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We present a particularly nice D-dimensional graph-based representation of the full color-dressed
five-point tree-level gluon amplitude. It possesses the following virtues: 1) it satisfies the color-
kinematic correspondence, and thus trivially generates the associated five-point graviton amplitude,
2) all external state information is encoded in color-ordered partial amplitudes, and 3) one function
determines the kinematic contribution of all graphs in the Yang-Mills amplitude, so the associated
gravity amplitude is manifestly permutation symmetric. The third virtue, while shared among
all known loop-level correspondence-satisfying representations, is novel for tree-level representations
sharing the first two virtues. This newD-dimensional representation makes contact with the recently
found multiloop five-point representations, suggesting all-loop, all-multiplicity ramifications through
unitarity. Additionally we present a slightly less virtuous representation of the six-point MHV and
MHV amplitudes which holds only in four dimensions.

PACS numbers: 04.65.+e, 11.15.Bt, 11.30.Pb, 11.55.Bq

I. INTRODUCTION

In this paper we employ loop-level techniques to estab-
lish the existence of tree-level representations satisfying
certain criteria in Yang-Mills (YM) and gravity (GR) the-
ories. Indeed such criteria expose tree-level calculation to
many of the challenges faced in the discovery of partic-
ular loop-level representations. As an eventual goal is
to improve at translating between loop-level representa-
tions, the existence of such a tree-level proving-ground
is convenient. We will see that there is already practical
value for future multi-loop cut calculations arising from
this five-point exploration. Further, study of the form of
these representations may help unlock more constructive
techniques for satisfying similar criteria at loop-level.

A particularly intriguing discovery is that full color
dressed gluon tree-level scattering amplitudes in YM the-
ories encode all the information necessary to write down
tree-level graviton scattering amplitudes in related grav-
ity theories. This was first demonstrated by Kawai,
Lewellen, and Tye (KLT) [1] for tree-level open and
closed string amplitudes in the eighties. In the late
nineties an all-multiplicity expression was written down
by Bern, Dixon, Perelstein, and Rozowsky [2] for tree-
level field theory. Recently Bern, Johansson, and one of
the current authors (BCJ) discovered that it was pos-
sible to extract gravity information from gauge theory
representations in a very direct way [3].

To achieve this extraction, one must organize the YM
scattering amplitudes into a particularly stringent rep-
resentation. First it must be in terms of cubic-vertex
graphs, absorbing higher-vertex contact terms into any
of the cubic graphs allowed by the color structure. Sec-
ondly, the kinematic factors of the graphs (numerator
functions) must be organized so as to share the same
algebraic properties as their corresponding color-factors.
Having done so, the gravity amplitude is simply given by
a sum over the same cubic graphs, but with a second copy

of the Yang-Mills kinematic factor replacing the Yang-
Mills color factor, the so called double-copy construction

of gravity amplitudes. Schematically, if the correspon-
dence is satisfied in the YM representation,

YM ∝
∑

g∈graphs

n(g)c(g)

p(g)
⇒ GR ∝

∑

g∈graphs

n(g)ñ(g)

p(g)
, (1.1)

where n(g) are the kinematic numerator factors, c(g) are
the color factors, p(g) are the propagators of the graphs,
and ñ(g) is simply another copy of the Yang-Mills factor
n(g). The double-copy construction was conjectured and
tested to eight points in ref. [3], and proven to hold for all
multiplicity at tree-level by Bern, Dennen, Huang, and
Kiermaier [4].
The story gets even more interesting at the level

of quantum (loop-level) corrections: the double-copy
construction of gravity amplitudes holds for integrands
whenever it is possible to find a YM representation sat-
isfying the color-kinematic correspondence of ref. [3] as
first explicitly demonstrated in [5].
The four-point loop-level scattering amplitudes in

maximally supersymmetric Yang-Mills theory, in repre-
sentations that allow the double-copy construction of as-
sociated gravity amplitudes [5–8], share three virtues:

1. They satisfy the color-kinematic correspondence of
ref. [3]. This is sufficient for the double-copy con-
struction. We will refer to representations sharing
this virtue as BCJ representations.

2. All external state information in the kinematic
numerator factors, including any dependence on
number of space-time dimensions, is encoded in
tree-level color-ordered partial amplitudes. This
virtue carries a number of features. Their gener-
alization to D dimensions tends to be straightfor-
ward. Supersums involving these representations
involve only the partial-amplitude prefactors. Most



2

importantly, these representations allow for state-
agnostic universal expressions. We will refer to
representations sharing this virtue as amplitude-

encoded representations.

3. Independent of permutations of external leg labels,
each graph topology has only one numerator func-
tion taking it to kinematic numerators. This al-
lows for a much smaller number of distinct graph
numerator mappings to be specified. The resulting
gravity-expression is then manifestly crossing sym-
metric. We will refer to representations sharing this
virtue as symmetric representations.

