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We formulate an effective theory for systems containing a heavy Majorana fermion, such as bound
states of a long-lived gluino. This “Majorana HQET” has the same degrees of freedom as the well-
studied Dirac HQET. It respects an emergent U(1) symmetry despite the fundamental absence of
a U(1) for Majorana fermions. Reparameterization invariance works identically in the two HQETS.
Remarkably, while a Dirac HQET may or may not be charge conjugation symmetric, a charge
conjugation symmetry emerges in all Majorana HQETSs, potentially offering low energy probes to

distinguish the two theories.

While all fermions in the standard model (SM) — ex-
cept possibly for neutrinos — are Dirac fermions, massive
Majorana fermions are quite common in models beyond
the SM. A particularly well-known example is the gluino,
a heavy color-octet Majorana fermion in minimal super-
symmetric extensions of the SM [1]. If the gluino’s life-
time is much longer than the timescale of QCD confine-
ment ~ 107?* s (as happens in split supersymmetry [2, 3],
for instance), it will form a heavy QCD bound state
with gluons and quarks [4]. Such bound states, called
R-hadrons, are actively searched for by experiments at
the Large Hadron Collider [5, 6]. Therefore, it is impor-
tant to develop a theoretical framework to systematically
analyze the system of a heavy Majorana fermion inter-
acting with light particles.

Heavy quark effective theory (HQET) [7-10] is an ef-
fective field theory originally developed for studying the
properties of mesons containing a heavy quark such as the
b quark. The standard formulation of HQET, however,
presumes that the fermion is Dirac, and naively applying
it to Majorana fermions has led Ref. [11] to propose that
the celebrated spin symmetry [12-15] of HQET is lost in
the Majorana case (which fortunately is false, as we will
show).

In this paper, we will derive the HQET for a Majo-
rana fermion and study its basic properties. First, we
will show that Majorana HQET has the same effective
degrees of freedom and propagators as the well-known
Dirac HQET. This agrees with the intuition that, at
scales below the threshold for particle-antiparticle pair
creation, we should not be able to tell whether or not the
antiparticle is distinct from the particle.

We will further sharpen the similarities between Ma-
jorana and Dirac HQETs by demonstrating that Majo-
rana HQET possesses an emergent U(1) symmetry as
if it came from a Dirac fermion, even though Majorana
fermions by definition cannot have any fundamental U(1)
symmetry. The emergence of the effective U(1) should
in fact be viewed as a consistency check, since Majorana
HQET trivially conserves particle number as being an ef-
fective theory for one-fermion states. We also show that
reparameterization invariance [16-19] works in the same
way in Majorana and Dirac HQETs.

Despite these common features, the two effective theo-
ries are different. We will show that any Majorana HQET
must be also equipped with an emergent charge conju-
gation symmetry, even if the full theory lacks a charge
conjugation symmetry. This effective charge conjugation
symmetry is an exact, intrinsic property of Majorana
HQET that reflects the absence of particle-antiparticle
distinction in the original Majorana fermion. This con-
trasts to the Dirac case, where a Dirac HQET would
have a charge conjugation symmetry only if the full the-
ory has one. Therefore, this potentially provides low en-
ergy probes to distinguish between R-hadrons containing
a Majorana gluino and those containing a Dirac gluino
that appears in many non-minimal models of supersym-
metry, for example.

DEGREES OF FREEDOM

We first derive the kinetic and mass terms of Majo-
rana HQET. We will see that the quadratic terms of the
Majorana HQET lagrangian exactly agree with those of
Dirac HQET, so the degrees of freedom of the two effec-
tive theories are identical in content and propagate in the
same manner.

