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Abstract

We revisit the BPS spectrum of the supersymmetric CP(N−1) two-dimensional model

with ZN -symmetric twisted masses ml (l = 0, 1, ..., N−1). A related issue we address is that

of the curves of marginal stability (CMS) in this theory. Previous analyses were incomplete.

We close the gap by exploiting a number of consistency conditions. In particular, we amend

the Dorey formula for the BPS spectrum. Our analysis is based on the exact Veneziano–

Yankielowicz-type superpotential and on the strong-coupling spectrum of the theory found

from the mirror representation at small masses, |ml| ≪ Λ. We show that at weak coupling

the spectrum, with necessity, must include N − 1 BPS towers of states, instead of just one,

as was thought before. Only one of the towers is seen in the quasiclassical limit. We find

the corresponding CMS for these towers, and argue that in the large-N limit they become

circles, filling out a band on the plane of a single mass parameter of the model at hand.

Inside the CMS, N − 1 towers collapse into N stable states.



1 Introduction

Two-dimensional N = (2, 2) CP(N − 1) model with twisted masses exhibits a remarkable

similarity to certain four-dimensional gauge theories. The underlying reason was revealed

in [1, 2] where the supersymmetric CP(N − 1) model was demonstrated to emerge as a

low-energy world-sheet theory on the non-Abelian strings, see [3, 4, 1, 2]. The coincidence

between the BPS spectrum of the CP(N − 1) model and that of N = 2 SQCD in a quark

vacuum observed in [5] received a natural explanation. Namely, these two spectra, in fact,

describe the same states but from two different perspectives: viewed from the bulk and from

the world sheet.

Superalgebra in the CP(N − 1) model is centrally extended, with the central charge

containing a topological term and (N −1) Noether charges. The former includes a canonical

contribution and an anomalous one, which is especially obvious in the limit of the vanishing

twisted masses (e.g. [6]). The contributions of the Noether charges are proportional to the

twisted masses.

The masses of the BPS-saturated states reduce to the corresponding central charges.

However, not every state is realized in the theory. The BPS spectrum depends on the value

of the twisted masses ml (l = 0, 1, ..., N − 1). If |ml| ≫ Λ, we are at weak coupling. In this

regime the BPS spectrum contains states characterized by the topological charge T = ±1,

with infinite towers of heavier states with nonvanishing U(1) charges built on them. Not

all states possible algebraically are dynamically realized as stable states in the spectrum. If

|ml| ≪ Λ, we are at strong coupling. The BPS spectrum of elementary kinks shrinks down

to N stable states.

A general and detailed discussion of the BPS mass spectrum in the CP(N−1) model with

the twisted masses was undertaken in [7, 5] on the basis of the Veneziano–Yankielowicz-type 1

superpotential [8] augmented by the twisted mass terms [7], in conjunction with a quasiclas-

sical analysis. A concrete implementation of the spectrum of the dynamically realized BPS

states on both sides of the CMS (as well as the CMS itself) in the CP(1) model was con-

structed in [6]. For N > 2 in the case of ZN -symmetric twisted masses the issue of the BPS

spectrum and the CMS separating the strong and weak-coupling domains was addressed in

[9] and, later, in [10]. The latter two studies were based on the Dorey formula which, as we

will show in this paper, is by far incomplete. The advantage of the ZN -symmetric twisted

masses compared to a generic set is rather obvious. Generally speaking, we have N − 1

twisted masses implying the parameter space of the complex dimension N − 1 (in this case

it is more appropriate to speak of the decay walls rather than curves). Starting from N = 3

and higher, with generic masses, explicit analytic determination of the BPS spectra and

1The Veneziano–Yankielowicz superpotential in the CP(N − 1) models with no twisted masses was orig-

inally derived, in terms of twisted superfields, in [16, 17, 14].
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CMS, even if possible, ceases to be instructive. On the other hand, with the ZN -symmetric

twisted masses, the model depends on a single complex mass parameter, everything becomes

simple, and the would-be decay walls reduce to a set of CMS in the complex plane of m0, a

single complex parameter defining all twisted masses. On the physical side the advantage of

the ZN -symmetric choice is also obvious: with this choice the twisted masses preserve the

ZN subgroup of the Z2N symmetry of the massless model, which is a remnant of the axial

R symmetry. Physics of the transition from weak to strong coupling becomes transparent.

Our goal here is to work out a complete solution of this question. Technically the problem

is due to the fact that the Veneziano–Yankielowicz (VY) superpotential is a multivalued

function and, in calculating the BPS spectrum, one needs to carefully analyze its branches

in order to select those which can be dynamically realized. We add two crucial ingredients

missing in [5]. First, in the small-|ml| limit the BPS spectrum is known [11] from the Hori–

Vafa representation [12]. In other words, the mirror symmetry is instrumental in finding the

BPS spectrum. At strong coupling only N − 1 stable states exist. These are the states that

become massless at the Argyres–Douglas points [13], at which vacua collide. In our case,

the ZN -symmetric masses, all vacua collide simultaneously. The vanishing mass requirement

at this point, in conjunction with small mass formula, enables us to resolve the ambiguity

in the VY superpotential and determine the spectrum of masses of stable BPS states both

outside and inside the CMS in its entirety. We arrive at the conclusion that the spectrum

found in [5] and consisting of a single BPS tower (for kinks interpolating between a given

pair of vacua) is not capable of satisfying all the above requirements. We argue that the

theory must instead have N − 1 towers, each of which is described by its own U(1) quantum

number. We find this natural in view of the fact that the global SU(N) symmetry is broken

down to U(1)N−1 by the twisted masses. For each of these U(1)’s there is a tower of states

arising from quantization. Only one tower is distinctly seen in the quasiclassical treatment,

however, and that makes it special. That is the tower described in [5]. All others are not

resolved: in the quasiclassical limit which corresponds to large |ml| and large U(1) quantum

numbers all N − 1 towers fuse with each other.

With the BPS spectrum in hands we pass to the second stage: determination of the curves

of marginal stability in the same CP(N − 1) model with ZN -symmetric twisted masses. For

each of the BPS towers there must be a curve on which the relevant states decay. Altogether,

we deal here with N − 1 curves of marginal stability. We find that the curve corresponding

to the special “quasiclassical” tower always passes through the Argyres–Douglas point. For

this reason we will call it primary. The primary curve is the innermost curve on the complex

plane of m0, inside which only strong coupling states are stable. Other, secondary, curves are

larger in size and are (typically) near-perfect circles. When passing from the weak coupling

domain into the strong coupling one, the towers of states decay on these curves, one by one.

Finally, we consider the large-N limit of the theory and show that in this limit all CMS tend
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to round circles, with radii in the interval

1 ≤ |m| /Λ ≤ e2 , ( e = 2.71828 ... ) (1.1)

in units of the low-energy scale Λ. In the limit of very large N the curves of marginal stability

completely fill this interval, forming a round band.

Organization of the paper is as follows. In Sec. 2 we review the gauged formulation of

the model and present the VY superpotential with the twisted mass included. In Sec. 3 we

consider predictions for the BPS spectrum at small |m0| following from the mirror symmetry.

Section 4 is devoted to the Argyres–Douglas (AD) point. In Sec. 5 we obtain the complete

BPS spectrum both at strong and weak coupling based on the VY superpotential and the

conditions outlined above. Construction of N − 1 curves of marginal stability is the subject

of Sec. 6. Section 8 presents a summary of our results.

