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We systematically study black holes in the Horava-Lifshitz (HL) theory by following the kinematic
approach, in which a horizon is defined as the surface at which massless test particles are infinitely
redshifted. Because of the nonrelativistic dispersion relations, the speed of light is unlimited, and
test particles do not follow geodesics. As a result, there are significant differences in causal structures
and black holes between general relativity (GR) and the HL theory. In particular, the horizon radii
generically depend on the energies of test particles. Applying them to the spherical static vacuum
solutions found recently in the nonrelativistic general covariant theory of gravity, we find that, for
test particles with sufficiently high energy, the radius of the horizon can be made as small as desired,
although the singularities can be seen in principle only by observers with infinitely high energy. In
these studies, we pay particular attention to the global structures of the solutions, and find that,
because of the foliation-preserving-diffeomorphism symmetry, Diff(M,F), they are quite different
from the corresponding ones given in GR, even though the solutions are the same. In particular,
the Diff(M,F) does not allow Penrose diagrams. Among the vacuum solutions, some give rise to
the structures of the Einstein-Rosen bridge, in which two asymptotically flat regions are connected
by a throat with a finite non-zero radius. We also study slowly rotating solutions in such a setup,
and obtain all the solutions characterized by an arbitrary function A0(r). The case A0 = 0 reduces
to the slowly rotating Kerr solution obtained in GR.

PACS numbers: 04.60.-m; 98.80.Cq; 98.80.-k; 98.80.Bp

I. INTRODUCTION

Horava-Lifshitz (HL) theory, proposed recently by Ho-
rava [1], and motivated by the Lifshitz theory of a scalar
field with anisotropic scalings [2],

x → ℓx, t → ℓzt, (z 6= 1), (1.1)

has attracted lot of attention, due to its several remark-
able features. In particular, the effective speed of light in
this theory diverges in the ultraviolet (UV), which could
potentially resolve the horizon problem without invoking
inflation [3]. The spatial curvature is enhanced by higher-
order curvature terms, and this opens a new approach
to investigating both the flatness problem and bouncing
universes [4–6]. In addition, in the super-horizon region
scale-invariant curvature perturbations can be produced
without inflation [3, 7–10]. The perturbations become
adiabatic during slow-roll inflation driven by a single
field, and the comoving curvature perturbation is con-
stant [11]. For more detail, we refer readers to [12–16].

∗Electronic address: Jared\_Greenwald@baylor.edu
†Electronic address: Jonatan\_Lenells@baylor.edu
‡Electronic address: jxlu@ustc.edu.cn
§Electronic address: VH\_Satheeshkumar@baylor.edu
¶Electronic address: Anzhong\_Wang@baylor.edu

Despite all these remarkable features, the theory is
plagued with three major problems, ghosts, strong cou-
pling and instability. Although they are different, their
origins are the same: the breaking of the general covari-
ance [17]. The preferred time that breaks general covari-
ance leads to a reduced set of diffeomorphisms,

t̃ = t− f(t), x̃i = xi − ζi(t,x), (1.2)

often denoted by Diff(M, F). As a result, a spin-0
graviton appears. This mode is potentially dangerous
and may cause the instability, ghost and strong coupling
problems, which could prevent the recovery of general
relativity (GR) in the IR [12–16].
To resolve these problems, various modifications have

been proposed. But, so far there are only two that seem
to have the potential to solve theses problems: One is
due to Blas, Pujolas, and Sibiryakov (BPS) [18], who
introduced a vector field

ai = ∂i ln(N),

where N denotes the lapse function 1. The other is due
to Horava and Melby-Thompson (HMT) [22], in which

1 It is clear that the BPS model works only for the N = N(t, x)
case, in which the projectability condition N = N(t) is broken.
Otherwise, the vector field ai will vanish identically. However,
violation of the projectability condition often leads to the incon-



2

the projectability condition,

N = N(t), (1.3)

was assumed. In the HMT setup, the foliation-
preserving-diffeomorphisms Diff(M, F) are extended to
include a local U(1) symmetry, so that the total symme-
try of the theory is enlarged to,

U(1)⋉Diff(M, F). (1.4)

This symmetry is realized by introducing a U(1) gauge
field and a Newtonian prepotential, with which it can be
shown that the spin-0 graviton is eliminated [22, 23]. As a
result, the instability problem does not exist in this setup.
Another remarkable feature of the setup is that it forces
the coupling constant λ to take exactly its relativistic
value λGR = 1. Since both the ghost and strong coupling
problems are due precisely to the deviation of λ from 1,
this implies that these two problems are also resolved.
However, it has been argued [24] that the introduction

of the Newtonian prepotential is so strong that actions
with λ 6= 1 also have the U(1) ⋉ Diff(M, F) symmetry.
Although the spin-0 graviton is still eliminated for λ 6= 1,
as shown explicitly by da Silva for de Sitter and anti-de
Sitter backgrounds [24], and Huang and Wang for the
Minkowski [25], the ghost and strong coupling problems
arise again. Indeed, it was shown [25] that to avoid the
ghost problem, λ must satisfy the constraints,

λ ≥ 1 or λ < 1/3.

In addition, the coupling becomes strong for a pro-
cess with energy higher than Mpl|λ − 1|5/4 in the flat
Friedmann-Robertson-Walker (FRW) background, and
Mpl|λ − 1|3/2 in a static weak gravitational field. It
should be noted that in both cases to have non-vanishing
gravitational perturbations, matter fields are necessarily
present [25].
To solve the strong coupling problem [26], two different

approaches have been proposed. One is the BPS mech-
anism [27], in which a UV cutoff M∗ is introduced. By
properly choosing the coupling constants involved in the
theory, BPS showed that M∗ can be lower than ΛSC ,
where ΛSC denotes the strong coupling energy scale of
the theory. Then, for processes with energies high than
M∗, high order derivative terms become important and
are needed to be taken into account. The appearance
of these terms changes the scalings of the theory. In
particular, all the irrelevant (nonrenormalizable) terms
are turned into either marginal (strictly renormalizable)
or relevant (superrenormalizable) ones. As a result, the
would-be strong coupling scale ΛSC disappeared, due to

sistency problem [19]. But, as shown in [20], this is not the case
in the BPS model. The inclusion of the vector field ai gives rise
to a proliferation of independent coupling constants [21], which
could potentially limit the predictive powers of the theory.
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FIG. 1: (a) The light cone of the event p in special relativity.
(b) The causal structure of the point p in Newtonian theory.

the effects of high order derivative terms, and the theory
becomes renormalizable 2. The other approach is to pro-
voke the Vainshtein mechanism [30], as showed recently
in the spherical static [12] and cosmological [28] space-
times in the SVW setup [29].
In this paper, we leave the investigations of the strong

coupling problem to another occasion, and focus on an-
other important issue: black holes in the HL theory. In
the HL theory, due to the breaking of the general covari-
ance, the dispersion relations of particles usually contain
high order momentum terms [12–16],

ω2
k = m2 + k2

(

1 +
z−1
∑

n=1

λn

(

k

Mn

)2n
)

, (1.5)

for which the group velocity is given by [31]

vk =
k

ω

(

1 +

z−1
∑

n=1

(n+ 1)λn

(

k

Mn

)2n
)

. (1.6)

As an immediate result, the speed of light becomes un-
bounded in the UV. This makes the causal structure of
the spacetimes quite different from that given in GR,
where the light cone of a given point p plays a funda-
mental role in determining the causal relationship of p
to other events [cf. Fig. 1]. However, once the gen-
eral covariance is broken, the causal structure will be
dramatically changed. For example, in the Newtonian
theory, time is absolute and the speeds of signals are not
limited. Then, the causal structure of a given point p is
uniquely determined by the time difference, ∆t ≡ tp− tq,
between the two events. In particular, if ∆t > 0, the
event q is to the past of p; if ∆t < 0, it is to the future;
and if ∆t = 0, the two events are simultaneous.
Another consequence of the breaking of the general co-

variance is that free particles now do not follow geodesics.

2 While this seems a very attractive mechanism, it turns out
[28] that it cannot be applied to the Sotiriou-Visser-Weinfurtner
(SVW) generalization [29] (See also [3]), because the instabil-
ity of the spin-0 graviton [28]. However, in the HMT setup, the
Minkowski spacetime is stable, and the BPS mechanism now may
become available.
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This immediately makes all the definitions of black holes
given in GR invalid [32–35]. To provide a proper defini-
tion of black holes, anisotropic conformal boundaries [36]
and kinematics of particles [37] have been studied within
the HL framework. In this paper, we shall adopt the ap-
proach of Kiritsis and Kofinas (KK) [38], where a hori-
zon is defined as the infinitely redshifted 2-dimensional
(closed) surface of massless test particles. Clearly, such a
definition reduces to that given in GR when the disper-
sion relation is relativistic [Where λn = 0, as shown in
Eq.(1.5).].

It should be noted that black holes in the HL theory
with or without the projectability condition have been
extensively studied, mainly using the definition borrowed
directly from GR. In this paper, we shall show explicitly
how these definitions are changed by considering some
particular examples, found in the HMT set up with λ =
1.

Another interesting approach is the equivalence be-
tween the HL theory (without the projectability condi-
tion) and the Einstein-aether theory in the IR [39], where
the former is equivalent to the latter for the case where
the aether vector field uµ is hypersurface-orthogonal 3.
From such studies one already sees the difficulties to de-
fine black holes, because of the fact that different modes
may have different velocities even in the IR. In [39], black
holes are defined to possess both a metric horizon and a
spin-0 mode horizon. Since the equivalence holds only in
the IR, it is still unclear how to extend such definitions
to high energy scales, where high order curvature terms
become important.

Specifically, the paper is organized as follows: In Sec.
II we briefly review the HMT setup (with λ = 1), while
in Sec. III, we consider spherically symmetric black holes
in the HL theory with the KK approach [38]. To keep
our formulas as applicable as possible, in only this sec-
tion we consider spacetimes that may or may not satisfy
the projectability condition. We find that horizons are
in general observer-dependent, and that with sufficient
high energy, the radius of a horizon can be made arbi-
trarily small. This is consistent with the fact that the
speed of light now becomes unbounded in the UV. In
Sec. IV, we study all the vacuum diagonal (N i = 0) so-
lutions obtained in the HMT setup [22, 40, 41], by paying
particular attention on their global structures. Using the
definition of horizons, we study their existences in vari-
ous cases. It is remarkable that in some cases the struc-
tures of the Einstein-Rosen bridge exist, where a throat
with finite non-zero radius connects two asymptotically
flat regions. Due to the restricted diffeomorphisms (1.4),
Penrose diagrams are not allowed. However, for the sake
of comparison, we present the corresponding Penrose di-
agrams obtained by assuming that the general general

3 In the spherically symmetric case, this is not a restriction, as the
aether field uµ now is always hypersurface-orthogonal.

transformations are still allowed. In Sec. V, we study
the nondiagonal (N i 6= 0) vacuum solutions obtained in
[40, 41], while in Sec. VI, our main conclusions are pre-
sented. There are also two Appendices, A and B. In Ap-
pendix A, the 3-tensor Fij for the spherical spacetimes
are given, while in Appendix B, we study slowly-rotating
solutions in the HMT setup, and obtain all the solutions,
which includes the Kerr solution given in GR.

