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A difficulty with previous treatments of the gravitational self-force is that an explicit formula for
the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges
must be found through a transformation law once the Lorenz gauge force is known. For a class of
gauges satisfying a “parity condition” ensuring that the Hamiltonian center of mass of the particle
is well-defined, I show that the gravitational self-force is always given by the angle-average of the
bare gravitational force. To derive this result I replace the computational strategy of previous work
with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by
simple manipulations, and then that piece is determined by working in a gauge designed specifically
to simplify the computation. This offers significant computational savings over the Lorenz gauge,
since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple
form. I also show that the rest mass of the particle does not evolve due to first-order self-force
effects. Finally, I consider the “mode sum regularization” scheme for computing the self-force in
black hole background spacetimes, and use the angle-average form of the force to show that the same
mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that
suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild
and Kerr, respectively) are in this class.

The leading-order deviation from geodesic motion pro-
portional to the mass of a body—interpreted as the force
due to the body’s own gravitational field—is known as
the gravitational self-force. A recurring source of dif-
ficulty in both the theoretical treatment and practical
computation of the self-force has been the choice of
gauge in which the metric perturbation and force are
expressed. In particular, early treatments [1–4] required
a specific gauge choice—Lorenz gauge—even to define
the perturbed trajectory (via a point particle hypothe-
sis coupled with “Lorenz gauge relaxation” [2, 5] to al-
low non-geodesic motion), and a proposed extension of
the results to other gauges [6] restricted to gauge vec-
tors that are continuous at the particle, even though the
metric perturbation is singular. At a theoretical level,
this elevates a particular gauge to fundamental status,
to the exclusion of other gauges that seem equally nice,
such as any gauge where the point particle 1/r singular-
ity corresponds to linearized Schwarzschild in Cartesian
Schwarzschild coordinates, as opposed to the Cartesian
isotropic coordinates that correspond to Lorenz gauge.1

And at a practical level, one has excluded the standard
gauges of black hole perturbation theory [6].

Previous work [5] (hereafter paper I) eliminated the
fundamental status of the Lorenz gauge by giving a def-
inition of perturbed motion holding for any gauge where
the particle is represented by a 1/r singularity. However,
in this work we still relied on the Lorenz gauge for our
computations and, more importantly, for the expression
of the final result, as a formula holding in the Lorenz

1 The (discontinuous) gauge vector that changes the singularity
from isotropic to Schwarzschild type is given by ξi = ni = xi/r
in Fermi normal coordinates.

gauge together with a generalized transformation law.
At a theoretical level, we still have a preferred role for
the Lorenz gauge; and at a practical level, the results
suggest that the computation of a self-force in an alter-
native gauge must always proceed through Lorenz gauge,
eliminating much of the appeal of working in alternative
gauges in the first place.

In this paper I will identify a class of gauges based
on the requirement that the center of mass as defined
by Regge and Teitelboim [7] is well-defined (in the “near
zone”), and show that the force in any such gauge is given
by the angle-average of the bare force in that gauge. To
derive this result I adopt the assumptions of paper I but
take a new computational approach, wherein the form of
the force in any gauge is fixed up to a gauge-invariant
piece by simple manipulations, and then that piece is
determined by working in a gauge chosen specifically to
make the computation as simple as possible. This ap-
proach avoids much of the computational complexity of
previous work (eliminating the Hadamard expansion en-
tirely and significantly reducing the calculation needed
thereafter), while organizing the computation so that the
final equation automatically takes a gauge-independent
form.

The precise results are as follows. We define the
(lowest-order) mass M , spin Sab, and center of mass devi-
ation Za of the particle as tensors on a timelike worldline
γ (four velocity ua) in a vacuum background metric gab.

2

Then we find that that γ is a geodesic, that the mass and
spin are constant (parallel propagated), and that the de-

2 The spin is antisymmetric and satisfies uaSab = 0. The deviation
satisfies Zaua = 0.
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viation Za satisfies

ub∇b(uc∇cZa) =
1

4π
lim
r→0

∫
F adΩ (1)

+R a
bcd u

bZcud +
1

2M
R a
bcd S

bcud,

where F a is the “bare gravitational force”,

F a = −
(
gab + uaub

)(
∇dhbc −

1

2
∇bhcd

)
ucud, (2)

and hµν is the metric perturbation of a point particle,

G
(1)
ab [h] = 8πM

∫
γ

δ4(x, z(τ))uaubdτ, (3)

which must be expressed in a “parity-regular” gauge,
where the singular part of the spatial metric is even-
parity on the sphere, Cij(t,−~n) = Cij(t, ~n) in equation
(6). The bare force F a is familiar from the perturbed
geodesic equation, and here is defined only off of γ (and
only locally, where ua is extended off γ by parallel trans-
port along spacelike geodesics orthogonal to ua) since the
metric perturbation is divergent. The integral in (1) is
defined by using the exponential map based on γ to asso-
ciate a flat metric, in terms of which the integral is over
a fixed 2-sphere of spatial distance r in the hyperplane
orthogonal to ua, with na its unit normal and dΩ its area
element, and the integration is done component-wise un-
der the exponential map. I also define the perturbed
mass of the particle and show that it is constant in time.

The first term on the right hand side of equation (1) is
proportional to the metric perturbation; I therefore re-
fer to this term as the gravitational self-force. We see
that the force in any parity-regular gauge is given by the
angle-average of the bare force in that gauge, so that the
self-force may be viewed as the net gravitational force on
the particle. If the Lorenz gauge (which is parity-regular)
is adopted and the Hadamard form for the metric pertur-
bation is computed (choosing the retarded solution with
no incoming radiation) and plugged in, then this term
reduces to the standard “tail integral” expression for the
self-force (e.g., [4]). The second term corresponds to the
geodesic deviation equation and reflects the particle’s de-
sire to move on a new geodesic once it has been displaced
from the original. The third term is the Papapetrou spin
force. If the parity condition is violated, equation (1)
does not hold, and the equation of motion takes a com-
plicated form involving an explicit gauge transformation
to a parity-regular gauge, equation (B2).

A practical technique for computing self-forces in black
hole background spacetimes is known as “mode sum reg-
ularization” ([8] and many other references). In this ap-
proach one numerically solves for the spherical harmonic
modes of the metric perturbation (the sum over which
diverges at the particle), and performs a mode-by-mode
subtraction that regularizes the sum in such a way that
the correct self-force is computed. Extensive work has de-
termined the form of the subtraction in the Lorenz gauge,

which automatically holds for gauges that are smoothly
related. Taking advantage of a connection between mode
decompositions and averaging (and hence self-force), I
show that the same subtraction may in fact be performed
in all parity-regular gauges. It appears plausible that
suitably modified Regge-Wheeler and radiation gauges
(convenient to perturbations of Schwarzschild and Kerr,
respectively) will be in this class, with especially strong
evidence in the case of radiation gauge (see discussion at
the end of section V). If so, then the results of this paper
would provide a theoretical and practical foundation for
the computation of self-force effects in gauges convenient
to black hole spacetimes.