Constructing BCJ representations at loop level, while
advantageous in terms of minimizing the amount of
theory-specific input1, comes with its own challenges.
Namely the process involves solving non-trivial func-
tional relations between graph numerators. This has
been accomplished mainly by introducing sufficiently
general ansätze [8, 15]. Amplitude-encoding and sym-
metry, while certainly not necessary at loop level, sim-
plify the finding of BCJ representations by constraining
the size of the ansätze. For a particularly impressive ex-
ample one can consider the representation of four-point
four-loop N = 4 super-Yang-Mills amplitudes in ref. [8].
This representation allows for the encoding of the entire
amplitude in terms of a very small number of numerator
functions. In particular, all eighty-five symmetric kine-
matic numerators can be given as functionals of either
two planar, or – even more remarkably – one non-planar
kinematic numerator. Amplitude encoding allows for a
systematic exploration of what ends up being a fairly
small ansatz space, as well as recycling the four-loop am-
plitude in D-dimensional box-cuts for all-multiplicity at
any higher-loop order.
At tree-level, on the other hand, finding amplitude-

encoded BCJ representations is fairly straightforward [3].
Intriguingly, the additional requirement of finding a sym-
metric representation leads to the type of non-trivial
functional relations appearing at loop-level. This is sug-
gestive because at tree-level all the content of the theory
is already available in fairly compact forms – the color-
ordered partial tree-amplitudes. The discovery of similar
challenges as at loop-level means that, in tree-level, we
have a potential testing ground for new techniques to
move between representations that could be broadly ap-
plicable.
The tree-level BCJ representations appearing in the lit-

erature [3, 4, 17–29] have satisfied, in addition, at most
one of the two other virtues, although they may have
other very favorable features such as explicit locality in
external momenta, arising naturally from string-theory,
compactness, or explicit forms for all multiplicity. The

1 Available most typically through the (generalized) unitarity
method [9–12]. See recent reviews for details [13–16].
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FIG. 1: Illustration of a generic m-point half-ladder diagram.

D-dimensional2 tree-level representations arrived at by
the Feynman rules introduced in [4] are symmetric (and
local), but at the cost of fairly unwieldy expressions – em-
bedding external-state information in polarization vec-
tors. The tree-level representations arrived at by the
procedure outlined in [3] are amplitude-encoded. Fur-
thermore they make manifest all (generalized) gauge free-
dom consistent with the correspondence between color
and kinematics. For generic choices of the generalized-
gauge, however, these representations are asymmetric;
distinct numerator functions must be defined depending
on the permutation of the labeling of the graphs.

In this work we present two new representations of the
D-dimensional five-point tree – each sharing all three
virtues with the four-point multi-loop representations
discussed above. One of these representations is directly
expressible in terms of the universal prefactors appearing
in the recently discovered five-point multiloop symmetric
BCJ representations in N = 4 sYM [30]. Having iden-
tified this relation between tree-level and loop-level, we
are able to render the recent five-point multiloop repre-
sentations amplitude-encoded and thus just as virtuous
as the four-point loop-level amplitudes. Additionally, we
present a similar representation for the six-point MHV
and MHV trees that hold only in four dimensions, rely-
ing on special four-dimensional properties relating MHV
color-ordered scattering amplitudes.

It is amusing to note that the first and third virtues
conspire to engender a particularly satisfying state of
grace at tree-level – the need to specify only one numera-
tor function. BCJ representations need merely to specify
numerator functions for some subset of the half-ladder di-
agrams (also termed multi-peripheral diagrams [31], see
fig. 1) with various permutations of external leg labels, as
all others graph functions are constrained algebraically.
If we can additionally impose symmetry, we will find that
the representation needs only a single function: all the
half-ladders at any given multiplicity will be mapped to
kinematic factors with the very same function, but with
permuted arguments – rendering the double-copy con-
structed gravity amplitudes manifestly permutation sym-
metric.

The organization of this paper is as follows. In sec-

2 The Feynman rules introduced in [4] immediately generalize to
D dimensions.
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tion II we briefly review representations and relations
between tree-level partial and fully color-dressed scatter-
ing amplitudes, as well as the color-kinematic correspon-
dence of ref. [3]. In section III we discuss the general
approach to solving the functional constraints of satisfy-
ing BCJ, amplitude-encoded, and symmetric representa-
tions, and work out in detail the identification of a vir-
tuous representation of the four-point amplitude. In sec-
tion IV we present and discuss the new representations
of the five-point tree, and their relation to higher-loop
symmetric-BCJ representations. In section V we intro-
duce the new representation of the six-point MHV tree.
Finally, in section VI, we conclude by summarizing the
challenges involved with the question of finding similar
expressions at higher multiplicity, and discuss the value
of exploring various representations at tree-level.

II. BACKGROUND

A. Cubic representation and correspondence

between color and kinematics

The correspondence between color and kinematics re-
lies [5, 15, 32] on the ability to write any m-point L-loop,
amplitude, with all particles in the adjoint representa-
tion, as

(−i)L

gm−2+2L
YM

AL
m =

∑

g∈graphs

∫ L
∏

i=1

dDqi
(2π)D

1

S(g)

n(g)c(g)
∏

l∈p(g) l
2
,

(2.1)
where gYM is the coupling constant. The sum runs
over the set of m-point L-loop graphs with only cubic
vertices including permutations of external momenta la-
bels. The product in the denominator collects all prop-
agators of each cubic diagram g and the integration
is performed over all independent loop momenta. The
mapping c(g) takes the graph g to the color factor ob-
tained by dressing every three-vertex in the graph with
an f̃abc = i

√
2fabc = Tr{[T a, T b]T c} structure constant,

where the color-group generators T a encode the color of
each external leg 1, 2, 3 . . .m. Accordingly, the mapping
n(g) takes the graph g to kinematic factors which can

depend on momenta and polarizations – and can be dif-
ferent for the same topology under permutations of ex-
ternal leg-momenta. Finally, S(g) denotes the internal
symmetry factors of the individual graphs. For super-
symmetric amplitudes expressed in superspace, the map-
ping n(g) will also contain Grassmann parameters. The
purely cubic form of eq. (2.1) can be obtained from other
representations by expressing all contact terms as inverse
propagators in kinematic numerators that cancel propa-
gators.
The correspondence between color and kinematic map-

pings is satisfied if the kinematic factors obey Jacobi rela-
tions in one-to-one correspondence with the color-factors,
as well as antisymmetry under the flip of ordering at any
odd number of vertices,

n(i)+n(j)+n(k) = 0 ⇔ c(i)+ c(j)+ c(k) = 0 . (2.2)

n(g) → −n(ĝ) ⇔ c(g) → −c(ĝ) . (2.3)