II. NONRELATIVISTIC GENERAL

COVARIANT HL THEORY

The nonrelativistic general covariant HL theory is de-
scribed by the action [22, 23],

S = ζ2
∫

dtd3xN
√
g
(

LK − LV + Lϕ + LA

+ζ−2LM

)

, (2.1)

where g = det gij , and

LK = KijK
ij −K2,

Lϕ = ϕGij
(

2Kij +∇i∇jϕ
)

,

LA =
A

N

(

2Λg −R
)

. (2.2)

Here Λg is a coupling constant and

Kij =
1

2N
(−ġij +∇iNj +∇jNi) ,

Gij = Rij −
1

2
gijR+ Λggij , (2.3)

where the Ricci terms all refer to the three-metric gij .
LM is the matter Lagrangian density, and LV is a
Diff(Σ)-invariant local scalar functional. With the as-
sumptions that the highest order derivatives are six, and
the parity is conserved, LV takes the general form [29],

LV = ζ2g0 + g1R+
1

ζ2
(

g2R
2 + g3RijR

ij
)

+
1

ζ4

(

g4R
3 + g5R RijR

ij + g6R
i
jR

j
kR

k
i

)

+
1

ζ4
[

g7R∇2R+ g8 (∇iRjk)
(

∇iRjk
)]

, (2.4)

where the coupling constants gs (s = 0, 1, 2, . . .8) are all
dimensionless. The relativistic limit in the IR requires
g1 = −1 and ζ2 = 1/(16πG).
Then, it can be shown that the Hamiltonian and mo-

mentum constraints are given respectively by,
∫

d3x
√
g
(

LK + LV − ϕGij∇i∇jϕ
)

= 8πG

∫

d3x
√
g J t, (2.5)

∇j
(

πij − ϕGij

)

= 8πGJi, (2.6)
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where

J t ≡ 2
δ (NLM )

δN
,

πij ≡ −Kij +Kgij,

Ji ≡ −N
δLM

δN i
. (2.7)

Variation of the action (2.1) with respect to ϕ and A
yield,

Gij
(

Kij +∇i∇jϕ
)

= 8πGJϕ, (2.8)

R− 2Λg = 8πGJA, (2.9)

where

Jϕ ≡ −δLM

δϕ
, JA ≡ 2

δ (NLM )

δA
. (2.10)

On the other hand, the dynamical equations now read,

1

N
√
g

[

√
g
(

πij − ϕGij
)

]

,t

= −2
(

K2
)ij

+ 2KKij

+
1

N
∇k

[

Nkπij − 2πk(iN j)
]

+
1

2

(

LK + Lϕ + LA

)

gij

+ F ij + F ij
ϕ + F ij

A + 8πGτ ij , (2.11)

where
(

K2
)ij ≡ KilKj

l , f(ij) ≡ (fij + fji) /2, and

F ij ≡ 1√
g

δ
(

−√
gLV

)

δgij
=

8
∑

s=0

gsζ
ns (Fs)

ij
,

F ij
ϕ =

3
∑

n=1

F ij
(ϕ,n),

F i
ϕ =

(

K +∇2ϕ
)

∇iϕ+
N i

N
∇2ϕ,

F ij
A =

1

N

[

ARij −
(

∇i∇j − gij∇2
)

A
]

, (2.12)

where ns = (2, 0,−2,−2,−4,−4,−4,−4,−4), and the

geometric 3-tensors (Fs)ij and F ij
(ϕ,n) are given in [23].

The stress 3-tensor τ ij is defined as

τ ij =
2√
g

δ
(√

gLM

)

δgij
. (2.13)

The matter quantities (J t, J i, Jϕ, JA, τ ij) satisfy
the conservation laws,

∫

d3x
√
g

[

ġklτ
kl − 1√

g

(√
gJ t
)

,t
+

2Nk

N
√
g

(√
gJk

)

,t

−2ϕ̇Jϕ − A

N
√
g
(
√
gJA),t

]

= 0, (2.14)

∇kτik − 1

N
√
g
(
√
gJi),t −

Jk

N
(∇kNi −∇iNk)

−Ni

N
∇kJ

k + Jϕ∇iϕ− JA
2N

∇iA = 0. (2.15)

III. BLACK HOLES IN HL THEORY

KK considered a scalar field with a given dispersion
relation F (ζ) [38]. In the geometrical optical approxima-
tions, ζ is given by ζ = gijk

ikj , where ki denotes the
3-momentum of the corresponding spin-0 particle. With
this approximation, the trajectory of a test particle is
given by

Sp ≡
∫ 1

0

Lpdτ

=
1

2

∫ 1

0

dτ

{

c2N2

e
ṫ2 + e

[

F (ζ) − 2ζF ′(ζ)
]

}

, (3.1)

where e is a one-dimensional einbein, and ζ is now con-
sidered as a functional of t, xi, ṫ, ẋi and e, given by the
relation,

ζ [F ′(ζ)]2 =
1

e2
gij
(

ẋi +N iṫ
)(

ẋj +N j ṫ
)

, (3.2)

with ṫ ≡ dt/dτ , etc. For detail, we refer readers to [38].
It should be noted that KK obtained the above ac-

tion starting from a scalar field. So, strictly speaking,
it is valid only for spin-0 test particles. However, what
is really important in their derivations is the dispersion
relationship F (ζ). As shown in [43], a spin-2 particle has
a similar dispersion relation. It is expected that a spin-
1 test particle, such as photons, should have a similar
dispersion relation, too [31, 38]. Therefore, in the rest
of this paper, and without proof, we simply consider the
action (3.1) to describe all massless test particles.
Spherically symmetric static spacetimes in the frame-

work of the HMT setup were studied systematically in
[40, 41], and the metric for static spherically symmetric
spacetimes that preserve the form of Eq. (1.2) with the
projectability condition can be cast in the form [44] 4,

ds2 = −c2dt2 + e2ν
(

dr + eµ−νcdt
)2

+ r2d2Ω, (3.3)

where d2Ω = dθ2 + sin2 θdφ2, and

µ = µ(r), ν = ν(r), N i =
{

ceµ−ν , 0, 0
}

. (3.4)

The corresponding timelike Killing vector is ξ = ∂t, and
the diagonal case N r = 0 corresponds to µ = −∞.
However, to study black hole solutions in a more gen-

eral case, in this (and only in this) section, we also
consider the cases without projectability condition, and
write the metric as,

ds2 = −N2c2dt2 +
1

f
(dr +N rcdt)

2
+ r2d2Ω. (3.5)

4 Note the slight difference between the gtr term defined here and
the one defined in [41, 44].
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where N, f and N r are all functions of r. Without loss
of generality, in the rest of the paper we shall set c =
1, which is equivalent to the coordinate transformations
x0 = ct, N̄ r = N r/c. Taking

F (ζ) = ζn, (n = 1, 2, ...), (3.6)

Eq.(3.2) yields,

ζ =

(

ṙ +N r ṫ

ne
√
f

)2/(2n−1)

≡
(D
e2

)1/(2n−1)

. (3.7)

Inserting this into Eq.(3.1), we find that, for radially
moving particles, Lp is given by

Lp =
N2

2e
ṫ2 +

1

2

(

1− 2n
)

e1/(1−2n)Dn/(2n−1). (3.8)

Then, from the equation δLp/δe = 0 we obtain

N2ṫ2 − e2(n−1)/(2n−1)Dn/(2n−1) = 0. (3.9)

On the other hand, since δLp/δt = 0, the Euler-Lagrange
equation,

δLp

δt
− 1

dτ

(

δLp

δṫ

)

= 0,

yields

N2ṫ− e2(n−1)/(2n−1)N
r

√
f
D1/[2(2n−1)] = eE, (3.10)

where E is an integration constant, representing the total
energy of the test particle.

To solve Eqs.(3.9) and (3.10), we first consider the case
n = 1, which corresponds to the relativistic dispersion
relation. From such considerations, we shall see how to
generalize the definition of black holes given in GR to
the HL theory where n is generically different from 1, as
required by the renornalizability condition in the UV.

A. n = 1

In this case, Eqs.(3.9) and (3.10) reduce, respectively,
to,

N2ṫ2 −D = 0, (3.11)

N2ṫ−N r

√

D
f

= eE. (3.12)

Eq.(3.11) simply tells us that now the particle moves
along null geodesics. The above equations can be eas-
ily solved according to whether N r vanishes or not.

1. Nr = 0

When N r = 0, from Eq.(3.11) we find

dt = ± dr

N
√
f
, (3.13)

where “+” (“−”) corresponds to out-going (in-going)
light rays. If f has an a-th order zero and N2 a b-th
order zero at a surface, say, r = rg, that is,

f = f0(r)(r − rg)
a, N = N0(r)(r − rg)

b/2, (3.14)

where N0(rg) 6= 0 and f0(rg) 6= 0, then from the above
equations we find that in the neighborhood of r = rg,

t ≃ t0 ±
1

N0

√
f0

{

2
2−(a+b) (r − rg)

1−(a+b)/2, a+ b 6= 2,

ln |r − rg| , a+ b = 2.
(3.15)

Therefore, when

a+ b ≥ 2, (n = 1), (3.16)

the time t measured by asymptotically flat observers be-
comes unbounded, |t| ∼ ∞, as r → rg. Hence, the light
rays are infinitely redshifted at this surface. This indi-
cates that an event horizon might exist at r = rg, pro-
vided that the spacetime has no curvature singularity
there. A simple example is the Schwarzschild solution,
N2 = f = (r − rg)/r, which is also a solution of the
HL theory without the projectability condition but with
the detailed balance condition softly broken [42], and for
which we have a = b = 1. Clearly, it satisfies the above
condition with the equality, so r = rg indeed defines a
horizon.

2. Nr 6= 0

When N r 6= 0, Eq.(3.11) yields

t = t0 +

∫

ǫdr

N
√
f − ǫN r

, (3.17)

where ǫ = +1 (ǫ = −1) corresponds to out-going (in-
going) light rays. If

H(r) ≡ N
√

f − ǫN r, (3.18)

has δ-th order zero at rg,

H(r) = H0(r)(r − rg)
δ, (3.19)

with H0(rg) 6= 0, we find that in the neighborhood r = rg
Eq.(3.17) yields

t = t0 +
ǫ

H0(rg)

{

1
1−δ (r − rg)

1−δ, δ 6= 1,

ln(r − rg), δ = 1.
(3.20)

Clearly, when

δ ≥ 1, (n = 1), (3.21)
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|t| becomes unbounded as r → rg, and an event horizon
might exist.
The Schwarzschild solution in the Painlevé-Gullstrand

coordinates [45] is given by

N2
Sch = fSch = 1, N r

Sch = ǫ1

√

rg
r
, (3.22)

where ǫ1 = ±1. As shown in [40, 41], this is also a
vacuum solution of the HL theory in the HMT setup
[22]. Then, we find that H(r) = 1− ǫ1ǫ

√

rg/r. Thus, for
the solution with ǫ1 = +1, the time of the out-going null
rays, measured by asymptotically flat observers, becomes
unbounded at rg, and for the solution with ǫ1 = −1,
the time of the in-going null rays becomes unbounded.
Therefore, an event horizon is indicated to exist at r = rg
in both cases.
In review of the above, KK generalized the notion of

black holes defined in GR to the case of a non-standard
dispersion relation [38]. In particular, a horizon is defined
as a surface on which light rays are infinitely redshifted.
It should be noted that this redshift should be understood
as measured by asymptotically flat observers, at which
N(r ≫ rg) ≃ 1 and N r(r ≫ rg) ≃ 0, with r being

the geometric radius, r =
√

A/4π, of the 2-sphere t, r =
Constants, where A denotes the area of the 2-sphere.

B. n ≥ 2

In this case, eliminating e from Eqs.(3.9) and (3.10)
we find that

Xn − p(r)X − q(r, E) = 0, (3.23)

where

X ≡
(√

D
ṫ

)1/(n−1)

=

( |r′ +N r|
n
√
f

)1/(n−1)

,

p(r) ≡ N r

√
f
, q(r, E) ≡ EN1/(n−1), (3.24)

with r′ ≡ ṙ/ṫ = dr/dt. To solve the above equation,
again it is found convenient to consider the cases N r = 0
and N r 6= 0 separately.

1. Nr = 0

When N r = 0, Eq.(3.23) has the solution,

t = t0 + ǫ

∫

dr

nE(n−1)/n
√
fN1/n

, (3.25)

where ǫ = +1 corresponds to outgoing rays, and ǫ = −1
to ingoing rays. Thus, if f has an a-th order zero and
N2 a b-th order zero at r = rg, as given by Eq.(3.14), we

have
√
fN1/n ∼ (r−rg)

(a+b/n)/2. Then, from the above,

we find that the time t, measured by asymptotically flat
observers, becomes infinitely large at r = rg, provided
that [38]

a+
b

n
≥ 2. (3.26)

For the solutions with the projectability condition (N =
1, b = 0), this is possible only when a ≥ 2.
Considering again the Schwarzschild solution, N2 =

f = (r−rg)/r, one finds that this does not satisfy the con-
dition (3.26) with n ≥ 2. Therefore, the Schwarzschild
black hole in GR is no longer a black hole in the HL the-
ory, because of the non-relativistic dispersion relations
(1.5). This is expected, since even in GR when quan-
tum effects are taken into account, such as the Hawking
radiation, classical black holes are no longer black.

2. Nr 6= 0

In this case, let us consider an ingoing ray r′ < 0.
Suppose there is a horizon located at r = rH . Then
r′(r) ≃ 0 as we approach the horizon. Thus, if N r >
0 and bounded away from zero, (r′ + N r) will also be
positive, when the ray is sufficiently near the horizon.
Conversely, if N r < 0 and bounded away from zero, then
(r′ + N r) will be negative sufficiently near the horizon.
Defining H by H(r, E) ≡ r′, we find that for an ingoing
ray near the horizon we have,

t = t0 +
∫

dr
H(r,E) , (3.27)

H(r, E) = ǫn
√
fXn−1 −N r, (3.28)

where

ǫ =

{

1, N r > 0,
−1, N r < 0.

