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Superstring theory and other supersymmetric theories predict the existence of relatively light,
weakly interacting scalar particles, called moduli, with a universal form of coupling to matter. Such
particles can be emitted from cusps of cosmic strings, where extremely large Lorentz factors are
achieved momentarily. Highly boosted modulus bursts emanating from cusps subsequently decay
into gluons, they generate parton cascades which in turn produce large numbers of pions and then
neutrinos. Due to very large Lorentz factors, extremely high energy neutrinos, up to the Planck
scale and above, are produced. For some model parameters, the predicted flux of neutrinos with
energies & 1021 eV is observable by JEM-EUSO and by the future large radio detectors LOFAR
and SKA.

PACS numbers: 98.70.Sa 98.80.Cq 11.27.+d

I. INTRODUCTION

Cosmic strings could be formed as topological defects in the early universe. They are predicted in a wide class of
particle physics models and can produce a variety of observational effects. These include gravitational lensing, linear
discontinuities in the cosmic microwave background, and gravitational radiation, both in the form of a stochastic
background and localized bursts. (For a review of cosmic strings, see, e.g., [1, 2].)
Strings predicted in many grand unified models respond to external electromagnetic fields as thin superconducting

wires [3]. As they move through cosmic magnetic fields, such strings develop electric currents. Oscillating loops of
current-carrying string emit highly boosted charged particles from cusps – short segments where the string velocity
momentarily gets very close to the speed of light. The emitted particles and their decay products can then be observed
as high-energy cosmic rays [4] and gamma ray bursts [5–7].
A phenomenon closely related to string superconductivity is the development of a bosonic condensate around the

string core [3]. For example, a condensate of Standard Model Higgs particles could form around strings in some
models. The Higgses would then be copiously produced at cusps, and their decay products could reach the Earth as
cosmic rays [8].
Here we shall discuss an alternative mechanism of cosmic ray production, which does not assume string supercon-

ductivity or Higgs condensates. It relies on the existence of moduli – relatively light, weakly coupled scalar fields,
predicted in supersymmetric particle theories, including string theory. Moduli would be copiously radiated by os-
cillating loops of string at early cosmic times, when the loops are smaller than the modulus Compton wavelenth,
L < 1/m, and their frequency of oscillation is greater than the modulus mass. The emitted moduli may affect the
big bang nucleosynthesis as they decay into photons and baryons, contribute to dark matter and to diffuse gamma
ray background, resulting in stringent constraints on both the cosmic string tension and the modulus mass, when
moduli are assumed to have gravitational-strength couplings to matter [9–12]. However, the couplings may in fact be
much stronger, in which case the constraints from moduli radiation may be significantly relaxed [12]. Such strongly
coupled moduli appear to be quite generic in string theory landscape [13–18], and this case is of particular interest
for production of Extremely High Energy (EHE) cosmic rays and neutrinos.
At later times, moduli can only be emitted from cusps, resulting in sharp bursts of high-energy moduli. Eventually

moduli decay into standard model particles, and their decay products can be observed as cosmic rays with energies
above 1021 eV.
The great interest of cosmic strings, and more generically topological defects, to high energy neutrino astronomy

is based on tremendous energies of neutrinos accessible for these sources. While astrophysical sources can accelerate
particles to energies 1021 − 1022 eV at most, topological defects can produce particles, including neutrinos, up to
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the Planck scale and above. Many observational methods of neutrino detection, in particular radio observations
and observation of fluorescent light from space, are possible only above ∼ 1020 eV. Detection of such high energy
neutrinos can by itself be considered as a signature of neutrinos from topological defects or other top-down scenarios.
The production of EHE particles is a very generic property of topological defects, cosmic strings in particular, but
large fluxes of such particles are produced only in exceptional cases [4], [19] - [22].
In this paper, we shall treat the modulus mass and coupling constant and the string tension as free parameters.

We shall estimate the EHE neutrino flux resulting from modulus decays and indicate some values of the parameters
that can yield observable fluxes. The paper is organized as follows. In Section II, we review modulus emission from
cosmic string cusps (a more detailed derivation is given in the Appendix). In Section III, we discuss modulus decay,
EHE neutrino production, including beaming, and propagation in the universe. In Section IV, we review the size
distribution of cosmic string loops and calculate the rate of bursts and the diffuse flux of EHE neutrinos. We also
discuss here the upper bound on the neutrino flux, resulting from the diffuse gamma ray background observations. At
the end of that section we give two illustrative examples of neutrino fluxes for different values of the model parameters.
Finally, we discuss EHE neutrino detection. Conclusions are presented in Section V.

II. MODULUS RADIATION FROM STRINGS

The effective action for a modulus field φ interacting with a cosmic string of tension µ is given by [9]

S = −
∫

d4x

[

1

2
(∇φ)2 +

1

2
m2φ2 +

√
4πα

mp
φT ν

ν

]

− µ

∫

d2σ
√−γ, (1)

where γ is the determinant of the induced worldsheet metric γab = gµνX
µ
,aX

ν
,b, X

µ(σ, τ) is the string worldsheet, T ν
ν

is the trace of the energy momentum tensor of the string, α is the modulus coupling constant, m is the modulus mass
and mp is the Planck mass. For α ∼ 1, the modulus coupling to matter is suppressed by the Planck scale. Here, we
treat α as a free parameter and are mainly interested in α ≫ 1. Then, the mass scale characterizing the modulus
interactions is ∼ mp/α ≪ mp. Values as large as α ∼ 1015 have been discussed in the literature [17].
The modulus field equation has the form

(∇2 −m2)φ(x) = −
√
4πα

mp
T ν
ν (x), (2)

with

T ν
ν (x) = −2µ

∫

dτdσ
√−γδ4(xα − xα(σ, τ)). (3)

The power spectrum of modulus radiation from an oscillating loop of string can be decomposed in Fourier modes
as [9]

dPn

dΩ
=

Gα2

2π
ωnk|T (k, ωn)|2, (4)

where G is the Newton’s constant, ωn =
√
k2 +m2 = 4πn/L, L is the length of the loop,

T (k, ωn) = −4µ

L

∫

d4x

∫

dσdτ
√−γδ4(xα − xα(σ, τ))eikνX

ν(σ,τ), (5)

and kν = (ωn,k).
We shall be interested in the modulus emission from large loops of string, having length L ≫ m−1. In this case,

the characteristic frequency of loop oscillation is ω ∼ 1/L ≪ m, so modulus production is suppressed, except in the
vicinity of cusps, where extremely high frequencies can be reached in a localized portion of the loop for a brief period
of time. Lorentz factors greater than1 γ are reached in a fraction of the loop of invariant length ∆L ∼ L/γ.

1 From here on, and until Appendix, we use the notation γ only for the Lorentz factor.
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The spectrum of resulting particle bursts can be found by expanding Xµ(σ, τ) near a cusp [8, 10].2 One finds that
the number of moduli emitted in a single burst with momenta k in the interval dk (in the center of mass frame of the
loop) is given by

dN(k) ∼ α2Gµ2L2/3k−7/3dk. (6)

This distribution applies for k > kc, where

kc ∼
1

4
m
√
mL. (7)

At smaller k the distribution is strongly suppressed, dN ≈ 0.
The dominant contribution to the modulus emission comes from the lower momentum cutoff kmin ∼ kc, so the total

number of moduli per burst is

N ∼ α2Gµ2

m2
. (8)

The particles come from a portion of the loop that reaches Lorentz factors in excess of

γc ∼ kc/m ∼ 1

4

√
mL, (9)

and are emitted into a narrow opening angle ϑc around the direction of the string velocity v at the cusp,

ϑc ∼ γ−1
c ∼ 4(mL)−1/2. (10)

The total power of modulus radiation can be similarly calculated as

Pm ∼ α2Gµ2L−1/3k−1/3
c ∼ α2Gµ2

√
mL

. (11)

The loops also radiate gravitational waves with the power

Pg ∼ ΓGµ2, (12)

where Γ ≈ 50 [1]. Pg ∼ Pm when L ∼ L∗ which is given by

L∗ ∼ Γ−2α4m−1. (13)

