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We model the chameleon effect on cosmological statistics for the modified gravity f(R) model of
cosmic acceleration. The chameleon effect, required to make the model compatible with local tests
of gravity, reduces force enhancement as a function of the depth of the gravitational potential wells
of collapsed structure and so is readily incorporated into a halo model by including parameters for
the chameleon mass threshold and rapidity of transition. We show that the abundance of halos
around the chameleon mass threshold are enhanced by both the merging from below and the lack of
merging to larger masses. This property also controls the power spectrum in the nonlinear regime
and we provide a description of the transition to the linear regime that is valid for a wide range of
f(R) models.

I. INTRODUCTION

The modified action f(R) model for cosmic accelera-
tion provides a concrete framework under which to relate
local and cosmological tests of gravity. Here the Einstein-
Hilbert action is augmented with a general function of the
Ricci scalar curvature in such a way as to mimic the cos-
mological constant at cosmologically low curvature [1–3].

The extra scalar degree of freedom df/dR mediates
an enhanced gravitational force on scales smaller than
its Compton wavelength. In order to hide this enhance-
ment from local tests of gravity, viable models employ the
chameleon mechanism [4, 5] where the Compton wave-
length can shrink in regions of deep gravitational po-
tential wells. If one assumes that the f(R) model is a
complete description of gravity from solar system scales
to cosmology, local tests in conjunction with minimal as-
sumptions about the Galactic potential place a stringent
bound on f(R) models. Namely the cosmological ampli-
tude of the field |fR0| must be less than a few times 10−6

[6].

Currently the tightest cosmological bounds come from
the lack of an excess in the abundance of the most mas-
sive dark matter halos or galaxy clusters [7, 8]. The
bound on the field amplitude depends on the model but
generally lie above the 10−5 level for models that seek to
diminish the modification at high redshift [9]. Thus cos-
mological constraints currently are at best approaching
the level of solar system tests. On the other hand they
test these modifications on a vastly different scale and
it is possible that f(R) is just an effective theory only
strictly valid on cosmological scales.

As cosmological data continue to improve, they will
soon begin to probe a regime where cosmology is directly
competitive with solar system tests in the full f(R) con-
text. Here the chameleon mechanism becomes important
for all halos of mass comparable to or greater than the
Galaxy. This regime is substantially more difficult to
characterize due to the non-linearity in the field equa-
tion for the enhanced force.

Under the halo model approach, the first step in un-

derstanding cosmological statistics associated with the
observable properties of dark matter halos is to charac-
terize the mass function. Previous attempts to model the
mass function of simulations have not been able to cap-
ture the abundance of intermediate mass halos once the
chameleon mechanism becomes active [10]. This abun-
dance is doubly enhanced since the extra force augments
merging of low mass halos into intermediate mass ha-
los whereas the chameleon effect shuts down merging of
intermediate mass halos to high mass halos.

Based on a mass function model, we can build a pa-
rameterized post-Friedmann (PPF) description of the
chameleon effect in cosmological statistics such as the
dark matter power spectrum. Whereas previous PPF ap-
proaches have been based on density thresholds [11] and
are appropriate for models that utilize the Vainshtein
mechanism, they require extensive ad hoc modifications
for the chameleon mechanism [12]. The problem is that
the chameleon mechanism should be parameterized in
terms of a proxy for the depth of gravitational potential
wells, which in the halo model can be readily associated
with the mass of dark matter halos.

The outline of the paper is as follows. In §II, we briefly
review the f(R) model and simulations. We parameterize
the chameleon effect in the mass function in §III, which
we use in §IV to characterize the nonlinear dark matter
power spectrum. We discuss these results in §V.

II. f(R) SIMULATIONS

In f(R) models, the Einstein-Hilbert action is aug-
mented with a general function of the scalar curvature
R

SG =

∫
d4x
√
−g
[
R+ f(R)

16πG

]
. (1)

Here and throughout c = ~ = 1. For definiteness we take
the high curvature limit of the models in [6]

f(R) ≈ −2Λ− fR0

n

R̄n+1
0

Rn
, (2)
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where the constant R̄0 is the background scalar curva-
ture R today in a ΛCDM cosmology with a cosmological
constant Λ. Here fR0 is a parameter that controls the
amplitude of the field fR ≡ df/dR at the background
curvature today. Note that viable models have |fR0| � 1
and expansion histories that are observationally indistin-
guishable from ΛCDM.