(3.29)

Dividing (3.23) by X and solving for Xn−1, we obtain

Xn−1 =
N r

√
f
+

EN
1

n−1

X
.

Substituting this into (3.28), we find,

H = (ǫn− 1)N r + ǫn
√

f
EN

1
n−1

X
. (3.30)

It follows that if H has a zero at r = rH , then

X |r=rH = − ǫn
√
fEN

1
n−1

(ǫn− 1)N r
. (3.31)

The expression on the rhs is positive (negative) for ǫ =
−1 (ǫ = 1). Thus, H can have a zero only if ǫ = −1.
Thus, we will henceforth consider only this case. Differ-
entiation of (3.30) with respect to r yields

H ′(r) = −(n+ 1)N r′ − n
√

f
EN

1
n−1

−1

(n− 1)X
N ′

−n
EN

1
n−1

2
√
fX

f ′ + n
√

f
EN

1
n−1

X2
X ′. (3.32)
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On the other hand, differentiation of (3.23) with respect
to r yields

X ′(r) =
1

nXn−1 − Nr√
f

[(

1√
f

dN r

dr
− N r

2f3/2

df

dr

)

X

+
EN

1
n−1

−1

n− 1

dN

dr

]

. (3.33)

Substituting the above into Eq.(3.32), we find that

H ′(r)

∣

∣

∣

∣

r=rH

= −n+ 1

2

(

H1

H2
− N rf ′

f

+
2N rN ′

N − nN
+ 2N r′

)

, (3.34)

where

H1 ≡ 2E(n+ 1)fN rN ′

+ E(n− 1)nN
(

N rf ′ − 2fN r′
)

,

H2 ≡ (n− 1)nfN

[

E + (n+ 1)N
1

1−n

×
(

En
√
fN

1
n−1

(−n− 1)N r

)n ]

. (3.35)

If H has a zero of order δ > 0 at rH , we can write it
in the form,

H(r) = H0(rH)(r − rH)δ + · · · , (3.36)

as r → rH , where H0(rH) 6= 0. Therefore,

H ′(r)

∣

∣

∣

∣

r=rH

=

{

0, δ > 1,
H0(rH), δ = 1,
±∞, 0 < δ < 1.

(3.37)

Now t → ∞ as r → r+H if and only if

δ ≥ 1, (3.38)

which happens if and only if dH/dr
∣

∣

r=rH
is finite. This

gives an explicit condition on f,N,N r, E, n for the blow-
up of t at rH .
It should be noted that rH usually depends on the

energy E of the test particles, as can be seen from the
above and specific examples considered below.
Case n = 2: In this case, we have

H ′(r)

∣

∣

∣

∣

r=rH

=
H3

2N [4EfN + 3(N r)2]
, (3.39)

where

H3 ≡ 3
[

4EN2
(

N rf ′ − 2fN r′
)

+ 8EfNN rN ′

− 3(N r)3N ′
]

, (n = 2). (3.40)

Again, for the Schwarzschild solution (3.22), we have

X(r) =
1

2

(

−
√

rg
r

+

√

4Er + rg√
r

)

,

H(r) =
−3
√

rg(4Er + rg) + 4Er + 3rg
√
rrg −

√

r(4Er + rg)
, (3.41)

so that H(r) = 0 has the solution,

rH =
3rg
4E

, (n = 2), (3.42)

at which we have

H ′(rH) = −2E3/2

√
3rg

. (3.43)

Then, according to Eq.(3.37), we have δ = 1, i.e., t di-
verges logarithmically as r → r+H . Therefore, in this case
there does exist a horizon. But, the location of it depends
on the energy E of the test particle, and approaches zero
when E ≫ rg. This is understandable, as the speed of
light is unbounded in the UV, and in principle the singu-
larity located at r = 0 can be seen by asymptotically flat
observers, as long as the light rays sent by the observers
have sufficiently high energies.
Case n = 3: In this case, we have

X3 − p(r)X − q(r, E) = 0. (3.44)

Assuming that H(r) = 0 has a real and positive root rH ,
we find that

H ′(r)

∣

∣

∣

∣

r=rH

=
H4

3N
(

27E2f3/2N − 16(N r)3
) , (3.45)

where

H4 ≡ 162E2
√

fN2N rf ′ + 32(N r)4N ′

− 162E2f3/2N
(

2NN r′ −N rN ′
)

. (3.46)

For the Schwarzschild solution (3.22), we have p(r) =

−
√

rg/r and q(r, E) = E. Then, we find that

X3 +

√

rg
r
X − E = 0, (3.47)

H(r) = 4

√

rg
r

− 3E

X
, (3.48)

from which we find that H(r) = 0 has a solution,

rH = rg

(

16

27E2

)2/3

, (n = 3), (3.49)

which also depends on E, and approaches zero as E →
∞. Substituting rH into Eq.(3.45), we find H ′(rH) =
−27E2/(16rg). That is, the hypersurface r = rH is also
an observer-dependent horizon in the case n = 3, and
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the radius of the horizon is inversely proportional to the
energy of the test particle. For E ≫ rg , we have rH ≃ 0.
Another (simpler) consideration for the existence of

the horizon is given as follows: First, from Eq.(3.24) we
find that

X =

( |r′ +N r|
n
√
f

)1/(n−1)

≃
(

ǫN r

n
√
f

)1/(n−1)

×
(

1 +
H

(n− 1)N r

)

, (3.50)

for r ≃ rH . Inserting it into Eq.(3.30), we have, to lead-
ing order,






1 +

EN1/(n−1)

(n− 1)
(

ǫNr

n
√
f

)n/(n−1)






H(r, E) = (ǫn− 1)N r

×






1 +

EN1/(n−1)

(ǫn− 1)
(

ǫNr

n
√
f

)n/(n−1)






. (3.51)

Then, we obtain

EN1/(n−1)

(n+ 1)
(

−Nr

n
√
f

)n/(n−1)

∣

∣

∣

∣

∣

∣

∣

r=rH

= 1. (3.52)

Given this, we can further simplify Eq.(3.51) to,

2n

n− 1
H(r, E) = −(n+ 1)N r(rH)

×











1− EN1/(n−1)(r)

(n+ 1)

(

−Nr(r)

n
√

f(r)

)n/(n−1)











. (3.53)

Then, using Eq.(3.36), we have the following constraint
for N,N r, f to satisfy so that a horizon can indeed exist,

EN1/(n−1)(r)

(n+ 1)

(

−Nr(r)

n
√

f(r)

)n/(n−1)

= 1 +
2nH0(rH)

(n2 − 1)N r(rH)
(r − rH)δ + · · · . (3.54)

This equation can be first used to determine rH and then
δ, once N, N r and f are given. To illustrate how to use
it, let us consider the Schwarzschild metric (3.22). For
n = 2, rH can be obtained simply from the above, and is
given exactly by Eq.(3.42), for which we have

EN1/(n−1)(r)

(n+ 1)

(

−Nr(r)

n
√

f(r)

)n/(n−1)
≃ 1 +

r − rH
rH

, (3.55)

that is, δ = 1.
For n = 3, from Eq.(3.52) we find that rH is given by

Eq.(3.49), and

EN1/(n−1)(r)

(n+ 1)

(

−Nr(r)

n
√

f(r)

)n/(n−1)
=

33/2Er3/4

4r
3/4
g

≃ 1 +
3

4rH
(r − rH) + · · · . (3.56)

Therefore, in this case we have δ = 1, too.
It should be noted that in the above analysis, we as-

sumed that F (ζ) = ζn. In more realistic models, the
dispersion relation is a polynomial of ζ, as shown by
Eq.(1.5), or more specifically,

F (ζ) = ζ +
ζ2

M2
A

+
ζ4

M4
B

+ ..., (3.57)

where MA and MB are the energy scales, which can be
significantly different from the Planck one [27]. There-
fore, for observers in low energy scales, where ζ ≪
MA,MB, the first term dominates, and some solutions,
including the Schwarzschild solution, look like black
holes, as shown in the case n = 1. But, for observers with
high energies, those solutions may not be black holes any
longer. Even if they are, their horizons in general are
observer-dependent, as shown in the cases n = 2 and
n = 3 explicitly for the Schwarzschild solution. To illus-
trate the main properties of the dispersion relation (3.57),
we shall consider the case where only the first two terms
are important.

C. Trajectories of Test Particles with the

Dispersion Relation F (ζ) = ζ + ζ2/M2
A

For the sake of simplicity, we restrict ourselves to the
case N r = 0. Substituting

F (ζ) = ζ +
ζ2

M2
A

, (3.58)

into Eq.(3.2), we find

ζ

(

1 +
2ζ

M2
A

)2

=
ṙ2

e2f
. (3.59)

Solving this equation directly for ζ yields a very com-
plicated expression, and it is not clear how to proceed
along this direction. Instead, we note that our goal is
to find the analog of equation (3.9), i.e. of the equation
δLp/δe = 0, where

Lp =
1

2

(

N2

e
ṫ2 + e

[

F (ζ) − 2ζF ′(ζ)
]

)

=
1

2

(

N2

e
ṫ2 − e

[

ζ +
3ζ2

M2
A

])

. (3.60)
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Thus, we will first calculate δζ/δe, implicitly by applying
δ/δe to both sides of (3.59), which yields,

δζ

δe
= − 2M4

Aṙ
2

e3f(M4
A + 8M2

Aζ + 12ζ2)
. (3.61)

Substituting this into the expression

δLp

δe
=

1

2

(

−N2

e2
ṫ2 −

[

ζ +
3ζ2

M2
A

]

− e

[

δζ

δe
+

6ζ

M2
A

δζ

δe

])

,

we find the following analog of equation (3.9),

ζ
(

e2M2
A + 2N2ṫ2

)

+ 5e2ζ2 +
6e2ζ3

M2
A

+M2
A

(

N2ṫ2 − 2ṙ2

f

)

= 0, (3.62)

where ζ is given implicitly by Eq.(3.59). Note that in the
limit MA → ∞, the above equation reduces precisely to
Eq.(3.9) for F (ζ) = ζ and N r = 0, as expected.
On the other hand, the analog of Eq.(3.10) is simply

N2ṫ = eE. (3.63)

Using Eqs.(3.59) and (3.63) to eliminate ṙ and ṫ from
Eq.(3.62), we find 5

δLp

δe
=

1

2

(

ζ +
ζ2

M2
A

− E2

N2

)

= 0.

Solving this equation for ζ, we infer that

ζ = −M2
A

2
+

MA

2N

√

4E2 +M2
AN

2.

Substitution of this expression into Eq.(3.62) yields

MA

(

N2
(

2ṙ2

e2f +M2
A

)

+ 4E2
)

N
√

4E2 +M2
AN

2
− N2ṫ2

e2

− 3E2

N2
−M2

A = 0. (3.64)

Replacing e by N2ṫ/E and then solving the resulting
equation for ṙ/ṫ, we find 6

ṙ2

ṫ2
=

fN
(

4E2 +M2
AN

2
)

(

√

4E2 +M2
AN

2 −MAN
)

2E2MA
.

Thus, the trajectory is given by

t = t0 +

∫

dr

H(r, E)
, (3.65)

5 In the limit MA → ∞, this equation reduces to ζ −
E2

N2 = 0,
which is again consistent with the case F (ζ) = ζ.

6 In the limit MA → ∞, this equation becomes ṙ2

ṫ2
= fN2, which

is again consistent with the case F (ζ) = ζ.

where

H(r, E) =

√

fN (4E2 +M2
AN

2)

2E2MA

×
√

√

4E2 +M2
AN

2 −MAN. (3.66)

As an example, let us consider the Schwarzschild solu-
tion, N2 = f = 1− rg/r, for which we find

H = 2

√

E

MAr
3/2
g

(r − rg)
3/4 +O

(

(r − rg)
5/4
)

,

as r → rg , so that t remains finite. On the other hand,
as MA → ∞,

H =
r − rg
rg

+
3E2

2M2
A

+O
(

1

M4
A

)

.