In the early eighties, two papers looking at general
gauge theories explored a “radiation zero” discovered a
few years earlier in an electroweak four-point process [33];
the relations they found were later recognized as the
four-point expression of a more general color-kinematics
correspondence [3]. This correspondence (or duality be-
tween color and kinematics) holds to all multiplicity at
tree-level [18, 21]. Conjectured to also hold at any loop-
level [5], the color-kinematic correspondence is strongly
supported in the maximally supersymmetric theories for
the four-point amplitudes up through four loops [5–8],
through two loops at five points [30], at one loop in
N = 0 . . . 4 sYM [34], and in pure Yang-Mills at two
loops [5]. Recent reviews of the use of the color-kinematic
correspondence in the construction of loop-level ampli-
tudes is given in [15, 35].

B. Color stripped amplitudes and relations

In contrast to eq. (2.1), the full tree-level amplitude
can be alternatively decomposed,

Atree
m (1, 2, 3, . . . ,m) = gm−2

YM

∑

P(2,3,...,m)

Tr[T a1T a2T a3 · · ·T am ]Atree
m (1, 2, 3, . . . ,m), (2.4)

where Atree
m is a tree-level color-orderedm-leg partial am-

plitude, and the trace is over the group-theory color gen-
erators. The sum runs over all noncyclic permutations of
legs, which is equivalent to all permutations keeping leg
1 fixed.

Each color-ordered partial tree-amplitude can in turn
be expanded into its subset of the cubic graphs that ap-
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pear in eq. (2.1),

Atree
m (1, 2, 3, . . . ,m) =

∑

g∈cyclic

n(g)
∏

l∈p(g) l
2
, (2.5)

where the sum is over all cyclic-relabelings of all topolo-
gies that can contribute to the particular color ordering.
One might expect that for m interacting gluons there

could be m! distinct partial amplitudes (all the different
orderings). Fortunately, however, a number of relations
constrain the count to (m− 3)! independent partial am-
plitudes.
First, the color-ordered partial amplitudes satisfy the

cyclic and reflection properties,

Atree
m (1, 2, . . . ,m) = Atree

m (2, . . . ,m, 1) , (2.6)

Atree
m (1, 2, . . . ,m) = (−1)mAtree

m (m, . . . , 2, 1) .

Second, they satisfy the “photon”-decoupling identity
(or subcyclic property) [36, 37],

∑

σ∈cyclic

Atree
m (1, σ(2, 3, . . . ,m)) = 0 , (2.7)

where the sum runs over all cyclic permutations of legs
2, 3, 4, . . .m.
Next are the Kleiss-Kuijf relations [37]:

Atree
m (1, {α},m, {β}) = (−1)nβ

∑

{σ}i∈OP({α},{βT })

Atree
m (1, {σ}i,m) ,

(2.8)
where the sum is over the “ordered permutations”
OP({α}, {βT }), that is, all permutations of {α}⋃{βT }
that maintain the order of the individual elements be-
longing to each set within the joint set, where nβ is the
number of β elements. Following [37] we use the notation
{βT } to represent the set {β} with the ordering reversed.
These relations were first conjectured in ref. [37] and later
proven in ref. [38]. After taking all of the above relations
into account, the number of independent m-point ampli-
tudes is (m− 2)!.
Finally the ability to construct BCJ representations

at tree level was used [3] to predict additional relations
between color-ordered partial tree amplitudes, which re-
duce the number of independent amplitudes to (m− 3)!.
While the general form of the identities is somewhat in-
volved, the structure and the occurrence of kinematic
coefficients in the relations can be seen in the following
five-point example:

s24s245A
tree
5 (1, 2, 4, 5, 3) = −Atree

5 (1, 2, 3, 4, 5)s34s15

−Atree
5 (1, 2, 3, 5, 4)s14(s245 + s35) , (2.9)

where sij... = (pi + pj + · · · )2, and the set of (5 − 3)!
independent five-point tree amplitudes on the right-hand
side is obtained by keeping legs 1 through 3 fixed. An all
multiplicity expression is given in ref [3]. These relations
were later derived and proven from string theory using

monodromy [39–41], as well as in a pure field-theoretic
approach using on-shell recursion [42, 43].

It should be emphasized that all of these relations
between partial amplitudes share an important feature:
they hold in arbitrary dimensions. As such, they can
be used to analytically establish D-dimensional repre-
sentations without explicit evaluation in any particular
dimension.

III. METHODS

Finding an amplitude-encoded BCJ satisfying repre-
sentation at m-point tree-level is straightforward. We
start by identifying the cubic tree graphs with m ex-
ternal legs, independent under vertex-flip antisymmetry,
and write down the linear system of equations generated
by the Jacobi relations between kinematic numerator fac-
tors. We can reduce this linear system by simple elimina-
tion of kinematic factors, solving each in terms of simple
linear combinations of others, until no more elimination
is possible, and we are left with a solution for every kine-
matic factor as a linear functional of the graphs indepen-
dent under these relations. These independent graphs
are termed “master graphs”, as they effectively encode
the full amplitude. It is important to realize that these
master graphs are often related by graph isomorphisms,
their ‘independence” is only under the Jacobi relations.
As such, the same topology may appear several times
with different labelings in the master graphs.