The lifetime of a loop which mainly radiates gravitationally is

τg ∼ µL

Pg
∼ L

ΓGµ
, (14)

which implies that the characteristic size of the smallest (and most numerous) loops surviving at time t is

Lg
min ∼ ΓGµt. (15)

On the other hand, modulus radiation dominates when Pg . Pm and the loop lifetime is given by

τm ∼ µL

Pm
∼ L3/2m1/2

α2Gµ
. (16)

The corresponding minimum loop size at time t is

Lm
min ∼ α4/3(Gµ)2/3m−1/3t2/3. (17)

2 A detailed analysis of particle emission from cusps is given in the Appendix, confirming the results obtained in [8, 10].
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The transition between the two regimes occurs at

t∗ ∼ α4

Γ3Gµm
. (18)

Therefore, the minimum loop length is given by (15) for t & t∗ and by (17) for t . t∗. The redshift corresponding to
t∗ is given by

z∗ ∼ Γ2α−8/3(Gµ)2/3(mt0)
2/3, (19)

numerically

z∗ ∼ 400m
2/3
5 α

−8/3
7 µ

2/3
−20, (20)

where

m5 = m/105GeV, α7 = α/107, µ−20 = Gµ/10−20, (21)

and the fiducial values have been chosen anticipating the results in Sec. IV.

III. NEUTRINO PRODUCTION AND PROPAGATION

In this section we address some problems in neutrino physics relevant for future consideration, namely, the neutrino
horizon, the energy spectrum of neutrinos produced by a modulus decay, the boost of this spectrum by the cusp
Lorentz factor, and some others.
We start with a note about accuracy of our calculations.
The main purpose of our work is a discussion of the principle features of the phenomenon, i.e., EHE neutrino

production by moduli from cosmic strings, not an accurate numerical evaluation of the neutrino fluxes and their
detection rates. In particular, our aim is to express the results in the form of analytical formulae, so that the
dependence on input parameters can be easily seen. For this purpose we make the following simplifying assumptions.
We use the CDM cosmological model with Λ = 0 and Ωm + Ωr = 1 and use H0 = 72 km/sMpc, t0 = 4.3× 1017 s,

teq = 2.4 × 1012 s, 1 + zeq = 3200, the scale factor in the radiation and matter dominated eras are ar(t) ∝ t1/2 and

am(t) ∝ t2/3. The corresponding time-redshift relations are respectively given by (t/t0) = (1 + zeq)
1/2(1 + z)−2 and

(t/t0) = (1 + z)−3/2.
For convenience of calculations we assume that at the decay of a modulus at rest the neutrino spectrum is ∝ E−2,

while in reality this spectrum is not power-law and is approximately proportional to E−1.9 only for a very large mass
of the decaying particle.

A. Neutrino horizon

As they propagate through the universe, the UHE neutrinos νi (or antineutrino ν̄i) with i = e, µ, τ are absorbed or
loose energy in the following three reactions:

(i) ν̄i + νi → qα + q̄α, (ii) νi + ν̄i → l + l̄, (iii) νi + ν̄j → νi + ν̄j , (22)

where q = uα, dα, sα, cα, bα are quarks with α = 1, 2, 3 being color indices and l = e, µ, τ are lepton flavors.
Reactions (i) include only s-channel, and (ii) may include both s and t channels. For a rough estimate we can use
the following approximation for the cross-section,

σ(s) ≈
{

(N/π)G2
F s at s < m2

W

(N/π)G2
Fm

2
W at s > m2

W

, (23)

where GF = 1.17 × 10−5 GeV−2 is the Fermi constant, s(z) = 2Eνmν(1 + z) is the center of mass energy squared
at redshift z, Eν is the neutrino energy at the present epoch, mν ∼ 0.1 − 0.2 eV is the assumed neutrino mass, and
N ∼ 10− 15.
UHE neutrinos are absorbed or loose energy in collisions with relic background neutrinos whose space number

density is nν = 56(1 + z)3 cm−3 and kinetic energy is ǫν = 3.15T (1 + z) = 5.29× 10−4(1 + z) eV.
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Neutrino horizon , i.e., the maximum redshift zν , from which neutrino with the observed energy Eν can arrive, is
calculated as

∫ zν

z=0

dt σν(z) nν(z) = 1, (24)

where

dt =
3

2
t0(1 + z)−5/2dz. (25)

At the highest neutrino energies, when σ ∼ σmax ∼ (N/π)G2
Fm

2
W , zν ∼ 1.5× 102. At energies below 2× 1011 GeV,

zν ∼ 2.5× 102(E/1011 GeV)−2/5. (26)

For energies of interest in this paper we shall use zν ∼ 200 at Eν & 1020 eV. Detectable UHE and EHE neutrinos are
produced in the matter-dominated epoch.
It is interesting to note that the modulus-string model allows to probe the earliest universe with the help of EHE

neutrinos: e.g., for superconducting strings [4] the maximum redshift is zmax ∼ 3.

B. Modulus decay and neutrino spectrum

The rate of decay of a modulus into the Standard Model (SM) gauge bosons can be estimated as

Γ0 ∼ nSM

(

α

mp

)2

m3, (27)

where nSM = 12 is the total number of spin degrees of freedom for all SM gauge bosons, m is the modulus mass, and
we assume interaction of the form [14]

Lint ∼
α

mp
φFµνF

µν . (28)

The mean lifetime of the modulus in its rest frame is then

τ0 ∼ 8.1× 10−17m−3
5 α−2

7 s. (29)

For a wide range of parameters m5 and α, the lifetimes of moduli are short even after a large Lorentz boost. In our
main scenario, the neutrino-producing moduli are born within the neutrino horizon and decay almost momentarily
there.
However, in principle the redshifts z > zν can also contribute to the neutrino flux at z = 0, if the lifetime of boosted

moduli is long and they can decay at z < zν . In the analysis below we argue that such a scenario is disfavored.
The lifetimes of moduli emitted from cusps are boosted by large Lorentz factors. A modulus emitted with a Lorentz

factor γ0 = k/m at redshift z and decaying at redshift zd has a lifetime

τ(z) ∼ τ0γ0
1 + zd
1 + z

. (30)

In order for neutrinos to reach the Earth, they should be produced within the neutrino horizon at redshifts zd . zν .
Moduli emitted from cusps at z > zν can therefore yield observable events only if they have large enough lifetime,
allowing them to survive until they reach zν . This gives the condition

τ(z) ∼ τ0γ0
1 + zν
1 + z

& t(zν) ≈ t0(1 + zν)
−3/2, (31)

where in the last step we used the fact that in the energy range of interest zν . zeq.
For z > zν and using m5 >∼ 1 and α7 >∼ 1 (which is necessary for detectable neutrino flux; see Sec. IV), we obtain

γ0 &
t0/τ0

(1 + zd)(1 + zν)1/2
≈ 3.8× 1032

1 + zd
, (32)
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which is too large at any zd.
In what follows we shall consider only cusp events occurring at z < zν < zeq. There are no restrictions on the

modulus lifetime in this case, except that it should be short enough for sufficient fraction of moduli to decay before
they reach the Earth. This is always satisfied in the parameter range of interest.
The decay channel relevant for the neutrino production is the decay into gluons, via the modulus-gluon interaction

of the form (28). The primary gluons from the modulus decay initiate the quark-gluon cascade, which turns into
hadrons, mostly in pions, and then to neutrinos.
To simplify calculations and analysis, we shall assume the neutrino production spectrum dN/dE ∝ E−2, close to

the power-law approximation E−1.9 obtained for a large mass of the decaying particle using Monte Carlo simulation
and DGLAP method [24].
The neutrino spectrum from a modulus at rest is then

dN∗
ν

dE∗

≡ ξ∗ν(E∗,m) ≈ 1

2
fπb∗

m

E2
∗

, (33)

where m is modulus mass, E∗ is neutrino energy, b∗ is given in terms of the ratio of maximum εmax
∗ ∼ 0.1m and

minimum εmin
∗ neutrino energy,

b∗ = [ln(εmax
∗ /εmin

∗ )]−1, (34)

and fπ ∼ 1 and 1/2 are the fractions of energy transferred from the modulus to pions and from pions to neutrinos,
respectively.
The spectrum of low-energy neutrinos is a model-dependent feature, but generically suppression of this spectrum is

provided by suppression of soft gluon emission due to coherence effect in the parton cascade. It results in the Gaussian
peak in the spectrum of pions, parents of neutrinos. We describe effects of low-energy suppression of neutrino spectrum
introducing formally the energy εmin