Thus, if we take the limit MA → ∞ before letting the
trajectory approach rg, then t will blow up logarithmi-
cally as r → rg. As a result, a horizon exists in this
limit.
More generally, if f has an ath order zero and N2 has

a bth order zero at r = rg, as given in Eq.(3.14), then,
we find that

H = 2

√

Ef0(rg)N0(rg)

MA
(r−rg)

a
2
+ b

4 +O
(

(r − rg)
a
2
+ 3b

4

)

,

as r → rg. It follows that

t ≃ t0 +
1

2
√

Ef0(rg)N0(rg)
MA

×







(r−rg)
1− a

2
−

b
4

1− a
2
− b

4

, a
2 + b

4 6= 1,

ln(r − rg),
a
2 + b

4 = 1.
(3.67)

Therefore, t blows up as r → rg, if and only if

a+
b

2
≥ 2, (3.68)

which is exactly Eq.(3.26) for n = 2, as expected.

IV. VACUUM SOLUTIONS WITH Nr = 0

When N r = 0, the vacuum equations with J t = v =
pr = pθ = JA = Jϕ = 0 yield the following most general
solutions [41],

f(r) = 1 +
C

r
− 1

3
Λgr

2, N = 1, N r = 0 = ϕ, (4.1)

with the Hamiltonian constraint
∫

LV e
νr2dr = 0, (4.2)
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where LV = LV (r,Λg, C, gs), as defined in Eq.(2.4).
The gauge field A must satisfy the equations,

A′ +Aν′ +
1

2
rFrr = 0, (4.3)

r2
(

A′′ − ν′A′)+ r
(

A′ + ν′A
)

−A
(

1− e2ν
)

+ e2νFθθ = 0, (4.4)

where Fij is given by Eqs.(2.12) and (A.2). Then, from
Eq.(4.3) we find that

A = A0e
−ν − 1

2
e−ν

∫ r

r′eν(r
′)Frr(r

′)dr′, (4.5)

where A0 is an integration constant. The solutions with
Λg = 0 was first studied in [22, 40].
Since now we have N = 1 and b = 0, Eq.(3.26) shows

that a horizon exists only when a ≥ 2. It can be shown
that for the solutions given by Eq.(4.1), this is impossi-
ble for any chosen C and Λg. Therefore, it is concluded
that the solutions given by Eq.(4.1) do not represent black
holes.
However, in some cases f(r) = 0 does have a real and

positive root. So, there indeed exists some kind of coor-
dinate singularities, and to obtain a maximally (geodesi-
cally) complete spacetime 7, some kind of extensions are
needed. Such extensions are also needed in order to de-
termine the range of r, from which the Hamiltonian con-
straint (4.2) can be carried out. Once this constraint is
satisfied, one can integrate Eq.(4.5) to obtain the gauge
field A. To this end, we divide the solutions into the
cases: (i) C = Λg = 0, (ii) C 6= 0, Λg = 0, (iii) C =
0, Λg 6= 0, and (iv) C 6= 0, Λg 6= 0. The first case is
trivial, and it corresponds to the Minkowski spacetime
with ν = Λ = 0 and A = A0. Thus, in the following we
shall consider only the last three cases.

A. C 6= 0, Λg = 0

In this case the metric takes the form

ds2 = −dt2 +
dr2

1 + C
r

+ r2d2Ω, (4.6)

from which we find that

LV = 2Λ +
3g3C

2

2ζ2r6
+

3g6C
3

4ζ4r9

+
45g8C

2

2ζ4r8

(

1 +
C

r

)

, (4.7)

where Λ = g0ζ
2/2. To consider the Hamiltonian con-

straint (4.2), we need to further distinguish the cases
C > 0 and C < 0.

7 Because of the breaking of the general covariance and the re-
stricted diffeomorphism (1.2), it is not clear if this requirement
is still applicable here in the HL theory. Even if it is not, some
kind of extensions seems still needed.

1. C > 0

When C > 0, the metric (4.6) is singular only at r = 0,
so the solution covers the whole spacetime r ∈ (0,∞).
The singularity at the center is a curvature one [46], as
it can be seen from the expressions,

RijRij =
3C2

2r6
,

Ri
jR

j
kR

k
i = −3C3

4r9
,

(∇iRjk)
(

∇iRjk
)

=
45C2

2r8

(

1 +
C

r

)

. (4.8)

Since event horizons do not exist for C > 0, this singu-
larity is also naked. Inserting it into Eq.(4.2), we find
that the Hamiltonian constraint is satisfied only when

Λ = g3 = g6 = g8 = 0. (4.9)

Considering Eq.(A.2), we find that Fij now has only two
non-vanishing terms, given by

Fij = − (F1)ij +
g5
ζ4

(F5)ij . (4.10)

Substituting it into Eqs.(4.3) and (4.4), we obtain

A = 1 +A0

√

1 +
C

r
, g5 = 0. (4.11)

It should be noted that the above solution holds not only
in the infrared (IR) regime but also in the UV.
To study the global structure of the spacetime, let us

first introduce a new radial coordinate r∗ via the relation

r∗ ≡
∫

dr
√

1 + C
r

= −C

2
ln

(√
r + C +

√
r
)2

C

+
√

r(r + C) =
{

0, r = 0,
∞, r = ∞.

(4.12)

In terms of r∗ the metric takes the form,

ds2 = −dt2 + dr∗2 + r2(r∗)d2Ω. (4.13)

Then, one might introduce the two double null coordi-
nates u and v via the relations,

u = tan−1(t+ r∗), v = tan−1(t− r∗), (4.14)

so that the metric finally takes the form,

ds2 = − dudv

cos2 u cos2 v
+ r2(u, v)d2Ω, (4.15)

where −π/2 ≤ u, v ≤ π/2. The corresponding Penrose
diagram is given by Fig. 2.
However, the coordinate transformations (4.14) are

not allowed by the foliation-preserving diffeomorphisms
Diff(M, F) of Eq.(1.2). So, in the HL theory the
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r 
   

   
=

   
   

 0

t = Const.

r = Const.

i

i

i

−

+

0

II

I

FIG. 2: The Penrose diagram for Nr = 0, C > 0 and Λg = 0.
The double vertical solid lines represent the center (r = 0),
at which the spacetime is singular. This singularity is clearly
naked. Note that the restricted diffeomorphisims (1.2) do not
allow for the transformations needed in order to draw Penrose
diagrams. Therefore, these diagrams cannot be used to study
the global structures of spacetimes in the HL theory but are
included only for comparison.

restricted diffeomorphisms do not permit Penrose dia-
grams. In addition, due to the breaking of the general
covariance, even if one were allowed to do so, the causal
structure of the spacetime cannot be studied in terms of
it, as shown explicitly in the previous sections for the
Newtonian theory.

Allowed are the coordinate transformations

t = tan t̄, r∗ = tan r̄∗, (4.16)

where −π/2 ≤ t̄ ≤ π/2 and 0 ≤ r̄∗ ≤ π/2. Then, the
global structure of the spacetime is given by Fig. 3.

C

B

0

i

i
−

+

  r
  =

  0
   

   
   

   
   

r 
 =

  0

A

Q

P

II

I

FIG. 3: The global structure of the spacetime in the (t̄, r̄∗)-
plane for Nr = 0, C > 0 and Λg = 0. The double vertical
solid lines represent the center (r = 0), at which the spacetime
is singular. The vertical line AB represents the spatial infinity
r = ∞, while the horizontal line i+A (i−B) is the line where
t = ∞ (t = −∞). The lines t = Constant are the straight
lines parallel to OC, while the ones r = Constant are the
straight lines parallel to i−i+. The lines BP,B0, BQ,PA, 0A
and QA represent the radial null geodesics.

2. C < 0

In this case, setting C = −2M < 0, the corresponding
metric reads,

ds2 = −dt2 +

(

1− 2M

r

)−1

dr2 + r2d2Ω. (4.17)

This is the solution first found in [22], in which it was
argued that the relativistic lapse function should be N =
N −A in the IR. It is not clear how to then relate N to
N and A in other regimes. Instead, in this paper we
shall simply take the point of view that A and ϕ are
just gravitational gauge fields, and their effects on the
spacetime itself occur only through the field equations
[41]. With the above arguments, we can consider the
solution valid in any regimes, including the IR and UV.
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Let us first note that the metric (4.6) is asymptotically
flat and singular at both r = 0 and r = 2M . The sin-
gularity at r = 0 is a curvature one, as can be seen from
Eq.(4.8), but the one at r = 2M is more peculiar. In
particular, in the region r < 2M both t and r are time-
like, in contrast to GR where t and r exchange their roles
across r = 2M . All the above indicate that the nature of
the singularity at r = 2M now is different. In fact, as to
be shown explicitly below, the region r < 2M actually is
not part of the spacetime.
To see this closely, let us first consider the radial time-

like geodesics. It can be shown that they are given by,

t = Eτ + t0,

τ = ± 1√
E2 − 1

{

M ln
[

(r −M) +
√

r(r − 2M)
]

−
√

r(r − 2M)

}

+ τ0, (4.18)

where E is an integration constant, and τ denotes the
proper time. The constant τ0 is chosen so that τ(r0) =
0 at the initial position of the test particle, r = r0 >
2M . The “+” (“-”) sign corresponds to the out-going
(in-going) radial geodesics. It is clear that, starting at
any given finite radius r0, observers that follow the null
geodesics will arrive at r = 2M within a finite proper
time 8. Setting

eα(0) ≡
dxα

dτ
=
(

E,−
√

(E2 − 1)f, 0, 0
)

, (4.19)

where f ≡ 1 − 2M/r, we find that the spacelike unit
vectors,

eα(1) =
(
√

E2 − 1,−E
√

f, 0, 0
)

,

eα(2) =
1

r
(0, 0, 1, 0) ,

eα(3) =
1

r sin θ
(0, 0, 0, 1) , (4.20)

together with eα(0) form a freely-falling frame,

eα(a)eα (b) = ηab, eα(0)Dαe
β
(a) = 0, (4.21)

where Dα denotes the 4D covariant derivatives, and ηab
is the 4D Minkowski metric with a, b,= 0, ..., 3. Then,
from the geodesic deviations,

D2ηa

Dτ2
+Ka

b η
b = 0, (4.22)

8 As shown in the last section, massless test particles in the HL
theory do not follow null geodesics, because of the non-relativistic
dispersion relations (1.5). In other words, in the HL theory par-
ticles that follow the null geodesics are not massless and even
may not be test particles.

where Kab ≡ −Rσαβγe
σ
(a)e

α
(0)e

β
(0)e

γ
(b) denotes the tidal

forces exerting on the observers, we find that in the
present case Kab is given by

Kab = − (E2 − 1)M

r3
(

δ2aδ
2
b + δ2aδ

3
b

)

. (4.23)

Clearly, Kab is finite at r = 2M . All the above con-
siderations indicate that the singularity at r = 2M is
a coordinate one, and to have a (geodesically) complete
spacetime, extension beyond this surface is needed. How-
ever, unlike that in GR, any extension must be restricted
to the Diff(M, F) of Eq.(1.2). Otherwise, the result-
ing solutions do not satisfy the field equations. Explicit
examples of this kind were given in [46].
In [22], the isotropic coordinate ρ was introduced,

r = ρ

(

1 +
M

2ρ

)2

, (4.24)

in terms of which the metric (4.6) takes the form,

ds2 = −dt2 +

(

1 +
M

2ρ

)4
(

dρ2 + ρ2d2Ω
)

, (4.25)

which is non-singular for ρ > 0. However, this cannot be
considered as an extension to the region r < 2M , as now
the geometrical radius r is still restricted to r ∈ (2M,∞)
for ρ > 0, as shown by Curve (a) in Fig. 4. Instead, it
connects two asymptotic regions, where r = 2M acts as
a throat, a situation quite similar to the Einstein-Rosen
bridge [47]. However, a fundamental difference of the
metric (4.25) from the corresponding one in GR is that it
is not singular for any ρ ∈ (0,∞), while in GR the metric
still has a coordinate singularity at ρ = M/2 (or r =
2M) [47]. Therefore, in the HL theory Eq.(4.25) already
represents an extension of the metric (4.6) beyond the
surface r = 2M . Since this extension is analytical, it is
unique. It is remarkable to note that in this extension
the metric has the correct signature.
It should be noted that the Einstein-Rosen bridge is

not stable in GR [47]. Therefore, it would be very inter-
esting to know if this is still the case in the HL theory.
To study its global structure, we introduce the coordi-

nate r∗ by

r∗ ≡
∫ (

1 +
M

2ρ

)2

dρ = M ln

(

2ρ

M

)

+ρ

(

1− M2

4ρ2

)

=
{−∞, ρ = 0,
∞, ρ = ∞.