I use the conventions of Wald [11]. Greek indices label
tensor components, while early-alphabet Latin indices
a, b, . . . are abstract indices. When coordinates t, xi are
used, the time and space components are denoted by 0
and mid-alphabet Latin indices i, j, . . . , respectively.

II. REVIEW OF FORMALISM

The central idea of paper I is to introduce a mathemat-
ically precise formulation of the notion of the “near-zone”
of a body, and to use the requirement of a sensible near-
zone to demand a sensible perturbation family. Given
a family of metrics gab(λ) in coordinates (t, xi), we de-
fine a scaled metric ḡab ≡ λ−2gab and scaled coordinates
t̄ ≡ λ−1(t − t0) and x̄i ≡ λ−1xi. Denoting the scaled
metric in scaled coordinates by ḡµ̄ν̄ , consider the λ → 0

limit, ḡ
(0)
µ̄ν̄ ≡ ḡµ̄ν̄ |λ=0. This limit effectively “zooms in” on

the spacetime point (t = t0, x
i = 0), and will recover the

near zone of a body if the one-parameter-family contains
a body whose radius and mass shrink down linearly with
λ to the worldline xi = 0 (denoted by γ). By demanding
its existence (and associated conditions), we automati-
cally consider bodies of small size and mass. Note that
the components of the original and scaled metrics are
related simply by “plugging in the new coordinates,”

ḡµ̄ν̄(λ; t0; t̄, x̄i) = gµν(λ; t = t0 + λt̄, xi = λx̄i). (4)

This equation relates components of the scaled metric in
scaled coordinates, ḡµ̄ν̄ , to corresponding components of
the original metric in the original coordinates, gµν .

One may perform perturbation theory in either the
original (“far-zone”) picture or the scaled (“near-zone”)
picture. The far-zone background and perturbations will

be denoted by g
(n)
µν ≡ (1/n!)(∂λ)ngµν |λ=0 (I also write

hµν = g
(1)
µν ), while the near-zone background and per-

turbations will be denoted by ḡ
(n)
µ̄ν̄ ≡ (1/n!)(∂λ)nḡµ̄ν̄ |λ=0.

Our assumptions together with the choice of Fermi co-
ordinates (e.g., [4]) about γ for the far-zone background
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metric constrain the far-zone quantities to take the form

g(0)
µν = ηµν +Bµiνj(t)x

ixj +O(r3) (5)

hµν = g(1)
µν =

Cµν(t, ~n)

r
+Dµν(t, ~n) + rEµν(t, ~n) +O(r2)

(6)

g(2)
µν =

Fµν(t, ~n)

r2
+
Hµν(t, ~n)

r
+Kµν(t, ~n) +O(r),

(7)

where we have defined r =
√
δijxixj and ni = xi/r.

Here Bµiνj is related to the Riemann curvature on the
background worldline xi = 0 (see e.g. [4] for the exact ex-
pression), whereas Cµν , . . . ,Kµν are unspecified smooth
functions on R× S2 (denoted by arguments (t, ~n)). The
lack of a linear term in equation (5) is a consequence of
γ being geodesic, as shown in paper I. We also showed
that the metric perturbation has effective point particle
source, equation (3). In light of equation (4) the near-
zone perturbation series takes the form

ḡ
(0)
µ̄ν̄ = ηµν +

Cµν(t0, ~n)

r̄
+
Fµν(t0, ~n)

r̄2
+O

(
1

r̄3

)
(8)

ḡ
(1)
µ̄ν̄ = Dµν +

Hµν

r̄
+O

(
1

r̄2

)
+ t̄

[
Ċµν
r̄

+
Ḟµν
r̄2

+O

(
1

r̄3

)]
(9)

ḡ
(2)
µ̄ν̄ = Bµiνj x̄

ix̄j + r̄Eµν +Kµν +O

(
1

r̄

)
+ t̄

[
Ḋµν +

Ḣµν

r̄
+O

(
1

r̄2

)]

+
1

2
t̄2

[
C̈µν
r̄

+
F̈µν
r̄2

+O

(
1

r̄3

)]
, (10)

where an overdot denotes a t-derivative, and the order
symbols O(1/r̄n) refer to t̄-independent functions. The
dependence on (t0, ~n) is suppressed in equations (9) and
(10) for readability. Note that the lack of growing-in-r̄
terms in equation (9) is inherited from the absence of
a linear term in (5), which is a consequence of γ being
geodesic (and choosing Fermi coordinates). The (sta-
tionary and asymptotically flat) near-zone background

metric ḡ
(0)
µ̄ν̄ represents the local state of the body at time

t0, and as such its properties should characterize those
of the body. In particular, the multipole moments of

ḡ
(0)
µ̄ν̄ should correspond to those of the body, at lowest

non-trivial perturbative order. To the (far-zone) pertur-
bative order considered in this paper, only the monopole

and dipole moments can play a role. We therefore define3

M(t0) ≡ −1

8π
lim
r̄→∞

∫
ni∂iḡ

(0)
00 r̄

2dΩ (11)

Di(t0) ≡ 3

8π
lim
r̄→∞

∫
ḡ

(0)
00 n

ir̄2dΩ (12)

Sij(t0) ≡ 3

8π
lim
r̄→∞

∫
ḡ

(0)
0[i nj]r̄

2dΩ, (13)

and refer to M , Di, and Sij as the (lowest-order) mass,
mass dipole, and spin (current dipole) of the body.4

In equations (11)-(13), the bars on the indices of co-
ordinate components of the near-zone metric have been
dropped, and the integrals are taken on fixed coordinate
two-spheres with respect to the “flat” volume element
dΩ. It is well known (and easily checked) that the mass
dipole may be set to zero by translating the coordinates,
x̄i → x̄i − Zi, with

Zi(t0) ≡ Di(t0)/M(t0). (14)

This gives the new coordinates the interpretation of being
mass centered, so that Zi represents the center of mass
position of the body in the original coordinates. Since
the above translation corresponds to a first-order gauge
transformation in the far zone (recall x̄i = xi/λ), we
identify Zi with the first-order deviation of the center of
mass position from its background position γ. While the
mass, spin, and deviation are defined in the near zone “at
spatial infinity” (as a function of the coordinate time t0
along γ at which the near-zone limit is taken), they may
equally well be viewed as tensors defined in the far-zone
“at the spatial origin”, i.e., as tensor fields on γ. It was
shown in paper I that the mass and spin do not evolve
with time t0 (i.e., that they are parallel propagated tensor
fields on γ), while a Lorenz-gauge equation of motion
(together with a gauge transformation law) was derived
for the deviation vector.