2 Exact Superpotential

In the gauged formulation, the bosonic part of the Lagrangian of the N = (2, 2) super-

symmetric CP(N − 1) theory can be obtained from four-dimensional SQED with an N -plet

chiral superfield, by a dimensional reduction to two dimensions [14, 7],

L =
1

e20







1

4
F 2
µν + |∂µσ|2 +

1

2
D2





 +
∣

∣∇µn
i
∣

∣

2

+ iD
(

|ni|2 − 2β
)

+ 2
∑

i

∣

∣

∣
σ − mi√

2

∣

∣

∣

2

|ni|2 . (2.1)

in the strong-coupling limit e0 → ∞. Here e0 is the gauge coupling while mi are the complex

twisted mass parameters which can be introduced [15] via a background vector field in four

dimensions. Moreover, 2β can be viewed as a coupling of the corresponding sigma model

(sometimes r ≡ 2β is used).

We should mention that physically the mass parameters are not given by the masses ml

themselves, but, rather, by their differences ml −mk (or by ml −m, where m is the average

mass). This is clear from Eq. (2.1) as one can shift all masses by any value via a redefinition

of σ. Thus, one can always impose the condition

N−1
∑

l=0

ml = 0 . (2.2)

With arbitrary choice of masses we break the global SU(N) invariance of the model

down to U(1)N−1. We are interested in a special case when the masses are assumed to
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preserve a discrete ZN subgroup of the anomalous U(1)R symmetry. To this end they must

sit equidistantly on a circle,

ml = m0 · e2πil/N , l = 0, 1, ..., N − 1 , (2.3)

with a single complex parameter m0 defining all masses. The condition (2.2) is automatically

met. We will see that in the CP(N − 1) model, the physical dependence of the theory is, in

fact, on mN
0 .

The theory (2.1) classically has N vacua, which can be seen as solutions with all ni but

one set to zero,

ni = ( 0, ..., 1, ..., 0 ) , k = 0, ..., N − 1 ,

σ = mk . (2.4)

Note that we choose to number both the masses and the vacua from 0 to N − 1.

The chiral sector of this theory is described by an exact superpotential of the Veneziano–

Yankielowicz type [8]. For a theory with twisted masses the Veneziano–Yankielowicz super-

potential was derived in [16, 17, 14, 7], and is obtained by integrating out the nl fields in

Eq. (2.1),

Weff(σ̂) = − i τ σ̂ +
1

2π

∑

j

(σ̂ −mj)

{

ln
σ̂ −mj

µ
− 1

}

. (2.5)

The hat over σ̂ indicates that it is actually a (twisted) superfield. In passing from (2.1) to

(2.5) we rescaled σ,

σ → σ√
2
. (2.6)

In Eq. (2.5) τ is the complexified coupling,

τ = ir +
θ

2π
, with r ≡ 2β . (2.7)

The ultraviolet cut-off scale µ can be traded for the dynamical scale Λ,2

µ = Λ e2πr/N , (2.8)

where r in the exponent on the right-hand side corresponds to the same normalization point

µ. Then, the first term on the right-hand side of (2.5) disappears while µ in the argument

of logarithms is replaced by Λ. The CP(N − 1) model is asymptotically free.

2Without a loss of generality one can always assume Λ to be real and positive. We will stick to this

convention. A possible phase of Λ is absorbed in m0.
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Now, Witten’s formula [14] for the positions of vacua is

N−1
∏

l=0

(σ − ml) = ΛN . (2.9)

This is the equation for critical points of Weff(σ). With the set of masses (2.3) Eq. (2.9)

implies that the vacua of this theory are at

σp = N

√

ΛN + mN
0 · e2πip/N , p = 0, ..., N − 1 . (2.10)

Altogether, we have N vacua, in full accord with Witten’s index.

If |m0| is taken to be large, then it dominates over Λ in (2.10), and the vacua take their

classical values (2.4),

σp ≈ mp , p = 0, ..., N − 1 . (2.11)

In future, for determination of the BPS spectrum, we will need the values of the superpo-

tential in the vacuum. It is not difficult to get

Weff(σp) = − 1

2π

{

N σp +
∑

j

mj ln
σp −mj

Λ

}

. (2.12)

Various choices of the branches of the logarithms above correspond to distinct values of the

Noether U(1) charges.

In deriving expression (2.12) we used the Witten’s relation (2.9). With our normalization,

the general formula for the mass of an elementary BPS state reduces to the difference of

superpotentials in two neighboring vacua,

mBPS =
∣

∣Weff(σp+1) − Weff(σp)
∣

∣ . (2.13)

Note that the elementary kinks are obtained if one interpolates between the neighboring

vacua. The result is the same independently of which pair of neighbors we pick up. This is

due to the ZN symmetry of the model.

With the ZN -symmetric masses (2.3), the theory at quantum level retains the ZN sym-

metry, which the masses do not break. This symmetry manifests itself in the invariance of

the spectrum to the choice of vacua in (2.13). From now on we will choose the vacua σ0 and

σ1 as representatives and focus on the masses of kinks interpolating between the two,

mBPS =
∣

∣Weff(σ1) − Weff(σ0)
∣

∣ (2.14)

(in bulky expressions, we will omit the absolute value sign, keeping it in mind; certainly,

mBPS is always a positive quantity).

5



In the quasiclassical limit |∆m| ≫ Λ the leading contribution to the mass is given by

the dominant logarithm in expression (2.14),

Weff(σ1) − Weff(σ0) ∼ N

2π
∆m · ln |m0|

Λ
= r ·∆m, (2.15)

where ∆m = m1 − m0.

It is well-known that the Veneziano–Yankielowicz potential, being a multi-branch func-

tion, is too ambiguous. The degree of ambiguity of expression (2.14) is determined by the

logarithms in (2.12), and can be symbolized by a linear combination of the masses mj with

arbitrary integer coefficients

〈integer〉j ·mj . (2.16)

If all these multiplicities were physical, one would have a set of ZN states in the spectrum,

which is certainly not what is expected. Selection rules need to be formulated in order to

restrict the set of the BPS states that actually exist. We postpone the formulation of these

rules until further, while for now do a simple mathematical trick which reduces the amount

of ambiguity present in Eq. (2.14). Our goal is to turn (2.14) being a function of all masses

and two vacua into a function of a single parameter m0.

Let us pull out a factor of e2πi/N from each term in Weff(σ1) which originally looks as,

Weff(σ1) = − 1

2π

{

N σ1 +
∑

j

mj ln
σ1 −mj

Λ

}

. (2.17)

Both terms in Eq. (2.17) do contain this factor. This move turns σ1 into σ0, while shifts the

numeration of masses in the sum. To keep the numeration of masses in the sum consonant

with the logarithms, we also pull out e2πi/N from the argument of the logarithm. This

constant addition vanishes when summed with
∑

mj , while σ1 inside the logarithm again

turns into σ0. Effectively one arrives at

Weff(σ1)
?
= e2πi/N Weff(σ0) . (2.18)

The question mark in (2.18) reminds us that this is not quite the whole story. We were

not very careful with the phases of the logarithms, and could have easily missed (and actually

did) some 2πi. This owes to the fact that ln ab = ln a + ln b only modulo 2πi. But such an

omission can just as well be merged into the general ambiguity (2.16) of the expression (2.14).