We can take any set of independent partial amplitudes,
decompose them into their cubic-graph representation,
and express their kinematic factors in terms of the mas-
ter kinematic factors. As there are (m− 3)! independent
partial amplitudes for m-point interaction, this allows us
to solve for (m − 3)! of the master kinematic factors in
terms of the independent partial amplitudes, propaga-
tors, and the remaining unconstrained kinematic factors
associated with the other master graphs.

At this point we have a complete BCJ, amplitude-
encoded representation: all external dependence of the
scattering amplitude are encoded in the (m − 3)! color-
ordered partial amplitudes, and the representations sat-
isfy the color-kinematic Jacobi relations by construction.
None of the unconstrained factors can affect the ac-
tual value of the scattering amplitudes if the constrained
(m − 3)! numerator kinematics have been defined as
above, so they are described as parameterizing a gen-
eralized gauge freedom [3]. These dynamic3 parameters
can be set to any value. They could be set to vanish, or
chosen to be functions that maximize the total number of
graphs whose numerators vanish, c.f. the representations
of ref. [18, 21].

3 Functions of kinematics.
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a

b c

d

FIG. 2: The four point cubic diagram. It appears with three
distinct labelings of external legs (a, b, c, d), corresponding to
the “s”-channel diagram: (1, 2, 3, 4), the “t”-channel diagram:
(2, 3, 4, 1), and the “u”-channel diagram: (3, 1, 4, 2).

Recall that many of these graphs may share the same
topology – in fact, the master graphs can all be chosen
to be various labelings of the half-ladder4– as we will do
for the rest of this discussion. For symmetric representa-
tions, each of these master numerators n(g) will be given
by the same function nhl taking as its argument the var-
ious permutations of external labels. All decompositions
of color-ordered partial amplitudes in terms of their cu-
bic graphs simply represent functional constraints that
the nhl must satisfy. The Jacobi relations and symme-
try relations reflect the sole remaining functional con-
straints. Finding an ansatz general enough to satisfy
these functional constraints, and yet remain computa-
tionally tractable, poses the primary obstacle to finding
symmetric BCJ representations at tree-level.

A. Four-point example

Let us warm up by seeing how this all comes together
at four points. There is only one cubic topology at four
points, shown with arbitrary labels (a, b, c, d) in fig. 2.
We first consider all 24 ways of giving (a, b, c, d) differ-
ent values of (k1, k2, k3, k4). If we recognize that there is
nothing to distinguish the labeled graph (a, b, c, d) from
(c, d, a, b), then the number of labelings drops to 12. Im-
posing antisymmetry, n(b, a, c, d) = −n(a, b, c, d), takes
us to only 6 labelings, and considering the same flip on
the other vertex reduces the number of distinct labelings
to three. These three four-point graphs are traditionally
named for the Mandelstam variable carried as their prop-
agators (s = (k1+k2)

2, t = (k2+k3)
2, and u = (k3+k1)

2

with s+ t+ u = 0). We will use the shorthand notation
ns, nt, and nu, for their three different numerator func-
tions. Here, and as in the rest of the paper, external state
indices on external particles are suppressed – they are to
be taken as to follow the momentum labels in any argu-
ment to numerators or color-ordered partial amplitudes.

4 This was demonstrated by Del Duca, Dixon, and Maltoni for
tree-level color-factors [31]. As the argument was based purely
based upon Jacobi identities it holds for kinematic numerators
in a BCJ representation.

The cubic representation of the full four-point amplitude
is then

Atree
4 = g2YM

(nscs
s

+
ntct
t

+
nucu
u

)

, (3.1)

where gYM is the gauge coupling constant, ci are the as-
sociated color factors with each tree-graph. There is but
one kinematic Jacobi relation between these graphs, and
following the signs of the color factors associated with
this edge ordering, it is nu = ns − nt, in correspondence
with the color Jacobi relation cu = cs − ct.
We can write down any (4−3)! = 1 independent color-

ordered partial amplitude, which without loss of gener-
ality we choose to be

Atree
4 (1, 2, 3, 4) = ns/s+ nt/t, (3.2)

and solve it for one of the numerators. Now we can ex-
press nt as a function of of ns, s, t, and Atree

4 (1, 2, 3, 4),

nt = t
(

Atree
4 (1, 2, 3, 4)− ns

s

)

, (3.3)

and together with

nu = ns − nt = −u

s
ns − t Atree

4 (1, 2, 3, 4) , (3.4)

we have a full BCJ, amplitude-encoded solution. With a
little algebra one can see that ns drops out of all physical
quantities, and so parameterizes the generalized gauge
freedom consistent with a BCJ representation.
As mentioned, all external state information is en-

coded in the color-ordered scattering amplitude in the
solution to nt, and all residual generalized-gauge free-
dom is encoded in ns. For example we are free to choose
ns = −

(

s t
u

)

Atree
4 (1, 2, 3, 4) such that nu vanishes. Sim-

ilarly, one could have chosen ns such that nt explicitly
vanishes, or simply set ns = 0. Unlike, for example, the
non-dynamic single-parameter gauge freedom we will find
in our symmetric five-point representation, this asym-
metric freedom is much more flexible: ns can be any
function whatsoever. The natural question to the point
of this paper is whether one can find a symmetric rep-
resentation: i.e. the same function n(a, b, c, d) such that
n(1, 2, 3, 4) returns an appropriate ns, n(2, 3, 4, 1) returns
an appropriate nt, and n(3, 1, 4, 2) returns an appropriate
nu.
It will turn out to indeed be possible. In order to

find the correct form of n(a, b, c, d) we need to solve the
following functional constraints:

n(a, b, c, d) = n(c, a, d, b) + n(b, c, d, a) (3.5)

Atree
4 (a, b, c, d) =

n(a, b, c, d)

sab
+

n(b, c, d, a)

sbc
(3.6)

n(a, b, c, d) = n(c, d, a, b) (3.7)

= −n(a, b, d, c)

= −n(b, a, c, d) ,
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where the first relation is the Jacobi identity ns = nu+nt,
the second is the decomposition of the color-ordered par-
tial tree amplitude, and the last three impose the re-
quired graph autmorphisms.
We introduce an ansatz for the form of n(a, b, c, d).