∗ in Eq.(34), where the suppression starts, and refer to it as “the minimal energy”.
Determining the value of εmin

∗ would require numerical calculations. Here, we shall parametrize

ε = ǫmin
∗ /1 GeV. (35)

C. Lorentz boost and beaming

Emerging from a cusp segment, a modulus obtains very large Lorentz factor γ corresponding to the point of exit.
The typical Lorentz factor, as it is calculated below, reaches γ ∼ 1012− 1013. The neutrino energy E∗ in the modulus
rest system is boosted as

E = γE∗(1 + β cosϑ∗), (36)

where β = v/c, and ϑ∗ is the angle between the directions of neutrino motion and of the boost in the rest frame of
the modulus.
First of all we calculate how the neutrino spectrum (33) changes under the transformation (36). For this we use

the conservation of the number of particles before and after the Lorentz boost:

dN∗(E∗, ϑ∗) =
1

2
b∗m

dE∗

E2
∗

dΩ∗

4π
= dN(E,E∗). (37)

Using

dΩ∗ = 2π d cosϑ∗ = 2π
dE

γβE∗

, (38)

we obtain in terms of the new variables E and E∗ :

d2N

dEdE∗

= b∗
m

4γβE3
∗

. (39)

Integrating with respect to dE∗ we have

dN

dE
= b∗

m

8γβ

1

E2
∗min(E)

, (40)
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where the minimum neutrino energy for a fixed E is

E∗min(E) =

{

E/[γ(1 + β)] if E ≥ γ(1 + β)εmin
∗

εmin
∗ if E ≤ γ(1 + β)εmin

∗

, (41)

Finally, we obtain for β ≈ 1 and for decay at epoch z

dN

dE
≡ ξν(E, k, z) =

1

2

b∗
1 + z

k

E2
, (42)

if the neutrino energy at the present epoch is E ≥ γ(1 + β)εmin
∗ . For E ≤ γ(1 + β)εmin

∗ , dN/dE does not depend on
the neutrino energy E :

dN

dE
≡ ξν(E, k, z) =

1

8

b∗
1 + z

k

γ2

1

(εmin
∗ )2

. (43)

In both formulae above, k = γm is the modulus energy.
We now briefly discuss the effect of beaming. Strong beaming of the produced particles is a remarkable feature

of the cusp models, which provides interesting observational consequences. For moduli with the range of masses
considered here the beaming is very strong (see Section II). When gravitational radiation dominates, the Lorentz

factor at z = 0 can be estimated as γc ≈ 4.5 × 1013 m
1/2
5 µ

1/2
−20. When modulus radiation dominates, the Lorentz

factor at z∗ is γc = α2/4Γ = 5 × 1011α2
7. As a typical Lorentz factor for neutrino production one may consider that

at neutrino horizon zν ∼ 200, γc = 8.5× 1011m
1/2
5 µ

1/2
−20.

In the frame where the modulus is at rest, neutrinos are emitted isotropically. After a Lorentz boost, most of them
move within a narrow cone with ϑ ∼ 1/γ in the direction of the boost, with energies E ∼ γE∗. However, neutrinos
which are emitted in the rest frame within a narrow cone with ϑ′

∗c = 1/γ in the backward direction are moving after
the boost within a wide angle ϑ ∼ π/2 in the direction opposite to the narrow high-energy jet and typically have very
low energies E ∼ E∗/γ. The total number of these neutrinos is 4γ2 times smaller than that in the high-energy jet, and
they are undetectable because of their small number and low energies. The typical neutrino energies in high-energy
beam is E ∼ γE∗, but low-energy neutrinos with E ∼ E∗/γ are also present there.
Formally, the minimum neutrino energy is extremely low, E ∼ εmin

∗ /γ, but the number of such neutrinos is
very small. However, when neutrino spectrum is changing from E−2 at high energies to dN/dE ∝ const, as in
Eq. (43), the detectability of neutrinos is sharply decreased, and thus Emin ≈ γ(z)ǫmin

∗ can be regarded as an
effective low-energy end of the spectrum at epoch z. To estimate the low-energy spectrum cutoff for neutrinos
generated at epoch zν ∼ 200 and observed now, we use the parametrization (35) and our estimate for the Lorentz

factor at zν ∼ 200, γc = 8.5 × 1011m
1/2
5 µ

1/2
−20. Taking into account the redshift of the neutrino energy, we find

Emin ∼ 4.3× 109εm
1/2
5 µ

1/2
−20 GeV. This estimate demonstrates the remarkable feature of our model: the predominant

generation of the highest energy neutrinos. A more realistic estimate of Emin for the diffuse neutrino flux will be
made in Section IVC.
EHE neutrinos propagate as a jet in a cone with an opening angle ϑ ∼ 1/γ. The duration of the neutrino pulse is

very short, τ ∼ L/γ3, and all neutrinos reach the detector almost simultaneously, due to the smallness of the neutrino
mass. The effective area illuminated by arriving neutrinos is much larger than the area controlled by the detector, but
simultaneous appearance of two-three showers in the field of view of a large detector is possible for some parameter
values (see [4] for discussion and calculations).
Beaming is a property of all particles emitted from a cusp, in particular gamma-rays. In some models part of

observed GRBs may be produced by cosmic strings [6]. Since the total number of strings in the Milky Way is
tremendously large (N ∼ 109), one may expect that UHE GRBs from the Milky Way may be observable. In fact,
the rate of predicted bursts is too strongly suppressed by the beaming factor Ω/4π = 1/(4γ2) to be detectable. The
backward component is distributed within a wide solid angle and is not suppressed by the this factor, but the total
number of photons and their energies are too small for detection.

IV. NEUTRINO BURSTS FROM MODULI

A. Loop Distribution

The predicted flux of EHE neutrinos depends on the typical length of loops produced by the string network. The
typical loop sizes have been a subject of much recent debate, with different simulations [25–32] and analytic studies
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[33, 34] yielding different answers. Here we shall adopt the picture suggested by the largest, and in our view, the
most accurate string simulations performed to date [32]. According to this picture, the characteristic length of loops
formed at cosmic time t is given by the scaling relation

L ∼ βt, (44)

with β ∼ 0.1.
The number density of loops with lengths in the interval from L to L + dL can be expressed as n(L, t)dL. Of

greatest interest to us are the loops that formed during the radiation era (t < teq) and still survive at t > teq. The
density of such loops is given by

n(L, t)dL ∼ p−1ζ(βteq)
1/2t−2L−5/2dL, (45)

where p is the string reconnection probability and ζ ∼ 16 is the parameter characterizing the density of infinite strings
with p = 1, ρ∞ = ζµ/t2.
The dependence of the loop density on p is somewhat uncertain and can only be determined by large-scale numerical

simulations. Here we have adopted the p−1 dependence suggested by simple arguments in, e.g., [35, 36]. The
reconnection probability is p = 1 for ordinary cosmic strings. Its value for F- and D-strings of superstring theory has
been estimated as [46]

10−3 . p . 1. (46)

The distribution (45) applies for L in the range from the minimum length Lmin to Lmax ∼ βteq. The lower cutoff
Lmin depends on whether the energy dissipation of loops is dominated by gravitational or by modulus radiation. It
is given by (15) for z < z∗ and by (17) for z∗ < z < zeq, with z∗ from Eq.(20). For z∗ > zeq, the dominant energy loss
is gravitational radiation and Eq.(15) for Lmin applies in the entire range of interest.
The string motion is overdamped at early cosmic times, as a result of friction due to particle scattering on moving

strings. The overdamped epoch ends at [1]

tdamp ∼ (Gµ)−2tp, (47)

where tp is the Planck time. In the above analysis we have assumed that loops of interest to us are formed at t > tdamp.
The corresponding condition is

Lmin(t) & βtdamp. (48)

This bound assumes that the strings have non-negligible interactions with the standard model particles, so it may
not apply to F- or D-strings of superstring theory. In any case, we have verified that (48) is satisfied for parameter
values that give a detectable flux of neutrinos.

