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The conformal compensator formalism is a convenient and versatile representation of supergravity
(SUGRA) obtained by gauge fixing conformal SUGRA. Unfortunately, practical calculations often
require cumbersome manipulations of component field terms involving the full gravity multiplet.
In this paper, we derive an alternative gauge fixing for conformal SUGRA which decouples these
gravity complications from SUGRA computations. This yields a simplified tree-level action for the
matter fields in SUGRA which can be expressed compactly in terms of superfields and a modified
conformal compensator. Phenomenologically relevant quantities such as the scalar potential and
fermion mass matrix are then straightforwardly obtained by expanding the action in superspace.

I. INTRODUCTION

Supersymmetry (SUSY) is a well-studied and highly-
motivated extension of the standard model. While some
aspects of SUSY phenomenology may be understood
purely in the limit of global SUSY, others require the
full machinery of supergravity (SUGRA). For example,
SUGRA plays an essential role in the super-Higgs mecha-
nism, whereby the goldstino of spontaneous SUSY break-
ing is eaten to become the longitudinal mode of the grav-
itino [1, 2]. This induces a non-zero mass for the grav-
itino m3/2, which plays a crucial role in SUSY cosmology
and collider phenomenology [3, 4]. Furthermore, the full
SUGRA formalism is required for a proper description
of “no-scale” SUSY breaking [1, 5, 6], which arises when
moduli mix directly with the gravity multiplet.

Despite its clear phenomenological significance, not all
of the SUGRA formalism is actually relevant for practical
calculations. For instance, couplings to the graviton are
more or less unimportant for SUSY phenomenology, and
in any case are fixed by general covariance. Likewise, in-
teractions with the goldstino and the transverse modes of
the gravitino are dictated by supercurrent conservation
in the underlying theory. For the purpose of understand-
ing phenomenology at colliders and in cosmology, one’s
main concern is to ascertain the effects of SUGRA on
the vacuum structure and particle spectrum of a given
SUSY model. In this case the full machinery SUGRA
can obfuscate rather than illuminate the physics.

In this paper we show SUGRA and its many complica-
tions can be dramatically simplified by applying an ap-
propriately chosen gauge fixing or, equivalently, a pre-
scient Kähler transformation. Our starting point will be
the so-called conformal compensator formalism [7], which
is well-suited to some but not all practical calculations.
In the conformal compensator formalism, one accounts
for the most important SUGRA effects by augmenting
the usual superspace formalism of global SUSY with a
conformal compensator superfield Φ. In the literature,
the standard gauge fixing yields

Φ = 1 + θ2FΦ, (1)

where FΦ is the scalar auxiliary field of SUGRA.1 The
conformal compensator couples to chiral superfields Xi

and vector superfields V a via the SUGRA action

LSUGRA = −3

∫
d4θ Φ†Φ e−K/3 +

∫
d2θ Φ3 W + h.c.

+
1

4

∫
d2θ fabW

aαW b
α + h.c.+ . . . , (2)

where the Kähler potential K is a (Yang-Mills) gauge
invariant function of chiral and vector superfields, and
the superpotential W and gauge kinetic function fab are
holomorphic functions of chiral superfields. Here, the
ellipsis (. . .) denotes terms involving the graviton, grav-
itino, and vector auxiliary field, and we work in natural
units where MPl = 1.
Famously, anomaly mediation [8] is most easily un-

derstood via conformal compensator methods. More re-
cently, this formalism has been applied to the case where
multiple sequestered SUSY breaking sectors give rise to
a corresponding multiplicity of goldstini [9, 10]. The con-
formal compensator offers a simple way of understanding
how goldstini obtain a universal tree-level mass of 2m3/2

[9] in theories of F -term SUSY breaking, and illuminates
modifications which can arise in certain “goldstini varia-
tions” [11] and theories with imperfect sequestering [12].
Despite the utility of the conformal compensator

method, there are many situations where a naive appli-
cation of Φ from Eq. (1) leads to incorrect answers, in
particular if the terms denoted by the ellipsis in Eq. (2)
are improperly ignored. For example, the ellipsis con-
tains non-minimal couplings between matter fields and
the graviton, so to properly calculate the spectrum and
couplings for matter fields, one must first Weyl rescale
the metric to canonically normalize the Einstein-Hilbert
action. Likewise, in the presence of no-scale SUSY break-
ing, Eq. (2) simply yields the wrong fermion mass matrix

1 Throughout this work, boldface and regular typeface will denote
superfields and component fields, respectively. Moreover, given
a superfield X, we will denote its lowest component by X.
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unless kinetic mixing terms between matter fermions and
the gravitino are properly included. Given these com-
plications, it is perhaps unsurprising that much of the
SUGRA literature simply abandons the superfield ver-
sion of SUGRA in Eq. (2) altogether and simply works
in the component form.
In this work, we present an alternative gauge fixing in

which Eq. (2) can be employed while entirely ignoring

additional terms involving the gravity multiplet. Hence,
the mixing terms are eliminated, à la the Rξ gauges of
spontaneously broken Yang-Mills theory. In this gauge
fixing, the conformal compensator is written as

Φ = eZ/3(1 + θ2FΦ), (3)

Z = 〈K/2− iArgW 〉+ 〈Ki〉Xi, (4)

where hereafter 〈〉 will denote a vacuum expectation value
(vev) and i and ī subscripts will denote differentiation

with respect to X i and X ī†, respectively. Note that we
are working in a “zero vev” basis in which X i has been
appropriately shifted such that 〈X i〉 = 0.2