We can fuse this ambiguity into a single linear combination i ~N · ~m, where ~N is an arbitrary

constant integer vector, ~N = (n0, ..., nN−1) with integer ni and ~m = (m0, ..., mN−1).

Now we rewrite (2.14) as,

mBPS = U0(m0) + i ~N · ~m , (2.19)
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with an explicit function

U0(m0) = (2.20)

− 1

2π



e2πi/N − 1




{

N N

√

mN
0 + ΛN +

∑

j

mj ln
N

√

mN
0 + ΛN − mj

Λ

}

.

The branch of U0 is fixed as follows: if x is a real positive number, (i) N
√
x is a real positive

number; (ii) ln x is a real number. Here mj is meant to be a function of m0 as well, via (2.3).

The important statements are,

• In Eq. (2.19) all ambiguities related to the logarithms are referred to ~N ;

• Now U0(m0) is a fixed single-valued function of the complex parameter m0 in a certain

region of the complex plane.

• Vector ~N in Eq. (2.19) has a direct relation to the spectrum.

Let us briefly comment on what is meant. The BPS spectrum exists everywhere on the

complex plane of m0, and both expressions (2.14) and (2.19) must in principle describe it.

But for that, they need to be made unambiguous at least in some region of the complex

plane of m0. We claim that function U0(m0) is single-valued in a domain of the complex

plane wide enough to unambiguously determine the spectrum. The latter will be described

in terms of the vector ~N . Exactly how wide the domain of the parameter m0 needs to be will

be discussed in Section 5. It will also become clear why Eq. (2.19) is more directly related

to the determination of the spectrum than Eq. (2.14).

In this way we will arrive at our master formula. We will be able to determine such

an expression for the spectrum which will be consistent both at large and small |m|. In

particular, we will find that the prescription obtained in [5],

~N = (−n, n, 0, ..., 0 ) , n ∈ Z , (2.21)

is valid only approximately, in the quasiclassical limit, which corresponds to large |m| and
large excitation number n. The result (2.21) was derived by quasiclassical quantization of

the time rotation of kinks in the U(1) factors of the global group, and, therefore, must

still be valid as an asymptotics. Below we argue, however, is that the description (2.21) is

incomplete.
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3 Mirror Treatment

Now we gradually pass to the discussion of what is known about the strong coupling regime.

There are N BPS kinks. They can be seen in the mirror representation [12, 18],

WCP(N − 1)
mirror = − Λ

2π

{

∑

j

Xj +
∑

j

mj

Λ
lnXj

}

, (3.1)

with
∏

j

Xj = 1 . (3.2)

As was shown in [11], one can determine the masses of all N kinks near the origin, |mj | ≪ Λ,

mBPS ≈
∣

∣

∣

N

2π



e2πi/N − 1


Λ − i (mj − m)
∣

∣

∣
, (3.3)

where m is the average mass, vanishing in the ZN case. So, to the linear order in the mass

parameter, one has N kinks with the masses given by a large Λ term, and the splittings

determined by mj themselves,

mBPS ≈
∣

∣

∣

N

2π



e2πi/N − 1


Λ − imj

∣

∣

∣
, j = 0, ..., N − 1 . (3.4)

4 Argyres–Douglas Point

If all masses mj sit on a circle the corresponding vacua will also be forced to sit on a circle,

see (2.10). Therefore, only simultaneous collisions of all N vacua σp take place in the theory

at hand. The Argyres–Douglas points [13] correspond to

σp = 0 . (4.1)

This occurs whenever mN
0 = − ΛN , or, in the m0 plane,

mAD
0 = Λ eiπ/N · e2πil/N , l = 0, ..., N − 1 . (4.2)

Of these, the most convenient for us will be the two AD points closest to the real positive

axis,

m
AD(I)
0 = Λ eiπ/N and m

AD(II)
0 = Λ e−iπ/N . (4.3)

The crucial observation about the AD point is that one of the N soliton states (3.4)

becomes massless at that location in the complex m0 plane. Briefly, if all the vacua merge

at the AD point, then Eq. (2.14) tells one that one of the kinks becomes massless

mBPS = Weff(σ1) − Weff(σ0) = 0 . (4.4)

Here we quote this as a qualitative statement and render it more precise in Section 5. For now

it is almost trivial to note that, although both superpotential functions here are multivalued,

there exists a certain branch on which the above difference vanishes.
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5 BPS Spectrum

We now turn to the discussion of the BPS spectrum in detail, with an emphasis on the

strong coupling domain. Surprisingly, the conclusions obtained in the strong coupling sector

will allow us to make implications for the weak coupling sector as well. We first collect the

results known and trustworthy about the CP(1) model [6], as the simplest and well-studied

case, and then increase N .

5.1 CP(1) Spectrum

There are two kinks in the strong coupling sector with quantum numbers

(T, n) = (1, 0) and (T, n) = (1, 1) .

Here T bears the conventional meaning of the topological charge, the constant that multiplies

Weff(σ1) − Weff(σ0), and n ∈ Z is the Noether charge, connected with the angle collective

coordinate of the unbroken U(1).

The formula for the BPS mass in the CP(1) theory is well-known. We recover it from

our master equations (2.19) and (2.20),

m
CP(1)
BPS =

1

π











2
√

m2
0 + Λ2 − m0 ln

√

m2
0 + Λ2 + m0

√

m2
0 + Λ2 − m0











+ i ~N · ~m . (5.1)

The Argyres–Douglas points here are mAD
0 = ± iΛ, and correspond to the vanishing square

root. Let us trace how different states become massless at these AD points. Say, choose the

branch of the logarithm such that at the point m0 = iΛ the logarithm equals iπ. Then the

kink ~N = (1, 0) becomes massless at this point. Let us move from the point iΛ to −iΛ

along a large circle, see Fig 1a. It is easy to show that the argument of the logarithm in

Eq. (5.1) will also follow a large circle, starting and terminating at −1, see Fig 1b. However,

this contour arrives to −1 from under the cut of the logarithm, and, therefore, the phase of

the argument of the logarithm changes from iπ to −iπ. As a result, the kink masses now

shift compared to m0 = + iΛ point,

m
CP(1)
BPS (− iΛ) = im0 + i ~N · ~m . (5.2)

One observes, that it is a different kink which becomes massless now (it actually is the

(T, n) = (1, 1) kink, as we will see in a moment). It is not difficult to see that for this kink
~N = (0, 1).

Let us show that Eq. (5.1) is in one-to-one correspondence with the result from the mirror

theory (3.4). At small m0, the argument of the logarithm in Eq. (5.1) just turns into 1, while

9



−iΛ

|m0| ≫ Λ

m0

iΛ

-1

z

(a) (b)

Figure 1: (a) The large-radius contour in the m0 plane, starting at the AD point iΛ and

terminating at the point −iΛ. (b) The same contour shown in the plane of z — the argument

of the logarithm in Eq. (5.1).

the first term in the bracket tends to Λ,

m
CP(1)
BPS → 1

π
2Λ + i ~N · ~m . (5.3)

This does indeed agree with the spectrum (3.4), if we define the two states to be

~N = (1, 0) and ~N = (0, 1) . (5.4)

These are the two states of the strong coupling regime. How does it happen that at weak

coupling one has the whole tower of states while at strong coupling there are only two?