In order to satisfy amplitude encoding we will express
our ansatz in terms of color-ordered partial amplitudes.
Given that (4−3)! = 1, we could choose to use an ansatz
that only depends on a single color-ordered scattering
amplitude. As the other partial amplitudes will be re-
lated to that by ratios of momentum invariants, however,
our intermediary stages would be a little more compli-
cated. Rather we choose an ansatz involving two ampli-
tudes Atree

4 (a, b, c, d) and Atree
4 (a, c, b, d) which span the

color-ordered amplitude space without the need to put
any sab in denominators.
Recognizing that

sacA
tree
4 (a, c, b, d) = sabA

tree
4 (a, b, c, d)

and that the sum of the mandlestam invariants vanish,
our simplest ansatz satisfying the dimensionality require-
ments is

n(a, b, c, d) = α sabA
tree
4 (a, b, c, d)

+ β sadA
tree
4 (a, b, c, d) + γ sadA

tree
4 (a, c, b, d), (3.8)

where α, β, γ are scalars that should satisfy the con-
straints of eq. (3.5), eq. (3.6), and eq. (3.8). Carrying out
the calculation one finds the parameters to be completely
fixed to α = 1/3, β = 0, γ = −1/3 giving a symmetric,
BCJ, amplitude-encoded representation.
Replacing Atree

4 (a, c, b, d) = Atree
4 (a, b, c, d)sab/sac in

our solution, we find something quite striking:

n(a, b, c, d) =
Atree

4 (a, b, c, d)

sac

1

3
sab(sac − sbc) (3.9)

=
[sabsbcA

tree
4 (a, b, c, d)]

sabsbcsac

1

3
sab(sac − sbc) .

The most notable thing about this form is that the nu-
merator of the first fraction (in the square brackets) is
the universal prefactor K4 [44] of the four-point multi-
loop N = 4 sYM amplitudes used to encode all external
state information. It is invariant under permutations be-
tween leg labels, as is the denominator of that fraction.
This means that all the antisymmetry properties of the
numerator must be satisfied by the function of momen-
tum invariants. Indeed sab(sac−sbc) is the simplest func-
tion of momentum invariants that satisfies the symmetry
properties of eq. (3.8), and could, in principle, be guessed
ahead of time. The denominator sabsbcsac is proportional
to the Gram determinant G4 relevant to four-point inter-
action, i.e. Gm ≡ det(ki · kj), where for m = 4, i and j
run from 1 to 3.
The form in eq. (3.9) is evocative as a starting point

for the types of expressions that might generalize to sym-
metric higher points. Recalling that Gm goes as s(m−1),

a

b c d

e

FIG. 3: The five point half-ladder diagram. All contribu-
tions in cubic-graph representations of five-loops involve this
topology or are related by antisymmetry around vertices.

and there are (m− 3) propagators in any cubic tree dia-
gram, we can arrive at the idea that the D-dimensional
m-point half-ladder may be schematically of the form

nm,hl ∝
∑

α
[sm−1

Gm

Atree
m sm−3

]

, (3.10)

where the sum will be over all (m − 2)! Kleiss-Kuijf in-
dependent color-ordered partial tree-amplitudes as well
as all independent s2m−4-order products of momentum
invariants sij , and the α represent parameters to be con-
strained by the relevant symmetries, Jacobi-identities,
and amplitude equations.

One can see that using eq. (3.10) as an ansatz for actu-
ally solving the functional relations is prohibitive. As it
grows quickly in the number of external particles, is not
particularly practical even at five points. Fortunately,
we can begin our exploration at five points with the sim-
pler type of polynomial ansatz we started with at four
points, and see where we need to enlarge to include ratio-
nal terms so as to relate to the recent higher-loop results
of ref. [30].

IV. FIVE-POINT TREE

A. First representation

Considering now five points, there is again only one
graph topology, the half-ladder depicted in fig. 3. For this
topology, there are fifteen distinct labelings under vertex
antisymmetry. Similar to our approach with four points
we may start with an ansatz comprised of color-ordered
partial scattering amplitudes with two powers of momen-
tum invariants sij to cancel the two propagators in the
cubic graphs. Since there are only five independent sij for
massless five-point amplitudes and only six linearly inde-
pendent Kleiss-Kuijf independent amplitudes, this ansatz
is quite manageable. We solve using the constraints of the
symmetry and Jacobi relations. It is worth noting that
only a single color-ordered tree-level cubic-graph decom-
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position is required as a functional constraint, e.g.,

Atree
5 (1, 2, 3, 4, 5) =

1

s12s45
n5(1, 2, 3, 4, 5)

+
1

s23s15
n5(2, 3, 4, 5, 1) +

1

s34s12
n5(3, 4, 5, 1, 2)

+
1

s45s23
n5(4, 5, 1, 2, 3) +

1

s15s34
n5(5, 1, 2, 3, 4) . (4.1)

The numerator function must obey the following graph
symmetry relations:

n5(a, b, c, d, e) = −n5(b, a, c, d, e) (4.2)

= −n5(a, b, c, e, d)

= −n5(e, d, c, b, a) ,

and the following two Jacobi identities

n5(a, b, c, d, e) = n5(d, e, a, b, c) + n5(d, e, b, c, a) (4.3)

n5(a, b, c, d, e) = n5(a, b, e, d, c) + n5(e, c, d, a, b) .