Given this choice of Φ, one recovers the correct tree-
level spectrum and couplings for matter and gauge fields
to leading order in 1/MPl and including all effects pro-
portional to m3/2 without needing to perform any com-
ponent manipulations. Thus, we can effectively decouple
any complications posed by the gravity multiplet from
calculations involving the matter fields alone.
Alternatively, the above gauge choice can be inter-

preted as a well-chosen Kähler transformation. In par-
ticular, we use the fact that tree-level supergravity is in-
variant under

K → K −Z −Z†, W → eZW , (5)

where Z is any chiral multiplet. The gauge fixing in
Eq. (3) is equivalent to a prescient choice for Z which
simply cancels the problematic terms in the Kähler po-
tential which are linear in superfields, allowing one to
use the standard form of Φ from Eq. (1). Linear terms
in the Kähler potential typically imply no-scale SUSY
breaking, so this Kähler transformation effectively con-
verts no-scale SUSY breaking into more familiar F -term
breaking. As an added bonus, in this Kähler basis the
tree-level equation of motion for FΦ always yields

〈FΦ〉 = m3/2 (6)

after adjusting the cosmological constant (c.c.) to zero,
so it is straightforward to identify SUGRA effects pro-
portional to m3/2.

2 To work in an arbitrary vev basis, on can simply replace X
i with

(Xi − 〈Xi〉). The presence of terms in Eq. (3) which depend
explicitly on vevs may be unintuitive. After all, the values of
these vevs are unknown without computing the vacuum structure
of the theory, which is in turn dependent on the vevs. However,
we will show in Sec. III C that one can solve for these vevs self-
consistently.

Our proposed gauge fixing is related to an “improved
gauge fixing” discussed many years ago by Kugo and Ue-
hara [13].3 In that context, the improved gauge fixing
was used merely as means to more efficiently calculate
the component SUGRA action. Moreover, the gauge fix-
ing of Ref. [13] has no simple superfield realization like
Eq. (3), and residual manipulations of the component
SUGRA action were required to obtain the matter spec-
trum and couplings. Here, we avoid those complications
at the expense of ignoring higher order 1/MPl suppressed
effects.

The remainder of the paper is organized as follows.
In Sec. II, we review the formalism of conformal super-
gravity and show why the standard gauge fixing is sub-
optimal. We then derive our preferred gauge choice in
Sec. III, and present a number of consistency checks. We
conclude in Sec. IV, leaving further calculational details
to the appendices. In a companion paper [15], we will
use our novel gauge fixing to properly calculate the mass
spectrum of goldstini and modulini in general theories of
F -term, D-term, and no-scale SUSY breaking.

II. STRUCTURE OF SUPERGRAVITY

We begin by with a brief review of conformal SUGRA,
highlighting the subtleties and deficiencies of the stan-
dard gauge fixing.

A. Conformal Supergravity

As is well-known, the SUGRA action can be derived
by reinterpreting minimal SUGRA as a gauge fixing of
conformal SUGRA [7]. The purpose of the conformal
compensator is to realize this gauge fixing in superspace.

The gauge redundancies of minimal SUGRA are dif-
feomorphisms, local Lorentz transformations, and local
supersymmetry. The additional gauge redundancies of
conformal SUGRA are: local dilatations D̂, local U(1)R
chiral transformations Â, conformal supersymmetry Ŝα,
and special conformal transformations K̂µ. The special
conformal transformations can be fixed by setting the
dilatation gauge field to zero,4 but this leaves two real
gauge freedoms, D̂ and Â, and a Weyl spinor gauge free-
dom, Ŝα.

In order to fully gauge fix conformal SUGRA to ordi-
nary SUGRA, one introduces the conformal compensator

3 For a recent study of SUGRA gauge fixing in the context of
inflation, see Ref. [14].

4 Given the upcoming discussion in Sec. III A, one might wonder
whether alternative gauge fixings for K̂µ might simplify other
aspects of the SUGRA action. We were unable to find any such
simplifications.
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Φ, which is a chiral superfield with conformal weight 1.5

Before gauge fixing, the components of Φ are given by

Φ = {σ, σζα, σFΦ}, (7)

where the overall factor of σ is unconventional, but con-
venient for later purposes. A description of how to ex-
press these components in superspace is given in App. A,
where the main subtlety is that a multiplet with non-zero
conformal weight has additional couplings to the vector
auxiliary field bµ in the gravity multiplet. In particular,
Eq. (1) is secretly hiding relevant terms involving bµ.
Under the dilatation and chiral transformations

parametrized by a complex number λ, and the super-
conformal transformation parametrized by ρα, the com-
ponents of Φ transform as:

σ → eλσ, ζα → ζα + ρα. (8)

Thus, the lowest and fermionic components of Φ are pure
gauge modes, and one can use the remaining extra gauge
freedoms to set

D̂ : |σ| = 1, Â : Argσ = 0, Ŝα : ζα = 0. (9)

This is the conventional gauge choice which results in
Eq. (1). As we will soon see, the SUGRA action suggests
a more convenient gauge fixing for practical computa-
tions.

B. SUGRA Action

To construct a valid SUGRA action, we must know the
conformal weights of all fields in the theory. Besides the
conformal compensator, all other chiral superfields have
conformal weight 0, and we will denote their components
by

Xi = {X i, χi
α, F

i}. (10)

Vector multiplets also have conformal weight 0, but since
SUSY covariant derivatives Dα and D̄α̇ have conformal
weight 1/2, the gauge field strengths W a

α have conformal
weight 3/2.
In a superconformal theory, the only objects which can

be consistently coupled to conformal gravity are real mul-
tiplets Ξ with conformal weight 2 and chiral multiplets
Σ with conformal weight 3.6 In general, Ξ and Σ will be

5 There are of course alternative choices for how to introduce com-
pensator multiplets. This particular choice is referred to in the
literature as “n = −1/3”.