B. Gravity- and moduli-dominated regimes. Restrictions imposed by z∗

The value of z∗ given by Eq. (20) marks the boundary between two regimes of string evolution. In the first regime,
at z < z∗, the string energy loss is dominated by gravitational radiation. This includes the entire relevant range of z
for z∗ > zν and the range 0 ≤ z ≤ z∗ for z∗ < zν . We shall call it the gravity-dominated regime.
The second regime is dominated by the modulus radiation; we shall call it the moduli-dominated regime. It corre-

sponds to the redshift interval z∗ ≤ z ≤ zν and exists only when z∗ < zν .
It is often convenient to perform the calculations for the fixed value of z∗, considering it as a free parameter. In

this case the space of three physical parameters α7,m5 and µ is restricted by Eq. (20) as 400α
−8/3
7 m

2/3
5 µ

2/3
−20 = z∗,

which we will use in the form

µ−20 = (z∗/400)
3/2α4

7 m−1
5 . (49)

Then our calculated quantities, such as neutrino fluxes and characteristic energies, will depend on two parameters,
α7 and m5, and the fixed value of z∗.
The value of fixed z∗ characterizes “the model”. One should distinguish two major classes of models: with high

z∗ > zν , which corresponds to gravity-dominated regime, and with low z∗ < zν , which includes both the gravity-
dominated regime at 0 ≤ z ≤ z∗, and the moduli-dominated regime at z∗ ≤ z ≤ zν .
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C. Neutrino Flux

As we argued in Section III B, the neutrino-producing moduli are born and decay within the neutrino horizon at
z ≤ zν . We shall first consider the high z∗ models with z∗ > zν (gravity-dominated regime) and then study the case
z∗ < zν , which includes both the moduli-dominated regime at z∗ ≤ z ≤ zν and the gravity-dominated regime at
0 ≤ z ≤ z∗.
The neutrino flux can be most generally calculated as

Jν(E, z) =
1

4π

∫

dV (z)

1 + z
dṄb dN

b
X(k)

Ωk

4π

1

Ωkr2(z)
ξν(E, z, k), (50)

where the proper volume for the matter-dominated epoch is

dV (z) = 54πt30[(1 + z)1/2 − 1]2(1 + z)−11/2dz , (51)

the rate of bursts is dṄb = n(L)dL/(L/2) with n(L)dL being the number density of loops with length L in the
interval dL (see Eq. (45)), the number of moduli dN b

X emitted in a burst with momenta k in the interval dk is given
by Eq.(6), Ωk/4π is the probability that a randomly oriented burst is directed to the observer, Ωkr

2(z) is the area of
the irradiated spot at the observer’s location, and ξν(E, z, k) is the spectrum of neutrinos from decay of a modulus
with momentum k, given by Eqs. (42) and (43).
Integration in Eq. (50) goes over k, L and z. For integration over k and L only lower limits are essential, and they

are given by kmin = m
√
mL and Lmin from Eq. (15) or Eq. (17) for the gravity-dominated and moduli-dominated

regimes, respectively. In the case z∗ > zν, we have zmax = zν, while zmin is determined by the rate of bursts or by
minimum energy of neutrino Emin(z) at epoch z as explained below.

Consider first the limit zmin imposed by the rate of bursts. The average rate of bursts Ṅb(< z) that occur in the
redshift interval between 0 and z is a growing function of z, and we can define zb as the redshift at which this rate is
a few bursts per year. No bursts will be detected from z ≪ zb, so we should introduce a lower cutoff of z-integration
at zmin = zb. The rate of burst Ṅb is calculated in Section IVD and zb is found to be small in the parameter range
that we are considering here. Hence, the condition z > zb does not yield a significant constraint for the z-integration
in Eq. (50).
Another constraint to consider is that the energy E of neutrinos should be above the minimal energy, E > Emin(z) =

γc(z)ε
min
∗ /(1+z), where γc(z) =

1
4 [mLmin(z)]

1/2 is the characteristic Lorentz factor for loops of minimal length Lmin(z)
at epoch z. For the gravity-dominated regime we are considering here

γc(z) = 4.5× 1013m
1/2
5 µ

1/2
−20(1 + z)−3/4. (52)

To proceed, it will be convenient to use z∗ in place of the string tension µ as a free parameter. With the aid of Eq. (49)
we have

Emin(z) = E0α
2
7(z∗/zν)

3/4(1 + z)−7/4, (53)

where

E0 = 2.7× 1013ε GeV, (54)

and ε is the parametrization factor introduced in Eq. (35). The lower bound of z-integration zmin can now be found
as the value of z for which Emin(z) = E,

1 + zmin(E) = (E0/E)4/7α
8/7
7 (z∗/zν)

3/7. (55)

Integrating Eq. (50) over z from zmin(E) to zν , since we assumed above z∗ > zν , we obtain

E2Jν(E) = 2.5× 10−9p−1α2
7m

−1/2
5

( zν
200

)1/2
[

1−
(

1 + zmin(E)

1 + zν

)1/2
]

GeV/cm
2
s sr. (56)

The calculated flux for “normalizing” set of parameters p = 1 (ordinary strings) and α7 = m5 = z∗/zν = 1 is shown
in Fig. 1 by curve “theor.3”. This flux is low and detectable only by SKA. The largest flux in Fig. 1 is presented by
curve “theor.1” for the parameters p = 1, α7 = 2, m5 = 0.1, z∗/zν = 1 . It is close to upper limit shown by curve
“E−2 cascade”, and is detectable by JEM-EUSO, LOFAR and SKA. Here and everywhere below we assume ε = 1.
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The maximum energy of neutrinos is determined by Emax ∼ 2γǫmax
∗ at generation and can be extremely large, but

the flux of these neutrinos is suppressed as E−2.
We shall now consider the low z∗ models with z∗ ≤ zν , and calculate first the neutrino flux generated in the redshift

interval z∗ ≤ z ≤ zν , where energy losses are moduli-dominated. Then we calculate flux in the interval 0 ≤ z ≤ z∗,
where the gravitational radiation dominates.
For the interval z∗ ≤ z ≤ zν and fixed z∗, the neutrino flux is calculated using Eq. (50) and the parameter restriction

in the form µ
2/3
−20 = (z∗/400)α

8/3
7 m

−2/3
5 . As a result we have

E2Jν(E) =
1

2
Kp−1 α2

7 m
−1/2
5 (1 + z∗)

∫ zν

zmin(E)

dz (1 + z)−3/2, (57)

with K = 1.8× 10−10 GeV/cm2s sr.
The lower limit of integration in Eq. (57) is obtained as above from Emin(z) = γc(z)εmin/(1+z). Using the condition

E ≥ Emin(z) and zmin ≥ z∗ one obtains

zmin(E) =







z∗ at E ≥ Ẽmin

(E/E0)
−2/3α

4/3
7 z

1/3
∗ at Emin ≤ E ≤ Ẽmin,

zν at E ≤ Emin

(58)

with Emin = 1.3× 1018εα2
7(z∗/50)

1/2 eV, Ẽmin = 1× 1019εα2
7(50/z∗)

2 eV, and E0 = 5× 1020ε eV. Finally we have

E2Jν(E) = Kp−1 α2
7 m

−1/2
5

1 + z∗
(1 + zν)1/2

[

(

1 + zν
1 + zmin

)1/2

− 1

]

. (59)

Using in Eq. (59) zmin(E) = z∗ at E ≥ Ẽmin (see Eq. (58)) one finds the high energy (HE) asymptotic of the flux in
the moduli-dominated regime

E2Jν(E) = 1.8× 10−10p−1α2
7m

−1/2
5 (1 + z∗)

1/2

[

1−
(

1 + z∗
1 + zν

)1/2
]

GeV cm−2 s−1 sr−1, (60)

valid at E >∼ Ẽmin.
We have to add also the neutrino flux generated in the interval 0 ≤ z ≤ z∗ where the gravitational energy losses

dominate. In this case Lmin is given by Eq. (15). For HE asymptotic one finds

E2Jν(E) = 1.8× 10−10p−1α2
7m

−1/2
5 (1 + z∗)

1/2 GeV cm−2 s−1 sr−1. (61)

For an easily understandable reason, the HE asymptotic here is (z∗/zν)
1/2 lower than in the case z∗ > zν given by

Eq. (56). Less trivial is the coincidence of HE asymptotic in the gravitational regime (0, z∗) given by Eq. (61) and
in the moduli-dominated regime (z∗, zν) given by Eq. (60). It is explained by the fact that dominant contributions
in both cases are given by epochs with redshift z∗. The general conclusion about neutrino production is therefore
increasing the flux with growth of z∗ until it reaches zν . Thus, the high z∗ models predict the largest neutrino fluxes.
Apart from this, more efficient neutrino detection in high z∗ models, follows from a lower cutoff energy Emin.