The analysis of this paper will require transforma-
tion properties of Zi not only under ordinary transla-
tions, but also under transformations of the form δx̄i =
αi(~n) +O(1/r̄), i.e., under angle-dependent translations,
or supertranslations. Using the well-known fact that
ḡ00 = −1 + 2M/r̄ + O(1/r̄2) for all vacuum solutions
of the form (8), we have by direct computation that
δḡ00 = 2Mαini/r̄

2 +O(1/r̄3), so that Zi transforms as

δZi =
3

4π

∫
αjnjn

idΩ. (15)

3 Equation (13) for the spin holds only in coordinates where Ci0
vanishes. A formula for the spin holding in general coordinates
would take a more complicated form.

4 The mass dipole may also be thought of as the time-space com-
ponent of the spin tensor, S0i. However, we will work with a
spin tensor that is orthogonal to γ, S0i = 0, defining a separate
mass dipole.
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Since the angle-average of a vector picks out an ` = 1,
electric parity part, we may restrict consideration to αi of
the form αi = Bjnjn

i+Ci for constants Bi and Ci. The
associated change in Zi is then simply Bi +Ci. Thus Zi

changes under supertranslations with Bi 6= 0, in addition
to its change under ordinary translations αi = Ci.

III. COORDINATE CHOICES AND
PERTURBED MASS

The mass, spin, and deviation of the body were defined
at lowest-order in the near zone, so that perturbative cor-
rections to these quantities would naturally be defined at
first and higher orders in the near-zone. However, while
the background metric is stationary and asymptotically
flat (so that its multipole moments are well-defined), the
n’th-order perturbation may have growth in n combined
powers of t̄ and r̄ (c.f. paper I and equations (8-9)).
It turns out, however, that at first order the situation
is more under control. As already noted, the choice of
Fermi coordinates in the far-zone background—together
with the fact that γ is geodesic—eliminates growing-in-
r̄ terms from the first near-zone perturbation, so that
the perturbation is asymptotically flat. Furthermore, as
I now show, the constancy of the mass and spin simi-
larly allows one to eliminate all t̄/r̄ and t̄/r̄2 terms, so
that the perturbation is stationary to O(1/r̄2). To see

this, recall that ḡ
(0)
µ̄ν̄ is a stationary and asymptotically

flat metric, so that, introducing δµν = diag(1, 1, 1, 1) and
tα = (1, 0, 0, 0), it may (at each t0) be put in the standard
form [13],

ḡ
(0)
µ̄ν̄ = ηµν +

2M

r̄
δµν +

M2

2r̄2
(3ηµν − tµtν)

−
4nit(µSν)i

r̄2
+O

(
1

r̄3

)
, (16)

where Si0 = 0 for all t0 (implying Di = 0, so that the
coordinates are mass centered and “track” the motion
of the body), while a priori M and Sij may depend on
t0, reflecting evolution of the mass and spin. However,
since the M and Sij in (16) do correspond to those de-
fined in (11) and (13), we know that these quantities are
in fact independent of time t0, as shown in paper I and
remarked above. Thus the near-zone background metric
is identical (through order O(1/r̄2)) at all t0, which im-
plies by the form of (9) that the near-zone perturbation
is independent of t̄ through O(1/r̄2), becoming simply

ḡ
(1)
µ̄ν̄ = Dµν(~n) +Hµν(~n)

1

r̄
+O

(
1

r̄2

)
+ t̄ O

(
1

r̄3

)
. (17)

Further simplification can now be made. The pertur-

bation ḡ
(1)
µ̄ν̄ must satisfy the (vacuum) linearized Ein-

stein equation about the near-zone background ḡ
(0)
µ̄ν̄ . The

quantity Dµν appears at order O(1/r̄2) (and higher) in
the linearized Einstein tensor, while Hµν appears first

at O(1/r̄3). However, at these orders only the first two
terms in the background (16) will appear, so that the
background is effectively Schwarzschild. Therefore, when
considering only the explicitly displayed terms in the per-
turbation (17), we may use well known results [16, 17] for
perturbations of the Schwarzschild spacetime. In partic-
ular, since stationary perturbations scaling as r̄0 and r̄−1

(as in (17)) are known to be ` = 0 (spherically symmet-
ric) up to gauge, the perturbation in (17) is simply a
change in mass, and a gauge may be chosen so that

ḡ
(1)
µ̄ν̄ =

2 δM(t0)

r̄
δµν +O

(
1

r̄2

)
+ t̄ O

(
1

r̄3

)
, (18)

where δM is an arbitrary constant (which here may a
priori depend on t0), which I refer to as the perturbed
mass of the body. An explicit formula may be given in
analogy with (11),

δM(t0) =
−1

8π
lim
r̄→∞

∫
ni∂iḡ

(1)
00 r̄

2dΩ, (19)

with the caveat that this equation holds only in coor-
dinates where Dµν = Ċµν = 0. If one wishes to com-
pute the mass in other coordinates (such as when the
Lorenz gauge is used, and Dµν is equal to the value of the
“tail integral”), a more complicated expression (which
must implicitly involve transforming to appropriate co-
ordinates) must be derived. However, since the mass is
an intrinsic property of a spacetime, there is no need to
consider such coordinates in defining δM and determin-
ing its evolution.5 Note that since the perturbation (17)
is still stationary at O(1/r̄2), it may be possible to define
perturbed spin and deviation by an analogous procedure.
However, these quantities appear at one order in λ higher
than pursued in this paper, and are not considered here.