6 In some of the SUGRA literature, the w = 2 vector multiplet Ξ

is expressed as a w = 3 chiral multiplet, namely the object D̄2
Ξ

from global superspace. We find that using Ξ directly is more
transparent for practical calculations.

composite multiplets, and we indicate their components
by

Ξ(w=2) = {C, ξα,M,Aµ, λα, D}, (11)

Σ(w=3) = {z, χα, F}. (12)

As argued in App. A, once we choose the appropriate
gauge fixing for Φ, one can regard Ξ and Σ as ordinary
global superfields (with the corresponding expansion in θ
and θ̄) for any calculations involving matter fields alone.
From Ξ and Σ, one can construct superconformally

invariant D-term and F -terms, respectively:7

[Ξ]D =
1

2
eD − 1

2
e
(
λσµψµ − iξσµνDc

µψν + h.c.
)

+
C

3

(
1

2
eR− LRS

)
+ . . . , (13)

[Σ]F = e
(
F − i

√
2χσµψµ − zψµσ

µνψν

)
, (14)

where e is the determinant of the metric, R is the
Ricci scalar, LRS = ǫµναβψµσν∂αψβ + . . . is the mass-
less Rarita-Schwinger action for the gravitino ψµ, and
Dc

µ = ∂µ + . . . is the SUGRA-covariant derivative. The
ellipsis in [Ξ]D represents terms that are quadratic in the
gravitino, but don’t contribute to the gravitino mass or
kinetic term. While it is possible to rewrite these D-term
and F -term invariants as superspace integrals involving
the gravity supermultiplet, it is more convenient to ex-
press only the matter part of the action in (global) su-
perspace, leaving couplings to the gravity multiplet in
component form.
Since ordinary matter multiplets have vanishing con-

formal weight and Ξ (Σ) has conformal weight 2 (3), the
conformal compensator Φ is necessarily present in any
SUGRA action containing matter. Given the Kähler po-
tential K, superpotential W , and gauge kinetic function
fab, we can construct the following fully superconfor-
mally invariant action at tree-level:8

LSUGRA =
[
−3 Φ†Φ e−K/3

]

D
+
[
Φ3 W

]
F
+ h.c.

+

[
1

4
fabW

aαW b
α

]

F

+ h.c. (15)

By expanding out Eq. (15), we recover Eq. (2) as desired.
Note that all interactions with the gravity multiplet, as
well as the graviton and and gravitino kinetic terms, come
from the covariant forms of the corresponding D- and F -
term expressions in Eqs. (13) and (14). While in general
the action can include additional terms involving SUSY
covariant derivatives Dα and Dα̇, we will neglect this
complication in the present work.

7 These expressions differ from those in Ref. [13] because we use
the two-component fermion notation of Ref. [1]. In addition, we
employ different minus sign and factor of 2 conventions.

8 With radiative corrections, one needs to account for a
conformally-violating regulator, which introduces additional de-
pendence on Φ.
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C. Problematic Terms

The standard approach in the existing SUGRA litera-
ture is to expand Eq. (15) in components using the defini-
tion of Φ in Eq. (1). However, one sees immediately from
Eqs. (13) and (14) that this gauge choice yields problem-
atic terms that mix gravity and matter fields and must be
carefully accounted for in any actual calculation. These
problematic terms pertain to:

(i) graviton normalization and kinetic mixing:

C

3

R

2
. (16)

At the very minimum, 〈C/3〉 must be set equal to
−M2

Pl in order to canonically normalize the Einstein-
Hilbert action R. In addition, if C depends linearly
on the matter multiplets, then there are undesirable
kinetic mixing terms between the matter fields and
the graviton proportional to 〈Ci〉 and 〈Cī〉. Note that
〈R〉 = 0 in the flat space vacuum, so one need not
worry about mass corrections arising if C depends
quadratically on matter fields. Also note that if the
Einstein-Hilbert term is canonically normalized, then
so is the Rarita-Schwinger action.

(ii) gravitino kinetic mixing:

iξσµν∂µψν + h.c. (17)

A kinetic mixing term between the gravitino and mat-
ter fields implies a non-canonical gravitino multiplet
with the wrong Rarita-Schwinger action. In contrast,
mass mixings of the form ησµψµ are perfectly healthy,
since η can be identified as the goldstino from sponta-
neous SUSY breaking which is eaten by the gravitino
in unitary gauge. (See Eq. (35).)

(iii) gravitino mass phase:

−z†ψµσ
µνψν + h.c. (18)

The usual gravitino mass parameter is defined as a
real number, so Arg〈z〉 should be set equal to zero.

In the standard approach, these three problem terms
are eliminated by (i) performing a field-dependent Weyl
rescaling of the metric, (ii) applying a shift to the grav-
itino which is distinct from going to unitary gauge, and
(iii) performing a chiral rotation of the fermions. While
these manipulations are perfectly well-defined in terms of
component fields, no simple interpretation exists in terms
of superfields. That is to say, the terms in the ellipsis of
Eq. (2) hide relevant mixing terms between the gravity
multiplet and the matter multiplets.
In addition to the above three complications, there is

a less apparent fourth—a marginal operator mixing the
vector auxiliary field bµ with scalars

bµ∂
µφ. (19)

This term is not readily visible in Eq. (13), and arises be-
cause the conformal compensator has conformal weight 1.
(See App. A.) Due to the quadratic pieces in this interac-
tion, integrating out the vector auxiliary field generates
additional scalar kinetic terms, again mixing the gravity
and matter multiplets.