Indeed, the minimal energy of neutrinos for both regimes (0. z∗) and (z∗, zν) is determined by the same expression

Emin(z∗) =
γc(z∗)

1 + z∗
εmin
∗ =

1

4

α2

Γ

εmin
∗

1 + z∗
, (62)

while for the gravity-dominated regime with z∗ > zν it is determined by zν as

Emin(zν) =
γc(zν)

1 + zν
εmin
∗ . (63)

Increasing z∗ in Eq. (62) we decrease Emin, which is favorable for detection by JEM-EUSO.
One may also see that moduli-dominated regime gives subdominant effect as compared with gravity-dominated one

at z∗ > zν .
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D. The Rate of Bursts

The rate of bursts is not a physically measured quantity, but it can serve as indicator of detectability of the burst
radiation.
The rate of cusp bursts with their cones of radiation directed to the observer is given by

Ṅb =

∫

dV (z)

1 + z

n(L, z)

L/2
dL

Ω

4π
, (64)

where dV (z) and n(L)dL are the same as in Eq. (50). The quantity Ω/4π gives the probability for the observer to be
located within the cone of the cusp radiation. Such a location does not guarantee detection of this radiation, because
the area of irradiated spot Ωr2 is much bigger than the size of the Solar system, but too low rate of bursts means
that the signal is undetectable. To calculate Ω ≈ πϑ2 we use ϑ ∼ (kcL)

−1/3 (see the discussion above Eq. (103) in
the Appendix for details).
We calculate the rate of bursts for z < z∗, when gravitational radiation dominates. The rate integrated from z = 0

up to redshift z is given by

Ṅb(≤ z) =
54π

7
24/3 p−1ζβ1/2 (teq/t0)

(ΓGµ)7/2
1

mt20
I(z) = 1.1× 107 µ

−7/2
−20 m−1

5 I(z) yr−1, (65)

where

I(z) =

∫ z

0

dz′[(1 + z′)1/2 − 1]2(1 + z′)7/4. (66)

Numerical values of I(z) are shown in Table I.

TABLE I: Numerical values of integral I(z)

z 0.1 0.5 1.0 2.0

I(z) 9.12× 10−5 0.015 0.165 1.99

In Section IVC zmin ≡ zb is defined from condition Ṅb(≤ zb) is a few per year. From Table I and Eq. (65) one can
see that the rate of bursts is large enough even at redshift as small as 0.1, and thus the condition z > zb does not
impose a significant constraint for the integration of Eq. (50) over z.

E. Cascade Upper Bound

An upper bound on the neutrino flux follows from the observed diffuse HE gamma-ray background, since neutrino
production via pion/kaon decays is accompanied by high energy electron and photon production. These electrons
and photons, interacting with CMB and Extragalactic Background Light (EBL) photons, produce an electromagnetic
cascade, whose energy density ωcas must not exceed that of the observed diffuse gamma radiation. This results in
the upper limit on the diffuse neutrino flux [47]. With the assumption of E−2 generation spectrum of neutrinos the
cascade upper limit can be written as

E2Jν(E) ≤ c

4π

ωmax
cas

ln(Emax/Emin)
, (67)

where Emax and Emin are the maximum and minimum neutrino energies, respectively, and ωmax
cas is the maximum

cascade energy density allowed by observation of the isotropic diffuse gamma-radiation.
According to recent Fermi-LAT observations [48] this energy density is ωmax

cas = 5.8 × 10−7 eV/cm3, as it follows
from the analysis [49, 50]. This limit results from a comparison of the cascade spectrum at 100 GeV with the Fermi
data, while the lower energies give a weaker limit. For our case we assume that cosmological epochs with redshifts
z ≥ zcas, when gamma-rays with Eγ > 30 GeV are absorbed, make a negligible contribution to the obtained upper
limit. One can estimate zcas in the following way. At z = 0 a very sharp absorption of gamma-rays on CMB occurs
at Eabs

γ (0) ≈ 100 TeV. At epoch z this energy is (1 + z) lower. Taking into account the redshift of these photons, we

estimate zcas as zcas ∼ (Eabs
γ /Eγ)

1/2 ∼ 60.
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The energy density for the electromagnetic cascade radiation resulting from modulus decays can be expressed as

ωcas =
1

2
fπ

∫

dt

(1 + z)4
n(L, z)dL

L/2
N(k)kdk, (68)

where fπ ∼ 1 and 1/2 are the fractions of energy transferred from the modulus to pions and from pions to electrons
and photons, respectively, dt is given by Eq. (25), the density of the loops n(L) is given by Eq. (45), and the number
of moduli emitted per burst N(k) is given by Eq. (6). The limits of integration in Eq. (68) are as follows : zmin = 0,

zmax = zcas ∼ 60, kmin = (1/4)m
√
mL, and Lmin is given by Eqs. (15) and (17) for the cases z∗ > zcas and z∗ < zcas,

respectively.
Consider first the case z∗ > zcas, when gravitational radiation dominates. Performing the integration we obtain

ωcas = 9× 2−1/3p−1ζβ1/2Γ−2 (teq/t0)
1/2

(t0m)1/2
α2m

2
Pl

t20
(1 + zcas)

1/2,

= 5.8× 10−9p−1α2
7m

−1/2
5 (zcas/60)

1/2 eV/cm
3
. (69)

For z∗ < zcas we have to integrate over the interval 0 ≤ z ≤ z∗, where gravitational radiation dominates, and over
interval z∗ ≤ z ≤ zcas, where moduli radiation prevails. For the first case (gravity-dominated regime at 0 ≤ z ≤ z∗ )
one obtains

ωcas = 4.7× 10−9p−1α2
7 m

−1/2
5 (z∗/40)

1/2 eV/cm3. (70)

For the second case (moduli-dominated regime at z∗ ≤ z ≤ zcas) we have using Eq. (49)

ωcas = 4.7× 10−9p−1α2
7 m

−1/2
5 (z∗/40)

1/2[1− (z∗/zcas)
1/2] eV/cm

3
. (71)

Note that this is the same as (70), apart from the last factor. The reason is that in both cases the main contribution
to z-integration comes from z ∼ z∗, like in case already discussed for neutrino fluxes.
For reasonable values of z∗, all three ωcas given by (69) - (71) are less than maximally allowed ωmax

cas = 5.8 ×
10−7 eV/cm3.
Two remarks about the cascade limit for our model are now in order.
This limit is not strictly enforced because cascade production occurs at very large redshifts, while ωcas is constrained

mainly due to the highest energy cascade photons with E ≈ 100 GeV (see Fig. 1 in [49]). These photons are absorbed
by EBL at earlier cosmological epochs, and therefore in cosmic string models, where the main part of the cascade
energy density is produced at large redshifts, the constraint on ωcas is weaker and values higher than 5.8×10−7 eV/cm3

are allowed. Therefore, neutrino fluxes above E−2-cascade upper limit taken from [49] and shown in Fig. 1 are not
necessarily excluded.
One may also expect that beaming of cascades may reduce the efficiency of the cascade limit. The calculation of

beam widening in the ambient magnetic field shows that narrow beaming survives only for very weak magnetic fields
of order 10−15 G.