Similar to what occurs in the Seiberg–Witten theory, the states of the weak coupling sector

decay on the curves of marginal stability [19, 20, 21]. Only two states (5.4) survive when

crossing into the strong coupling region, and those are precisely the states which become

massless at the Argyres–Douglas points.

The kinks (5.4) therefore must be part of the weak coupling spectrum. We must be

able to write a general formula for the latter, keeping in mind the quasiclassical asymptotic

(2.21). Indeed, if one allows ~N to be of the form

~N = (−n + 1, n ) , n ∈ Z , (5.5)

then the two kinks (5.4) correspond to n = 0 and n = 1. On the other hand, at large n

Eq. (5.5) does reproduce the quasiclassical tower (2.21). We stress that it is Eq. (5.5) that
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describes the exact spectrum. The latter was obtained based on a meaningful and single-

valued formula (2.19). In this illustrative example of CP(1), we stayed within one sheet of

the logarithm.

We need to mention, that for CP(1) (and only for CP(1)) our results are not incompatible

with those found in [5] and described by Eq. (2.21),

(−n, n ) , n ∈ Z . (5.6)

The reason is that the extra unity found in (5.5) can be included into the logarithm in

Eq. (5.1). That will alter the sign of the expression under the logarithm, after which Eq. (5.1)

will match with the analogous expression quoted in [5] precisely. Already at CP(2) we will

find that this coincidence is not valid.

To summarize, the spectrum for the CP(1) theory is given by equations (5.1) and (5.5),

where n runs through all integer numbers in the weak coupling region, while it is restricted

to n = 0 or n = 1 in the strong coupling domain.

5.2 General criteria

We can now formulate the requirements for the spectrum of BPS states in the overall region

of the complex mass parameter m0 :

• Quasi-classical limit — the spectrum at large m0 and large excitation number n must

reproduce the semiclassical result (2.15), (2.21):

mBPS ≃ N

2π
(m1 − m0) · ln

|m0|
Λ

+ i n · (m1 − m0) ; (5.7)

• Argyres–Douglas point— the only states that survive when crossing from weak coupling

into the strong coupling region are those N states which become massless at the AD

points;

• Mirror spectrum — the latter N kinks must reflect the spectrum given by mirror

formula (3.4) in the small m0 limit.

Having formulated the criteria for spectrum selection from the variety of branches of the

logarithms of the Veneziano–Yankielowicz superpotential, we can now proceed to higher N .

Of these, CP(2) will be the first nontrivial example.

5.3 Domain of m0

At first we address the question of the relevant domain of variation for the parameter m0.

Needless to say, both Eq. (2.14) and (2.19) are multivalued in the complex plane of m0. The
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Figure 2: The domain of variation of m0 free of branch cuts

analysis of the actual complex manifold of m0 with all its branch cuts is a separate problem.

We do not need such an extended analysis for our purposes, however. We can limit ourselves

to the domain

−π < Arg
(

mN
0

)

< π . (5.8)

The exploitation of the criteria formulated in Sec. 5.2 relies on the possibility of using the

formula (2.19) (i) in the neighborhood of the Argyres–Douglas point; (ii) in the neighborhood

of m0 = 0, and (iii) in the region of large |m0| — such that there are no discontinuities

(i.e. branch cuts) between these regions.

The second goal is the calculation of the curves of marginal stability, which in principle

does require one to move over the whole complex plane of m0. One can use the physical 2π

periodicity in the θ angle to argue that the spectrum of the theory must be identical in the N

sectors
{

e2πik/N ... e2πi(k+1)/N
}

of m0 (although there might be a monodromy between the

sectors). The spectrum and the curves of marginal stability will therefore repeat themselves

in all these sectors, and thus it is enough to build them in a sector 2π/N wide in Arg m0.

We choose the sector between the two Argyres–Douglas points

mAD
0 = Λ eiπ/N and mAD

0 = Λ e−iπ/N , (5.9)

see Fig. 2. On the one hand the AD points are a useful reference, since the (smallest) curve

of the marginal stability with necessity passes through the AD point (see Section 6). On

the other hand, similar to what we did in CP(1), we will be able to identify the states that

12
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⋆

⋆

⋆

interest

e−iπ/3

eiπ/3

30◦
domain of

Figure 3: The Argyres–Douglas points in CP(2) theory (in the units of Λ). Two points e±iπ/N lie within

our area of interest. The third one is separated from our area by branch cuts of the logarithms, shown with

black solid lines.

become massless at the (at least these two) AD points. To this end it will be useful to be

able to move from one AD point to another.

Third, and perhaps most important, our function (2.20) is free of the branch cuts in the

region (5.9). This is, perhaps, the most drastic difference from the function in the right-hand

side of Eq. (2.14) which does have branch cuts in this region.

One might want to move beyond the boundaries of the domain (5.9), for example, in

order to approach other AD points. Although, as we argued, we do not need that for our

purposes, we will partly be able to address the latter aspect.

5.4 Spectrum in CP(2)

The case of CP(2) is sufficiently straightforward so that one can analyze function U0(m0) in

detail,

U0(m0) = − 1

2π



e2πi/3 − 1




{

3 3

√

m3
0 + Λ3 +

∑

j

mj ln
3

√

m3
0 + Λ3 − mj

Λ

}

. (5.10)

There are three Argyres–Douglas points in CP(2), of which we will be interested in just two,

see Fig. 3. The third one, m
AD(III)
0 = −1 in the units of Λ, is separated by a pair of branch

cuts of U0(m0) from each of our primary AD points. The branch cuts start at infinity (i.e.

13



in the semiclassical regime) and continue into the strong coupling area, terminating inside

the unit circle (it is to some degree a matter of convention where to terminate the branch

cuts). Since we always prefer to move along circles of a large radius in order to stay away

from the strong coupling area, these latter cuts prevent us from smoothly connecting to the

third AD point. Nevertheless, we will still have our say about that point.

In between the AD points m
AD(I)
0 = eiπ/3 and m

AD(II)
0 = e−iπ/3 there are no branch

cuts for (5.10), and one can smoothly commute between them. On the other hand, it can be

shown that the right-hand side of Eq. (2.14) does have branch cuts in our area of attention,

and therefore, although not impossible, when moving from one AD point to the other extra

caution needs to be exercised.

The function U0(m0) contains three logarithms, and it is easy to calculate its value at

the AD points. At m
AD(I)
0 = eiπ/3 it reduces to

U0(e
iπ/3) = − im0 = − i eiπ/3 . (5.11)

Therefore, a kink ~N = (1, 0, 0) becomes massless at this point. On the other hand, it

is straightforward to calculate the BPS mass in the small m0 limit — the whole function

(5.10) only gives a zero-order contribution in the mass, the only linear term being given by

i ~N · ~m = im0,

mBPS = − 3

2π



e2πi/3 − 1


Λ + im0 . (5.12)

This is precisely one of the kinks described by the mirror formula (3.4).