III. A NOVEL GAUGE FIXING

Next, let us demonstrate how complications from mix-
ing with gravitational modes can be straightforwardly
removed by an appropriate choice of gauge.

A. Exploiting Gauge Freedoms

From Eq. (8), we see that the D̂, Â, and Ŝα gauge
freedoms can be spent to fix the components σ and ζα
in Φ equal to any desired values. In particular, we can
even set σ and ζα to field-dependent functions of the mat-
ter fields, and we will exploit this freedom to manifestly
resolve the three complications discussed in Sec. II C.
In Wess-Zumino gauge for the gauge fields, but not yet

gauge fixing Φ, Eq. (15) implies that

C = −3σ†σe−K/3, (20)

ξα = 3i
√
2σ†σe−K/3

(
ζα − Ki

3
χi
α

)
, (21)

Arg[z] = Arg[σ3W ]. (22)

Thus, we see that there is sufficient freedom in σ and
ζα to set C = −3, ξα = 0, and Arg z = 0 to all or-
ders in the fields. This is essentially equivalent to the
gauge choice advocated in Ref. [13], which is reviewed in
App. B. However in this gauge, one is forced to integrate
out the vector auxiliary field of SUGRA in components,
which is at odds with our aim to describe SUGRA solely
in the language of superfields.
For the purposes of calculating the spectrum and cou-

plings of matter fields, it is actually more convenient to
impose a less stringent gauge choice where we only im-
pose the conditions C = −3, ξα = 0, and Arg z = 0 to
leading order in field fluctuations:

σ = exp

[
1

3

(
〈K/2− iArgW 〉+ 〈Ki〉X i

)]
, (23)

ζα =
1

3
〈Ki〉χi

α, (24)

where again we are working in a “zero vev” basis where
〈X i〉 = 0. This gauge fixing is sufficient to ensure that
there are no linear mixing terms between matter field
fluctuations and the graviton/gravitino. In addition, as
long as one is working in flat space, one can ignore ad-
ditional scalar mass terms from the remaining quadratic
non-minimal couplings to the Einstein-Hilbert term.
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B. Going to Superspace

While the gauge choice in Eq. (24) successfully decou-
ples the matter fields from the gravity multiplet, it is
rather inconveniently written in terms of components.
Fortunately, modulo a field redefinition of the auxiliary
field FΦ, this gauge choice can be rewritten compactly in
terms of superfields as Eq. (3), repeated for convenience:

Φ = eZ/3(1 + θ2FΦ), (3)

Z = 〈K/2− iArgW 〉+ 〈Ki〉Xi. (4)

Were Φ an ordinary superfield, then the mapping from
Eq. (24) to Eq. (3) would occur without complication,
but sinceΦ has conformal weight 1, there is an additional
subtlety.
Recall that matter fields participate in additional in-

teractions with the gravity multiplet beyond those ex-
plicitly shown in Eqs. (13) and (14). These couplings
are dictated by the full SUGRA invariance of the theory.
For example, when expanding the composite multiplets Ξ
and Σ, one encounters SUGRA-covariant derivatives Dc

µ

containing additional couplings to the graviton and grav-
itino. However, for calculations involving these matter
fields alone, these additional terms are irrelevant.9 Simi-
larly, for matter fields of conformal weight 0, integrating
out the vector auxiliary field only generates 1/M2

Pl sup-
pressed dimension 6 operators, which can also be ignored.
Nevertheless, a complication still arises because the

conformal compensator has conformal weight 1, and as
shown in App. A, it couples non-minimally to the vector
auxiliary field. A SUGRA-covariant derivative acting on
σ yields

Dc
µσ = ∂µσ − i

2
bµσ + . . . , (25)

and since 〈σ〉 6= 0, linear terms involving the vector aux-
iliary field bµ appear in the action.
Fortunately, one can prove via explicit computation

(see App. C) that in our gauge fixing in Eq. (24), bµ = 0
to leading order in MPl and can thus be ignored. As ad-
vertised, our gauge fixing can indeed be written in the
form of Eq. (3) up to irrelevant 1/MPl-suppressed oper-
ators.
It is instructive to understand why bµ can be com-

pletely ignored in our gauge but in contrast must be
carefully included in the gauge proposed by the authors
of Ref. [13]. In Ref. [13], σ was chosen to give C = −3
to all orders in the field expansion, which implied that σ
was a function of both chiral and anti-chiral fields. How-
ever, σ itself is the lowest component of a chiral multiplet,
so Dc

µσ should also be a chiral object. Since spacetime

9 One might worry about additional contributions to the prob-
lematic terms in Eq. (16), Eq. (17), or Eq. (18), but these are
absent.

derivatives on σ give derivatives on both chiral and anti-
chiral fields, the bµ equation of motions must cancel off
the derivatives on the anti-chiral fields in order to pre-
serve the known holomorphic structure of SUSY. In our
gauge fixing, σ is only dependent on chiral fields since
vevs are just constant complex numbers—thus holomor-
phicity is manifest, and bµ can be set to 0 at leading
order.