F. Superstring-motivated example for high z∗ model with z∗ > zν

Because of the simplifying assumptions adopted in this paper, we cannot reliably determine the domain in the
parameter space of α, m and Gµ, which yields detectable fluxes of EHE neutrinos.
Instead, we shall discuss some illustrative examples of parameter choices, for which neutrino detection in future

experiments is possible. Among such projects we shall consider detectors aimed at the highest energy neutrinos above
1020 eV: JEM-EUSO [37], Anita II [43], LOFAR [38, 39], SKA[38, 40], and LORD [41]. JEM-EUSO is based on
space detection of fluorescent light from the showers in the atmosphere. All others are based on radio detection of
the showers due to the Askarian effect [42]. The sensitivities of three of these experiments, JEM-EUSO (expected to
be launched in 2015), LOFAR and SKA, are shown in Fig. 1.
First we shall consider a superstring-motivated example for cosmic strings evolving in the gravity-dominated regime,

assuming that z∗ > zν . We fix plausible parameters, both for strings and for particle physics. Specifically, we
consider the large volume string compactification model [13], which is characterized by an intermediate string scale
ms ∼ 1011 GeV and a TeV-scale supersymmetry (SUSY) breaking. The hierarchy between the Planck and SUSY
breaking scales in this model is due to an exponentially large volume of the compact extra dimensions, Vcomp ≡ Vl6s,
where V ∼ 1015 and ls ∼ m−1

s is the string length scale.
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Apart from the volume modulus, which has gravitational strength couplings to ordinary matter, the other Kahler
moduli have large couplings of the order [14]

α ∼
√
V . (72)

With V ∼ 1015, we have α ∼ 107.5.
The modulus masses are given by [14]

m ∼ lnV
V mp. (73)

It is useful to parametrize m in terms of α. Since we are interested in α ∼ 3× 107, the factor lnV can be replaced by
35. Hence, we obtain for the mass

m ∼ 35mpα
−2. (74)

For α ∼ 3 × 107 we have m ∼ 4 × 105 GeV, and we fix µ−20 ∼ 10, to ensure z∗ > zν . The last condition means
choosing the basic cosmic string parameter, the symmetry breaking string scale η =

√
µ ∼ 3.9 × 109 GeV, i.e.

Gµ ∼ 1 × 10−19. With this choice of parameters, z∗ from Eq. (20) is given by z∗ ≈ 250, i.e it is larger than
zmax
cas ∼ 60 and than the neutrino horizon zν ∼ 200. For this case, the neutrino flux is given by Eq. (56) and
the cascade energy density by Eq. (69). With the parameters α7 and m5 as indicated above, the neutrino flux is
E2J(E) = 1.3× 10−8p−1 GeV/cm2 s sr and the cascade energy density is ωcas ≈ 2.6× 10−8p−1 eV/cm3.
This neutrino flux is shown in Fig. 1 by the curve “theor.2”. It is detectable by LOFAR and SKA, but not by

JEM-EUSO.
We can modify this model choosing parameters providing a larger neutrino flux. For this we fix α7 = 2, m5 = 0.1

and keep z∗ = 250, i.e. µ−20 ≈ 80 and η ≈ 1× 1010 GeV. The cascade energy density, ωcas = 7.3× 10−8p−1 eV/cm3,
is safely below ωmax

cas . This model satisfies the restrictions obtained in [12], and in fact we can further increase the flux
by decreasing m5. At high energy limit the calculated neutrino flux is given by E2Jν(E) ≈ 3.2× 10−8p−1 GeV/cm2

s sr. This flux is shown in Fig. 1 by curve theor.1, it is detectable by JEM-EUSO, LOFAR and SKA.

G. An illustrative example for low z∗ model with z∗ < zν

Let us now assume that z∗ < zν . Then, in the redshift interval z∗ ≤ z ≤ zν the modulus radiation dominates. In
the remaining interval 0 ≤ z ≤ z∗ the gravitational energy losses are dominant. The total neutrino flux is given by
the sum of fluxes generated from both intervals. A value of z∗ fixes a model. Here we try to find a model with a
detectable neutrino flux.
The neutrino flux from the moduli-dominated interval (z∗ , zν), in the HE asymptotic regime, is given by Eq. (60).

This equation becomes valid just above the low-energy steepening, i.e. at

E ≥ Ẽmin = 1× 1019 α2
7 (50/z∗)

2 eV. (75)

For the flux from the gravity-dominated interval (0, z∗), the HE asymptotic is given by Eq. (61), with a low-energy
cutoff approximately at the same energy as above. Summing up both components, we obtain

E2Jν(E) = 1.8× 10−10p−1α2
7m

−1/2
5 (1 + z∗)

1/2

[

2−
(

1 + z∗
1 + zν

)1/2
]

GeV cm−2 s−1 sr−1. (76)

To maximize the flux without strongly increasing the low-energy steepening threshold Ẽmin given by Eq. (75),

one can use the parameters: α7 = 2, m5 = 0.1 and z∗ = 100. As a result we obtain Ẽmin = 1 × 1019 eV and
E2Jν = 2.9 × 10−8 GeV cm−2 s−1 sr−1, close to the upper limit “E−2-cascade” in Fig. 1. This flux is detectable
by JEM-EUSO, LOFAR and SKA. The cascade energy density does not exceed ωmax

cas .
For cosmic F-and D-strings, the p−1 factor alone can increase the flux and ωcas to and above “E−2 cascade limit”,

keeping Emin unchanged.

H. EHE neutrino detection

The calculated EHE neutrino fluxes are shown in Fig. 1, together with the existing upper limits from ANITA 08 [43],
ANITA-II [43], RICE[45], and with the sensitivity of the proposed experiments – JEM-EUSO [37] (to be launched in



14

2015), LOFAR [39] and SKA [40]. The predicted fluxes are presented for gravity-dominated regime with z∗ > zν. As
is discussed in Section IVG in moduli dominated regime the neutrino fluxes can be also detectable. The characteristic
feature of all models is very high minimal energy of neutrinos in spectrum Emin. Because of this, neutrino fluxes in
some models are undetectable by JEM-EUSO.

In all cases neutrino fluxes and cascade energy density are scaled by factor p−1 α2
7 m

−1/2
5 . The quantity α2

7 m
−1/2
5

alone can be increased by factor 10-30. In our models neutrinos are produced at large redshifts, while ωmax
cas =

5.8×10−7 eV/cm3 is obtained mainly due to observation of 100 GeV photons [49], which have a local origin. Increasing
the value of α7 is limited since Emin is usually proportional to α2

7 and these high energy neutrinos become undetectable
by JEM-EUSO. The quantity p−1 can be easily increased by factor 103 for cosmic F- and D-strings. This factor is
limited by ωcas only, Emin does not depend on p−1.
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FIG. 1: Calculated neutrino fluxes compared with existing upper limits, ANITA-II, RICE, ANITA 08, and with sensitivities of
projects, JEM-EUSO, LOFAR and SKA. Line “E−2 cascade” presents the upper limit for cosmogenic neutrinos [49]. Curve
“theor.3” gives the predicted neutrino flux for gravity-dominated regime with “normalizing” set of parameters p = 1 (ordinary
strings), and α7 = m5 = z∗/zν = 1. This flux is detectable only by SKA. Curve “theor.2” corresponds to superstring-
motivated example in gravity-dominated regime (see Section IVF) with p = 1, z∗/zν = 1, α7 = 3 and m5 = 4. This flux

is detectable by SKA and LOFAR. Increasing further the product α2
7m

−1/2
5 the flux can be made detectable by JEM-EUSO,

though increasing of α7 should be limited, because of increasing of Emin due to this factor. The curve “theor.1” with parameters
p = z∗/zν = 1, α7 = 2 and m5 = 0.1 gives the flux detectable by all three future instruments SKA, LOFAR and JEM-EUSO.
In case of moduli-dominated regime with parameters considered in Section IVG as α7 = 2, m5 = 0.1, and z∗ = 100 neutrino
flux is observable by all three detectors, SKA, LOFAR and JEM-EUSO.