(4.26)

Then, in terms of r∗ the metric can be also cast in the
form of Eq.(4.13). Following what was done in that case,
one can see that the global structure of the spacetime is
given by Fig. 5.
To compare it with that given in GR, the correspond-

ing Penrose diagram is presented in Fig. 6, although it
is forbidden in the HL theory by the foliation-preserving
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r

ρ

2Μ

Μ/20

(a)
  (b)

(y)

FIG. 4: The function r defined: (a) by Eq.(4.24); and (b) by
Eq.(4.31).

diffeomorphisms Diff(M, F) of Eq.(1.2), as mentioned
above.
It is interesting to see which kind of matter fields can

give rise to such a spacetime in GR. To this purpose, we
first calculate the corresponding 4-dimensional Einstein
tensor,

(4)Gµν =
2M

r3f
δrµδ

r
ν − M

r

(

δθµδ
θ
ν + sin2 θδφµδ

φ
ν

)

, (4.27)

which corresponds to an anisotropic fluid, TGR
µν =

ρGRuµuν + pGR
r rµrν + pGR

θ

(

δθµδ
θ
ν + sin2 θδφµδ

φ
ν

)

, with

ρGR = 0, pGR
r = M/(4πGr3) and pGR

θ = −Mr/(8πG),

where uµ = δtµ and rµ = f−1/2δrµ. Clearly, such a fluid
does not satisfy any of the energy conditions [32]. In
particular, when r ≫ 1 the tangential pressure becomes
unbounded from below, while the radial pressure van-
ishes. Such a fluid is usually considered as non-physical
in GR. However, in the current setup the spacetime is
vacuum, and one cannot eliminate it by simply consider-
ing the energy conditions. Then, if the configuration is
stable, one can use it to construct time-machines [48].
Inserting Eq.(4.7) into Eq.(4.2), and considering the

fact that the range of r now is r ∈ (2M,∞), we find that
the Hamiltonian constraint is satisfied, provided that

Λ = 0, 20
(

g6 − 3g8
)

− 231g3ζ
2M2 = 0. (4.28)

Then, Eqs.(4.3) and (4.4) have the solution,

A = 1 +A0

√

1− 2M

r
+

g3
40ζ2M2r6

[

16
(

r −M
)

r5

−8M2
(

r +M
)

r3 − 3M3
(

5r2 + 7Mr + 1050M2
)

]

,

g5 = g8 = 0. (4.29)

It is interesting to note that, replacing ρ by −y we find

 I’                       Ii i0                                                                                       0

C                       i                       D

A                       i                        B
−

+

0

Q

P

FIG. 5: The global structure of the spacetime for Nr =
0, C = −2M < 0 and Λg = 0. The vertical line i+i− rep-
resents the Einstein-Rosen throat (r = rg ≡ 2M), which is
non-singular and connects the two asymptotically-flat regions
I and I ′. The horizontal line AB (CD) is the line where
t = −∞ (∞), while the vertical lines CA and DB are the
lines where r = ∞. The lines t = Constant are the straight
lines parallel to i0i0, while the ones r = Constant are the
straight lines parallel to i−i+. The curved dotted lines AD
and BC, as well as the solid straight lines AD and BC, are
the radial null geodesics.

r 
 =

  2
M

r 
  =

   
2M

r = Const.

t = Const.

  i

i

i

0 i0

+

−

FIG. 6: The Penrose diagram for Nr = 0, C = −2M < 0
and Λg = 0. The straight lines i+i0 represent the future null
infinities at which we have r = ∞ and t = ∞, while the
ones i−i0 represent the past null infinities where r = ∞ and
t = −∞. The vertical line i+i− represents the Einstein-Rosen
throat (r = 2M), which is non-singular and connects the two
asymptotically-flat regions.
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that in terms of y metric (4.25) takes the form,

ds2 = −dt2 +

(

1− M

2y

)4
(

dy2 + y2d2Ω
)

, (4.30)

from which we can see that the geometrical radius now
is given by

r = y

(

1− M

2y

)2

. (4.31)

Clearly, the whole region 0 ≤ r < ∞ now is mapped
to 0 < y ≤ M/2, as shown by Curve (b) in Fig. 4.
Metric (4.30) can be also obtained from metric (4.25)
by the replacement, M → −M and ρ → y. So, it must
correspond to the case C > 0, i.e., the one with a negative
mass, described in the last sub-case.

B. C = 0, Λg 6= 0

We have

ν = −1

2
ln

(

1− 1

3
Λgr

2

)

, (4.32)

for which we find that

LV = 2
(

Λ− Λg

)

+
4(3g2 + g3)

3ζ2
Λ2
g

+
8(9g4 + 3g5 + g6)

9ζ4
Λ3
g,

Fij =
gij
9ζ4

[

3ζ4
(

Λg − 3Λ
)

+ 2ζ2
(

3g2 + g3
)

Λ2
g

+ 4
(

9g4 + 3g5 + g6
)

Λ3
g

]

. (4.33)

To study the solutions further, we consider the cases
Λg > 0 and Λg < 0, separately.

1. Λg < 0

In this case, defining rg ≡
√

3/|Λg|, we find that the
corresponding metric takes the form,

ds2 = −dt2 +
dr2

1 +
(

r
rg

)2 + r2d2Ω, (4.34)

which shows that the metric is not singular except at
r = 0. But, it can be shown that this is a coordinate
singularity. Setting

r∗ ≡
∫

dr
√

1 +
(

r
rg

)2

= rg ln







r

rg
+

√

1 +

(

r

rg

)2






, (4.35)

one can cost the metric (4.34) exactly in the form of
Eq.(4.13). Then, its global structure is that of Fig. 3,
and the corresponding Penrose diagram is given by Fig.
2, but now the center r = 0 is free of any spacetime
singularity. Thus, the range of r now is r ∈ [0, ∞).
We then find that the Hamiltonian constraint (4.2) is
satisfied, provided that LV = 0, i.e.,

Λζ4r6g + 6
(

3g2 + g3
)

ζ2r2g − 12
(

9g4 + 3g5 + g6
)

= −3ζ4r4g . (4.36)

Inserting the above into Eqs.(4.3) and (4.4), we obtain
the solution,

A = A0

√

1 +

(

r

rg

)2

+A1, (4.37)

where A1 is a constant, given by

A1 ≡ 1− Λr2g −
3− 3g2 − g3

ζ2r2g
. (4.38)

2. Λg > 0

In this case, the corresponding metric takes the form,

ds2 = −dt2 +
dr2

1−
(

r
rg

)2 + r2d2Ω. (4.39)

Clearly, the metric has wrong signature in the region
r > rg. In fact, the hypersurface r = rg already rep-
resents the geometrical boundary of the spacetime, and
any extension beyond it is not needed. To see this clearly,
we first introduce the coordinate r∗ via the relation,

r∗ ≡
∫

dr
√

1−
(

r
rg

)2
= rg arcsin

(

r

rg

)

. (4.40)

Then, in terms of r∗ the corresponding metric can be cast
in the form ds2 = r2gds̄

2, where

ds̄2 = −dt̄2 + dx2 + sin2 xd2Ω, (4.41)

with t̄ = t/rg, x = r∗/rg. But, this is exactly the homo-
geneous and isotropic Einstein static universe, which is
geodesically complete for −∞ < t̄ < ∞, 0 ≤ x ≤ π, 0 ≤
θ ≤ π and 0 ≤ φ ≤ 2π, with an R × S3 topology [32].
Then, it is easy to see that its global structure is given by
Fig. 3, but now the vertical line i−i+ is free of spacetime
singularity, and the line AB is the one where r = rg (or
x = π). The corresponding Penrose diagram is given by
Fig. 7.
Therefore, in this case the range of r is r ∈ [0, rg].

Then, the Hamiltonian constraint (4.2) requires,

Λζ4r6g + 6
(

3g2 + g3
)

ζ2r2g + 12
(

9g4 + 3g5 + g6
)

= 3ζ4r4g . (4.42)
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 =

   
   

  0
r = Const.

t = Const.

i

i

i+

−

0

FIG. 7: The Penrose diagram for Nr = 0, C = 0 and Λg > 0,
which is the Einstein static universe. The curves i−i0 and
i+i0 are, respectively, the lines where t = −∞, x = π, and
t = +∞, x = π.

Hence, Eqs.(4.3) and (4.4) have the solution,

A = A0

√

1−
(

r

rg

)2

+A2, (4.43)

where A2 is another integration constant, given by

A2 ≡ 1 + Λr2g +
3− 3g2 − g3

ζ2r2g
. (4.44)

It should be noted that in GR the Einstein static uni-
verse is obtained by the exact balance between the grav-
itational attraction of matter (ρm = ρc, pm = 0) and
the cosmic repulsion (Λ = Λc), where Λc = 4πGρc. As a
result, the configuration is not stable against small per-
turbations [49]. However, in the present case since the
spacetime is vacuum, Eq.(4.42) suggests that the balance
is made by the attraction of the high-order curvature
derivatives and the cosmic repulsion, produced by both

Λ and Λg. Then, it would be very interesting to know
whether it is stable or not in the current setup.

C. C 6= 0, Λg 6= 0

When ΛgC 6= 0, we find that

RijRij =
9C2 + 8Λ2

gr
6

6r6
,

Ri
jR

j
kR

k
i =

1

36r9

(

27C3 + 108ΛgC
2r3 + 32Λ3

gr
9
)

,

(∇iRjk)
(

∇iRjk
)

=
45C2

2r8

(

1 +
C

r
− 1

3
Λgr

2

)

, (4.45)

from which one can see that the spacetime is singular at
r = 0. Moreover, we find from (A.2) that

Frr =
1

36r8ζ4F (r)

{

−27C3(22g5 + 25g6 − 20g8)

−81C2r(8g5 + 9g6 − 7g8)

−9C2r3
[

Λg(−26g5 − 30g6 + 25g8) + ζ2g3

]

+12Cr6
[

−3ζ4 + Λgζ
2(12g2 + 5g3)

+Λ2
g(36g4 + 14g5 + 6g6 − g8)

]

+4r9
[

−3ζ4(3Λ− Λg) + 2ζ2Λ2
g(3g2 + g3)

+4Λ3
g(9g4 + 3g5 + g6)

]

}

, (4.46)

where the third-order polynomial F (r) is defined by

F (r) = C + r − Λg

3
r3 i.e. e2ν =

r

F (r)
.

The function LV is given by

LV =
α+ βr + γr3 + δr9

36r9ζ4
, (4.47)

where

α = 27C3g6 + 810C3g8,

β = 810C2g8,

γ = 108C2g5Λg + 108C2g6Λg − 270C2g8Λg

+54C2g3ζ
2,

δ = 144g2ζ
2Λ2

g + 288g4Λ
3
g + 96g5Λ

3
g + 32g6Λ

3
g

+48g3ζ
2Λ2

g + 72ζ4Λ− 72ζ4Λg.

All the quantities in (4.45) are finite for any r 6= 0. On
the other hand, from Eq.(4.1) one can see that the metric
coefficient grr could become singular at some points. To
study the nature of these singularities, we distinguish the
four cases, C > 0, Λg > 0; C > 0, Λg < 0; C < 0, Λg >
0; and C < 0, Λg < 0.
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1. C > 0, Λg > 0

In this case, the polynomial F (r) has exactly one real
positive root at, say, r = rg(C,Λg) > 0, as shown in Fig.
8. We find that

e2ν =
r

D(r)(rg − r)
, (4.48)

where D(r) ≡ Λg(r
2 + rgr + d)/3, d = r2g − 3/Λg, and

D(r) > 0 for all r > 0. Introducing the coordinate x via
the relation

x =

∫

dr

2
√
rg − r

= −
√

rg − r, (4.49)

or, inversely, r = rg − x2, the corresponding metric in
terms of x takes the form

ds2 = −dt2 +
4(rg − x2)

D(x)
d2x+

(

rg − x2
)2
d2Ω, (4.50)

where D(x) = Λg(x
4 − 3rgx

2 + 3r2g − 3/Λg)/3 > 0 for
|x| < √

rg. Clearly, the coordinate singularity at r = rg
(or x = 0) now is removed, and the metric is well defined
for |x| < √

rg. At the points, x = ±√
rg (or r = 0), the

spacetime is singular, as shown by Eq.(4.45). Thus, in
the present case the spacetime is restricted to the region
|x| < √

rg, −∞ < t < ∞ in the (t, x)-plane, with the
two spacetime singularities located at x = ±√

rg as its
boundaries. The global structure of the spacetime and
the corresponding Penrose diagram are shown in Fig. 9.
The change of variables (4.49) can be understood by

considering the one-form

eνdr =

√
rdr

√

D(r)(rg − r)
.