C. Understanding VEVs

Equation (3) is the primary result of this paper, and it
is worth understanding why explicit vevs are appearing
in our gauge choice.
Two of the three problematic terms in Sec. II C are

associated with linear terms in the Kähler potential. In
particular, if Ki were equal to zero, then there would be
no quadratic mixing terms in Eq. (16) or Eq. (17). In
addition, as shown in App. C, the problematic mixing
with bµ in Eq. (19) would vanish if Ki = 0. For a general
theory, Ki will not equal zero everywhere in field space,
so the best we can hope for is that 〈Ki〉 = 0 at the
minimum of the potential. Interpreting our gauge fixing
as the Kähler transformation in Eq. (5), we can indeed
remove such linear terms by the appropriate choice of
Z, but that choice will explicitly depend on 〈Ki〉. In
this sense, the appearance of vevs in our gauge fixing is
unavoidable.
Crucially, classical equations of motion are not affected

by the appearance of vevs. For a general function f(x),
the solution to 〈∂f/∂x〉 = 0 is the same for f as it is for
the first-order Taylor expansion

f̃(x) = 〈f(x)〉 + 〈f ′(x)〉(x − 〈x〉), (26)

or even any linear combination of f and f̃ . Thus, one
can self-consistently solve for the 〈Ki〉 terms in Eq. (3)
by treating 〈Ki〉 as numbers whose values are determined

by the scalar equations of motion. Of course, f and f̃
have different quadratic terms, and we will verify in the
next subsection that scalar masses take on the expected
SUGRA values.
Finally, the appearance of vevs in the gauge fixing

means that Eq. (3) is not manifestly (Yang-Mills) gauge

invariant if there is a charged field Xi that gets a vev.10

This is not really an issue, of course, since a charged
field getting a vev implies spontaneous gauge symmetry
breaking. However, one should remember that calcula-
tions using Eq. (3) are only correct up to 1/M2

Pl sup-
pressed dimension six operators, so there will in general
be (Yang-Mills) non-invariance in the dimension six in-
teractions. Note that the form of Eq. (3) already as-
sumed Wess-Zumino gauge for the gauge multiplets, and

10 In addition, Eq. (3) is expressed in a “zero vev” basis where
〈Xi〉 = 0, further obscuring (Yang-Mills) gauge invariance.
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one would need to redo the analysis of Sec. III A to find
the best SUGRA gauge fixing if one wanted to use, say,
unitary gauge for the massive vector multiplets.

D. Consistency Checks

To finish our discussion, we wish to show that our
gauge choice satisfies a number of consistency checks.
For simplicity, we will ignore the contributions from vec-
tor multiplets for this discussion, but one can verify
that gauge interactions also turn out as expected. Since
SUGRA is known to be Kähler invariant, the final re-
sults should be written in terms of the invariant Kähler
potential

G ≡ K + logW + logW ∗. (27)

Note, however, that Kähler invariance is not manifest in
our gauge choice, since the gauge fixing is equivalent to
picking a preferred Kähler basis where gravity can be
decoupled. (See App. B for a gauge choice with manifest
Kähler invariance but other complications.)
From Eq. (14) and Eq. (15), we see that the gravitino

mass is given by

m3/2 = 〈Φ3W
∣∣
θ0〉 = e〈G〉/2. (28)

This is the familiar Kähler invariant form of the gravitino
mass, as desired.
If one ignores the ellipsis in Eq. (2), then familiar global

SUSY techniques can be used to derive the spectrum and
couplings of matter fields. As derived in App. D, the
scalar and fermion kinetic terms are proportional to the
Kähler metric 〈Gij̄〉, leading to

−〈Gij̄〉∂µX i∂µX†j̄ , (29)

and

−〈Gij̄〉χj̄iσµ∂µχ
i, (30)

for the scalars and the fermions, respectively. Note the
appearance of vevs in these expressions, as higher order
field couplings to the kinetic terms differ from the exact
SUGRA results at order 1/M2

Pl.
The scalar potential is derived in App. E. After solving

the FΦ and F i equations of motion, we find

V = eG
(
GiGi − 3

)
e−2Kquad/3, (31)

which depends on the Kähler potential starting at
quadratic order in the fields

Kquad ≡ K − 〈K〉 − 〈Ki〉X i − 〈Kj̄〉X†j̄ . (32)

In Eq. (31), indices are raised and lowered with the in-

verse metric Gij̄ (without a vev), such that Gi ≡ Gij̄Gj̄ .
We see that the condition for vanishing c.c. is the same

as in exact SUGRA

〈GiG
i〉 = 3, (33)

so the vacuum structure is maintained. After tuning the
c.c. to zero, the equation of motion for FΦ yields

〈Fφ〉 = m3/2, (34)

as advertised in Eq. (6). Note that Eq. (31) matches the
SUGRA scalar potential to leading order in 1/MPl, and
includes all the effects proportional to m3/2. In particu-
lar, the Kquad term would appear to give corrections at
quadratic order in fields, but these vanish once the c.c.
is tuned to zero.
Most important for our companion paper [15], we re-

cover the SUGRA results for the fermion spectrum. Be-
fore going to unitary gauge for the gravitino, the (nor-
malized) goldstino mode ηeaten couples the gravitino as

−im3/2

√
3√

2
ηeatenσ

µψµ + h.c. (35)

From Eqs. (13) and (14) and Eq. (15), and using the F i

equation of motion, we can identify the goldstino mode
as

ηeaten =
1√
3
〈Gi〉χi. (36)

As shown in App. F, the complete fermion spectrum (in-
cluding the goldstino) is

−1

2
mijχ

iχj + h.c., mij = m3/2 〈∇iGj +GiGj〉 , (37)

where ∇iGj ≡ ∂iGj − Γk
ijGj depends on the Christoffel

symbol Γk
ij derived from the Kähler metric. This mass

matrix is not particularly illuminating in and of itself,
but the fact that it can be derived entirely within the
superspace formalism will allow us to easily compute the
spectrum of fermion masses in a companion paper [15]
on goldstini from F -term, D-term, and no-scale SUSY
breaking.