We can now smoothly slide from the AD point eiπ/3 to the one e−iπ/3, along a large

radius contour (i.e. we first radially reach a circle of a large radius, and then sketch an arc

extending clockwise to Arg m0 = − π/3, after which, finally radially returning to the unit

circle distance; see Fig. 4 where such a contour is shown for the case of general N). One

can show by tracing the corresponding contours for 3

√

m3
0 + Λ3 − mj that neither of the

logarithms of Eq. (5.10) steps over a branch cut. At the lower AD point, one has

U0(e
−iπ/3) = − im1 = − i eiπ/3 , (5.13)

with the same numerical value, the logarithms just got shuffled around. One has the kink
~N = (0, 1, 0) becoming massless at this location. Now similar to (5.12), we obtain

mBPS = − 3

2π



e2πi/3 − 1


Λ + im1 . (5.14)

This precisely matches the second of the kinks predicted by Eq. (3.4).

Now how about the third kink? Since we know that the right-hand side of equation

(2.19) is smooth in our area of attention, and we know that it must account for the whole
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spectrum, we should be able to accommodate for the third kink with a certain choice of ~N .

Indeed, if one allows ~N = (0, 0, 1), then in the limit of small mass one has

mBPS = − 3

2π



e2πi/3 − 1


Λ + im2 , (5.15)

which returns us the third of the kinks of Eq. (3.4).

Now, generally, the third AD point, mAD
0 = − 1, is fenced from our area by branch

cuts. What it in particular means, is that one cannot recover the value of mBPS in that

point by smoothly sliding m0 from one of our AD points, say, eiπ/3 over to the third one.

It does not exclude this, however, from being performed with proper accounting for the

branch cuts. Even though, we can still calculate the value of (5.10) in the third AD point,

arguing that whatever the branch cuts are, they are responsible for bringing U0(m
AD(III)
0 ) to

the resulting form. We know the answer anyway, since, it is again obtained from (5.12) by

exchanging places of the logarithms, and thus numerically giving the same result. Only now

this quantity, eiπ/3 is called differently — m2,

U0(−1) = − im2 = − i eiπ/3 . (5.16)

Since we did not follow any contour to connect this result to the Eqs. (5.12) and (5.13), we

further solidify Eq. (5.16) with the following remark. In this latter equation (5.16), had it

been not right, we could only be off by a branch of a logarithm of (5.10). One can fix this

branch, by approaching the third AD point from the quasiclassical area, m0 ≃ σ0 = −∞,

and argue that the result (5.16) is precisely what one would find.

Independently of this, we notice that Eq. (5.16) indeed is responsible for rendering the

kink (5.15) massless at m
AD(III)
0 . We therefore have ascertained the strong coupling spectrum

of CP(2), which consists of three kinks

~N =

( 1, 0, 0 ) ,

( 0, 1, 0 ) and

( 0, 0, 1 ) .

(5.17)

We immediately come to the following conclusion. The first two states are part of the BPS

tower of the weak-coupling region

~N = (−n + 1, n, 0 ) , (5.18)

with, correspondingly, n = 0 and n = 1. This corresponds quasiclassically to the set of

states (2.21). The extra unity present in Eq. (5.18) can be explained similarly to the one in

Eq. (5.5). Note that this unity could have equally well been placed into the second position

of (5.18), and yet the expression would constitute the same tower.
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There is no way, however, that the third state in Eq. (5.17) can be found from Eq. (2.21).

The third state is an entity that makes the CP(2) model qualitatively different from CP(1),

as it must be part of another tower of BPS states,

~N = (−n, n, 1 ) . (5.19)

This sequence of states is completely new and invisible in quasiclassics! More exactly, quasi-

classically, the two towers blend together, as the difference between n and n− 1 is negligible

at high excitation numbers. Furthermore, the contribution of the unity at the third position

on the right-hand side of Eq. (5.19) is similarly inferior to both terms in Eq. (5.7),

mBPS ≃ 3

2π
∆m · ln |∆m|

Λ
+ i n · (m1 − m0) + im2 , (5.20)

and so is not seen quasiclassically either. The occurrence of the extra tower and the extra

unity in (5.19) is a quantum phenomenon, and is the result of the fact that (any) BPS

spectrum formula must describe the whole spectrum in any smooth region of m0 — in our

case, the spectrum of states given by the mirror formula (3.4), and the region shown in

Fig. 2, correspondingly.

In summary, we found in CP(2) two towers of BPS states,

~N(1) = (−n(1) + 1, n(1), 0 ) , n(1) ∈ Z ,

~N(2) = ( − n(2), n(2), 1 ) , n(2) ∈ Z . (5.21)

These towers merge with each other at large n, and thus are not distinguishable in the

quasiclassical limit. In the strong coupling region, we find three states

~N =

( 1, 0, 0 ) ,

( 0, 1, 0 ) and

( 0, 0, 1 ) ,

(5.22)

which form a subset of the above BPS towers: N(1) with n(1) = 0 and n(1) = 1, and N(2)

with n(2) = 0, correspondingly.

5.5 Spectrum in CP(N − 1)

The crucial role which was played by equation (2.19) in the above discussion is a reflection

of similarity of Eq. (2.20) and Eq. (3.4). Indeed, the structure of the latter two equations

is identical — both formulas possess a factor of e2πi/N − 1. In Eq. (2.20) this quantity

multiplies a figure bracket which in the small m0 limit turns into Λ and in this way matches

its counterpart in Eq. (3.4). The outcome of this is that, even if the branches of the general
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expression Eq. (2.14) were fixed by some method, Eqs. (2.19) and (2.20) would still play a

more prominent role than the former. One other confirmation of this will be given further,

when we discuss the curves of the marginal stability in Section 6.

Our discussion of the CP(N−1) theory will be in vein with generalization of our previous

treatment of CP(2). We start with two AD points within our reference area, see Fig. 2.

Choose m
AD(I)
0 = eiπ/N first. In order to determine which kink becomes massless at that

point, one needs the value of U0(m
AD(I)
0 ).

We find

U0(m
AD(I)
0 ) = − im0 = − i eiπ/N . (5.23)

This equality can either be obtained by attentively looking at the logarithms of U0(m0) as

a function, without having to calculate anything, or by actual explicit summing of all the

terms in U0(m
AD(I)
0 ). We instantly find from Eq. (5.23) that at m

AD(I)
0 = eiπ/N it is the kink

~N = ( 1, 0, ..., 0 ) (5.24)

that becomes massless. Tending the expression (2.20) to the limit of small m0, we see that

this kink has the mass

mBPS = − 1

2π



e2πi/N − 1


Λ + im0 (5.25)

near the origin. This obviously is one of the states of the spectrum (3.4) seen in the mirror

representation.

The point m
AD(I)
0 can be smoothly connected with m

AD(II)
0 = e−iπ/N , see Fig. 4. It can be

shown that none of the arguments of the logarithms in the function U0(m0) passes through

a branch cut, which is what we mean by smooth. To calculate U0(m
AD(II)
0 ) one, however,

can use Eq. (5.23). The value of function U0(m0) numerically is the same in all AD points,

while at the point m0 = e−iπ/N we just endow it with a different name,

U0(m
AD(II)
0 ) = − im1 = − i eiπ/N . (5.26)

This means that the kink
~N = ( 0, 1, ..., 0 ) (5.27)

becomes massless at m
AD(II)
0 . In the limit of small m0, the mass of this kink takes the form

mBPS = − 1

2π



e2πi/N − 1


Λ + im1 , (5.28)

which, again, corresponds to one of the states described by the mirror formula (3.4). The

above two kinks are part of the same tower of BPS states

~N = (−n + 1, n, ..., 0 ) , (5.29)
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Figure 4: The contour connecting two AD points m
AD(I)
0 = eiπ/N and m

AD(II)
0 = e−iπ/N in

CP(N − 1) theory.

which exists in the weak coupling region. Equations (5.24) and (5.27) represent the states

with n = 0 and n = 1, respectively.