Even though the denominator of the right-hand side van-
ishes at r = rg , we can turn eνdr into a nonsingular one-
form by introducing a Riemann surface. Indeed, if we
promote r to a complex variable and define the genus 1
Riemann surface Σ as the two-sheeted cover of the com-
plex r-plane obtained by introducing two branch cuts
along the intervals [0, rg] and [r1, r2], where r1 and r2
are the two (possibly complex) zeros of D(r), eνdr is a
holomorphic one-form on Σ. Letting (0, rg]1 and (0, rg]2
denote the covers of the interval (0, rg] in the first and
second sheets of Σ, respectively, the spacetime consists of
points (r, θ, φ, t) with r ∈ (0, rg]1 ∪ (0, rg]2. The variable
x = −√

rg − r introduced in (4.49) is analytic near the
branch point at r = rg and r ∈ (0, rg]1 ∪ (0, rg]2 corre-
sponds to x ∈ (−√

rg,
√
rg). We can fix the definition of

x by choosing the branch of the square root so that, say,
x ≥ 0 for r ∈ (0, rg]1. Thus, in terms of the variable x,
the spacetime manifold can be covered by a single global
chart (no double cover is necessary) and the metric ds2,
which involves the square of the differential eνdr, is man-
ifestly nonsingular at r = rg. In particular, the metric

r

F(r)

− r                 r                      

r

m m

g0

FIG. 8: The function F (r) ≡ re−2ν for Nr = 0, C > 0 and
Λg > 0, where rm = 1/

√

Λg .

t

x

0− x x

(a)
r 

 =
  0

r  =
  0

i

i

 (b)

+

−

00

FIG. 9: (a) The spacetime in the (t, x)-plane, where x0 ≡√
rg. (b) The Penrose diagram for Nr = 0, C > 0, Λg > 0.

The curves i−i+ are the lines where r = 0, at which the
spacetime is singular. The straight line i−i+ represents the
surface r = rg.

of the extended spacetime is analytic, which ensures that
the extension is unique.
The Hamiltonian constraint is

∫ rg

0

LV e
νr2dr = 0. (4.51)

Indeed, the Hamiltonian constraint (2.5) should be inter-
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preted as
∫

LV Volg = 0, (4.52)

where Volg is the volume form induced by the metric gij
and the integration extends over a spatial slice of the
spacetime. Using the variables (r, θ, φ), we have

Volg = eνr2 sin θdrdθdφ,

and the integration extends over θ ∈ [0, π], φ ∈ [0, 2π],
and r ∈ [0, rg]1∪ [0, rg]2. By symmetry, the contributions
from the sets where r ∈ [0, rg]1 and r ∈ [0, rg]2 are equal.
Since each contribution is proportional to the left-hand
side of (4.51), the constraint reduces to (4.51).
In view of (4.47), the constraint (4.51) becomes

∫ rg

0

α+ βr + γr3 + δr9

36r7ζ4
√

F (r)

√
rdr = 0. (4.53)

Denoting the integrand in (4.53) by I(r), we see that
|I(r)| is bounded by a constant times 1/

√
rg − r as r →

rg. Thus, the integral converges near rg. On the other
hand, as r → 0,

I(r) =
α

36r
13
2 ζ4

√
C

+O

(

1

r
11
2

)

,

so that (4.53) can only be satisfied if α = 0. Using similar
arguments, we infer that the coefficients β, γ, δ must also
vanish, i.e.,

α = β = γ = δ = 0.

Solving these equations, we conclude that the Hamilto-
nian constraint is satisfied if and only if the gj ’s satisfy
the following four conditions:

g4 =
ζ4(Λg − Λ)− 2g2ζ

2Λ2
g

4Λ3
g

, (4.54)

g5 = −g3ζ
2

2Λg
, g6 = 0, g8 = 0.

Using the conditions (4.54) in the expression (4.46) for
Frr, we find that Eqs. (4.3) and (4.4) have the solution

A(r) = −
√

F (r)

2
√
r

∫ r

r0

Frr(r
′)(r′)3/2dr′
√

F (r′)
, (4.55)

where

Frr = − 1

36r8ζ2ΛgF (r)

{

− 297C3g3

−324C2rg3 + 126C2r3Λgg3

+12Cr6
[

2Λ2
g(3g2 + g3) + ζ2(9Λ− 6Λg)

]

+8r9Λg

[

2Λ2
g(3g2 + g3) + ζ2(9Λ− 6Λg)

]

}

,

(4.56)

and r0 ∈ (0, rg) is a constant. The integrand in (4.55) is
smooth for 0 < r < rg. Thus, A(r) is a smooth function
of r ∈ (0, rg). Unless g3 = 0, the integral diverges as
r → 0, so that A(r) has a singularity at r = 0. As r → rg,

the integrand is bounded by const × (rg − r)−3/2. This
implies that A(r) is bounded as r → rg. In fact, viewed
as a function on the Riemann surface Σ, A(r) is analytic
near r = rg. This follows since the integrand in (4.55) is
a meromorphic one-form with a pole of at most second
order at r = rg. Thus, the integral has a pole of at most
order one at rg, which is cancelled by the simple zero of

the prefactor
√

F (r) =
√

D(r)(rg − r). In conclusion,
the gauge field A given by (4.55) is a smooth function
everywhere on the extended spacetime away from the
singularity at r = 0.

2. C > 0, Λg < 0

In this case, F (r) > 0 for r > 0 and the metric coeffi-
cient grr is positive and non-singular except at the point
r = 0, at which a naked spacetime singularity appears.
The corresponding Penrose diagram is given by Fig. 2
with r ∈ (0,∞). The Hamiltonian constraint (4.2) re-
quires that

∫ ∞

0

LV e
νr2dr = 0. (4.57)

As in the previous subsection, this constraint is equiva-
lent to the conditions given in (4.54).
The function A(r) is again given by the formulas

(4.55)-(4.56) and is a smooth function of r ∈ (0,∞). As
r → ∞, the absolute value of the integrand is bounded
by constant× r−2. Thus, choosing r0 = ∞ in (4.55), we
find that A(r) is bounded as r → ∞. Unless g3 = 0, the
integral diverges as r → 0, so that A(r) has a singularity
at r = 0.

3. C < 0, Λg > 0

In this case, if Λg > 4/(9C2), e2ν = r/F (r) is strictly
negative for all r > 0, so that, in addition to t, the coor-
dinate r is also timelike. The physics of such a spacetime
is unclear, if there is any. Therefore, in the following we
consider only the case

0 < Λg <
4

9C2
. (4.58)

Then, we find that F (r) is positive only for 0 < r− <
r < r+, where r±(Λg, C) are the two positive roots of
F (r) = 0, as shown in Fig. 10. We write e2ν as

e2ν =
r

(r + r0)(r − r−)(r+ − r)
, (4.59)

where r0(Λg, C) > 0. To extend the solution beyond r =
r±, we shall first consider the extension beyond r = r−.
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r

F(r)

r

r

−

+0− r

 r m

m

    − r0

FIG. 10: The function F (r) = re−2ν for C < 0 and Λg > 0,
where rm ≡ 1/

√

Λg . F (r) = 0 has two positive roots r±
only for Λg < 4/(9C2). When Λg ≥ 4/(9C2), F (r) is always
non-positive for any r > 0.

0− x x

x

r(x)

r +

r −

r(x)

x

0 x                     x

r +

r−

 (a)                                                                            (b)

0  0 1− x                   − x 01 0

FIG. 11: (a) The function r vs x given by Eq.(4.60), where
x0 ≡ √

r+ − r−. (b) The function r vs x given by Eq.(4.61),
where x1 ≡ x0 +

√
x0.

Such an extension can be obtained via

x =

∫

dr

2
√
r − r−

=
√

r − r−, (4.60)

or inversely, r = x2 + r−. Since r < r+, we find that
−x0 < x < x0 with x0 ≡ √

r+ − r−. It can be seen that
the coordinate singularity at r = r− disappears, and the
extended region is given by |x| < x0, as shown by Fig.
11 (a).
To extend the solution beyond r+, we introduce x via

the relation

r = r+ − (x∓ x0)
2, (4.61)

where the “−” sign applies when x > x0 and the “+”
sign applies when x < −x0. Fig. 11 (b) shows the graph
of r as a function of x. From Fig. 11 we can see that
the extension along both the positive and the negative
directions of x need to continue in order to have a maxi-
mal spacetime. This can be done by repeating the above
process infinitely many times, so finally the whole (t, x)-
plane is covered by an infinite number of finite strips, in
each of which we have r− ≤ r ≤ r+. The global struc-
ture is that of Fig. 12 and the corresponding Penrose
diagram is given by Fig. 13. Thus, in this case we have
r ∈ [r−, r+].

E   A   i   B   F

  G   C   i   D   H
−

+

...        II’  I’   I   II       ...

FIG. 12: The global structure of the spacetime for C <
0, Λg > 0 and Λg < 4/(9C2). The vertical line i+i− is the
one where r = r−, and the ones AC and BD represent the
lines where r = r+, while on the lines EG and FH we have
r = r−. The spacetime repeats itself infinitely many times in
both directions of the x-axis.

The Hamiltonian constraint (4.2) requires that
∫ r+

r−

α+ βr + γr3 + δr9

36r7ζ4
√

F (r)

√
rdr = 0. (4.62)

Geometrically, this condition can be understood by in-
troducing a Riemann surface Σ as a double cover of the
complex r-plane with two branch cuts along [r−, r+] and
[−r0, 0]. The integrand in (4.62) is a one-form ω on Σ
which is holomorphic in a neighborhood of the closed
curve a1 ≡ [r−, r+]1 ∪ [r+, r−]2. Topologically, the ellip-
tic curve Σ is a torus, a1 is a nontrivial cycle, and the
condition (4.62) states that the integral of ω along the
cycle a1 vanishes. This imposes a constraint on the co-
efficients α, β, γ, δ, which translates into a condition on
the gj ’s involving elliptic integrals. Assuming this con-
dition to hold, the function A(r) is given by (4.55) with
r0 ∈ (r−, r+) and Frr as in (4.46).

4. C < 0, Λg < 0

In this case, the function F (r) = re−2ν is positive only
for r > rg, as shown in Fig. 14. Thus, e2ν can be written
in the form,

e2ν =
r

D(r)(r − rg)
, (4.63)
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  ...     II’    I’     I     II    ...

i

ii

i

   r = r r = r−+
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−
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 r
 =

 r
−

−

FIG. 13: The Penrose diagram for C < 0, Λg > 0 and Λg <
4/(9C2).

where D(r) > 0 for r > 0. The extension can be carried
out by introducing a new coordinate x via the relation,

r = x2 + rg. (4.64)

In terms of x the coordinate singularity at r = rg dis-
appears, and the extended spacetime is given by −∞ <
t, x < ∞ in the (t, x)-plane. Its global structure is given
by Fig. 5, while the corresponding Penrose diagram is
given by Fig. 6. Thus, in this case the range of r is
r ∈ [rg,∞).
The Hamiltonian constraint (4.2) requires that

∫ ∞

rg

α+ βr + γr3 + δr9

36r7ζ4
√

F (r)

√
rdr = 0.

The behavior of the integrand as r → ∞ implies that

α = β = γ = δ = 0,

so that the constraint reduces to (4.54) and the func-
tion A(r) is given by (4.55)-(4.56), which is not singular
everywhere in the extended spacetime.

V. VACUUM SOLUTIONS WITH Nr 6= 0

When N r 6= 0, the vacuum solutions are given by [41],

ds2 = −dt2 + e2ν
(

dr + eµ−νdt
)2

+ r2d2Ω, (5.1)

with

µ =
1

2
ln

(

2m

r
+

1

3
Λr2 − 2A(r) +

2

r

∫ r

A(r′)dr′

)

,

ν = ϕ = Λg = 0, (5.2)

F(r)

r

0

r

− |C|

g

FIG. 14: The function F (r) = re−2ν for C < 0 and Λg < 0,
where rg is the only positive root of F (r) = 0.

where the gauge field A must satisfy the Hamiltonian
constraint,

∫ ∞

0

rA′(r)dr = 0. (5.3)

Otherwise, it is free. However, as shown in [41], the solar
system tests seem uniquely to choose the Schwarzschild
solution A = 0. Therefore, in the following we shall con-
sider only this case,

µ =
1

2
ln

(

2m

r
+

1

3
Λr2

)

,

ν = ϕ = Λg = A = 0. (5.4)

It should be noted that if (N, ν,N r) is a solution of the
vacuum equations, so is (N, ν,−N r). The latter can
be easily obtained by the replacement t → −t. With
such changes, we have Kij → −Kij (in the static case).
Clearly, these do not affect the singularity behavior. We
then obtain [44, 46] 9,

Rij = 0,

K = ǫ1

√

3

r3 (6m+ Λr3)

(

3m+ Λr3
)

,

KijK
ij =

27m2 + 6mΛr3 + Λ2r6

r3 (6m+ Λr3)
, (5.5)

9 There is a typo in the expression of K given by Eq.(3.2) in [46].
Although it propagates to other places, this does not affect our
main conclusions, as K and KijK

ij have similar singularity be-
havior.
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where ǫ1(= ±1) originates from the expression N r =
ǫ1e

µ, obtained by the replacement t → −t, as mentioned
above. To further study the above solutions, let us con-
sider the cases (1) m = 0,Λ 6= 0; (2) m 6= 0,Λ = 0;
and (3) m 6= 0,Λ 6= 0 separately. We shall assume that
m ≥ 0, while Λ can take any values.