IV. CONCLUSIONS

In this paper we have derived a novel gauge choice
for conformal SUGRA which results in a simplified ver-
sion of the tree-level SUGRA Lagrangian. Our improved
gauge is manifestly better suited for phenomenological
applications, and moreover is an improvement over the
gauge choice of Ref. [13] since it decouples matter modes
not only from the graviton and gravitino but also from
the vector auxiliary field. Hence, SUGRA calculations
involving matter fields alone can be performed directly
in (global) superspace, including effects proportional to
m3/2.
This gauge fixing can also be understood as the pre-

sciently chosen Kähler transformation in Eq. (5). This is
not surprising, since a Kähler transformation

K → K −Z −Z†, W → eZW (5)
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has the same effect as a gauge transformation on the
conformal compensator (plus a field redefinition of Fφ)

Φ → eZ/3Φ. (38)

In this paper, we have exploited this Kähler redundancy
to simplify SUGRA calculations.
This formulation makes certain aspects of SUGRA

manifest while obscuring others. By expanding Eq. (15)
as Eq. (2), we have emphasized the spectrum and cou-
plings of matter fields but have hidden gravitational in-
teractions. On the other hand, the couplings of the
graviton and gravitino are given at leading order by
the well-known stress-energy tensor and supercurrent,
respectively, so little is lost by hiding them. Crucially,
Eq. (2) still includes all couplings to the goldstino degree
of freedom identified in Eq. (36), which is phenomenolog-
ically more relevant than the transverse gravitino modes
in the goldstino equivalence limit.
In a companion paper [15], we will use this novel gauge

fixing to calculate the spectrum of goldstini in general
theories of F -term, D-term, and “almost no-scale” SUSY
breaking. With standard component SUGRA methods,
such calculations would be tedious and obscure, but in su-
perspace, they become straightforward and transparent.
Obviously, one would like to generalize this gauge fix-
ing procedure beyond minimal SUGRA models, by prop-
erly including radiative corrections and SUSY-covariant
derivatives in the action. Ultimately, one hopes that this
alternative gauge fixing will shed light on the more gen-
eral properties of SUGRA beyond phenomenology.
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Appendix A: Superfields in SUGRA

In order to describe matter multiplets in terms of the
ordinary global superspace variables θ and θ̄, we need to
know how to package the components of a multiplet into
θ-dependent superfields, including any relevant SUGRA
effects. Here, we follow the logic of Ref. [13, 16], though
we use two-component fermion notation.
For a chiral multiplet X with components

X = {X,χα, F}, (A1)

we can construct a familiar looking superfield in terms of
the usual global superspace variables as

X = X +
√
2θχ + θ2F

+ iθσµθ̄Dc
µX − i√

2
θθDc

µχσ
µθ̄

+ 1
4θ

4Dc
µD

cµX.

(A2)

Compared to the expressions from global SUSY, we
have simply replaced the ordinary derivative ∂µ with the
SUGRA-covariant derivative Dc

µ.
The SUGRA-covariant derivative depends on the

graviton, gravitino, and vector auxiliary field, with full
expressions given in Ref. [16]. For our purposes, we are
mainly interested in anomalous couplings to the vector
auxiliary field bµ, which arise because the conformal com-
pensator has conformal weight 1. The SUGRA-covariant
derivative for a chiral multiplet of conformal weight w is

Dc
µX =

(
∂µ − i

w

2
bµ

)
X + . . . , (A3)

Dc
µχα =

(
∂µ − i

(
3

4
− w

2

)
bµ

)
χα + . . . , (A4)

where the ellipsis indicates additional terms involving the
graviton and gravitino.
Immediately, we see that the expression in Eq. (1) for

the näıve conformal compensator is incomplete. Since
the conformal compensator has conformal weight 1, there
should be additional terms involving bµ in the θθ̄ and
θ4 components. As discussed more in App. C, we can
avoid that complication by ensuring that the equations
of motion fix bµ = 0 to leading order in 1/MPl.
We also see that for ordinary chiral multiplets with

w = 0, there are no complications posed by Dc
µ. While

there are residual couplings of bµ to fermions, they only
generate 1/M2

Pl suppressed dimension 6 operators. Simi-
larly, it is straightforward to show that the graviton and
gravitino terms elided in Eq. (A4) do not introduce any
of the problematic mixing terms discussed in Sec. II C.
A similar analysis holds for vector multiplets, with the
same conclusions.
Thus, for calculations involving matter fields alone, we

are free to use ordinary global superfields for calculational
purposes, as long as we ensure that bµ = 0 to leading
order in 1/MPl. The condition bµ = 0 is a key feature
of the gauge choice in Eq. (3), a feature not present in
Ref. [13], as discussed in the next appendix.