All other AD points, although maybe disconnected from our region of interest by branch

cuts, can still be easily dealt with, since we know the value of U0(m0) for any AD point,

U0(m
AD
0 ) = − i eiπ/N . (5.30)

For the extra N − 2 AD points, one has, therefore,

U0(m
AD
0 ) = − imk , with k = 2, ..., N − 1 . (5.31)

It does not matter which AD point produces what mass on the right-hand side, the only

important thing is that all other masses mk with k ≥ 2 pop up on the right-hand side.

As it can be easily seen, in terms of the vector ~N , this corresponds to the kinks becoming

massless at the respective AD points. The index k effectively shifts the unity in Eqs. (5.24)

and (5.27) further to the right. The full set of the states which become massless then looks

as,

~N =

( 1, 0, 0, ..., 0 ) ,

( 0, 1, 0, ..., 0 ) ,

( 0, 0, 1, ..., 0 ) ,

. . . .

( 0, 0, 0, ..., 1 ) .

(5.32)
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Now in the limit of small masses m0 we precisely obtain the full spectrum (3.4) predicted by

the mirror representation,

mBPS = − 1

2π



e2πi/N − 1


Λ + imk , k = 0, ..., N − 1 . (5.33)

In the weak-coupling spectrum, the states (5.32) belong to towers. The first two states

are part of one and the same tower (5.29), while of the rest of the states each belongs to

its own one. This agrees with a generic expectation to have N − 1 towers, according to the

breaking of the global SU(N) by the masses, SU(N) → U(1)N−1. The spectrum (5.21) of

the CP(2) theory is then obviously extended for an arbitrary N ,

~N(1) = (−n(1) + 1, n(1), 0, 0, ..., 0 ) ,

~N(2) = ( − n(2), n(2), 1, 0, ..., 0 ) ,

~N(3) = ( − n(3), n(3), 0, 1, ..., 0 ) , (5.34)

. . . . . . . . .

~N(N−1) = ( − n(N−1), n(N−1), 0, 0, ..., 1 ) ,

with all n(k) integer numbers. Obviously, in the quasiclassical limit, these towers reproduce

the asymptotics (2.21), and therefore satisfy all three criteria which we listed in the end of

Section 5.1. Note, that the total number of states in the physical weak-coupling spectrum

is (N − 1)Z, much less then the total multiplicity ZN allowed by (2.19).

Equations (5.34) and (5.32) are our main results for the spectrum of the CP(N−1) model

in the weak- and strong-coupling regimes, respectively. They exhibit a drastic difference with

what was thought of the spectrum of CP(N − 1) earlier [5], when it was argued that only

one tower of the BPS states existed (for a given pair of vacua, of course). We stress that the

emergence of the extra N−2 towers is a pure quantum effect which could not be anticipated

in the quasiclassical theory. All of N − 1 towers of states blend and become degenerate in

the quasiclassical limit, making it hard to resolve them apart.

6 Curves of Marginal Stability

The fact that there are N −1 towers of BPS states means that there should be N −1 curves

on which those towers collapse. Looking at Eq. (5.34) one can tell that the first of them is

special, just by its appearance — the unity stands in one row with n(1) (it is a mere matter

of convention whether to write this unity in the first or in the second position). We will

find that this tower is also special for an objective reason — namely, its decay curve will

necessarily pass through the AD point, while those of the other towers will not. For the
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same token, it will also be the innermost curve. That is, inside this decay curve, only strong

coupling states (5.32) exist.

We provide an important technical remark on the graphical illustrations in the following

discussion. We will choose to draw curves of marginal stability in the plane of mN
0 rather

than in that of m0. Due to 2π-periodicity in θ-angle, a curve sketched in the m0 plane

repeats itself N times in each of 2π/N sectors of the argument of m0. This way, drawing a

curve in the mN
0 plane is as informative. We call for attention however, that when drawing

multiple curves, we will have to do special rescaling in the mN
0 plane, for the sake of fitting

multiple figures in one plot.

Having the spectrum of the theory at hand, it does not cost an effort to write the equations

for the curves of marginal stability. Each such equation needs to rephrase the condition that

one of the towers (5.34) completely decays. Let us write explicitly the expression for the

mass of a BPS state as per the spectrum (5.34),

mBPS = U0(m0) + i n(k) · (m1 − m0) + imk , k = 1, ..., N − 1 . (6.1)

Here for sake of convenience we redefined the U(1) charge n(1) in (5.34) with

n(1) → n(1) + 1 .

In terms of the expression for the mass, the “tower” is given by the term

i n(k) · (m1 − m0) .

For the tower to decay, the remainder in the right-hand side of Eq. (6.1) must be in phase

with the latter term, or

Re
U0(m0) + imk

m1 − m0
= 0 . (6.2)

This is the CMS equation. We obtain N − 1 curves here by letting k run from 1 to N − 1.

Now, we can make a few assertions on CMS before starting drawing them:

• The curves (6.2) either do not intersect or they completely overlap;

• The primary curve corresponding to k = 1 (and only this curve) passes through the

AD point.

The first assertion is seen from Eq. (6.2) directly. If the curves with k = p and k = q

happen to intersect somewhere, then

mp − mq

m1 − m0

∈ R (6.3)
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at that place. But this ratio does not depend on the absolute value of m0, nor on its phase,

so it will remain real along both of the curves, which for this reason will have to completely

match. We will find that this does happen all along.

The second assertion, although obvious as well, deserves more attention. To see that the

curve k = 1 passes through the AD point, we rewrite Eq. (6.2) as

Re
U0(m0) + im0

m1 − m0

= 0 , (6.4)

where the substitution m1 → m0 in the numerator obviously does not change the condition

(in fact, Eq. (6.4) is exactly what we would have obtained from the spectrum (5.34) if we

had not done the shift of n(1) above). But we calculated the value of U0(m0) at the AD point

m
AD(I)
0 in Eq. (5.23), which shows that the CMS condition is trivially met there. Then the

curve has to pass through all AD points.

In the mN
0 plane there is just one such point, and, since σp vanishes in it, we can expand

the above condition in σ0/m0 in its neighborhood. We have,

Re
∑

r > 0

αrN +1

rN + 1
= 0 , α =

σ0

m0

. (6.5)

This function, up to a constant, is actually known as the so-called Hurwitz–Lerch transcen-

dent, and is a special case of the hypergeometric function. For our purposes, however, we

only need the leading order term of it,

Re αN +1 = 0 , for α ≪ 1 . (6.6)

Solving this equation gives us the angle at which the k = 1 curve passes through the AD

point,

φ =



























+
N + 2

N + 1
· π
2
,

0 , (for CP(1) only)

− N + 2

N + 1
· π
2
,

(6.7)

where, as customary, we measure the angle from the real positive direction counter-clockwise.