To perform a blow-by-blow comparison between the
Majorana and Dirac cases, let’s consider a Majorana
fermion ¢y (z) and a Dirac fermion ¢p(x) with the same
mass m and identical quantum numbers under all sym-
metries, except for U(1)p, the very U(1) that defines the
Dirac fermion by providing particle number conservation.
Being Majorana, 1y (x) obeys the constraint

Yu(z) = By (), (1)
with the Majorana conjugation matrix B satisfying

ByWB =, B*=B"' BY=B. (2

In HQET, we are interested in the states of a single
particle and arbitrary numbers of other particles with
masses < m, where interactions are transferring only
small momenta (< m) to the v particle, hence never
exciting another ¢ particle. Thus, perturbation theory
should begin with a free i particle with a 4-momentum



muv, where v is a timelike 4-velocity with v° > 0 and
v-v = 1. This state is described by the following solu-
tions of the free Dirac equations (i@ — m)yp m = 0:

wD(fE) — e—imv-muv, (3)
wM(x) — efimv-zuv 4 eimv-zBuT” (4)

where w, is a constant spinor obeying the constraint
Py = Uy

Now, turning on the interactions, we would like to pa-
rameterize the fluctuations of ¢pm(x) around the so-
lutions (3) and (4) [20]. Away from these free-particle
solutions, the above constant spinor u, with only the
# = 1 component has to be replaced by an arbitrary a-
dependent spinor with both ¥ = +1 components. Thus,
we are led to the following changes of variables:

Yp(z) =
Yum(z) =

efifm'm[h (z) + Hy(z)], (5)
@)+ (o) )
b EmTBI () + 12 (o))

where h,(xz) and H,(x) parameterize the ¥ = +1 and
# = —1 components, respectively, i.e.:

¢hv(x) = hv(x)7 ¢Hv(x) = _Hv(x)' (7)

Note that the Majorana condition (1) is kept manifest in
the parameterization (6).

In terms of these new variables, the quadratic part of
the full lagrangian for the Dirac theory can be rewritten
as

D full = ¢ (i) — m)¢p
= ihyv-Ohy —iHyv-0H, — 2m HyH, (8)
+ (ihy o"v,01,H, +c.c.),
where o#” = [y*,4”]/2 and 0,1, = 0, — (v-0)v,. (Need-

less to say, we have suppressed the kinetic and mass terms
of other fields, e.g., the gluon.) Similarly, the quadratic
part of the full Majorana lagrangian can be rewritten as

51(\/21 full = "/JM(Z@ m)inm
‘CD b + (672 P(hy, Hy) + c.c.)

9)

where P(h,, H,) is a quadratic polynomial of h,(z),
H,(z) and their derivatives, with constant coefficients
(i.e., no explicit z-dependence like e~2"™V"% inside P),
which stems from picking up the e~™%* term of (6)
twice.

We are now ready to construct effective theories that
reproduce these full theories when we specialize in the
states of a single ¥ fermion with momentum near mu,
plus arbitrary numbers of other light particles with
masses and momenta < m. The effective theories can
be derived from the full theories by restricting the fields

hy(x) and H,(z) to only contain “slowly varying” modes
with wavelengths > m™'. This does not correctly take
into account loop diagrams, where the loop momenta go
to infinity, but these “mistakes” can be fully corrected in
the effective theory by adding local operators with ap-
propriate coefficients (i.e. “matching”).

For the purpose of understanding the field content and
the form of propagators in the effective theory, tree-level
matching is sufficient. Thus, the quadratic terms of the
effective lagrangian for the Dirac case can simply be given
by the lagrangian (8) with the understanding that h, and
H, only contain modes with wavelengths > m~!. So,

Eg,)cﬁ' = thy v-Ohy — iHy v-0H, — 2m H, H,

_ (10)
+ (thy 0" v, 01, Hy 4+ c.c.) .

For the Majorana case, the effective lagrangian obtained
this way from the lagrangian (9) appears to contain the
additional terms e~"""*P(h,,, H,) + c.c.. These terms
actually vanish once integrated over spacetime to obtain
the effective action. In momentum space, they are trans-
formed into d-functions of the form 6*(2mwv + k), where k
is the momentum carried by P(h,, H,). However, since
hy(x) and H,(z) in the effective theory are restricted
to be slowly varying, k is necessarily < mv and the 6-
functions simply vanish. Therefore, we obtain

L3 a=Log (11)

We conclude that the field content and propagators of
Majorana HQET are identical to those of Dirac HQET.
This in particular implies that the spin symmetry of
HQET in the limit of decoupling H, is intact in Ma-
jorana HQET, contrary to the claim made in Ref.[11].