Gravitational force enhancements are associated with
the field fR whose fluctuations from the background
δfR = fR(R)−fR(R̄) obey a non-linear Poisson equation
in comoving coordinates

∇2δfR =
a2

3
[δR(fR)− 8πGδρm] . (3)

These field fluctuations act an additional source to the
gravitational potential

∇2Ψ = 4πGa2δρm −
1

2
∇2δfR , (4)

whose gradients accelerate non-relativisitic particles as
usual. These equations have been solved with N-body
techniques for n = 1, n = 2 and a variety of amplitudes
fR0 with cosmological parameters Ωm = 1 − ΩΛ = 0.24,
h = 0.73 and an initial power spectrum with As = (4.89×
10−5)2 at k = 0.05Mpc−1 and ns = 0.958 [9, 10, 13] [14].

The nonlinearity of Eq. (3) is the key to understand-
ing when the chameleon mechanism does and does not
operate. If the field fluctuations are small, they can be
linearized as

δR ≈ dR

dfR

∣∣∣∣
R̄

δfR = 3λ−2
C a−2δfR , (5)

where λC is the comoving Compton wavelength of the fR
field in the background. In this case the Poisson equa-
tion (4) has the Fourier solution

k2Ψ = −4πG

(
4

3
− 1

3

1

k2λ2
C + 1

)
a2δρm , (6)

and gravitational forces are enhanced by 1/3 on scales
that are below λC . We call this the “no-chameleon” limit
and for comparison to the chameleon simulations, runs
with the same initial conditions using Eq. (6) were con-
ducted. In this limit field fluctuations follow the local
gravitational potential on small scales.

As local gravitational potentials of dark matter halos
deepen, the field fluctuation can become comparable to
the background value fR0. The Compton wavelength can
then change significantly from its background value. For
the f(R) models described by Eq. (2) the Compton wave-
length shrinks so that the force enhancement disappears
in deep gravitational potential wells. This ability is called
the chameleon mechanism in the literature [4, 5].

Finally, ΛCDM models with the same initial conditions
were simulated for comparison. Thus for each simula-
tion box size (64, 128, 256, 400 h−1Mpc) and initial con-
ditions realization (up to 6 each), there are three simula-
tion types: the full f(R) or chameleon, the no-chameleon,
and the ΛCDM runs.

To identify dark matter halos in the simulations, we use
a spherical overdensity algorithm centered around local
density peaks similar to [15]. This method differs slightly
from the center of mass of the whole halo approach of [16]
used in [10] and is thought to be more directly related to
halo observables.

Briefly, to make a crude sorting of density peaks we
first assign particles to the grid using the cloud-in-cell
(CIC) scheme. Starting at the highest density grid point,
we grow a halo until the enclosed spherical overdensity
reaches ∆ = ρm/ρ̄m = 200 defining a radius r200. We
then refine the center of the halo by solving for the cen-
ter of mass iteratively in shrinking radii from r200/3 to
r200/15 or until only 20 particles are found within the
smoothing radius. We then regrow the halo around this
center until the spherical overdensity criteria is met. The
halo massM200 is the sum of mass of all particles enclosed
within this halo radius r200. Due to lack of spatial reso-
lution we only count halos with more than Nmin = 800
particles.

Compared with the halo center of mass approach, this
algorithm tends to break up regions with large sub-
clumps into separate halos reducing the number of high
mass halos by up to 10%. Its effect on the relative abun-
dance between the f(R) simulations and the ΛCDM sim-
ulations is much smaller since it affects the two in the
same way.

We construct the mass function of dark matter ha-
los for the various simulations by adding up the number
of halos within a certain mass bin from different boxes
directly, which implicitly weights the simulations by vol-
ume. To estimate the errors on the mass function en-
hancements over ΛCDM, we bootstrap resample the dif-
ferences, with replacement within each of the different
box sizes.

III. CHAMELEON MASS FUNCTION

The mass function or differential abundance of dark
matter halos for the various f(R) models and simula-
tions have previously been studied in [9, 10]. In the large
field regime of |fR0| > 10−5, the excess abundance ap-
pears mainly in the rarest halos and these results are
well-modeled by simple modifications to spherical col-
lapse predictions. In the small field regime |fR0| < 10−5

which is comparable to or smaller than the depth of the
gravitational potential wells of cluster mass sized halos,
the chameleon mechanism shuts off the excess in the
abundance of these halos.

Instead, in this regime, the chameleon simulations pro-
duce an abundance of intermediate sized halos that is in
excess of both the no-chameleon simulations and the pre-
dictions with the full 1/3 enhancement of forces every-
where [10].