I now show that the perturbed mass does not evolve
with time. With our previous coordinate choices, the
second-order near-zone perturbation takes the from

ḡ
(2)
µ̄ν̄ = Bµiνj x̄

ix̄j + r̄Eµν +Kµν +
t̄

r̄
2 ˙δMδµν

+O(1/r̄) + t̄ O(1/r̄2) + t̄2 O(1/r̄3). (20)

This perturbation satisfies the (vacuum) linearized Ein-

stein equation about ḡ
(0)
µ̄ν̄ (equation (16)) with effective

sources constructed from ḡ
(1)
µ̄ν̄ (equation (18)). However,

it is easy to see that these effective sources are O(1/r̄4),
t̄O(1/r̄6), and t̄2O(1/r̄8), while the error in the linearized

5 A definition of perturbed mass was given in [19], which appears
to correspond to equation (19) applied in the Lorenz gauge. This
definition would not be sensible within our framework. The mass
defined in [19] was found to evolve with time. The conclusion
that the perturbed mass evolves with time appears to be at odds
with the analysis of [20], where it was found that energy conser-
vation is satisfied under the assumption of no change in mass.
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Einstein tensor introduced by including only the explic-
itly displayed terms in the second-order perturbation (10)
is O(1/r̄3), t̄O(1/r̄4), and t̄2O(1/r̄5). Thus the effective
source terms may be ignored, and denoting the linearized

Einstein tensor of ḡ
(2)
µ̄ν̄ about ḡ

(0)
µ̄ν̄ by Gµ̄ν̄ , we have Gµ̄ν̄ = 0

to the appropriate order, i.e.,

Gµ̄ν̄ = O(1/r̄3) + t̄O(1/r̄4) + t̄2O(1/r̄5). (21)

To determine the mass evolution ˙δM we focus on the
` = 0 part of Gµ̄ν̄ . While the background ḡ

(0)
µ̄ν̄ is not

spherically symmetric due to the presence of the spin
term, it is easy to see that to the relevant order in Gµ̄ν̄
the spin term only contributes in product with the “B”
term in the perturbation (20). However, since the far-
zone background spacetime is assumed to be vacuum, its
Riemann tensor may be decomposed into two rank-two
symmetric, trace-free spatial tensors (the “electric” and
“magnetic” parts, e.g. [4]), showing that the “B” term is
pure ` = 2. Since the spin term is ` = 1, the combination
can therefore make no contribution to the ` = 0 part
of Gµ̄ν̄ at the relevant order. Instead, the ` = 0 part
is completely determined by the remaining terms in the
perturbation, which “see” only the Schwarzschild metric.
In particular only the ` = 0 parts of these terms may
contribute to the ` = 0 part of Gµ̄ν̄ , and we conclude

that the ` = 0 part of ḡ
(2)
µ̄ν̄ must be a perturbation of the

Schwarzschild spacetime to the relevant order. We may
now use Zerilli’s result [16] that ` = 0 perturbations of
Schwarzschild simply shift the mass, being writable as a
1/r̄ term plus a gauge transformation. Since O(1/r̄) is
higher than considered, we have that the ` = 0 part of

ḡ
(2)
µ̄ν̄ is pure gauge to the relevant order,

(
rEµν +Kµν +

t̄

r̄
2 ˙δMδµν

)
`=0

=

M

∇(µ ξν) +O(1/r̄) + t̄ O(1/r̄2) + t̄2O(1/r̄3), (22)

where
M

∇ is the derivative operator compatible with
Schwarzschild and ξµ is a vector field. We may now take
a time derivative to find

∂0

M

∇(µ ξν) =
M

∇(µ ∂0ξν) =
2 ˙δM

r̄
δµν+O(1/r̄2)+ t̄ O(1/r̄3),

(23)

which immediately implies ˙δM = 0, since the mass per-
turbation 2 ˙δM/r̄δµν is not pure gauge.

Incorporating this result, we may now summarize the

coordinate choices made in this section as

ḡ
(0)
µ̄ν̄ = ηµν +

2M

r̄
δµν +

M2

2r̄2
(3ηµν − tµtν)

−
4nit(µSν)i

r̄2
+O

(
1

r̄3

)
(24)

ḡ
(1)
µ̄ν̄ =

2δM

r̄
δµν +O

(
1

r̄2

)
+ t̄ O

(
1

r̄3

)
(25)

ḡ
(2)
µ̄ν̄ = Bµiνj x̄

ix̄j + r̄Eµν +Kµν

+O

(
1

r̄

)
+ t̄ O

(
1

r̄2

)
+ t̄2 O

(
1

r̄3

)
, (26)

with S0i = 0. By fixing the mass and spin terms to a
standard form at all t0 and choosing the mass dipole to
vanish for all t0, the metric form has been made very sim-
ple, and all non-stationarity has been eliminated from the
relevant orders in r̄. These properties make this gauge
much simpler to use than the Lorenz gauge used in [5]
and elsewhere. Rewritten in the far-zone, the perturba-
tion series in these coordinates becomes

hµν = g(1)
µν =

2Mδµν
r

+ Eµνr +O(r2) (27)

g(2)
µν =

M2

2r2
(3ηµν − tµtν)−

4nit(µSν)i

r2

+
2δM

r
δµν +Kµν +O(r), (28)

with the background g
(0)
µν still given by (5).

IV. PARITY CONDITION

The definition of center of mass adopted in section II is
based on the dipole moment of the time-time component
of a stationary, asysmptotically flat metric. An alter-
native definition of center of mass is given by equation
(5.13) of Regge and Teitelboim [7], derived as the con-
served quantity canonically conjugate to the asymptotic
boost symmetry of asymptotically flat general relativity.6

Like the Hamiltonian notion of mass (normally referred
to as the ADM mass), this “Hamiltonian center of mass”
involves only the spatial metric, and is more general in
that it may be applied to time-dependent spacetimes in
addition to the stationary spacetimes we consider. How-
ever, unlike the Hamiltonian notion of mass, the center
of mass comes with an additional restriction: In order to
ensure the existence of the integral defining the center of
mass, Regge and Teitelboim impose a “parity condition”
that the monopole (1/r) part of the spatial metric be
even parity, Cij(~n) = Cij(−~n) in equation (8).7 This re-

6 We note that a later formula due to Beig and O’Murchadha [12]
is equivalent given the parity condition.

7 Regge and Teitelboim also impose a parity condition on the ex-
trinsic curvature. However, this condition is not needed for the
center of mass and plays no role in our analysis.
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striction is not necessary to define the mass dipole, which
is finite for any metric of the form (8).

Since the general metric form (16) satisfies the parity
condition, we see that the parity condition is simply a
coordinate condition in the context of stationary, asymp-
totically flat spacetimes. Rotations and translations will
automatically preserve the parity condition, while a su-
pertranslation δxi = αi(~n) + O(1/r̄) must now satisfy
αi = ci + Σi(~n), with ci constant and Σi odd parity,
Σi(−~n) = −Σi(~n). This form provides a natural split
between the “pure translation” part ci and a “pure su-
pertranslation” part Σi, which is odd-parity. It is easily
checked from equation (15) that the mass dipole center
of mass changes by ci under this transformation, so that
the parity condition removes its supertranslation depen-
dence. In this case the transformation properties of the
mass dipole center of mass agree with those established
by Regge and Teitelboim for their center of mass; and
since both notions give zero on the metric (16), the two
definitions are equivalent in our context. Therefore, the
question of which definition to use is simply the question
of whether to impose the parity condition.