The characteristic feature of our model is the production of EHE neutrinos due to tremendously large Lorentz
factors. The neutrino-induced gigantic showers in the air or lunar regolith produce a strong signal reliably detectable
in optical and radio emissions. The signature of EHE neutrinos with energies above 1021 − 1022 eV is given by this
energy scale, which is unaccessible for astrophysical sources.
This model has another signature, already discussed in [4]: the simultaneous appearance of a few showers in the

field of view of a detector. It is due to neutrino propagation in the form of a very narrow jet and to the absence of
time-delay in neutrino arrival, because of the tremendously large neutrino Lorentz factors Γν = Eν/mν. Compared
to the case of superconducting strings in [4], the rate of multiple showers is strongly suppressed by higher energies of
neutrinos, being partly compensated by the greater target mass of gigantic radio detectors. We present some brief
estimates below.
The number of detected neutrinos from a jet in the detector target is given by

Ndet
ν (> E) =

σνN (> E)

mN
MdetFν(> E), (77)

where σνN (> E) is the neutrino-nucleon cross-section for neutrinos with energies greater than E, Mdet is the target
mass for the largest radio-detectors, and Fν(> E) is the fluence of neutrinos with energy greater than E in a jet from
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a source at redshift z. The fluence is calculated as

Fν(> E) =

∫

dkN b
X(k)

ξν(k, z,> Emin)

Ωkr2
, (78)

where Emin is the minimum neutrino energy for a source at redshift z. In numerical estimates we shall use σνN ∼
1× 10−31 cm2 and Mdet ∼ 1021 g .
For the gravity-dominated regime, standard calculations give the following expression for the neutrino fluence from

a loop of length Lmin at redshift z:

Fν(> E) =
α2

3π25/3
fπ
b∗

Γ3/2(Gµ)7/2

(t0m)1/2
1

[(1 + z)1/2 − 1]2(1 + z)9/4
m

Emin
m2

Pl, (79)

where for z < 1 Emin = 4.5× 1022m
1/2
5 µ−20ε eV . Estimating fluence for the illustrative case parameters α = 3× 107,

m = 4× 105 GeV, µ−20 = 10, and using z ∼ 1 and Emin ∼ 1013 GeV, we obtain Fν ∼ 3× 10−18 cm−2. The number
of neutrinos detected per burst is calculated as Ndet

ν ∼ 2× 10−4µ3
−19. The fact that Ndet

ν ≪ 1 shows that practically
all detected neutrinos are single. This is mostly due to the large value of Emin in the gravity-dominated regime.
The situation is different for the moduli-dominated regime at z∗ ≤ z ≤ zν . The fluence from a loop with L ∼ Lmin

at redshift z∗ is given by

Fν(> E) =
2−2/3

6π

fπ
b∗

(Gµ)3
1

(1 + z∗)3/2[(1 + z∗)1/2 − 1]2
α4m

2
Pl

Et0
. (80)

For the model with α7 = 10, m5 = 1 and z∗ = 40, which yields the e-m cascade flux at the energy density bound
ωmax
cas , and assuming the neutrino energy E = 1 × 1020 eV, we obtain numerically Fν(> E) = 6.2× 10−15 cm−2, and

the mean number of neutrinos detected in a burst is N̄det
ν ∼ 0.4. The Poisson probability to detect simultaneously

n = 2 neutrinos at average N̄ = 0.4 is 0.054.

V. CONCLUSIONS

Production of high energy particles is a natural feature and one of the signatures of topological defects, including
cosmic strings. It provides a method of searching for, e.g., cosmic strings, which complements other methods, based
on the gravitational effects of strings, such as structure formation, CMB data, gravitational radiation, gravitational
lensing and others. The strongest current bounds on strings with a symmetry breaking energy scale η =

√
µ is given

by Gµ <∼ 10−7 due to lensing effect [51] and Gµ . 4 × 10−9, due to the millisecond pulsar observations [52]. With

more advanced gravitational wave detectors, the bound is expected to improve to Gµ ∼ 10−12 [35, 53]. On the other
hand, UHE particles can be detected from strings with Gµ values as small as ∼ 10−20.
Cosmic strings can arise from a symmetry breaking phase transition in the early universe. Fundamental strings of

superstring theory can also play the role of cosmic strings in some models.
A characteristic feature of the string dynamics is the periodic appearance of cusps, where very large Lorentz factors

are reached for brief periods of time. Particle emission from cusp segment results in extremely high particle energies.
Astrophysical sources, at the present level of knowledge, cannot accelerate particles to energies above 1021 − 1022 eV,
with the maximum neutrino energy an order of magnitude lower. Thus, detection of neutrinos with E >∼ 1021 eV would
be a signature of top-down models, with the string-cusp model as a plausible candidate. An additional signature of
this model is neutrino emission in the form of a narrow jet with simultaneous detection of two or more neutrinos
possible in the field of view of the detector. However, this possibility exists only for some values of model parameters
and only for large detectors.
EHE neutrino astronomy with E >∼ 1021 eV can probe high energy processes in the universe up to red-shifts zν ∼ 200.

At the same time these neutrinos have large interaction cross-section with nucleons, σνN ∼ 1× 10−31 cm2, favorable
for detection.
Moduli are produced near cusps of oscillating string loops, where the characteristic frequency of string motion

exceeds the modulus mass m. These particles are emitted from a string segment with a Lorentz factor γc ∼
√
mL/4,

where L is the length of the loop. Moduli and the products of their decays move as a jet with an opening angle
ϑc ∼ γ−1

c . A modulus decays into two gluons, which initiate a quark-gluon cascade, which turns into hadrons, mostly
pions, and then to neutrinos. We assume that the neutrino spectrum in the rest frame of the modulus is ∝ E−2

∗ ,
where E∗ is the neutrino energy in this frame. We adopted this spectrum in order to simplify the analysis and to
obtain transparent analytic results. In fact the neutrino spectrum is not power-law, and has a flattening at a low
energy ǫmin

∗ , which we call the minimum energy. This spectrum is Lorentz boosted, as described in Section III C, and
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the boosted spectrum also has a flattening at energy Emin ∼ γcǫ
min
∗ . This energy can be considered as an effective

low-energy cutoff of the spectrum, because at E < Emin the detectability of neutrinos is noticeably reduced.
Given the length distribution of loops at epoch z and the spectrum of moduli emitted from a loop of a given length,

it is possible to calculate the neutrino flux E2Jν(E), the cascade energy density ωcas, which provides an upper limit
on the neutrino flux (see Section IVE), and the cutoff energy Emin in the neutrino spectrum. The results are given in
terms of three free parameters α7 = α/107, m5 = m/105 GeV and µ−20 = Gµ/10−20. Another important parameter
is the redshift of the neutrino horizon, zν ∼ 200.

The results of these calculations critically depend on the redshift z∗ ≈ 400α
−8/3
7 m

2/3
5 µ

2/3
−20. This redshift separates

two regimes in the string evolution: the gravity-dominated regime at z ≤ z∗, when gravitational energy losses are
dominant, and the moduli-dominated regime at z ≥ z∗, when modulus radiation energy losses dominate.
Apart from this selective role, fixing the value of z∗ gives a constraint in the parameter space (α7, m5, µ−20), in

the form z∗(α7,m5, µ−20) = z′∗, where z
′
∗ is the fixed z∗ value. This reduces the number of free parameters to two (at

the fixed z∗), which we choose as α7 and m5. As a result all calculated fluxes E2Jν(E) and energy density ωcas scale

(at fixed z∗) as p
−1α2

7m
−1/2
5 .