Appendix B: The Kugo-Uehara Gauge

The gauge choice in this paper is closely related to a
gauge choice presented by Kugo and Uehara in Ref. [13],
which we review in this appendix. The Kugo-Uehara
gauge choice starts with essentially the same logic as in
Sec. III A, but differs from our gauge fixing by setting

C = −3, ξα = 0, Arg z = 0, (B1)
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to all orders in the fields. This results in the conformal
compensator having components

Φ = exp

[
1

3
(K/2− iArgW )

]
×
{
1,
Kiχ

i

3
, Fφ

}
, (B2)

where K and W include their full field dependence. By
doing a field redefinition of FΦ, this is more conveniently
expressed in term of the superpotential W and invariant
Kähler potential G from Eq. (27) as11

Φ = W−1/3Φ̃, Φ̃ = eG/6 ×
{
1,
Giχ

i

3
, Fφ

}
. (B3)

Here, W is a full chiral superfield, but G is only a func-
tion of the scalar fields.
This gauge choice has a number of nice features.

First, this gauge choice makes Kähler invariance mani-

fest. Looking at Eq. (2), we see that the W−1/3 term in
Φ precisely cancels against the superpotential W in the

action, and the very same W−1/3 term combines with
e−K/3 to yield

(WW ∗)−1/3e−K/3 ≡ −3e−G/3. (B4)

Thus, the SUGRA action depends only on G, which can
be thought of as the invariant Kähler potential lifted into
superspace. Second, this gauge choice eliminates the
problematic mixing terms everywhere in moduli space,
such that no matter what the field vevs are, none of
the three terms from Sec. II C ever arise. Finally, the

fermionic component of Φ̃ is proportional to the eaten
goldstino Giχ

i/
√
3, and setting this component to zero

automatically results in unitary gauge for the gravitino.
Despite the apparent simplicity of this Kugo-Uehara

gauge, it suffers from a hidden problem, namely problem-
atic mixing with the vector auxiliary field bµ described
in Eq. (19). This means that Φ cannot simply be lifted
into global superspace, since its components have residual
dependence on the SUGRA-covariant derivatives from
Eq. (A4). Integrating out bµ gives additional terms in
the action which spoil the simplicity of Eq. (2). In addi-
tion, Φ does not have the expected holomorphy proper-

ties of a usual chiral multiplet, since Φ̃ depends on the
full Kähler potential G, which is a function of both chiral
and antichiral fields.
Thus, we prefer Eq. (3) for practical calculations. That

said, the gauge choice in Eq. (B3) is convenient for zero
momentum calculations where the problematic term in
Eq. (19) is irrelevant. Alternatively, if one wanted to

11 The derivation in Ref. [13] is slightly different from the one pre-
sented in this appendix. There, the conformal compensator was
first rescaled by the superpotential Φ = W

−1/3
Φ̃ and then the

gauge fixing was applied to Φ̃ itself. Obviously, the two methods
differ only by a Kähler transformation, and the two final results
are the same. The practical difference is that Ref. [13] did not
have to impose the condition from Eq. (18).

keep track of the most important effects of bµ using a
superfield language, one could introduce a new auxiliary
field multiplet

B = −1

2
θσµθ̄bµ, (B5)

and make the replacement

Φ†Φ → Φ†eBΦ (B6)

in Eq. (2). Interpreting bµ as the gauge field for local
U(1)R chiral transformations, we see that Φ indeed has
conformal weight 1.12

Appendix C: The Vector Auxiliary Field

As described in App. A, in order to convert global su-
perfields into SUGRA superfields, all spacetime deriva-
tives ∂µ must be replaced by covariant derivatives Dc

µ

which are covariant under the complete set of conformal
SUGRA gauge redundancies. This covariant derivative
Dc

µ contains couplings to the gravity multiplet, which
are largely irrelevant for our phenomenological purposes.
The one exception is covariant derivatives acting on the
conformal compensator itself, since the compensator has
conformal weight 1.
Since we have parametrized Φ in Eq. (7) with an over-

all factor of σ, we can treat σ as the only field with
conformal weight 1, with ζα and FΦ having the usual
conformal weight 0. Thus, the only non-trivial covariant
derivative is

Dc
µσ = ∂µσ − i

2
wbµσ + . . . , (C1)

where the conformal weight w = 1 for σ, bµ is the vec-
tor auxiliary field, and we have elided the graviton and
gravitino terms for simplicity.
We can expand out Eq. (2) to isolate terms depending

on the vector auxiliary field:

3σ†σe−K/3

(
bµbµ
4

+ bµ Im

(
1

3
Ki∂µx

i − ∂µσ

σ

))
, (C2)

where we have elided additional terms that are quadratic
in fermion fields. Using the gauge fixing from Eq. (23),
we see that

∂µσ

σ
=

1

3
〈Ki〉∂µxi (C3)

so there are no kinetic mixing terms of the form of
Eq. (19), only higher order terms in the scalar field ex-
pansion. Since bµ has a mass of orderM2

Pl, the only effect

12 More precisely, a chiral multiplet with conformal weight w has
charge {w,w} under D̂ and Â, while an anti-chiral multiplet with
weight w has charge {w,−w}. Recall, though, that we have used

the K̂µ gauge freedom to eliminate the dilatation gauge field.
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of the auxiliary fields is to generate 1/M2
Pl suppressed di-

mension six operators involving matter fields, which are
irrelevant for our phenomenological purposes. Therefore
we are free to set bµ = 0 to leading order for this gauge
choice.

It is now clear why the Kugo-Uehara gauge choice in
Eq. (B2) has residual dependence on the vector auxiliary
field. In that gauge, σ is a function of both chiral and
anti-chiral fields, so the leading order cancellation seen in
Eq. (C3) does not persist. In this sense, our gauge choice
is unique, since it is the minimal (local) gauge fixing that
eliminates Eq. (19).