Equation (6.7) tells us that for N > 2 there are two opposite angles, and the decay curve

has a cusp at the Argyres–Douglas point, see Fig. 5. As N becomes larger, the opening angle

of the cusp increases, and ultimately, when N is taken infinitely large the curve becomes

smooth.

CP(1) theory is special, as its curve has three angles +120◦, −120◦ and 0◦ instead of two.

The third angle corresponds to the extra flat part [−1, 0] of the curve sticking out of the AD

point, see Fig. 6. Otherwise, the CP(1) case is the simplest, and so we start the illustrative

part of our discussion with this theory.
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Figure 5: The cusp of the primary decay curve at the AD point in the mN
0 plane.

6.1 The decay curve in CP(1)

There is just one curve of marginal stability in CP(1) and it is the primary one. It represents

a sharp boundary between the areas of weak and strong coupling spectra. This curve and

its features have been discussed in the literature [6, 9], so we just merely reproduce it with

Eq. (6.2). Figure 6 shows the curve in the plane of m2
0. The whole graph is presented in

units of Λ2. We re-state the known facts that the curve has a cusp at the AD point, where

also an extra part [−1, 0] of the curve connects. All three lines meet at the AD point at an

angle 120◦ with respect to each other. The real interval [−1 , 0] is the analytical solution to

the CMS condition. There is nothing like that for any other CP(N − 1) theory, all other

curves are just curves.

6.2 CMS in CP(2) theory

The CP(2) theory features two curves — one primary and one secondary. The primary curve,

as we established, has a cusp at the AD point with the opening angle 135◦, see Fig. 7.

The second curve is a circle-like loop with a radius of approximately 361Λ3 (as we will

see, it is a circle to a very good accuracy). This is a very large circle, compared to the

primary curve which is of the size Λ3. In order to plot them both on the same graph, we

rescale the radial direction of mN
0 by taking the N -th root from its absolute value, while

leaving the phase of mN
0 as is,

∣

∣mc

∣

∣ ≡
∣

∣mN
0

∣

∣

1/N
, Argmc = ArgmN

0 . (6.8)

The subscript c stands for compressed. Figure 8 shows the two curves in the rescaled m3
0
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Figure 6: The curve of marginal stability in CP(1) theory (m2
0 plane), Ref. [6].
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Figure 7: The primary decay curve in the CP(2) theory (m3
0 plane).
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Figure 8: Both decay curves in the CP(2) theory (compressed mc plane, see text).

plane. This compression will appear useful for the large N case. Such a transformation,

certainly, distorts the cusp making it less expressed. But, Figure 7 assures us that it is

there, and Figure 5 tells us that it is there for all CP(N − 1).

The radius of the external curve, 361 Λ3 is found to be rather large. However, in the

compressed mc plane (Fig. 8), and, equivalently, in the m0 plane, the curve has the size

approximately 7.12Λ. We will find later, that the maximal radius of all curves (in the large

N limit) is e2 Λ, which amounts to 7.39Λ. Thus, already the secondary curve of CP(2) nearly

saturates the maximum size.

6.3 Larger-N theories

For the CP(3) theory, the curves are shown in Fig. 9. Again, we plot the curves in the

plane where mN
0 was radially compressed to mc. The two outer curves in CP(3) overlap, as

a consequence of Eq. (6.3),

m2 − m3 = m1 − m0 . (6.9)

The cusp in the primary curve is still present, although is flattened in Fig. 9 due to com-

pression.

For CP(4) the curves are shown in Fig. 10. The overlapping curves are shown with

portioned lines. The radius of the outer most curve is 7.33Λ, which is very close to the upper

limit! Figures 11 and 12, as an illustration, show the curves for the CP(6) and CP(9).
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Figure 9: Three decay curves in the CP(3) theory (compressed mc plane, see Eq. (6.8)).
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Figure 10: The decay curves in the CP(4) theory (compressed mc plane, see Eq. (6.8)). External

radius is 7.33Λ.
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Figure 11: The decay curves in the CP(6) theory (compressed mc plane). Outer radius is 7.37Λ.
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Figure 12: The curves in CP(9) theory (compressed mc plane). Outer radius is 7.02Λ.
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Let us briefly review the main features of these plots. We observe that all decay curves

look as nearly perfect circles. We do not set the goal here to rigorously prove that they are,

but we are able to show that the secondary curves for a few first theories are circles to a

good accuracy and have no reason to believe that this is not so for larger N . More detailed

analysis of their shape lies outside the scope of this paper.

We know that the primary curves are not circular because of the cusp, and if in our

figures they look round, this is just an illusion caused by the compression. For example, for

CP(9) with N as large as 10, the cusp opening angle would be 164◦, which although close to

180◦, would still be quite noticeable. It is true, however, that at larger N even the primary

curves turn into circles (that is, in any plane). We will discuss this in the next subsection.

However, the secondary curves are circular even for small N . Using the (Λ/m0)
N expan-

sion of the CMS condition (6.2) it is possible to prove the following statement. If it is known,

that a particular curve passes at a large distance from the origin at least at one point, then

such a curve must be a circle as perfect as (Λ/m0)
N . For example, in CP(2), Fig. 8, the

outer curve is a circle with the accuracy about 1/360. This remark allows us to see that

the secondary curves are round for a few starting CP(N − 1) theories, just by looking at

the location where the curves cross the real axis. For the primary curves this statement

obviously does not apply since they pass through the AD point at a unit distance from the

origin.

For larger N , the k = 2 curves come closer and closer to the primary one, and one might

suspect that they start losing their shape. For example, the radius of the k = 2 curve in

CP(14) theory is only ∼ 14 in units of Λ15. A deviation from a circular figure at the level

of 1/14 would be quite noticeable. However, a different effect takes over, which helps the

decay curves stay “fit”.

6.4 Curves in the large-N limit

We now consider the question of the form of the decay curves in the limit of large N . It

turns out that the analysis greatly simplifies. All the curves turn into circles of a certain

radius.

As usual, the primary curves are a separate topic. Consider the curve in the neighborhood

of the AD point, where it is described by Eq. (6.5),

Re
∑

r > 0

αrN +1

rN + 1
= 0 , (6.10)

and discard the unity in the denominator. The sum then reassembles into a logarithm,

Re
σ0

m0
log

(

1 − σN
0

mN
0

)

= 0 , (6.11)
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where we have replaced α with its definition. As N goes to infinity, the vacuum σ0 approaches

the value m0, and we can replace the ratio σ0/m0 in front of the logarithm with unity. The

logarithm itself can be transformed into

Re log
(

− ΛN

mN
0

)

= 0 . (6.12)

This equation is trivially solved if (m0/Λ)
N is a pure phase. The curve then has to be a

circle everywhere, not only in the region of validity of expansion (6.10). We thus have shown

that at large N all primary curves tend to a circle of unit radius (in units of ΛN).

A similar idea, but in a different realization is used to reveal the shapes of the secondary

curves. In the region of space where |σ0| > |m0| (in particular, at large positive m0) one

can expand the CMS condition in 1/α. This gives,

− Re
∑

r≥ 0

α−(rN − 1)

rN − 1
=

2π

N

cos 2 k− 1
N

π

2 sin π
N

, (6.13)

where k, again, is the number of the curve. At large N we can again drop the unity in the

denominator on the left hand side, which turns the sum into a logarithm. Also we expand

the sine in the right hand side to the leading order in 1/N . We have

1 − ln
∣

∣σ0 /Λ
∣

∣ = cos
2 k− 1

N
π . (6.14)

Replacing σ0 with m0 with an exponential accuracy, we arrive at the formula,

∣

∣m0

∣

∣ = e1 − cos 2 k− 1
N π , k = 1, ..., N − 1 , (6.15)

in units of Λ. Even though this formula has been derived in the assumption of large N , it

qualitatively gives a reasonable answer even for N as low as three!