In our calculations the fixed value of z∗ plays the role of the most important parameter, which determines what
we call “the model”. The high z∗ models, defined as z∗ > zν correspond to the gravity-dominated regime in the
whole allowed interval of redshifts (0, zν). The low z∗ models, defined as z∗ < zν , are characterised by two regimes:
the gravity dominated one at 0 ≤ z ≤ z∗ and the moduli-dominated one at z∗ ≤ z ≤ zν , with approximately equal
neutrino fluxes. The total neutrino flux is increasing with growth of z∗ until it reaches zν , and models with z∗ ≥ zν
give the largest flux. This growth of flux with z∗ is accompanied by a decrease of Emin, see Eq. (62), which is favorable
for neutrino detection by JEM-EUSO.
Three theoretical curves in Fig. 1 illustrate different cases of neutrino detectability for the gravity-dominated regime

at z∗ ≥ zν. The predicted flux is detectable by SKA only in case of “normalizing” parameter set p = α7 = m5 =
z∗/zν = 1 (curve “theor.3”). The flux is detectable by LOFAR and SKA in case of p = z∗/zν = 1, α7 = 3 and
m5 = 4 (curve “theor.2”). The flux is delectable by all three detectors JEM-EUSO, LOFAR and SKA if p = z∗/zν =
1, α7 = 2 and m5 = 0.1 (curve “theor.1”).
We considered above “ordinary” strings with p = 1. For cosmic superstrings with reconnection probability p < 1,

the neutrino flux increases by a factor p−1 without increasing Emin, and is detectable for a wider range of model
parameters.
The cascade upper limit on neutrino flux in Fig. 1 (E−2 curve) is given for cosmogenic neutrinos from [49]. It is

based on maximum energy density ωmax
cas allowed by Fermi data [48]. For the the considered model with the dominant

contribution from large redshifts this upper limit is higher because of 100 GeV-neutrino absorption. Therefore, allowed
neutrino fluxes can be further increased.
The remarkable feature of moduli-produced strings is strong beaming. The Lorentz-factor at z = zν in gravity-

dominated regime and at z∗ in moduli-dominated regime is Γ ∼ 1012. The corresponding angle of a beam is ϑ ∼ Γ−1 ∼
10−12. Neutrinos with this tremendous energies arrive simultaneously at a detector and can produce simultaneously
two or more showers in the field of view of detector. The estimates made in Section IVH shows that such events are
rare due to very high energies of neutrinos.
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APPENDIX

In this section we shall derive the modulus radiation spectrum in more detail. In a flat background, i.e., gµν =
ηµν = diag(−1, 1, 1, 1), the equation of motion for the string worldsheet Xµ(σa) is

∂a

(√−γγabXµ
,b

)

= 0. (81)

Using the conformal gauge and σ0 ≡ τ , σ1 ≡ σ one obtains

Ẍµ −X ′′µ = 0, (82)
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and the gauge conditions are

Ẋ·X′ = 0, (83)

Ẋ
2 +X

′2 = 1. (84)

In this gauge, the worldsheet coordinate τ can be identified with the Minkowski time coordinate t. The solution for
(82) can be written in terms of the right moving and the left moving waves as

X(σ, τ) =
1

2
[X+(σ+) +X−(σ−)] , (85)

where the lightcone coordinates are defined as σ+ ≡ σ + τ , σ− ≡ σ − τ . The corresponding gauge conditions are

X
′
+
2
= X

′
−
2
= 1, where primes denote derivatives with respect to the lightcone coordinates.

Using the lightcone coordinates, Eq.(5) can be written in the form

T (k, ωn) = −µ

L

∫ L

−L

dσ+

∫ L

−L

dσ−

(

1 +X
′
+·X′

−

)

e
i

2
[(ωnσ+−k·X+)−(ωnσ−+k·X−)]. (86)

Since we shall be mainly interested in modulus bursts from cusps, we use the expansion of string worldsheet about
a cusp, which we take to be at σ+ = σ− = 0. The functions in the integrand of (86) can be calculated from the
expansions as

1 +X
′
+·X′

− ≈ −4π2s

L2
σ+σ−, (87)

and

k ·X± ≈ k

(

±σ± ∓ 2π2

3L2
σ3
±

)

, (88)

where s is an O(1) parameter which depends on the loop trajectory and k is assumed to be in the direction of the
string velocity at the cusp.
Eq. (86) can now be separated into two integrals as

T (k, ωn) =
4π2µ s

L3
I+I−, (89)

where

I± =

∫ L

−L

dσ± σ± e
±i

[

ωn−k

2
σ±+π

2
k

3L2 σ3
±

]

. (90)

After a change of variables, we obtain the integral

I±(u) =
L2

2π2

(ωn

k
− 1

)

∫ ∞

−∞

dxx e±i 3
2
u[x+ 1

3
x3], (91)

where

u ≡ Lk

3
√
2π

(ωn

k
− 1

)3/2

, (92)

and we have approximated the upper and lower limits of integration as ±∞. The real part of the integral is zero since
it is an odd function of x. The imaginary part can be expressed in terms of the modified Bessel function,

I±(u) = ±i
L2

2π2

(ωn

k
− 1

) 2√
3
K2/3(u). (93)

Then, (89) can be calculated as

T (k, ωn) =
4Lµ s

3π2

(ωn

k
− 1

)2

K2
2/3(u), (94)
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and the power spectrum for the moduli radiation (4) from a cusp is

dPn

dΩ
=

8L2α2s2Gµ2

9π5
ωnk

(ωn

k
− 1

)4

K4
2/3(u). (95)

The asymptotic form of the power spectrum for k >> m and ωn ≈ k, i.e., u << 1, is3

dPn

dΩ
≈ Γ̃α2s2Gµ2n−2/3. (96)

where Γ̃ ∼ 1. This is the same as the power spectrum for gravitons, except that for gravitons there is no additional
coupling constant α and the numerical coefficient is somewhat different.
The average rate of moduli radiation per solid angle is

dṄ

dΩ
=

∑

n

1

ωn

dPn

dΩ
. (97)

The sum over n can be converted into an integral over k by using the relation ωn = 4πn
L =

√
k2 +m2

∑

n

=
L

4π

∫

k dk√
k2 +m2

. (98)

Here we only consider the modulus bursts which have very large Lorentz factors, thus we keep the leading order term

in the limit k >> m. In this limit, (92) becomes u ≈ Lm3

12πk2 . By substituting (95) into (97), using (98) and also by

making a change of variable u ≡ Lm3

12πk2 , we obtain

dṄ ∼ α2s2Gµ2

m
K4

2/3(u)u
2dudΩ. (99)

The function K2/3(u) dies out exponentially at u & 1. Hence, the main contribution to the rate comes from the
region u . 1 which corresponds to

k & kmin = kc ∼
1

4
m
√
mL. (100)

For k >> kmin, Eq. (99) gives

dṄ ∼ α2s2Gµ2L1/3k−5/3dkdΩ. (101)

From (101), the number of moduli emitted from a cusp in a single burst, into solid angle dΩ, having momentum
between (k, k + dk) can be estimated as

dN ∼ LdṄ ∼ α2s2Gµ2L4/3k−5/3dkdΩ. (102)

Here, we assumed one cusp event per oscillation period of a loop.
Moduli are emitted into a narrow opening angle around the direction of the string velocity v at the cusp. The

spectral expansion (101) has been calculated for moduli emitted in the direction of v. For moduli emitted at a small
angle ϑ relative to v, Eq. (101) still applies, but now the spectrum is cut off at kmax ∼ 1/Lϑ3. In other words, the
opening angle for the emission of particles with momenta & k is

ϑk ∼ (kL)−1/3. (103)

Integration over Ω in (101) gives a factor ∼ ϑ2
k,

dṄ ∼ α2s2Gµ2L−1/3k−7/3dk. (104)

3 When u << 1, Kν(u) ≈
Γ(ν)
2

(

2
u

)ν
.
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The dominant contribution to the modulus emission comes from k ∼ kmin, and the total emission rate is

Ṅ ∼ α2s2Gµ2L−1/3k
−4/3
min . (105)

The corresponding opening angle is

ϑc ∼ γ−1 ∼ m/kmin. (106)

The total power of the modulus radiation can be similarly calculated as

P ∼ α2s2Gµ2L−1/3k
−1/3
min . (107)
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