To understand this result, we can compare the full and
no-chameleon simulations in the n = 1, |fR0| = 10−6

model where the chameleon effect is the strongest. Since
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FIG. 1. Projected 2D density maps and identified halos for the 3 types of simulations: ΛCDM, f(R) chameleon, and no-
chameleon models (|fR0| = 10−6, n = 1). Axes are in h−1Mpc and the color map represents the logarithmic density on a
0.25h−1Mpc grid projected across a 4.25h−1Mpc depth. Halos are denoted with circles (thick lines: > 800 particles; thin
lines 100 − 800 particles plotted for reference). The largest halos in each case from left to right are 7.5 × 1013, 8.2 × 1013

and 1.6 × 1014h−1M� respectively showing that between ΛCDM and the chameleon case halos mainly grow in mass whereas
between the chameleon and no-chameleon case a major merger has occurred.

the ΛCDM, chameleon and no-chameleon models are sim-
ulated with the same initial condition realization, we can
examine regions in the simulations associated with inter-
mediate mass halos. In Fig. 1 we show an example. The
halos in the chameleon run are very similar to those in
the ΛCDM run only slightly more massive. On the other
hand, in the no-chameleon run several of the intermediate
sized halos have merged into one high mass halo.
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FIG. 2. Simulation results and parametrized post-Friedmann
(PPF) fit for the mass function excess of f(R) with n = 1,
|fR0| = 10−6 over ΛCDM. Chameleon simulations show not
only a suppression of the high mass enhancement compared
with no-chameleon runs but also a larger excess at interme-
diate masses, here ∼ 1013h−1M�. These features can be fit
by an interpolation between the limiting σ(M) cases across a
threshold mass Mth = 1.345×1013h−1M� with α = 2.448 for
the rapidity of the transition (see Eq. 10).

Correspondingly, the no-chameleon simulations show
an excess in the abundance of high mass halos which
compensate the excess of intermediate mass halos in the
full runs (see Fig. 2). Those halos that under the no-
chameleon assumption would have merged to form high
mass halos no longer do in the chameleon simulations
causing a pile up effect at intermediate masses.

The results are consistent with mass conservation in
the intermediate to high mass halo regime. To character-
ize this merging effect, we model the mass function based
on the Press-Schechter ansatz that all of the mass in the
universe is in halos of some mass. We automatically con-
serve mass in halos if we only vary the ingredients of the
models.

The standard prescription based on the linear power
spectrum requires modification however. In this prescrip-
tion large masses are related to large scales through

σ2(M(R)) =

∫
d3k

(2π)3
|W (kR)|2PL(k) , (7)

the variance of the linear density field convolved with a
tophat of radius R, with Fourier transform W (kR), that
encloses the mass M at the background density. On the
other hand, the chameleon mechanism operates on large
masses and small scales. Our approach is to retain a
mass function construction based on a σ(M) but gen-
eralize its relationship to the linear power spectrum in
Eq. (7) such that it no longer represents the rms of the
linear density field of the f(R) model. We follow the pa-
rameterized post-Friedmann (PPF) approach of taking
this generalization to be an interpolation between modi-
fied and unmodified gravity [11].

We take the mass function to be universal in the virial
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mass Mv

nlnMv ≡
dn

d lnMv
=
ρ̄m
Mv

d ln ν

d lnMv
νf(ν) , (8)

where ν = δc/σ(Mv) and
∫
f(ν)dν = 1. For the Sheth-

Torman mass function [17]

νf(ν) = A

√
2

π
aν2[1 + (aν2)−p] exp(−aν2/2) , (9)

with a = 0.75, p = 0.3 and A given by
∫
dνf(ν) = 1

as A = 0.3222. We adopt ∆v = 390 and δc = 1.673
which are the values that match the ΛCDM predictions
for Ωm = 0.24. Previous attempts to model the simula-
tion results were based on adjusting ∆v and δc in a spher-
ical collapse motivated range using σ(M) from the linear
power spectrum of the f(R) model. That technique cap-
tures the high mass end M > 1014h−1M� for both large
and small fields but failed in the M < 1014h−1M� in the
small field regime.