The qualitative features, which are obeyed in all CP(N − 1) theories at large N are as

follows. The curves come in overlapping pairs, as given by the cosine in Eq. (6.15). The

minimum radius of the CMS is one, and is saturated by the primary curve — this fact we

already know. The smallest secondary curves correspond to k = 2 and k = N − 1. Their

size depends on N . Finally, the maximum size is

mmax
0 = e2 , (6.16)

measured in units of Λ, and is reached by the k = N +1
2

or the k = N +1± 1
2

curves, depending

on parity of N . For odd N , the largest curve does not have an overlapping party.

Interestingly enough, although these qualitative results were inferred from the large-N

formula (6.15), they are still valid for small N theories! In particular, e2 seems to be the
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Figure 13: The curves in the CP(11) theory (compressed mc plane).

absolute limit for the size of all of the curves (the deviation is that this limit is not attained

at small N , but some curves do come very close as we saw above). Also, the pairing of

overlapping curves described by the cosine appears to be correct for any N .

We illustrate the largeN limit formula (6.15) in Fig. 13. The external thin circle envelopes

the overall |m0| = e2 size of the figure. The circles of radii determined by Eq. (6.15) are

shown with thin dashed lines, which perfectly overlay the numerical curves. In fact, the

latter formula has a good agreement with CMS curves already for N = 8, while, as we

mentioned, in overall it shows the right tendency already for N as low as three.

As we increase N , the decay curves fill in the whole interval

∣

∣m0

∣

∣ ∈ 1 ... e2 . (6.17)

Formula (6.15) predicts how the curves lay into this interval. As a concluding illustration,

Fig. 14 shows the curves of the CP(100) theory.

7 Prospects for the Spectrum in Quasi-Classics

We have used strong coupling techniques, such as the mirror symmetry, in order to establish

the form of the BPS spectrum,

mBPS = U0(m0) + i n(k) · (m1 − m0) + imk , k = 1, ..., N − 1 . (7.1)
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Figure 14: The curves in the CP(100) theory (compressed mc plane).

At weak coupling, it must also be possible to see the features of this result, via semi-classical

methods. At large m, function U0(m0) gives the canonical logarithmic contribution as shown

in Eq. (5.7), while the mass difference m1 − m0 constructs the towers. These two contri-

butions are expected. A very non-trivial prediction of Eq. (7.1) is the last term, which

distinguishes the different towers. If one re-writes all relevant equations in terms of the mass

differences, then

mk =
1

N

∑

j

(mk − mj ) , (7.2)

since the average mass is zero in our case. This shows in fact that the last term in Eq. (7.1)

represents a fractional U(1) charge.

The phenomenon of the occurence of a fractional charge is well-known [22, 6, 23, 24], and

is due to the presence of fermions. In particular, for CP(1) one has a half-unit contribution

to the central charge [6]. We observe this one half by re-writing the last term of Eq. (7.1) in

terms of the mass difference

im1 = − im0 =
1

2
i∆m, (7.3)

which acts as a half-integer addition to n(1). Therefore in the CP(1) model there is an

agreement between our spectrum and the known quasi-classical results. Recovery of the

weak-coupling spectrum in a general CP(N − 1) theory via semi-classical methods is an
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important and non-trivial problem deserving a separate study. We plan to address this topic

elsewhere.

8 Conclusion

We demonstrated that the weak-coupling spectrum of the CP(N−1) theory with twisted ZN

masses is considerably richer than was thought before. In particular, there are N −1 infinite

towers of the BPS states. Our analysis relied on three important facts known about CP(N−
1): the strong coupling spectrum only includes N states; these states become massless at

the Argyres–Douglas points; quasiclassical spectrum contains a tower of states with integer

U(1) charges. The knowledge of the exact superpotential is not sufficient as it is ambiguous.

However, if one fixes this ambiguity at least in some region of the parameter space, then the

superpotential must still describe the states in the strong coupling domain. It is possible to

trace these states all the way from the weak-coupling region through the AD points and into

the strong-coupling domain, where their masses can be fixed by comparing with the mirror

representation. We emphasize that we observe N − 1 towers instead of just one, which is

naturally explained by the fact that the global SU(N) symmetry is broken down to N − 1

copies of U(1), and the central charges of the model include terms proportional to N − 1

Noether charges. However, only one of these towers is seen quasiclassically. Furthermore,

these N − 1 towers blend together in the quasiclassical limit, making it hard to anticipate

their existence from the semiclassical analysis alone.

Having obtained the spectrum, it is easy to construct the curves of the marginal stability.

We find N − 1 such curves, one per each BPS tower. One of the curves, which we refer to as

primary, is special as it passes through the AD point, with necessity. Inside this curve, only

N stable states of the strong coupling spectrum survive. We also considered the large-N

limit and argued that all curves tend to a circular shape, with the radius lying in between 1

and e2, in units of Λ.

We note that we only analyzed the decay curves of elementary states. In principle,

nonelementary kinks have their own series of curves [25]. Also, the theory must have the

fermion-soliton bound states [26], for which there will exist CMS as well.

As was shown in [5], the BPS spectrum of dyons (at the singular point on the Coulomb

branch in which N quarks become massless) of N = 2 four-dimensional supersymmetric

QCD with the U(N) gauge group and Nf = N quark flavors, identically coincides with the

BPS spectrum in the two-dimensional CP(N−1) model. The reason for this coincidence was

revealed in [1, 2]. The confined ’t Hooft–Polyakov monopoles of the four-dimensional theory

are represented by junctions of two different non-Abelian strings. The effective theory on the

world sheet of the non-Abelian string is the two-dimensional CP(N − 1) model [3, 4, 1, 2].
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Confined monopoles of the bulk theory are seen in the world-sheet theory as kinks of the

CP(N − 1) model. This ensures the coincidence of the BPS spectra in both theories, see

[1, 2] for more details.

The above coincidence implies that we can use the results for BPS spectrum of the

CP(N − 1) model obtained in this paper to construct the physical spectrum of the BPS

dyons in N = 2 supersymmetric QCD in the particular vacuum in which N quarks become

massless. More specifically, the masses of the BPS states in four dimensions are given

by the periods of the Seiberg–Witten differential, and have exactly the same form as the

central charge of the sigma model (2.13) written in terms of the Veneziano–Yankielowicz

superpotential. The masses of dyons are determined by the contours that encircle the branch

points of the Seiberg–Witten curve. The spectrum that we derived in the sigma model gives

the prescription on how to build contours that correspond to stable BPS states. In particular,

our result (5.34) for the weak-coupling spectrum of the CP(N − 1) model suggests that the

dyon electric charges in the bulk theory, besides the towers built on the roots of the gauge

group, also contain contributions determined by its weights, cf. [27]. The question of the

correspondence between the spectra of the BPS states and the decay curves of dyons of the

two theories calls for a special investigation.
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