⊥ e−i~q⊥·~b⊥ qm qn⊥ θ+(q
2)

= π1−ǫ (q+q−)1−ǫ+(m+n)/2 Γ(1 +m/2)Γ(1− ǫ+ n/2)

Γ(1− ǫ)Γ(2− ǫ+ (m+ n)/2)

× 1F2(1− ǫ+
n

2
; 1− ǫ, 2− ǫ+

m+ n

2
;−

b⊥
2q+q−

4
), (A6)

∫

dd−2q⊥ e−i~q⊥·~b⊥ q−2−4ǫ θ+(q
2) 2F1(−ǫ,−ǫ; 1 − ǫ;

q⊥
2

q+q−
)

= π1−ǫ (q+q−)−3ǫ Γ(1− ǫ)

−2ǫΓ(1 − 2ǫ)
0F1(1− 3ǫ;−

b⊥
2q+q−

4
) + O(ǫ2), (A7)

∫

dd−2q⊥ e−i~q⊥·~b⊥ q−2ǫ q−2−2ǫ
⊥ θ+(q

2) 2F1(−ǫ,−ǫ; 1 − ǫ;
q2

q+q−
)

= π1−ǫ (q+q−)−3ǫ Γ(1− ǫ)

−2ǫΓ(1 − 2ǫ)
1F2(−2ǫ; 1− ǫ, 1− 3ǫ;−

b⊥
2q+q−

4
) + O(ǫ2), (A8)

∫

dd−2q⊥ e−i~q⊥·~b⊥ q−2−2ǫ q−2ǫ
⊥ θ+(q

2) 2F1(−ǫ,−ǫ; 1 − ǫ;
q2

q+q−
)
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= π1−ǫ (q+q−)−3ǫ Γ(1− 2ǫ)

−ǫΓ(1 − 3ǫ)
3F2(−ǫ,−ǫ,−ǫ; 1 − ǫ, 1− 3ǫ; 1)

× 1F2(1− 2ǫ; 1− ǫ, 1− 3ǫ;−
b⊥

2q+q−

4
) + O(ǫ2), (A9)

∫

dq+dq−e−iq−b+/2e−iq+b−/2(q+q−)l mFn(a1, a2, . . . , am; b1, b2, . . . , bn;−
q+q−b2⊥

4
)

=

(

−
b+b−

4

)−l−1

Γ2(l + 1) m+2Fn(l + 1, l + 1, a1, . . . , am; b1, . . . , bn;
b2⊥

b+b−
). (A10)

The + subscript on the delta and step function denotes that only the positive energy solution

is taken. Although some integrals are only correct up to O(ǫ2), they become exact in the

limit of b⊥ → 0 or in the presence of δ(q±).

Appendix B: Hypergeometric expansions

For completeness, we present here several expansions of hypergeometric functions that

we found useful in our analysis. These can be simply obtained using the series expansion

of the hypergeometric function, expanding the resulting Gamma functions in ǫ, and using

known techniques for summing the resulting series in terms of known functions [59].

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; 0) = 1 (B1)

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(B2)

3F2(−ǫ,−ǫ,−ǫ; 1 − ǫ, 1− 3ǫ; 1) = 1− ζ(3)ǫ3 −
17π4

360
ǫ4 +O(ǫ5) (B3)

0F1(1− aǫ;−
z2

4
) = Γ(1− aǫ)

{

J0(z) + aǫ
[

J0(z) ln(
z

2
)−

π

2
Y0(z)

]

+O(ǫ2)
}

(B4)

1F2(1− 2ǫ; 1− ǫ, 1− 3ǫ;−
z2

4
) =

Γ(1− ǫ)Γ(1 − 3ǫ)

Γ(1− 2ǫ)

{

J0(z) + 2ǫ
[

J0(z) ln(
z

2
)−

π

2
Y0(z)

]

+O(ǫ2)
}

(B5)

2F1(−aǫ,−aǫ; 1 − aǫ; z) = 1 + a2ǫ2Li2(z)− a3ǫ3 [S1,2(z)− Li3(z)] +

a4ǫ4 [Li4(z) + S1,3(z)− S2,2(z)] + O(ǫ5) (B6)

2F1(−2ǫ,−2ǫ; 1− 3ǫ; z) = 1 + 4ǫ2Li2(z)− 4ǫ3 [S1,2(z)− 3Li3(z)] +
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2ǫ4
[

Li22(z) + 18Li4(z) + 2S1,3(z)− 10S2,2(z)
]

+

O(ǫ5) (B7)

2F1(−2ǫ,−2ǫ; 1 − ǫ; z) = 1 + 4ǫ2Li2(z)− 4ǫ3 [3S1,2(z)− Li3(z)] +

2ǫ4
[

Li22(z) + 2Li4(z) + 18S1,3(z)− 10S2,2(z)
]

+

O(ǫ5) (B8)

2F1(−2ǫ,−2ǫ, 1− 2ǫ; 1− ǫ, 1− 3ǫ; z) = 1 + 4ǫ2Li2(z)− 8ǫ3 [S1,2(z)− Li3(z)] +

ǫ4
[

Li22(z) + 10Li4(z) + 8S1,3(z)− 12S2,2(z)
]

+

O(ǫ5) (B9)

3F2(−2ǫ,−2ǫ,−2ǫ; 1− ǫ, 1− 3ǫ; z) = 1− 8ǫ3Li3(z)− 16ǫ4 [2Li4(z)− S2,2(z)] + O(ǫ5)

(B10)

J0(z) and Y0(z) are the standard Bessel functions, and Lin denotes the standard polylog-

arithmic functions. In addition, Nielsen’s generalized polylogarithms, denoted by Sn,p(z),

appear. In the final finite results for the soft function, only two of these functions appear.

They can be exchanged for the standard polylogarithms using the following identities:

S1,2(z) =
ln2(1− z) ln(z)

2
+ ln(1− z)Li2(1− z)− Li3(1− z) + ζ(3), (B11)

S1,3(z) = −
ln3(1− z) ln(z)

6
−

ln2(1− z)Li2(z)

2
+ ln(1− z)Li3(1− z)− Li4(1− z)

+
π4

90
. (B12)
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