Here we instead leave ∆v and δc fixed but interpolate
between limiting behaviors of σ(M). For high masses
σ(M) should approach the ΛCDM result σΛCDM(M) due
to the chameleon mechanism. For small masses, it should
approach the prediction of f(R) linear theory with en-
hanced forces σfR(M). We thus take a chameleon PPF
transition between these fixed limits

σ(M) =
σfR(M) + (M/Mth)ασΛCDM(M)

1 + (M/Mth)α
. (10)

In Fig. 3, we show an example for the |fR0| = 10−6, n = 1
model. By definition, the fraction of the universe tied up
in halos above an M � Mth is conserved independently
of the transition

F (> M) =

∫ ∞
M

dn

d lnMv

Mv

ρ̄m
d lnMv

=

∫ ∞
δc/σ(M)

dνf(ν)

≈
∫ ∞
δc/σfR

(M)

dνf(ν), M �Mth . (11)

Given this (Mth, α) parameterization, we fit the sim-
ulation results of the |fR0| = 10−6, n = 1 model. We
first convert the parameterized mass function defined
at the virial overdensity to M200 assuming an Navarro-
Frenk-White profile [18]. We then integrate the resulting
nlnM200

over a tophat in lnM200 of the bin size which
effectively smooths the predictions to our simulation bin-
ning. Finally, using the bootstrap errors we minimize the
χ2 between the model and the simulation data and de-
termine that Mth = 1.345 × 1013h−1M� and α = 2.448
yield the best fit (see Fig. 2). Given the approximate
nature of the bootstrap errors, these parameters provide
a reasonable fit to the simulation data.

This single choice of parameters (Mth, α) can be scaled
to fit all of the simulations without introducing any ad-
ditional degrees of freedom. Given that the critical mass
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FIG. 3. Fractional change in σ(M) between the linear f(R)
prediction (red, upper curve, |fR0| = 10−6, n = 1) and the
linear ΛCDM prediction (black, dashed curve). The PPF
prescription interpolates between these two limits (blue, mid-
dle curve) with the transition parameters Mth = 1.345 ×
1013h−1M� and α = 2.448.

for the chameleon scales with the background field value
as |fR0|3/2 [9], we take

Mth = 1.345× 1013

(
|fR0|
10−6

)3/2

h−1M� . (12)

In Fig. 4 we compare the results of the various (|fR0|, n)
simulations to this universal scaling.

IV. CHAMELEON POWER SPECTRUM

The chameleon mass function is the starting point for
halo modeling of cosmological observables. For example,
under the halo model, the dark matter power spectrum
is described by density correlations within halos and be-
tween halos integrated over the mass function. For the
same wavenumber k, the chameleon mechanism affects
density correlations associated with some but not all dark
matter halos.

Under the halo model, the power spectrum in the
deeply nonlinear regime is determined by density corre-
lations within single halos. The power spectrum in this
regime can be modeled with the 1 halo term

PH(k) =

∫
d lnMvnlnMv

(
Mv

ρm

)2

|y(k,Mv)|2 , (13)

where y(k,M) is the Fourier transform of the density
profile truncated at rv. For both ΛCDM and f(R) the
halo profiles are well characterized by the NFW form [10].
We take a concentration given by [19]

c = 9(Mv/M∗)
−0.13 , (14)
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FIG. 4. Chameleon mass function excess for different f(R)
models. A universal fit to σ(M) with α = 2.448 and Mth =

1.345×1013(|fR0|/10−6)3/2h−1M� fits the range of (|fR0|, n)
simulations comparably well.

where M∗ is defined via σ(M∗) = δc. Thus the main dif-
ference in this regime for the power spectra of the models
should come from the difference between the mass func-
tions.

As noted in [10], without a description of the
chameleon mass function, the one halo contributions for
|fR0| < 10−5 are overestimated on intermediate scales
where contributions from groups and clusters dominate.
While this effect can be modeled with fitting parame-
ters that depend explicitly on the field value |fR0| [20],
the halo model provides a universal description of the
chameleon effect on the power spectrum. In addition it
provides better physical insight into its origin and rela-
tion to other observables such as the mass function and
higher point functions. In Fig. 5, we show the PPF pre-
dictions based on the mass function enhancement for the
1 halo term compared with the no-chameleon mass func-
tion predictions for |fR0| = 10−6, n = 1. The chameleon
effect suppresses 1 halo power on scales less than a few

h/Mpc.
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FIG. 5. 1 halo power spectrum enhancement of f(R) over
ΛCDM. PPF predictions are shown for the |fR0| = 10−6,
n = 1 model with and without the chameleon modeling of
the mass function effects. Without the chameleon modeling,
high mass halos contribute excess power in the quasilinear
regime of k . few h/Mpc not found in the simulations.

For a full model of the power spectrum, we must in-
clude the large scale linear regime. In the linear regime,
the halo model describes the power spectrum in terms
of the correlation between two different halos. Using a
mass function construction that places all of the mass
in halos and the halo bias of the peak-background split
guarantees that the two halo term simply returns the in-
put linear power spectrum. Unfortunately, in order to
describe the power spectrum at intermediate k between
the linear and nonlinear regimes, the halo model requires
complications such as halo exclusion to maintain accu-
racy (e.g. [21–23]).