A. m = 0, Λ 6= 0

In this case, only Λ > 0 is allowed [41], as can be
seen from Eq.(5.2). That implies that the anti-de Sitter
spacetime cannot be written in the static form of Eq.(3.3)
with the projectability condition. Then, we have N2 =
f = 1, N r = ǫ1r/ℓ, or

ds2 = −dt2 +
(

dr + ǫ1
r

ℓ
dt
)2

+ r2d2Ω, (5.6)

where ℓ ≡
√

3/|Λ|. Without loss of generality, we shall
consider only the case ǫ1 = −1, as the case ǫ1 = 1 can be
simply obtained from the one ǫ1 = −1 by inverting the
time coordinate. In terms of N,N i, gij or their inverses,
Ni, g

ij , the metric is non-singular, except for the trivial
r = 0 and θ = 0, π. In addition, from Eq.(5.5) we also
find that

K = −
√
2Λ, KijK

ij = Λ, (m = 0). (5.7)

On the other hand, in terms of the 4-dimensional metric,
gµν and gµν , it is not singular either, as one can see from
the expressions,

(

(4)gµν

)

=

(

− ℓ2−r2

ℓ2 , − r
ℓ δ

r
i

− r
ℓ δ

r
i , gij

)

,

(

(4)gµν
)

=

( −1, − r
ℓ δ

i
r

− r
ℓ δ

i
r, gij − r2

ℓ2 δ
i
rδ

j
r

)

, (5.8)

although the nature of the radial coordinate does change,

gµνr,µr,ν = 1− r2

ℓ2
=

{

timelike, r > ℓ,
null, r = ℓ,
spacelike, r < ℓ.

(5.9)

To study the solution further in the HL theory, we con-
sider two different regimes, E ≪ M∗ and E ≫ M∗, where
M∗ = min. {MA, MB, ...} and Mn’s are the energy scales
appearing in the dispersion relation (3.57).

1. E ≪ M∗

When the energy E of the test particle is much less
than M∗, from Eq.(3.57) one can see that F (ζ) ≃ ζ.
This corresponds to the relativistic case (n = 1), studied
in Sec. III.A.2. Then, for the ingoing test particles (ǫ =
−1), we have

H = N
√

f +N r =
ℓ − r

ℓ
. (5.10)

Thus, the hypersurface r = ℓ is indeed a horizon. In fact,
it represents a cosmological horizon, as first found in GR
[50].
However, because of the restricted diffeomorphisms

(1.2), it is very interesting to see the global structure
of the de Sitter spacetime in the HL theory. To this pur-
pose, let us consider the coordinate transformations,

t′ = ℓe−t/ℓ, r′ = re−t/ℓ, (5.11)

in terms of which the corresponding metric takes the
form,

ds2 = −dt2 + e2t/ℓ
(

dr′2 + r′2d2Ω
)

.

=

(

ℓ

t′

)2
(

−dt′2 + dr′2 + r′2d2Ω
)

. (5.12)

From Eq.(5.11) we can see that the whole (t, r)-plane,
−∞ < t < ∞, r ≥ 0, is mapped to the region t′, r′ ≥ 0.
However, the metric now becomes singular at t′ = 0,∞
(or t = ±∞). To see the nature of these singularities,
one may recall the 5-dimensional embedding of the de
Sitter spacetime in GR [32], from which we find that
in terms of the 5-dimensional coordinates v and w, t′

is given by t′ = ℓ2/(v + w). Therefore, t′ ≥ 0 corre-
sponds to v + w ≥ 0. Thus, the region t′, r′ ≥ 0 only
represents the half hyperboloid v + w ≥ 0, as shown by
Fig. 16 (ii) in [32]. In particular, t′ = 0 represents the
boundary of the spacelike infinity, so extension beyond
this surface may not be needed. Although the extension
given in [32] in terms of the static Einstein universe co-
ordinates (t̄, χ̄, θ̄, φ̄) is forbidden here by the restricted
diffeomorphisms (1.2), as that extension requires,

t = ℓ ln

[

cosh

(

t̄

ℓ

)

cos(χ̄) + sinh

(

t̄

ℓ

)]

,

the extension across t′ = ∞ (or v + w = 0+) seems nec-
essary.
Another way to see the need of an extension beyond

t′ = 0 is that the metric (5.12) is well-defined for t′ < 0.
So, one may simply take −∞ < t′ < ∞. But, this cannot
be considered as an extension, as the metric (5.12) is
singular at t′ = 0, and the two regions t′ > 0 and t′ < 0
are not smoothly connected in the t′, r′-coordinates. In
this sense, a proper extension is still needed. However,
due to the restricted diffeomorphisms (1.2), it is not clear
if such extensions exist or not. Fig. 15 shows the global
structure of the region t′ ≥ 0, which is quite different
from its corresponding Penrose diagram [50].

2. E ≫ M∗

When the energy E of the test particle is greater than
M∗, from Eq.(3.57) one can see that high order momen-
tum terms become important, and F (ζ) ≃ ζn, (n ≥ 2).
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A
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 r  
 =

   
l

r 
  =

   
0

t’   =   0
FIG. 15: The global structure of the de Sitter solution N2 =
f = 1, Nr = −

√

r/ℓ in the HL theory with the restricted
diffeomorphisms (1.2) for the region t′ ≥ 0. The horizontal
line AB corresponds to t′ = ∞ (or t = −∞), while the vertical
line BD to r′ = ∞ (or r = ∞).

For the sake of simplicity, we consider the case with n = 2
only. Then, from Eqs.(3.23) and (3.28) we find that

X =
2ℓE√

r2 + 4ℓ2E + r
,

H =
r

ℓ
− 4ℓE√

r2 + 4ℓ2E + r
. (5.13)

Thus, H(r, E) = 0 has only one real root,

rH =

(

4ℓ2E

3

)1/2

, (5.14)

at which we find that

H(rH , E) =
12ℓE

4ℓ2E + 3r2H
> 0. (5.15)

Eqs.(3.37) and (3.38) then tell us that the surface r = rH
is a horizon for a test particle with energy E. It should be
noted that, in contrast to the Schwarzschild case studied
in Sec. III.B.2 [cf. Eq.(3.42)], rH now is proportional
to E, that is, the higher the energy of the test particle,
the lager the radius of the horizon. To understand this,
let us consider the acceleration of a test particle with its
four-velocity uλ = −δtr, located on a surface r. Then, we
find that

aµ ≡ uµ;λu
λ =

{−m
r2 δ

r
µ, Schwarzschild,

r
ℓ2 δ

r
µ, de Sitter. (5.16)

That is, for the Schwarzschild solution, the test particle
feels an attractive force, while for the de Sitter solution, it

feels a repulsive one. Because of this difference, in the de
Sitter spacetime rH is proportional to E, in contrast to
the Schwarzschild one, where it is inversely proportional
to E, as shown explicitly in Eq.(3.42).

B. m > 0, Λ = 0

When Λ = 0 and m > 0, it is the Schwarzschild so-
lution studied in Sec. III.B.2 and Sec.III.C in detail.
In particular, in the IR, the surface r = 2m represents
a horizon, while for high energy particles, the radius of
the horizon is energy-dependent, as explicitly given by
Eq.(3.42) for n = 2. So, we shall not repeat these stud-
ies, but simply note that now the solution takes the form,

ds2 = −dt2 +

(

dr −
√

2m

r
dt

)2

+ r2dΩ2, (5.17)

which is singular only at r = 0, as can be seen from
Eq.(5.5). So, it already represents a maximal spacetime
in the HL theory.
It is interesting to note that the above metric covers

only half of the maximally extended spacetime given in
GR. This can be seen easily by introducing the coordinate
τ [44],

τ ≡ t−
∫

√
2mr

r − 2m
dr

= t− 2
√
2mr − 2m ln

(

r − 2m
(√

r +
√
2m
)2

)

, (5.18)

in terms of which, the solution takes the standard
Schwarzschild form, ds2 = −f(r)dτ2+f−1(r)dr2+r2dΩ2

with f(r) = 1− 2m/r. Of course, the above transforma-
tions are forbidden by Eq.(1.2).

C. m > 0, Λ 6= 0

In this case, it is convenient to further distinguish the
two subcases Λ > 0 and Λ < 0.

1. Λ > 0

In this case, the metric takes the form,

ds2 = −dt2 +

(

dr −
√

2m

r
+

r2

ℓ2
dt

)2

+ r2dΩ2. (5.19)

When E ≪ M∗, as in the last case the dispersion re-
lation becomes relativistic, and F (ζ) ≃ ζ, for which we
have n = 1. Then, we find that

H(r) = 1 +N r = 1−
√

2m

r
+

r2

ℓ2
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=
F (r)

ℓ2
(

1 +
√

2m
r + r2

ℓ2

) , (5.20)

but now F (r) ≡ −
(

r3 − ℓ2r + 2mℓ2
)

. Clearly, F (r) has
one maximum and one minimum, respectively, at r =
±rm, where rm = ℓ/

√
3 and F (rm) = −2ℓ2(m−1/(3

√
Λ),

as shown in Fig. 10. Thus, when m2 > 1/(9Λ2), H(r) =
0 has no real positive root, and a horizon does not exist
even in the IR. Therefore, the singularity at r = 0 is
naked. When m2 < 1/(9Λ2), H(r) = 0 has two real and
positive roots, r±, (r+ > r−), where r = r+ is often
referred to as the cosmological horizon and r = r− the
black hole event horizon [50]. When m2 = 1/(9Λ2), the
two horizons coincide. In GR, the corresponding Penrose
diagrams were given in [50]. However, as argued above,
in the HL theory these diagrams are not allowed, as they
are obtained by coordinate transformations that violate
the restricted diffeomorphisms (1.2). Nevertheless, since
the metric is not singular in the current form, it already
represents a maximal spacetime.
When E ≫ M∗, the high momentum terms dominate,

and for n = 2, we find that

X(r) =
2E

√

2m
r + r2

ℓ2 + 4E +
√

2m
r + r2

ℓ2

,

H(r) =

√

2m

r
+

r2

ℓ2
− 2X =

F (r)

∆(r)
, (5.21)

where ∆(r) > 0 for any r ∈ (0,∞), and F (r) ≡
r3 − 4Eℓ2r/3 + 2mℓ2. It can be shown that when
m2 > 8ℓE3/2/27, H(r) = 0 has no real and posi-
tive roots. Thus, in this case there are no horizons,
and the singularity at r = 0 must be naked. When
m2 < 8ℓE3/2/27, H(r) = 0 has two real and positive
roots, say, r1,2 (r2 > r1), but now r1,2 = r1,2(E,m, ℓ).
Thus, in this case there also exists two horizons, but each
of them depends on E. When m2 = 8ℓE3/2/27, we have
r1 = r2, and the two horizons coincide.

2. Λ < 0

In this case, the metric takes the form,

ds2 = −dt2 +

(

dr −
√

2m

r
− r2

ℓ2
dt

)2

+ r2dΩ2, (5.22)

where ℓ ≡
√

3/|Λ|. Then, from Eq.(5.5), it can be seen

that the spacetime is singular at rs ≡ (2mℓ2)1/3 [46].
This is different from GR, in which the only singularity
of the anti-de Sitter Schwarzschild solution is at r = 0.
When E ≪ M∗, as in the last case the dispersion rela-

tion becomes relativistic. Then, we find that

H(r) = 1 +N r = 1−
√

2m

r
− r2

ℓ2

=
F (r)

rℓ2
(

1 +
√

2m
r − r2

ℓ2

) , (5.23)

but now with F (r) ≡ r3 + ℓ2r − 2mℓ2, which is a mono-
tonically increasing function, as shown by Fig. 14. Thus,
H(r) = 0 has one and only one real and positive root
rH = rH(m, ℓ). But, rH is always less than rs, i.e.,
rH < rs. Thus, the singularity at r = rs is a naked
singularity.
When E ≫ M∗, let us consider only the case n = 2.