One may take one of two alternative viewpoints on
this matter. First, since the formal Hamiltonian analysis
yields a center of mass formula that diverges (in general)
in coordinates that violate the parity condition, one may
argue that such coordinates are “too irregular” to admit
a notion of center of mass, even if the mass dipole formula
is finite. Alternatively, one may view the mass dipole for-
mula as providing an extension of the Regge Teitelboim
center of mass to a larger class of coordinates within the
stationary case. In any case, the parity condition adds
a number of simplifying properties in the context of the
present work: It eliminates the supertranslation depen-
dence of the mass dipole, it allows the equations of mo-
tion to be expressed purely in terms of the local spacetime
metric (see discussion in appendix B), and it makes the
mode-sum regularization scheme gauge invariant.

V. EQUATION OF MOTION

In the gauge of section III, the equation of motion for
the deviation is simply Zi(t) = 0. In principle, therefore,
giving the change in Zi under a change in gauge pro-
vides the complete description of motion. However, the
more useful description of motion in other gauges, equa-
tion (1), may be derived as follows. Begin with gauge
transformations x′µ = xµ + λξµ of the form8

ξµ = αµ(t, ~n) +O(r), (29)

where ξµ is assumed smooth in r at fixed (t, ~n), so that
in particular αµ is a smooth function of its arguments.

8 In the appendix of paper I an opposite sign convention, x′µ =
xµ − λξµ, was used for the definition of the gauge vector.

It is easy to check that such transformations preserve
the form of equations (5-6), and thus are allowed under
our assumptions. As described in [14], we furthermore
believe (but have not proven) that expressibility in the
form of equation (29) is a necessary condition on an al-
lowed transformation, except in the case of certain trivial
one-parameter-families, where additional log r terms are
allowed. Thus we believe (but have not proven) that
such transformations correspond precisely to the coordi-
nate choices allowed by our formalism (not including the
parity condition) at first order in λ, for non-trivial fami-
lies of solutions. In order to preserve the parity condition
Cij(t,−~n) = Cij(t, ~n), we must restrict the form of αµ so
that

ξi = ci(t) + Σi(t, ~n) +O(r), (30)

with Σi odd-parity, Σi(t,−~n) = −Σi(t, ~n). I will refer
to gauge transformations of the above form as parity-
regular transformations, and I will define parity-regular
gauges as those that are related to the gauge of sec-
tion III by a parity-regular transformation. We be-
lieve that parity-regular gauges are the general class al-
lowed by our assumptions plus the parity condition, ex-
cept possibly in trivial cases. Thus we believe that one
may check if a given gauge is parity-regular by check-
ing that the metric perturbation takes the form (6) with
Cij(t,−~n) = Cij(t, ~n). However, absent a complete proof
of the assertions in [14], one must instead check that the
gauge vector relating to a known-parity-regular gauge is
of the form (30). At the end of this section I discuss the
parity-regularity of some common gauge choices.

Under a change of gauge of the form (30), the near-zone
background coordinates change by x̄′i = x̄i + ci(t0) +
Σi(t0, ~n) + O(1/r̄). Using equation (15), we see that
the deviation Zi(t0) changes by ci(t0), as noted in the
previous section. We may express this in terms of the
gauge vector ξµ by taking an angle-average over a small
constant-r sphere,9

δZi = 〈ξi〉r→0 ≡
1

4π
lim
r→0

∫
ξidΩ. (31)

Equation (31) gives the change in deviation due to a
parity-regular transformation made on any perturbation
of the assumed form (6).

The key manipulation now follows. Consider the sec-

9 We could equivalently express δZi as an average over a circle
or over two antipodal points, since these averages all agree for a
“constant plus odd parity” function. The entire derivation of the
equation of motion could then proceed unchanged, so that the
self-force in fact may equivalently be written as the average of
the bare force over a (constant geodesic distance) sphere, circle,
or pair of points.
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ond time derivative, δZ̈i = ∂0∂0δZ
i. We have

δZ̈i = 〈∂0∂0ξi〉r→0

= 〈∇0∇0ξi +R0j0kx
k∂jξi

+∇0∇iξ0 −∇i∇0ξ0 +R j
i00 ξj〉r→0

= 〈−(∇0δh0i −
1

2
∇iδh00)〉r→0 −R0i0j〈ξj〉r→0

= δ〈Fi〉r→0 −R0i0jδZ
j (32)

In the second line we have rewritten in terms of covariant
derivatives (R0k0lx

l∂kξi is a Christoffel term), as well as
added zero in the form of the Ricci identity. However,
since ∂jξi is even parity to leading order and the Riemann
tensor is smooth, the first Riemann term vanishes by
virtue of the parity condition. Noting that the remaining
derivatives of ξi appear only in symmetrized form, in
the third line we reexpress in terms of the change in the
metric perturbation, δhµν = −2∇(µξν), finding precisely
the gravitational force form of equation (2). We also
separate off the remaining Riemann term, which takes a
geodesic deviation form. In the last line we use equations
(2) and (31), where the finiteness10 of 〈Fi〉r→0 allows us
to pull the δ out of the angle-average. We may now “drop
the δ’s” to obtain

Z̈i = 〈F i〉r→0 −R i
0j0Z

j +Ai, (33)

where Ai is the constant of integration—an unknown
gauge-invariant acceleration. Thus by simple manipu-
lations we have fixed the form of the equation of motion
up to a gauge-invariant piece, and may now work in any
convenient (parity-regular) gauge to determine Ai.

Since the gauge of section III has Zi(t) = 0 it immedi-
ately eliminates two terms in (33), giving simply

Ai = −〈F i〉r→0 (34)

in this gauge. The interpretation of the gauge is that the
gravitational self-force is exactly opposite to the gauge-
invariant force, so that the total force is zero, and there
is no deviation from geodesic motion (Zi(t) = 0). Since
the angle-average of a three-vector picks out an ` = 1,
electric parity part, we need consider only the ` = 1,
electric parity part of the bare force F i in order to com-
pute Ai from equation (34). Since only the “E” term in
the perturbation (27) contributes, we may focus on the
` = 1, electric parity part of Eµν . To do so, we return to
second-order near-zone perturbation theory.