SYMMETRIES

Next, we would like to compare symmetries of the two
effective theories. First, the full Dirac and Majorana
theories we started with have identical symmetries by as-
sumption, except for U(1)p of the Dirac fermion. Clearly,
all these symmetries of the full theories are passed down
to their respective HQETs.

In addition, it is well-known that HQET possesses an
emergent “gauge symmetry” called reparameterization
invariance (RPI) [16-19], which is a redundancy in the
HQET description that choosing a different v should not
change the physics. Below, we show that RPI works in
exactly the same way in the Majorana and Dirac HQETs.

Furthermore, in Majorana HQET, the U(1)p global
symmetry emerges as an exact symmetry. Intuitively,
this is because, being an effective theory of one-particle
states, Majorana HQET trivially conserves particle num-
ber, even though the full Majorana theory has no particle
number conservation. Below, we will demonstrate explic-
itly how this U(1) arises in Majorana HQET.



Remarkably, we will see yet another symmetry emerg-
ing in Majorana HQET, so the symmetry content of Ma-
jorana HQET is actually larger than that of Dirac HQET.
This symmetry is an effective charge conjugation symme-
try that reflects the very Majorana nature of the full the-
ory, namely the absence of particle/antiparticle distinc-
tion. Thus, this is an exact symmetry of any Majorana
HQET, even without a charge conjugation symmetry in
the full theory. In contrast, charge conjugation symmetry
is optional for Dirac fermions and for Dirac HQETs. This
emergent charge conjugation symmetry forbids a class of
operators in Majorana HQET that are allowed in Dirac
HQET. Therefore, discovering the effects of those opera-
tors in experiment can tell us that the underlying fermion
must be Dirac.

Reparameterization Invariance

The RPI redundancy in choosing v is manifest in the
relations (5) and (6), where the left-hand sides simply
have no reference to v. For the Dirac case, this readily
implies that the fields labelled by v = v + dv must be
related to those labelled by v as

e—imv/-w(hv, + Hv’) = e—imv»m(hv + H’U) ) (12)

provided that mdév < m so that we maintain the re-
quirement that h,/(x) and H, (z) should vary slowly in
r with wavelengths > m ™', just like h,(z) and H, ()
themselves. This is exactly the form of RPI proven to be
valid to all orders in Dirac HQET by Ref. [19].

For the Majorana case, the v-independence of the left-
hand side of (6) implies that

e (B + Hy) + €™ B(hY, + HY,)

. _ (13)
=e """ (hy + Hy) + "™ B(hy, + H) .

This naively appears different from the Dirac RPI (12).
However, since the fields h,, H,, h, and H, only carry
momenta < muv, the 1st term on each side of (13) only
contains positive frequency modes, while the 2nd term on
each side only contains negative frequency modes. Thus,
the 1st and 2nd terms are linearly independent and can
be equated separately. This then gives a relation identical
to the Dirac RPI (12). We conclude that RPI works
identically in Dirac and Majorana HQETs.

Emergent U(1)p in Majorana HQET

The equality (11) trivially implies that the quadratic
part Lﬁ?eﬁ respects the same U(1)p global symmetry
as the Dirac counterpart, with both h, and H, carry-
ing a unit charge, even though the full Majorana the-
ory (9) possesses no U(1) symmetry. We will now show

that U(1)p is an exact symmetry of the entire Majorana
HQET lagrangian, not only of the quadratic part, as ex-
pected from the fact that Majorana HQET is a theory of
a fixed number of ¢ particles (namely, one).

The emergence of U(l)p can be demonstrated ele-
gantly by using RPI. Since we have shown that Majorana
RPI is the same as Dirac RPI, Majorana HQET has the
same “RPI invariant” as the Dirac RPI. Namely, the
RPI relation (12) implies that the linear combination

X(@) = e hy (x) + Hy ()] (14)

(not to be conceptually confused with the full-theory
Dirac field ¢p) are invariant under v — v + dv. There-
fore, RPI can be made manifest by writing the lagrangian
solely in terms of .