Appendix D: Scalar and Fermion Kinetic Terms

Using Eq. (2), it is straightforward to check that our
gauge fixing results in the expected scalar and fermion
kinetic terms in SUGRA. In particular, Eq. (2) can be
expanded using standard superspace methods, up to cor-
rections at order 1/MPl.

The kinetic operators can only come from the first term
in Eq. (2), and we parameterize the chiral supermultiplets
as in Eq. (10). To simplify the notation, it is convenient
to introduce the superfield

T = −3Φ†Φ e−K/3, (D1)

resulting immediately in the kinetic terms

−Tij̄ ∂µX i ∂µX†j̄ , (D2)

and

−Tij̄ χj̄iσµ∂µχ
i , (D3)

for the scalars and the fermions, respectively.

Using the gauge fixing for Φ in Eq. (3), it is straight-
forward to find Tij̄ from Eq. (D1). Since Φ is itself ex-
pressed as a function of the chiral multiplets, there is no
complications in taking field derivatives. We find

T = −3e−Kquad/3, (D4)

Ti = δKi e
−Kquad/3, (D5)

Tij̄ =

(
Gij̄ −

δKi δKj̄

3

)
e−Kquad/3, (D6)

where δKi ≡ Ki−〈Ki〉 and Kquad is defined in Eq. (32).

Because of the relationship between the vevs

〈Tij̄〉 = 〈Gij̄〉, (D7)

we indeed recover the correct SUGRA kinetic terms. At
higher orders in the field expansion of Eq. (D2) and
Eq. (D3), there will be deviations from the SUGRA pre-
dictions at order 1/M2

Pl.

Appendix E: Scalar Potential and Auxiliary VEVs

Another check of the gauge fixing is to make sure that
the vacuum structure of the theory matches the exact re-
sults from SUGRA. Again, we can use superspace meth-
ods to analyze Eq. (2). It is convenient to define the
superfield

P = Φ3W , (E1)

and we will continue to use the notation T from Eq. (D1).
The scalar potential derived from Eq. (2) is

−V = Tij̄F
iF †j̄ + TiF

iF †
Φ + Tj̄F

†j̄FΦ + TFΦF
†
Φ

+ PiF
i + 3FΦP + P †

j̄
F †j̄ + 3F †

ΦP
†. (E2)

The expression for FΦ is obtained from its equation of
motion

FΦ = −TiF
i + 3P †

T
. (E3)

Our gauge choice has 〈Ti〉 = 0 and 〈T 〉 = −3 by con-
struction, and 〈P 〉 = m3/2 from Eq. (28), so

〈FΦ〉 = m3/2 (E4)

as advertised.
Substituting FΦ back into Eq. (E2), we have

−V =

(
Tij̄ −

TiTj̄
T

)
F iF †j̄ +

(
Pi − 3P

Ti
T

)
F i

+

(
P †
j̄
− 3P †Tj̄

T

)
F †j̄ − 9

PP †

T
. (E5)

Using the fact that

Tij̄ −
TiTj̄
T

= Gij̄ e
−Kquad/3, (E6)

Pi − 3P
Ti
T

= GiP, (E7)

PP † = eGe−Kquad , (E8)

we can simplify the potential and solve for F i

F i = −P †Gi eKquad/3. (E9)

Here Gi ≡ Gij̄Gj̄ is defined in terms of the inverse Kähler
metric. The final expression for the scalar potential is

V = eG
(
GiGi − 3

)
e−2Kquad/3, (E10)

which agrees with the SUGRA scalar potential at leading
order in 1/M2

Pl when expanded around flat space.

Appendix F: Goldstino Mode and Fermion Spectrum

The final check of our gauge fixing is to verify that
the fermion structure matches the SUGRA expectation.
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For simplicity, we will ignore gauginos for this discussion,
and we will again use the notation of T from Eq. (D1)
and P from Eq. (E1).
The goldstino mode couples to the gravitino as in

Eq. (35). Using Eqs. (13) and (14), we can identify the
goldstino direction ηeaten as

ηeaten =

√
2√

3m3/2

(
1

2
T |θ̄θ̄θ + P |θ

)
. (F1)

Focusing only on the minimum of the scalar potential,
and using the auxiliary field equations of motion, we find

ηeaten =
1√

3m3/2

〈(
F †
ΦTi + Tij̄F

†j̄
)
+ 2Pi

〉
χi

=
1√
3
〈Gi〉χi, (F2)

as desired. With D-terms turned on, ηeaten will pick up
an additional contribution from the gaugino in T |θ̄θ̄θ as
well as W αW α|θ.

To check the fermion masses, we expand out Eq. (2),
looking for the operators χiχj in the Lagrangian:

−1

2

〈
Tijk̄F

†k̄ + TijF
†
Φ + Pij

〉
χiχj + h.c., (F3)

where for again we have only considered the vevs of these
expressions. Using the definitions of T and P , we can
extract

〈Tijk̄F †k̄〉 = −m3/2〈Gijk̄G
k̄〉, (F4)

〈Pij + TijF
†
Φ〉 = m3/2〈Gij +GiGj〉. (F5)

Thus, the fermion mass matrix is

Lmass = −1

2
m3/2 〈∇iGj +GiGj〉χiχj + h.c., (F6)

where ∇iGj ≡ ∂iGj − Γk
ijGk, and the Christoffel symbol

Γk
ij is derived from the Kähler metric Gijk̄ = Gmk̄Γ

m
ij .

This is the expected SUGRA result.
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