As remarked above in the derivation of the constancy
of the perturbed mass, the relevant terms in the second-

order metric perturbation ḡ
(2)
µ̄ν̄ satisfy the linearized Ein-

stein equation off of the ḡ
(0)
µ̄ν̄ to the relevant order, equa-

tion (23). As further remarked, the ` = 1 spin term in the

10 The angle average of F i is manifestly finite in the gauge of section
III, and, by reversing the calculations of (32), may be easily seen
to transform finitely (see also (40)).

background appears only in combination with the ` = 2
“B” term in the perturbation. While there is no contribu-
tion to the ` = 0 mode relevant for the perturbed mass,
there can be a contribution to the ` = 1 mode relevant for
the deviation, which significantly complicates the analy-
sis (see appendix A). However, if the spin is assumed to
be zero from the outset, then, as in the mass evolution
case, the metric perturbation “sees” only Schwarzschild
to the relevant order, and we can make use of Zerilli’s [16]
analysis of perturbations of Schwarzschild. In particular,
Zerilli showed that ` = 1, electric parity perturbations
are pure gauge, so that by a (second-order near-zone)
gauge transformation we may eliminate the ` = 1, elec-
tric parity part of Eµν entirely, whence it immediately
follows from (34) that Ai = 0. Thus the equation of mo-
tion in the spinless case may be derived with very little
effort, involving only the few lines of algebra of equation
(32). If the spin is not assumed zero, more algebra is re-
quired (though still significantly less than needed when
the Lorenz gauge is used). This case is treated in ap-
pendix A, leading to

MAi =
1

2
SklRkl0i, (35)

showing that Ai is simply the acceleration due to the
Papapetrou spin force. We have thus justified the final
equation of motion, which appears in covariant form in
(1).

I now discuss the parity-regularity of some common
gauge choices. The Lorenz gauge is convenient for lo-
cal series expansions about the particle. From equation
(27), the gauge of section III already satisfies the Lorenz
condition at leading and subleading order, ∇µ(hµν −
(1/2)hgµν) = O(1). It is then easy to check that the
gauge vector to a full Lorenz gauge must take the form
ξi = Ci(t) + O(r), so that the Lorenz gauge is parity-
regular.

The Regge-Wheeler gauge is convenient for perturba-
tions of Schwarzschild. Barack and Ori [6] show that in
a few specific cases the gauge vector takes the form (29)
(bounded but direction dependent), and their formulae
also imply that in these cases one can choose the vector to
satisfy the required parity property, equation (30). How-
ever, Hopper and Evans [15] have shown that in general
the Regge-Wheeler gauge metric perturbations contain a
delta-function in the Schwarzschild radial coordinate at
the position of the particle, so that in general the Regge-
Wheeler gauge is too singular to define the motion by our
procedure. However, using the explicit formulae for the
coefficient of the delta function found in [15], it should
be possible to simply eliminate the delta function by a
gauge transformation during the process of reconstruct-
ing the metric perturbations. If the resulting gauge is
parity-regular (a suggestion consistent with Barack and
Ori’s restricted results), then the results of this paper
would enable self-force computations to be made within
the Regge-Wheeler formalism, using mode sum regular-
ization if desired.
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The radiation gauge is convenient for perturbations of
Kerr. In [9] it was checked that a radiation gauge may be
chosen so that the metric perturbations near the particle
take the form (1/r)Cµν(t, ~n), with Cij(t, ~n) even parity
on the sphere, so that the singularity is properly 1/r
and the parity condition is satisfied.11 However, it was
not checked that Cµν(t, ~n) is smooth (as assumed in this
paper), and in fact it can be seen from the analysis of
[10] that Cµν(t, ~n) contains a jump discontinuity along
a great circle, which is inherited from a discontinuity in
the metric perturbation located at the radial coordinate
of the particle. Such a discontinuity seems unlikely to
threaten the validity of the results, since all of the rele-
vant formulae remain defined. However, in order to be
certain that the results of this paper may be applied to
the gauge of [9], a careful analysis of the gauge vector re-
lating to some parity-regular gauge must be performed.
Armed with the explicit form of such a vector, it should
be straightforward to check if the arguments of this paper
still hold.

VI. MODE-SUM REGULARIZATION

The computation of gravitational self-forces on black
hole background spacetimes is an important problem for
gravitational-wave astronomy of extreme mass-ratio in-
spirals (e.g., [21]). The angle-average formula suggests
a straightforward way of proceeding: first numerically
compute the metric perturbations of a point particle in
any parity-regular gauge, and then perform an average
to determine the force in that gauge. However, while
simple in principle, such a procedure may be difficult
to carry out in practice, due to the singular nature of
the quantity being averaged. Instead, to achieve an ac-
curate result it is likely preferable to use an alternative
technique, such as that of mode sum regularization, first
introduced in [8] and widely employed thereafter. This
method takes advantage of the fact that numerical calcu-
lations in black hole spacetimes usually employ a spher-
ical (or spheroidal) harmonic decomposition, which in
particular has the property that the individual modes
of the bare force are finite at the particle. One then
performs a finite subtraction on each mode, which is de-
signed so that the resulting sum converges to the cor-
rect self-force. Extensive work has determined the form
of this subtraction (in terms of “regularization parame-
ters”) for arbitrary orbits of Schwarzschild and Kerr in
the Lorenz gauge. In this section I show that the mode
sum regularization scheme is gauge-invariant under the
parity condition, in the sense that the same subtraction
may be employed to determine the force in any parity-
regular gauge. Combined with the Lorenz gauge results

11 At the time of the writing of [9], I believed (and communicated
to the authors of [9]) that only this check was required for the
results of the present paper to hold.

of [22], this provides a complete regularization prescrip-
tion for Kerr in parity-regular gauges.

Let (t̃, r̃, θ̂, φ̂) be Boyer-Lindquist coordinates for the
Kerr spacetime. For a given point along the worldline γ
where we wish to compute the self-force, we may rotate
and time-translate the coordinates so that the particle
is located at t̃ = φ̃ = 0, while taking the remaining co-

ordinate positions to be r̃ = r0 and θ̂ = θ0. Despite
the lack of a full rotational symmetry we (following [8])

nevertheless also perform an additional rotation in the θ̂
direction, so that the particle is located at the pole of
the new coordinates. More precisely, define new angular
coordinates (θ̃, φ̃) by

cos θ̂ = − sin θ̃ cos φ̃ cos θ0 + cos θ̃ cos θ0 (36)

tan φ̂ =
sin θ̃ sin φ̃

sin θ̃ cos φ̃ cos θ0 + cos θ̃ sin θ0

(37)

to obtain “rotated Boyer-Lindquist” coordinates t̃, r̃, θ̃, φ̃
in which the particle position is given by t̃ = 0, r̃ =
r0, θ̃ = 0. In these coordinates the metric components are
smooth everywhere except for the pole θ = 0, where they
acquire non-trivial direction-dependent limits. Below we
will need the lowest-order relationship between the spa-
tial Fermi coordinates xi and the rotated Boyer-Lindquist
coordinates, restricted to the sphere. A straightforward
computation gives this to be

xi|t̃=0,r̃=r0
= αi θ̃ cos φ̃+ βi θ̃ sin φ̃+O(θ̃2), (38)

where αi and βi are constants independent of θ̃ and φ̃
(dependent on the Boyer-Lindquist position θ0, the three-
velocity, and the mass and spin parameters of the Kerr
metric), and where the O(θ̃2) term may depend on φ̃.