We instead take the phenomenological approach of
Halofit [24] and seek an interpolation between the known
linear behavior and the 1 halo model for the deeply non-
linear behavior spectrum. Specifically we take

k3P (k)

2π2
= ∆2(k) = ∆2

Q(k) + ∆2
H(k) . (15)

Here ∆2
H(k) is the dimensionless power spectrum derived

from PH(k) and ∆2
Q(k) is related to the linear theory

power spectrum ∆2
L(k) by

∆2
Q(k) = ∆2

L

[1 + ∆2
L(k)]βn

1 + αn∆2
L(k)

exp(−y/4− y2/8) , (16)

where y = k/kσ determines the scale of the transition
to the 1 halo term and αn, βn are fitting parameters to
adjust the shape of the transition.

Halofit describes the transition scale in terms of the
Gaussian filtered variance

σ2
G(R) =

∫
d ln k∆2

Le
−k2R2

(17)
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FIG. 6. Power spectrum enhancement for n = 1 models com-
pared with PPF predictions. Blue bands represent a range
of Halofit parameters αn, βn where the upper limit comes
from the linear ΛCDM power spectrum and the lower from
the linear f(R) power spectra. Solid blue lines represent the
average of the two extreme values of the parameters and is a
good prescription for all cases.

as σG(k−1
σ ) = 1. Rather than refit the transition param-

eters αn, βn, we examine the limiting cases predicted by
Halofit from the linear power spectra of ΛCDM and f(R).
The Halofit prescription is to take the local slope

neff ≡ −3− d lnσ2
G(R)

d lnR

∣∣∣
σG=1

, (18)

and characterize

αn = 1.3884 + 0.3700neff − 0.1452n2
eff ,

βn = 0.8291 + 0.9854neff + 0.3401n2
eff . (19)

In Fig. 6 we show the simulation results compared with
the PPF predictions with a range of αn and βn given by
linear ΛCDM for the upper limit and linear f(R) for the
lower. Simulation results lie mainly in between these two
limits and in fact a simple average of the two αn and βn
values provides a good description for all models.

V. DISCUSSION

In the f(R) model, the chameleon mechanism mediates
a restoration of general relativity and ordinary Newto-
nian forces in deep gravitational potential wells. We have
shown that the main impact of the chameleon mechanism
on cosmological statistics that depend on the dark matter

halo distribution can be simply described by a universal
scaling for the transition between modified and unmodi-
fied forces in mass or gravitational potential. This type
of transition should be contrasted with phenomenological
approaches that implement the transition as a function
of physical scale (e.g. [25]) or with models that imple-
ment the Vainshtein mechanism where the transition is
a function of density [11].

In the mass function, the chameleon mechanism leads
to a doubly enhanced abundance near the transition.
In the simulations, this enhancement is associated with
smaller mass halos still growing to the transition mass
due to enhanced forces but transition mass halos no
longer merging into high mass halos due to the restora-
tion of ordinary forces. In our description, this mass
conservation property is enforced through the Press-
Schechter assumption that all of the dark matter is in
halos of some mass. With this assumption, we can fit the
mass function results across a wide range in f(R) models
with two constants: the scaling of the transition mass to
the background field and the rapidity of the transition in
mass.

With a calibration of the mass function and the simu-
lation result that halo profiles as a function of mass are
largely unchanged, we can construct predictions for the
N -point functions. In particular for the power spectrum,
including the chameleon effects on the mass function
bring predictions for the power spectrum excess down
in agreement with the simulations. We have provided a
simple modification to the Halofit prescription to bridge
the linear and nonlinear regimes. For the higher N -
point functions, the model predicts that the results in
the deeply nonlinear regime should scale mainly with the
single degree of freedom of the mass function rather than
carry a unique signature of f(R) gravity [26].

Moreover, by describing these effects as enhancements
over the ΛCDM mass function and power spectrum with
a physically well-motivated extrapolation to low masses
and small scales rather than an absolute prediction of
f(R) statistics, one can use state-of-the-art simulations
and and mass calibrations for ΛCDM predictions and
look for a parameterized excess over those in the data
(see, e.g. [7]). Uncertainties in our f(R) prescription
merely translate into uncertainties in the f(R) param-
eters rather than a false positive detection of modified
gravity. These techniques provide simple but approxi-
mate means for testing the f(R) model with weak lens-
ing and other statistics that require large dynamic range
and precision. Should in the future a positive detection
occur, then high resolution gas simulations can be per-
formed refine the calibration of cosmological observables
in the f(R) model.
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