Now, since HQET is an effective theory for single-v-
particle states, we only need to look at operators that are
bilinear in x. Thus, all operators in Majorana HQET are
in either one of the following forms:

XOx, x'COx, (15)

where O contains v matrices, derivatives and other light
fields in the theory, while the charge conjugation matrix
C satisfies

CyTet =44, Cc*=-Cc', cT=-C. (16)
The operators of the 1st type in (15) are invariant un-
der U(1)p, while those of the 2nd type are not. Notice,
however, that the latter do not exist in the effective ac-
tion, because they contain rapid oscillations =% and
thus vanish under the integration over spacetime, just
like what happened to P(h,, H,) previously. Therefore,
U(1)p is indeed respected by all operators in Majorana
HQET.

Emergent Z, Symmetry in Majorana HQET

Notice that the right-hand side of (6) is unchanged by
the simultaneous operations of

v —v, hy < Bh, H,<+ BH,. (17)
Majorana HQET must be invariant under this charge
conjugation operation, because, like RPI, this is a redun-
dant operation, doing nothing to the full-theory variable
1um. This redundancy makes sense intuitively, because
the original Majorana fermion does not distinguish par-
ticle and antiparticle so it should not “care” whether we
have chosen v or —v to write the effective theory.

In contrast, Dirac HQET does not in general respect
the charge conjugation symmetry (17), unless the full
theory happens to be invariant under the charge conju-
gation p <+ Byfy. It should be stressed, however, that
such charge conjugation symmetry may or may not be



there in a given Dirac theory, while any Majorana HQET
must have the symmetry (17), regardless of the presence
or absence of charge conjugation symmetry in the full
theory, as it is merely a redundancy of the formulation,
similarly to RPI.

The emergent charge conjugation symmetry (17) im-
poses nontrivial constraints on the structure of Majorana
HQET lagrangian. As a theoretical illustration, consider
a toy model consisting of a heavy, color-octet Majorana
fermion Yy = YHT* (a = 1, -+, 8), where T* = \%/2
with the Gell-Mann matrices A*. Suppose that there is
also a color-octet real scalar ¢ = ¢*T® with mass much
lighter than ¢. Then, in the full theory, symmetry per-
mits the Yukawa interaction of the form

d** ¢ (4Ry) " Cy (18)

with the totally symmetric d**¢ o tr[T%{T° T°}]. The
analogous term f%¢ ¢ (4% )TCy§; with the totally anti-
symmetric f°¢ oc tr[T?[T°, T]] vanishes simply due to
the algebraic identity reflecting the Fermi-Dirac statis-
tics, (i) CYE = (¥§)TC¥Yy, without owing to any
symmetry. This interaction matches at tree level onto
the HQET operator

d™ ¢ hghy + -+ (19)

where the ellipses indicate similar terms containing H,.

In stark contrast, if the fermion were a color-octet
Dirac fermion p = {71, both types of the interac-
tions would be allowed:

A $U P + F° GPp (20)

since this time Egd;g #+ ECDMJ%. These interactions match
at tree level onto the HQET operators

dabc d)aﬁzhi + fabc d)aﬁzhg 4. , (21)

where the ellipses indicate similar terms containing H,,.
Now, without the emergent charge conjugation sym-
metry (17), one would think that the f** operator like
in (21) should be also generated in Majorana HQET at
loop level, since Majorana HQET would have exactly the
same symmetries and same degrees of freedom as Dirac
HQET [21]. However, under the symmetry (17), the d**¢
operator is allowed but the f%*¢ operator is not, because
the operation (17) gives
hohy — () B~y Bhy" = hihs (22)
so the fe°¢ operator would change the sign. Therefore,
the emergent charge conjugation of Majorana HQET
guarantees that the f¥* operator is never generated at
any order in loop expansion.
We conclude that emergent charge conjugation sym-
metry of Majorana HQET offers the interesting oppor-
tunity to tell apart Dirac and Majorana fermions from

only low energy measurements performed at scales much
below the fermion mass threshold. Namely, probing the
presence of the HQET operators forbidden by (17) can
rule out the possibility that the fermion is Majorana.
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