The advantage of placing the particle at the pole is the
simplification of the spherical harmonic description by
the elimination of modes with non-zero m when the series
is evaluated at the particle. Let a subscript ` denote the
`’th term in the expansion evaluated at the pole/particle,

A` =
∫
AY`0dΩ̃ for integrable functions A(θ̃, φ̃), and suit-

ably generalized for distributions. When viewed in light
of our angle-average result, the mode sum regularization
prescription amounts to finding some Si` such that

〈F i〉r→0 =

∞∑
`=0

(
F i` − Si`

)
. (39)

This formula relates an average over an infinitesimal
sphere surrounding the particle to a spherical harmonic
decomposition on a finite sphere surrounding the black
hole, evaluated at the particle (see figure 1). Such a con-
nection between mode sums and local averaging is famil-
iar from ordinary Fourier series, where, if a function is of
bounded variation, its series converges to the two-sided
average at a discontinuity. For spherical harmonic ex-
pansions, an analogous result (e.g. section III22b of [23])
states that if the average of a function over latitude lines
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black hole

 background 
     coordinate 
        sphere

local inertial 
     sphere

particle

polar circle

FIG. 1. A diagram illustrating the geometrical setup of the
mode sum regularization argument. The particle is at the pole
of rotated Boyer-Lindquist coordinates. The mode decompo-
sition is taken relative to the background coordinate sphere,
while the self-force is given by an average over the local iner-
tial sphere. For the change in bare force, a general theorem
relates the mode sum at the particle/pole to the average over
the polar circle, which agrees with the average over the local
inertial sphere when the parity condition is satisfied.

is of bounded variation (as a function of latitude), then its
spherical harmonic series evaluated at the pole (“Laplace
series”) converges to the average on an infinitesimal lat-
itude line surrounding the pole. (This result is easily
understood at a formal level, by noting that Y`0 is inde-
pendent of φ̃, so that the formula for A` takes an average
over φ̃.) The theorem does not apply to the bare force
F i (which is divergent), but it does apply to the change
in bare force under a change in gauge, δF i. In particu-
lar, a simple calculation (which reverses the calculations
internal to the average in (32)) gives

δF i = ∂0∂0ξ
i +R i

0 0jξ
j −R k

0 0lx
l∂kξ

i +O(r) (40)

for any transformation of the form (29). If the transfor-
mation is parity-regular, equation (30), we see that δF i

has a Fermi coordinate expansion of the form

δF i = Ci(t) + Si(t, ~n) +O(r), (41)

where Si is smooth and odd-parity, Si(t,−~n) =
−Si(t, ~n).12 Restricting to the background coordinate

sphere t̃ = 0, r̃ = r0 and expanding in θ̃ at fixed φ̃, we
have

δF i|t̃=0,r̃=r̃0
(θ̃, φ̃) = Ci(0) + Si(0, ~n|t̃=0,r̃=r̃0

(θ̃, φ̃))

+O(θ̃) (42)

= Ci(0) + Si(0, ~n|t̃=0,r̃=r̃0
(θ̃ = 0, φ̃))

+O(θ̃) (43)

= Ci(0) + Si(0, ~n0(φ̃)) +O(θ̃), (44)

12 The parity condition is not required to show the applicability of
the theorem, but will be necessary for the later analysis of this
section.

where the O(θ̃) terms may depend on φ̃ and we have
defined

~n0(φ̃) = lim
θ̃→0

~n(t̃ = 0, r̃ = r̃0, θ̃, φ̃). (45)

In moving from equation (42) to equation (43) we have
used the fact that the restriction of ~n to the background
coordinate sphere is smooth in θ̃ at fixed φ̃ (see equation
(38) and recall ni = xi/r), as well as the fact that Si is
smooth in ~n. Equation (44) shows that the restriction of
δF i to the background coordinate sphere is continuous
(in fact smooth, by our assumptions) in θ̃ at fixed φ̃. In

particular its average over φ̃ is of bounded variation, and
by the theorem we have∑

`

(δF i)` = lim
θ̃→0

1

2π

∫
δF i|t̃=0,r̃=r0

(θ̃, φ̃)dφ̃ (46)

= Ci(0) +
1

2π

∫
Si(0, ~n0(φ̃))dφ̃, (47)

where in the second line we have plugged in the form of
equation (44). Since Si is odd parity, the second term

on the right-hand-side will vanish if ~n0 is odd under φ̃→
φ̃+π. This property is expected from the geometry of the
setup (figure 1), and is easily confirmed from equations
(45) and (38). Thus the term involving Si vanishes, so
that the Laplace series for δF i in fact converges to Ci.
However, the angle-average that computes the self-force
also returns Ci on the form (41). Therefore, when the
parity condition is satisfied the averages agree, and we
have simply ∑

`

(δF i)` = 〈δF i〉r→0, (48)

showing that the Laplace series for the change in bare
force δF i in fact converges to its local inertial angle-
average, i.e., to the change in self-force it effects. This
means in particular that no extra Si` must be subtracted
in the new gauge, since merely the process of decompos-
ing δF i into modes and resumming returns its contri-
bution to the self-force. To see this explicitly, let F iold
denote the bare force in a gauge that satisfies the parity
condition, and write∑

`

(
F i` − Si`

)
=
∑
`

[
(F iold)` + (δF i)` − Si`

]
=
∑
`

[
(F iold)` − Si`

]
+ 〈δF i〉r→0

= 〈F iold + δF i〉r→0. (49)

In writing the second line we have used (48), and in writ-
ing the third line we have used equation (39). This shows
that equation (39) holds in the new gauge if it held in
the old, i.e., that Si` is a correct piece to subtract in any
parity-regular gauge.