These constraints are sufficient to ensure a correct re-
production of the full amplitude. Solving these relations
we indeed find a D-dimensional solution with no addi-
tional freedom left in the ansätze. The form is flexible
in the sense that various color-ordered amplitudes are re-
lated to each other under the relations discussed in sec-
tion II B – but the result is unique. One nice expression
of this numerator function is as follows,

n5,1(a, b, c, d, e) =
1

30

(

[

sabsde(Aabcde −Aabced −Abacde +Abaced)
]

+
[

sab(scd − sce)(Aadceb +Aaecdb)

+ sde(sac − sbc)(Aeacbd −Adacbe)
]

+
[

(sabscd − sabsce)Aadceb + (sabscd − sabsce)Aaecdb

+ (−saesbc − sbescd)Aadcbe + (sadsbc + sbdsce)Aaecbd

+(sacsbd+sadsce)Adaceb+(−sacsbe−saescd)Aeacdb

]

)

(4.4)

where we introduce the notation

Aabcde ≡ Atree
5 (a, b, c, d, e) .

The solution eq. (4.4) is not the most compact available
expression, but it makes the automorphism symmetries
of eq. (4.2) quite manifest as we will discuss.
Indeed, a first guess as to the answer might be to make

use of the reflection properties of the partial amplitudes
and combine them in such a way so as to incorporate
the other constraints of eq. (4.2). From there, we need

only multiply by a pair of momentum products, sabsde,
invariant under the antisymmetries, to arrive at

sabsde (Aabcde −Aabced −Abacde +Abaced) . (4.5)

This simple expression, the first block of eq. (4.4), while
satisfying all the symmetry constraints, fails to satisfy
eq. (4.3), the functional Jacobi relations. A little more
thought about various ways of representing the antisym-
metry constraints, may lead to each of the other two
blocks appearing in eq. (4.4). Each of these indepen-
dently satisfies the antisymmetry conditions. Combining
all three with the correct prefactor to solve eq. (4.1), also
solves the Jacobi relations, and so eq. (4.4) is the solution
that satisfies all of our desired virtues.
Using the D-dimensional relations allowing one to ex-

press every five-point color-ordered amplitude in terms
of Atree

5 (1, 2, 3, 4, 5) and Atree
5 (1, 2, 3, 5, 4), and conserva-

tion of momentum to relate the sij , it is straightforward
to verify that this respects all the constraints, and so
generates a D-dimensional representation,

A(0)
5 = g3YM

∑

{q1,...,q5}∈S5

1

8

c(q)n(q)

p(q)
, (4.6)

where gYM is the gauge coupling constant, c(q) comes
from dressing the half-ladder with appropriate color fac-
tors for the labels q, p(q) gives the product of the propa-
gators associated with that labeling, and we simply sum
over all permutations of external leg labels, dividing by
an overall symmetry factor, in this case 8. In this case
we take n to be n5,1. Given the satisfaction of the color-
kinematic correspondence (the first virtue) we can triv-
ially write down the known gravity amplitude in a man-
ifestly crossing symmetric representation:

M(0)
5 = i

(κ

2

)3 ∑

{q1,...,q5}∈S5

1

8

n(q)n(q)

p(q)
. (4.7)

These are fine amplitude representations that satisfy
all of our requirements. Familiar with the beautiful struc-
ture relating four-point tree and multi-loop corrections in
N = 4 sYM, there is one additional property one may
desire from a five-point tree-level representation: that it
be manifestly constructed with the same building blocks
that appear in higher-loop same-multiplicity amplitudes.
In other words, it would be nice to relate to the multiloop
structure that appears in five-point N = 4 sYM [30]. We
will take a brief detour to review this newly discovered
five-point multiloop structure, and go on to find a sec-
ond, entirely distinct, symmetric numerator function for
the tree-level five-point half-ladder.

B. Multiloop structure and second representation

It was recently shown [30] that the five-point one- and
two-loop amplitudes inN=4 sYM possess a very compact
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structure if written in a symmetric BCJ representation,
where the external legs are in four-dimensions, but all
loop-momenta are allowed to run in D dimensions. The
one-loop master-numerator (labeled with consecutively
increasing legs) has the following cyclically symmetric
form

n
(1)
pentagon = β12345 ≡ δ(8)(Q)

[1 2] [2 3] [3 4] [4 5] [5 1]

4 ε(1, 2, 3, 4)
,

(4.8)
where the external states are packaged in the usual Grass-
man delta function δ(8)(Q). The denominator is the Levi-
Civita invariant, ε(1, 2, 3, 4) ≡ εµνρσk

µ
1 k

ν
2k

ρ
3k

σ
4 . For com-

pactness the authors of ref. [30] also introduce the fol-
lowing functions,

γ(ijklm) ≡ β(ijklm)− β(jiklm), (4.9)

which are antisymmetric in ij, but symmetric in klm,
such that the last three arguments can be suppressed
γij = γ(ijklm). These β functions encode all five-
point external state information through two loops, and
are conjectured to extend to all loops. The remaining
components of the numerator factors are constrained to
be monomials in Lorentz products of the appropriate
engineering-dimension weight. In fact, in [30] it was sug-
gested that the tree-level numerators could be expressed
in the following functional form

n(0) ∼
∑

β( )/s , (4.10)

i.e. some linear combination of the β functions divided by
a momentum invariant sab. This is not the representation
found in eq. (4.4). In order to make this clearer, we can
rewrite β as follows