Then, we find that

X(r) =
2E

√

2m
r − r2

ℓ2 + 4E +
√

2m
r − r2

ℓ2

,

H(r) =

√

2m

r
− r2

ℓ2
− 2X =

F (r)

∆(r)
, (5.24)

where ∆(r) > 0 for any r ∈ (0,∞), and F (r) ≡ r3 +
4Eℓ2r/3− 2mℓ2. It can be shown that this F (r) is also a
monotonically increasing function, as shown by Fig. 14,
and F (r) = 0 has only one real and positive root, rH =
rH(m,E, ℓ). Again, since H(rs) = 1 and H(rH) = 0, we
find that rH is also always less than rs, although now rH
depends on E. Thus, the singularity at r = rs is a naked
singularity.

VI. CONCLUSIONS

In this paper, we have systematically studied black
holes in the HL theory, using the kinematic method of
test particles provided by KK in [38], in which a horizon
is defined as the surface at which massless test particles
are infinitely redshifted. Because of the nonrelativistic
dispersion relations (1.5), in Sec. III we have shown ex-
plicitly the difference between black holes defined in GR
and the ones defined here. In particular, the radius of
the horizon usually depends on the energy of the test
particles.
When applying this definition to the spherically sym-

metric and static vacuum solutions found recently in
[22, 40, 41], in Secs. IV and V we have found that for
test particles with sufficiently high energy, the radius of
the horizon can be made arbitrarily small, although the
singularities at the center can be seen in principle only
by test particles with infinitely high energy.
In Secs. IV and V, we paid particular attention to the

global structures of the static solutions. Because of the
restricted diffeomorphisms (1.5), they are dramatically
different from the corresponding ones given in GR, even
the solutions are the same. In particular, the restricted
diffeomorphisms (1.5) do not allow us to draw Penrose
diagrams, although one can create something similar to
them, for example, see Figs. 3, 5, 9, 12, 15. But, it must
be noted that, since the speed of the test particles in the
HL theory can be infinitely large, the causality in this
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theory is also dramatically different from that of GR [cf.
Fig.1]. In particular, the light-cone structure in GR does
not apply to the HL theory. Among the static solutions,
a very interesting case is the one given by Fig. 5, which
corresponds to an Einstein-Rosen bridge. In GR, this
solution is made of an exotic fluid as one can see from
Eq.(4.27), which is clearly unphysical, and most likely
unstable, too. However, in the HL theory, the solution is
a vacuum one, and it would be very interesting to see if
this configuration is stable or not in the HMT setup.
Finally, in Appendix B we have studied the slowly ro-

tating solutions in the HMT setup [22], and found ex-
plicitly all such solutions, which are characterized by an
arbitrary function A0(r). When A0 = 0 they reduce to
the slowly rotating Kerr solution obtained in GR. When
the rotation is switched off, they reduce to the static so-
lutions obtained in [41].

Acknowledgments: JXL would like to thank the
Physics Department and CASPER at Baylor University
for hospitalities during his visit there where part of this
work was initiated and completed. Part of this work was
also done when two of the authors (JXL & AW) attended
the advanced workshop “Dark Energy and Fundamental
Theory,” Tunxi, China, April 8 - 18, 2011, supported by
the Special Fund for Theoretical Physics from the Na-
tional Natural Science Foundation of China (NNSFC) by
the grant 10947203. JL acknowledges support from the
EPSRC, UK. JXL acknowledges support from the Chi-
nese Academy of Sciences, a grant from 973 Program
with grant No: 2007CB815401 and a grant from the
NNSFC with Grant No : 10975129. AW is supported in
part by DOE Grant, DE-FG02-10ER41692 and NNSFC
grant, 11075141.

Appendix A: The Functions (Fs)ij

For the solution

ν = −1

2
ln

(

1 +
C

r
− 1

3
Λgr

2

)

, (A.1)

the functions (Fs)ij appearing in Eq.(2.12) are given by

(F0)ij = −1

2
gij

= −1

2
e2νδri δ

r
j −

1

2
r2Ωij ,

(F1)ij = −1

2
gijR+Rij

=
e2ν

3r3
(

3C − Λgr
3
)

δri δ
r
j −

1

6r

(

3C + 2Λgr
3
)

Ωij ,

(F2)ij = −1

2
gijR

2 + 2RRij − 2∇(i∇j)R+ 2gij∇2R

=
2Λge

2ν

3r3
(

6C + Λgr
3
)

δri δ
r
j

− 2Λg

3r

(

3C − Λgr
3
)

Ωij ,

(F3)ij = −1

2
gijRmnR

mn + 2RikR
k
j − 2∇k∇(iRj)k

+∇2Rij + gij∇m∇nR
mn

=
e2ν

36r6
(

−9C2 + 60CΛgr
3 + 8Λ2

gr
6
)

δri δ
r
j

+
1

18r4
(

9C2 − 15CΛgr
3 + 4Λ2

gr
6
)

Ωij ,

(F4)ij = −1

2
gijR

3 + 3R2Rij − 3∇(i∇j)R
2

+3gij∇2R2

=
4Λ2

ge
2ν

r3
(

3C + Λgr
3
)

δri δ
r
j

− 2Λ2
g

r

(

3C − 2Λgr
3
)

Ωij ,

(F5)ij = −1

2
gijRRmnRmn +RijR

mnRmn

+2RRkiR
k
j −∇(i∇j) (R

mnRmn)

−2∇n∇(iRRj)n + gij∇2 (RmnRmn)

+∇2 (RRij) + gij∇m∇n (RRmn)

=
e2ν

6r9

(

− 99C3 + 39C2Λgr
3 − 108C2r

+ 28CΛ2
gr

6 + 8Λ3
gr

9
)

δri δ
r
j

+
1

12r7

(

693C3 − 156C2Λgr
3 + 648C2r

− 28CΛ2
gr

6 + 16Λ3
gr

9
)

Ωij ,

(F6)ij = −1

2
gijR

m
n Rn

pR
p
m + 3RmnRniRmj

+
3

2
∇2
(

RinR
n
j

)

+
3

2
gij∇k∇l

(

Rk
nR

ln
)

−3∇k∇(i

(

Rj)nR
nk
)

=
e2ν

36r9

(

− 675C3 + 270C2Λgr
3 − 729C2r

+ 72CΛ2
gr

6 + 16Λ3
gr

9
)

δri δ
r
j

+
1

72r7

(

4725C3 − 1080C2Λgr
3 + 4374C2r

− 72CΛ2
gr

6 + 32Λ3
gr

9
)

Ωij ,

(F7)ij =
1

2
gij(∇R)2 − (∇iR) (∇jR) + 2Rij∇2R

−2∇(i∇j)∇2R+ 2gij∇4R

= 0,

(F8)ij = −1

2
gij (∇pRmn) (∇pRmn)−∇4Rij

+(∇iRmn) (∇jR
mn) + 2 (∇pRin)

(

∇pRn
j

)

+2∇n∇(i∇2Rj)n + 2∇n

(

Rn
m∇(iR

m
j)

)

−2∇n

(

Rm(j∇i)R
mn
)

− 2∇n

(

Rm(i∇nRm
j)

)

−gij∇n∇m∇2Rmn
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=
Ce2ν

12r9

(

180C2 − 75CΛgr
3 + 189Cr

− 4Λ2
gr

6
)

δri δ
r
j +

C

12r7

(

− 630C2

+ 150CΛgr
3 − 567Cr + 2Λ2

gr
6
)

Ωij , (A.2)

where Ωij ≡ δθi δ
θ
j + sin2 θδφi δ

φ
j .

Appendix B: Slowly Rotating Vacuum Solutions

Slowly rotating vacuum solutions in other versions of
the HL theory have been studied by several authors [51].
The goal of this section is to derive slowly rotating black
hole solutions in the HMT setup. We will seek a solution
of the form

ds2 = −dt2 + r2(dθ2 + sin2 θdφ2) (B.1)

+e2ν(r)
[

dr + eµ(r)−ν(r)(dt− aω(r) sin2 θdφ)
]2

,

where the functions ν(r), µ(r), and ω(r) are independent
of (t, θ, φ). By requiring that the metric satisfy the equa-
tions to first order in the small rotation parameter a, we
will be able to determine ν, µ, and ω.
The ansatz (B.1) is motivated by the fact that it agrees

with the Kerr solution to first order in a. Indeed, the Kerr
line element expressed in Doran coordinates [52] is given
by

ds2Kerr = −dt2 + (r2 + a2 cos2 θ)dθ2 (B.2)

+(r2 + a2) sin2 θdφ2 +
r2 + a2 cos2 θ

r2 + a2

×
[

dr +

√

2mr(r2 + a2)

r2 + a2 cos2 θ
(dt− a sin2 θdφ)

]2

,

where m and a are parameters. As a → 0, this metric co-
incides with (B.1) to first order in the rotation parameter
a, provided that

ν(r) = 0, µ(r) = log

√

2m

r
, ω(r) = 1.

In particular, when a = 0, it reduces to the Schwarzschild
metric in Painlevé-Gullstrand form.
Note that the form (B.1) of the line element is com-

patible with the projectability condition N = N(t); its
ADM coefficients are

N = 1, N i = (eµ(r)−ν(r), 0, 0).

Working in the gauge ϕ = 0, the momentum constraint
(2.6) for the metric (B.1) reduces to

−2eµ−3νν′

r
+O(a2) = 0, (B.3)

ae2µ−2ν

2r4

[

r2 (ω′′ + ω′ (4µ′ − ν′))

−2ω
(

1− r2µ′′ + r2µ′ν′ − 2r2µ′2 + rν′
)

]

+O(a2) = 0,

while the equation (2.9) obtained from variation with re-
spect to A yields

(

1− r2Λg

)

e2ν + 2rν′ − 1 +O(a2) = 0. (B.4)

The first equation in (B.3) implies that ν is constant, and
then (B.4) shows that

ν = 0, Λg = 0.

This yields

Rij = O(a2), (B.5)

LK = − 2

r2
e2µ(1 + 2rµ′) +O(a2),

LV = 2Λ+O(a2).

The (rr)-component of the dynamical equations (2.11)
gives

2rA′
0 − r2Λ + 2re2µµ′ + e2µ

r2
+

2A′
1

r
a

+O(a2) = 0, (B.6)

where we have assumed that A(r) has the form

A(r) = A0(r) +A1(r)a+O(a2). (B.7)

The terms of O(1) in (B.6) imply that

µ(r) =
1

2
ln

(

2m

r
+

1

3
r2Λ− 2A0(r) +

2

r

∫ r

r0

A0(s) ds

)

,

(B.8)
where r0 > 0 is a constant, while the terms of O(a)
imply that A1 is a constant. With these choices, all the
components of the dynamical equations as well as the
equations obtained from variation with respect to A and
ϕ are satisfied to first order in a, and the Hamiltonian
constraint (2.5) becomes

∫ ∞

0

rA′
0(r)dr +O(a2) = 0.

Finally, the second equation in the momentum constraint
(B.3) is satisfied to O(a) provided that

ω(r) = e−2µ

(

d1
r

+ d2r
2

)

(B.9)

=
d1 + d2r

3

2m+ 2
∫ r

r0
A0(s)ds− 2rA0 +

Λ
3 r

3
,

where d1 and d2 are the integration constants.
In summary, the ansatz (B.1) gives a solution to first

order in a provided that µ(r) is given by (B.8), ω(r) is
given by (B.9), and

ν = 0, A(r) = A0(r) + aA1 +O(a2), (B.10)

where r0 > 0,m,Λ, A1, d1, d2 are arbitrary constants and
A0(r) can be freely chosen as long as

∫ ∞

0

rA′
0(r)dr = 0.
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We recover the slowly rotating version of the Kerr so-
lution by taking A0 = 0, Λ = 0, and d2 = 0. Setting
a = 0, on the other hand, we recover the static solutions
obtained in [41].
Let us point out that the standard Einstein equations

also allow for a nonzero value of d2 in the slowly rotating
limit. Indeed, substituting the ansatz (B.1) with ν = 0
into the vacuum Einstein equations

Rαβ − 1

2
gαβR = 0, α, β = 0, 1, 2, 3,

we find that they are satisfied to order O(a) if and only
if

µ(r) =
1

2
ln

(

2m

r

)

,

where m > 0 is a constant, and ω(r) is given by (B.9)
with arbitrary constants d1 and d2.
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