We note that previous work has organized the sub-
traction so that one first subtracts an Ŝi` of the form
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Ŝi` = Ai(` + 1/2) + Bi + Ci/(` + 1/2), then sums over
modes (the result is now finite), and finally adds in a fi-
nite residual Di to get the correct self-force. (In terms of

our Si`, D
i is a “finite piece”Di ≡

∑
`(S

i
`−Ŝi`).13) The (`-

independent) A,B,C,D are the “regularization param-
eters” for the particular orbit and spacetime, which by
the results of this section do not depend on the choice of
parity-regular gauge.
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Appendix A: Derivation in the case of non-zero spin

When the spin is non-zero, we may not rely on Zer-
illi’s results for Schwarzschild [16], and the analysis of
second-order Einstein equation, equation (23), becomes
more complicated. In this case it pays to systematically
consider the contributions to the linearized Einstein ten-
sor Gµ̄ν̄ from the various terms in the background (24)
and perturbation (26). Since all terms are stationary
to the relevant orders, no t̄-dependence will appear, and
we may count orders in 1/r̄. At leading order O(1) in
Gµ̄ν̄ , the only contributions are from the “B” term in
the perturbation (26) and the flat “η” term in the back-
ground. Since the “B” term is (by the Fermi coordinate
construction) a perturbation of flat spacetime, the lin-
earized Einstein equation is automatically satisfied and
we learn no new information. At next order O(1/r̄) in
Gµ̄ν̄ , both the “E” term in the perturbation and the mass
term 2Mδµν/r̄ in the background can now contribute.
Expanding the background metric in powers of 1/r̄, the
linearized Einstein equation at O(1/r̄) may be written

G(1)
η [Eµν r̄] + 2G(2)

η [2M/r̄δµν , Bµiνj x̄
ix̄j ] = 0, (A1)

where G
(1)
η and G

(2)
η are the first and second-order Ein-

stein tensors (respectively) off of flat spacetime. How-
ever, since the “B” term has no ` = 1, electric parity part
while the M term is spherically symmetric, the second
term in (A1) has no ` = 1, electric parity part. There-
fore the ` = 1, electric parity part of the “E” term sat-
isfies the vacuum linearized Einstein equation about flat

13 Remarkably, it has been found (by lengthy computation in the
Lorenz gauge) that Di = 0 in every circumstance, so that the
subtraction of Ai(` + 1/2) + Bi + Ci/(` + 1/2) in fact returns
the correct force. This surprising relationship between the large-`
expansion of a point particle metric perturbation (which uniquely
determines A,B,C) and the physical self-force has thus far defied
a more fundamental explanation.

spacetime,

G(1)
η [(Eµν r̄)`=1,+] = 0, (A2)

where the subscript “` = 1,+” indicates the ` = 1, elec-
tric parity part. Since ` = 1, electric parity perturba-
tions of flat spacetime that scale linearly with r̄ are pure
gauge (e.g., [18]), all solutions to equation (A2) may be
written (Eµν r̄)`=1,+ = ∂(µEν), where Eµ is ` = 1 and
electric parity. If we make a (second-order near-zone)
gauge transformation generated by E , then we may set
the ` = 1, electric parity part of Eµν to zero. However,
one can check that in general the required gauge vector
Eµ is t̄-dependent (despite the “E” term being station-
ary), so that this gauge transformation would introduce
t̄-dependence at higher orders, in violation of our previ-
ous choices that eliminated such dependence. (In partic-

ular, terms of order t̄/r̄ and t̄2/r̄2 would appear in ḡ
(2)
µ̄ν̄ ,

contradicting the previous choices Ḣµν = C̈µν = 0—
see equations (10) and (26).) Without invalidating these
choices we may only make gauge transformations whose
gauge vector is t̄-independent. One may check that this
allows us to put Eµν in the form

(Eµν r̄)`=1,+ = −2aix̄
itµtν , (A3)

where ai is an arbitrary spatial vector, named since in
this form (Eµν r̄)`=1,+ is an “acceleration perturbation”
familiar from Fermi coordinates about an accelerated
worldline. Making such a gauge transformation (and “ab-
sorbing” its effects atO(1) into the arbitrary tensorKµν),
equation (34) becomes simply

Ai = ai. (A4)

We have now made coordinate choices that eliminate
all t̄-dependence and reduce the relevant ` = 1, electric
parity part of Eµν into a simple form with one unknown,
the gauge-invariant acceleration Ai = ai. It remains to
use the linearized Einstein equation at order O(1/r̄2) to
determine Ai. Again expanding the background in pow-
ers of 1/r̄, at this order the ` = 1, electric parity parts of
the second-order Einstein equation may be written as(

G(1)
η [Kµν ] + 2G(2)

η

[
2Mδµν
r̄

,−2Aix̄itµtν
]

+ 2G(2)
η

[−4nit(µSν)i

r̄2
, Bµiνj x̄

ix̄j
])

`=1,+

= 0,

(A5)

where terms that can give no ` = 1, electric part have
not been displayed. This equation gives relationships be-
tween Kµν , Ai, M , Sij , and Rµiνj . To determine a re-
lationship not involving the unknown tensor Kµν , first
write out the linearized Einstein tensor about flat space-
time for stationary perturbations, and note that there is
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a particular ` = 1 part14 that vanishes for all Kµν . Then
computing this particular ` = 1 part of the remaining
two terms will determine Ai in terms of the mass, spin,
and Riemann tensor. Performing this calculation yields
MAi = 1

2S
klRkl0i, as claimed in equation (35).

Appendix B: Equation of motion in parity-irregular
gauges

I now consider the form of the equations of motion in
parity-irregular gauges, adopting the mass dipole defini-
tion of center of mass. Under the general gauge transfor-
mations (29), we have from equation (15) that15

δZi =
3

4π
lim
r→0

∫
ξjnjn

i = 3〈ξjnjni〉r→0. (B1)

Beginning with the equation of motion in a parity-regular
gauge, we may now derive an equation for Zi in a new
gauge,

Z̈i−〈F i〉r→0 +R i
0j0Z

j −M−1SklRkl0i =

〈(−∂0∂0ξj(δ
i
j − 3ninj) +R0j0kx

k∂jξi

−R j
0i0 ξk(δkj − 3nknj))〉r→0, (B2)

where equation (40) has been used. If the parity con-
dition is satisfied, and ξi = ci + Σi(~n) + O(r) with Σi

odd-parity, then the right hand side vanishes and the
equation of motion retains the original form, depending
only on the local spacetime metric (at zeroth and first
order in perturbation theory). However, if the parity
condition is not satisfied, then the right hand side does
not in general vanish,16 and the equation of motion for
Zi takes a complicated form involving the gauge trans-
formation to some reference gauge. Another way to see
the difficulty is to repeat the calculations of (32) for a
general gauge transformation, giving

δZ̈i = 3〈(δFj +R0k0lx
l∂kξj −R0j0kξ

k)njni〉r→0. (B3)

Without the parity condition the Riemann terms do not
simplify into the geodesic deviation form R0i0jδZ

j . It
appears that no expression in terms of just δZi and δhµν
is possible, so that the equation for Zi in parity-irregular
gauges must involve a gauge vector explicitly. In par-
ticular, there appears to be no natural separation of the
terms contributing to Z̈i into “self” and other forces in
the case of a parity-irregular gauge.
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