β(1, 2, 3, 4, 5) = −i Atree
5 (1, 2, 3, 4, 5)

× s12s23s34s45s51
ε(1, 2, 3, 4)

4G5
, (4.11)

where we have used the Parke-Taylor representation of
the superamplitude to absorb the spinor-products and
Grassmann delta function. Furthermore we multiplied
the numerator and the denominator by ε in order to in-
troduce G5 = −ε2, the Gram determinant relevant to
five-point massless interaction. This expression diverges
when the momenta are restricted to a three-dimensional
subspace. Thus there is no way to describe β in terms of
linear combinations of n5,1,

∀ α : β(1, 2, 3, 4, 5) 6=
∑

{q1,...,q5}∈S5

αq n5,1(q)) . (4.12)

Does this mean that the tree-level numerator cannot be
described by something of the form eq. (4.10)? Not at
all. This simply means that the representations given in
eq. (4.4) and suggested in eq. (4.10) are distinct.
Naturally we now consider an ansatz of the form

eq. (4.10). Using again, symmetry, the Jacobi relations,

and the single graph decomposition eq. (4.1), we find that
that such an ansatz can, independent of n5,1, also satisfy
all constraints. Given the form of β these verifications
must be performed explicitly in four dimensions, and are
most easily done numerically. The form of this numera-
tor function is completely constrained (other than trivial
relations between β functions with differently permuted
arguments),

n5,2(a, b, c, d, e) =
1

10

(

[

(

1

scd
− 1

sce

)

γab

]

+
[

(

1

sac
− 1

sbc

)

γed

]

−
[βedcba

sae
+

βdecab

sbd
− βedcab

sbe
− βdecba

sad

]

)

. (4.13)

Thus we have found an entirely different representation
of the five-point tree-level amplitude that is at least as
virtuous as the first.
Now, as both solutions accurately describe the five-

point color-ordered trees (one can check that the diver-
gence in β for dimensionally restricted subspace cancels
between the numerators), one can solve for β(1, 2, 3, 4, 5)
entirely in dimension-agnostic terms:

βD(1, 2, 3, 4, 5) ≡ s12s23s34s45s51
16G5

[

(s15s34 + s14s35 − s13s45)A
tree (1, 2, 3, 4, 5)

+ 2s14s35A
tree (1, 2, 3, 5, 4)

]

. (4.14)

This is a particularly appealing form, as state-sums in-
volving 5-point amplitudes of any loop-level have sig-
nificant generalized unitarity-cut ramifications, and this
reduces the question to state-sums involving five-point
trees, known in the maximally supersymmetric case from
the three-particle cut of the four-point two-loop ampli-
tude given in ref. [7].
Taking β → βD in eq. (4.13), we have checked that

n5,2 satisfies all the D-dimensional constraints, i.e. that
under the D-dimensional relations algebraically relating
all color-ordered tree-amplitudes to a basis of (5 − 3)! =
2 color-ordered amplitudes, and conservation of mo-
mentum, it correctly reproduces all color-ordered par-
tial tree-amplitudes decomposed into cubic graphs. As
such eq. (4.13) generates another D-dimensional BCJ,
amplitude-encoded, symmetric five-point representation
of Yang-Mills and gravity, when used in eq. (4.6) and
eq. (4.7) respectively. As n5,1 and n5,2 are distinct, one
can parameterize the gauge freedom with a single com-
plex parameter,

n5 ≡ αn5,1 + (1 − α)n5,2 . (4.15)

This is consistent with the known single-parameter
gauge-freedom of the symmetric, BCJ (non-amplitude-
encoded) representation found in ref. [4].
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It is worth highlighting that the form of n5,2 in
eq. (4.13) is a manifestation of the type of expres-
sion sketched in eq. (3.10). Attempting to directly fit
eq. (3.10) to the data even at five points would have been
somewhat laborious. The functional building block, β,
was instead arrived at by looking at the maximal cut of
the five-point one-loop amplitude in N = 4 sYM.

V. SIX-POINT MHV TREE IN FOUR

DIMENSIONS

In this section we introduce a four-dimensional sym-
metric, amplitude-encoded, BCJ representation of the
six-point tree diagram. Contrary to the lower-point trees,
there are two distinct topologies contributing to the six-
point tree amplitudes; in addition to the half-ladder we
now have trimerous graphs (as depicted in fig. 4). As
mentioned earlier, we can express the second topology in
terms of the first via

n6,tri(a, b, c, d, e, f) = n6,hl(a, b, c, d, e, f)

− n6,hl(a, b, d, c, e, f) , (5.1)

so we need only concern ourselves with finding n6,hl. Be-
yond five points, even ansätze merely polynomial in mo-
menta invariants grow rapidly in size. Furthermore, it is
not so clear whether such a form is sufficient to capture
the behavior that generalizes to higher loops. As seen
at five points, functions which generalize to loops can in-
volve rational functions of momentum invariants and not
just polynomials.

For this work, we have not carried out the exploration
of n6,hl systematically. Rather, we guessed at a form us-
ing a small number of color-ordered partial amplitudes,
sufficient to allow a näıve symmetry encoding, multiplied
by the denominators that appear in their cubic-graph
expansion. We fit this ad-hoc ansatz to the Jacobi re-
lations, the symmetry-constraints, and the cubic-graph
decomposition of the partial-amplitude. Such an intu-
itive approach yielded a valid expression but with some
– perhaps not so surprising – limitations. The following
compact expression for n6

hl only holds in four dimensions,

and only holds for MHV and MHVamplitudes as it relies
on special four-dimensional identities,

n6,hl(a, b, c, d, e, f) =
sab
15

(

− sdcsefAabdcef

+ sdcsfeAabdcfe − sdfsecAabecdf − scfsedAabedcf

− scdsefAabefcd + sdesfcAabfcde + scesfdAabfdce

+ scdsfeAabfecd

)

, (5.2)

where Aabcdef ≡ Atree
6 (a, b, c, d, e, f).

Under those limitations it does generate the appropri-
ate symmetric, BCJ, amplitude-encoded representations

of Yang-Mills and gravity theories respectively,

A(0)
6 = g4

∑

q∈S6

(1

8

chl(q) n6,hl(q)

phl(q)
+

1

48

ctri(q) ntri(q)

ptri(q)

)

(5.3)

M(0)
6 = i

(κ

2

)4 ∑

q∈S6

(1

8

(n6,hl(q))
2

phl(q)
+

1

48

(ntri(q))
2

ptri(q)

)

.

(5.4)
The factors of 8 and 48 are the symmetry factors of
the half-ladder and trimerous graphs. One sees that, as
before, the gravity amplitude is manifestly permutation
symmetric.
It should be stressed that the limitations of this rep-

resentation does not reflect any tension between BCJ
representations and non-MHV amplitudes. Indeed, the
all-multiplicity amplitude-encoded BCJ representations
in the literature hold in any dimensions, independent of
external states. The struggle is to find an ansatz gen-
eral enough to allow for the solution of the functional
constraints, and at the same time being computation-
ally tractable. It is easy to believe that a form of the
type eq. (3.10) may work in D dimensions, independent
of external states, but the most direct path to reveal it
seems to await a better understanding of the structures
involved.

VI. CONCLUSIONS

After we worked out the four-point BCJ, amplitude-
encoded, symmetric numerator in explicit detail, we pre-
sented two independent five-point D-dimensional repre-
sentations, one of which is related to the structure re-
cently uncovered at multi-loop five-point in the max-
imally supersymmetric theory. Exploring the conse-
quences of these two representations, we rendered, en

passant, the five-point multiloop amplitudes as virtuous
as the four-point multi-loop amplitudes by finding an
amplitude-encoded form of the β function, eq. (4.14). In
effect, this relates, in the maximally supersymmetric the-
ory, the state-sum of all three-particle cuts involving two
five-point sub-amplitudes, to the known three particle cut
of the four-point two-loop amplitude. We also presented
a slightly less virtuous six-point representation.
An obvious goal is to identify a constructive princi-

ple for virtuous representations. The underlying kine-
matic algebra responsible for the color-kinematic corre-
spondence, however, is unknown beyond certain sectors
in four dimensions [26]. The existence of such an algebra
is suggested in general, not only by the kinematic Jacobi
relations, but additionally by a trace basis identified by
Bern and Dennen in ref. [45]. They present an alternative
amplitude representation based on swapping the role of
color and kinematics in the traditional color-trace decom-
position of eq. (2.4). The partial-amplitudes in their rep-
resentation involve the color-factors as numerators, and
they introduce kinematic “traces” τ(q1 . . . qm) in place of
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a

b

c d

e

f

= a

b c d e

f − a

b c d e

f

FIG. 4: Illustration of the kinematic Jacobi relation associated with the indicated edge, as given in eq. (5.1), which expresses
the numerator of the trimerous topology on the left in terms of the difference between the two half-ladders on the right.

the trace over color-generators. It is perhaps worth not-
ing that the numerator functions presented here, for five
and six points, each lead to a symmetric τ , i.e. a sin-
gle function which takes any labeling to the appropriate
kinematic contribution.

The appeal of BCJ representations at loop-level resides
in the ability to propagate a minimal amount of informa-
tion from the theory into the full amplitude [5, 8, 30], as
well as the ability to trivially generate loop-level grav-
ity amplitudes. At tree-level, where representations are
already known for both Yang-Mills and gravity theories,
the appeal is more subtle. Namely it resides in the rela-
tions satisfied by the numerators. Expansion of tree level
numerators in terms of color-ordered partial amplitudes
might arguably seem to import to Yang-Mills the aes-
thetics of KLT gravity representations rather than vice-
versa. Here, however, we show that these (less than com-
pact) expressions do manage to serve an aesthetic ideal,
they make kinematic symmetries manifest in concordance
with the color-factor symmetries. The introduction of
combinations of partial trees which satisfy these sym-
metry properties (like the separate symmetry-respecting
blocks in eqs. (4.4) and (4.13)), lead to quite natural
D-dimensional expressions. It is to be hoped that by
studying the different possible representations that ex-
ist at tree-level, one may discover novel ways of moving
between representations that generalize to loop-level.

We see that the tree-level requirement of symmet-
ric BCJ representations involves the solution of non-
trivial functional relations analogous to the operations
necessary for finding loop-level BCJ representations. In
eq. (3.10) we sketched an ansatz for numerators based
upon the types of tree-level structures that generalize
to higher loops for the known multiloop BCJ represen-
tations in N = 4 sYM at four and five points. It is
clear that there are ways of packaging color-orderd par-
tial amplitudes that are more natural from a higher loop
perspective, such as the β function of ref. [30] used in
eq. (4.13). In the absence of more constructive meth-
ods, mining multi-loop data may be the most efficient
way to currently identify symmetric representations at
tree-level. The ultimate hope, however, would be to find
a constructive solution of these types of functional rela-

tions at any loop-level without relying on the introduc-
tion of a spanning ansätze. It seems that finding tree-
level representations may be an ideal proving ground
for such techniques, where in some sense all the nec-
essary data is available in conveniently packaged forms
(color-ordered partial amplitudes and propagators), yet
where the challenges share many quantitative features
with finding loop-level representations.
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