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We consider an evaporating Schwarzschild black hole in a framework in which the spectral di-
mension of spacetime varies continuously from four at large distances to a number smaller than
three at small distances, as suggested by various approaches to quantum gravity. We demonstrate
that the evaporation stops when the horizon radius reaches a scale at which spacetime becomes
effectively 3-dimensional, and argue that an observer remaining outside the horizon cannot probe
the properties of the black hole at smaller scales. This result is universal in the sense that it does
not depend on the details of the effective dimension as a function of the diffusion time. Observers
falling into the black hole can resolve smaller scales, as can external observers in the presence of
a cosmological constant. Even in these cases, though, we obtain an absolute bound D ≥ 2 on the
effective dimension that can be seen in any such attempt to measure the properties of the black
hole.

PACS numbers: 04.60.-m, 04.60.Kz, 04.70.-s, 04.70.Dy

I. INTRODUCTION

General relativity describes spacetime as a smooth d-
dimensional manifold. But while this picture has proven
remarkably successful, it is quite plausible that it will
break down at very small scales. A quantum theory of
gravity must be, in some sense, a theory of the quantiza-
tion of spacetime, and there is no reason to expect that a
smooth classical description will hold to all scales. A cen-
tral task of quantum gravity is to investigate alternative
small scale descriptions.
Even without a smooth manifold structure, it is often

possible to define an effective dimension of spacetime.
The spectral dimension [1, 2], for instance, is determined
by the rate of a diffusion process, and exists for any space
on which a random walk can be defined. Such a definition
seems tailor-made for thermodynamic applications, such
as the process of black hole evaporation considered in the
present paper.
Although it is risky to make too strong a claim without

a definitive quantum theory of gravity, evidence from a
number of different approaches suggests that the spectral
dimension and similar generalized dimensions flow from
four at large distance scales to two near the Planck scale
[3, 4]. In particular, Causal Dynamical Triangulations
(CDT) — a Lorentzian lattice approach to the gravi-
tational path integral — yields a spectral dimension of
spacetime, determined numerically, of the form [1]

CDT: DIR = 4.0± 0.1 DUV = 1.80± 0.25 . (1)

Here DIR is the spectral dimension in the limit of infinite
diffusion time, corresponding to an effective dimension at
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very large distances, while DUV is the spectral dimension
for short diffusion times, giving an effective dimension at
very small distances.
It is evident that the spacetime dimension at large

scales is compatible with four, but the dimension at small
scales is smaller than four at greater than 5σ significance.
Moreover, (1) is consistent with the suggestion that the
small scale structure is effectively 2-dimensional. A rea-
sonably good fit, valid for arbitrary values of the diffusion
time σ, is [1]

Dspec(σ) = a− b

c+ σ
(2)

where DIR = a and DUV = a − b/c. The constants b
and c can be rescaled arbitrarily through changes of the
lattice spacing, but their ratio and the constant a are
both universal.
On the other hand, a recent study using an alternative

lattice approach known as Euclidean Dynamical Trian-
gulations (EDT) leads to a rather different result for the
small scale dimension [5]:

EDT: DIR = 4.0± 0.3 DUV = 1.46± 0.06 (3)

In fact, the result (3) may suggest DUV = 3/2, a re-
sult that is also compatible with (1). Amusingly, this
is precisely the value for which the Bekenstein–Hawking
entropy of a d-dimensional Schwarzschild black hole,

SBH ∼ E(d−2)/(d−3) , (4)

coincides with the entropy of a d-dimensional CFT,

SCFT ∼ E(d−1)/d . (5)

It is thus of interest to see what an evaporating
Schwarzschild black hole has to say about this issue.
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There are various physical scenarios of interest. For in-
stance, an observer could intend to probe microscopic dis-
tances with some high-energy scattering experiment. If
the energy deposited in such an experiment gets concen-
trated in a sufficiently small region, then a black hole is
created. However, we shall describe a different situation,
in which the black hole exists already before the experi-
ment is performed, so that we do not have to deal with
the rather complicated process of black hole formation.
We locate an observer outside a black hole, which for sim-
plicity we assume to be spherically symmetric. She then
performs some experiment permitting her to probe the
scale of spherical shells concentrically surrounding the
black hole. Heuristically, the black hole horizon hides the
interior — and the related short-distance physics — from
an outside observer. But as the black hole evaporates, its
horizon shrinks, allowing the observer to probe smaller
and smaller distances,1 thereby gleaning some informa-
tion about the effective dimension at small scales. An
observer desperate for information about short-distance
physics might even throw herself into the black hole to re-
solve the effective dimension at even smaller scales. The
question we shall address is whether the dynamics puts
any limit on either of these processes.

II. DILATON BLACK HOLE

We use 2-dimensional dilaton gravity to describe the
(Euclidean) d-dimensional Schwarzschild black hole in
various dimensions (see, e.g., [6]). This description has
several advantages: it is simple; it captures the full clas-
sical and thermodynamical content of the theory [7]; and
it allows a straightforward analytic continuation to arbi-
trary (even fractal or negative) dimensions.
The dilaton gravity action is given by

I = − 1

2G2

∫

d2x
√
g
[

XR−U(X)(∂X)2 − 2V (X)
]

+ Ib ,

(6)
with gravitational coupling constant G2 and a known
boundary action Ib that is irrelevant to the current dis-
cussion. The dilaton has a higher-dimensional interpre-
tation as the surface area; that is, X(t, r) is the area of
the (d−2)-sphere at fixed t and r (the orbit of the Killing
vectors responsible for spherical symmetry).
The three terms in the bracket also have straight-

forward higher-dimensional meanings. Each represents
a contribution to the d-dimensional Ricci scalar. The
first term describes the intrinsic curvature of the 2-
dimensional spacetime. The third term describes the
intrinsic curvature of the (d − 2)-sphere. The second
term gives the contribution to curvature arising from

1 By “distance” in this paper we always mean the radius of a (d−
2)-sphere enveloping the center of the d-dimensional black hole.

the change of the area of the (d − 2)-sphere as a func-
tion of time and radius. This is the term we shall mod-
ify by hand to accommodate an effective dimension that
changes with the distance from the black hole.
For a d-dimensional Schwarzschild black hole, the po-

tential U(X) is given by

U(X) = − 1

X

d− 3

d− 2
. (7)

It is useful to define functions

Q(X) := Q0 +

∫ X

dX ′U(X ′) , (8)

w(X) := w0 − 2

∫ X

dX ′ eQ(X′)V (X ′) , (9)

with some arbitrary integration constants Q0 and w0.
The potential V (X) can be obtained from the require-
ment that the model (6) have a flat ground state [6]:

V (X) ∝ e−2Q(X) U(X) (10)

This requirement then yields

V (X) ∝ X(d−4)/(d−2) , (11)

with a proportionality constant that sets the physical
length scale.
The classical solutions of the field equations coming

from the action (6) are then given by

X = X(r) with ∂rX = e−Q(X) (12)

ds2 = ξ(r) dτ2 +
dr2

ξ(r)
(13)

with ξ(X) = w(X)eQ(X)
(

1− 4M

w(X)

)

.

They are parametrized by a single constant of motion, the
black hole mass M . The flat ground state property (10)
implies eQ(X)w(X) = const., so that the Killing norm ξ
is constant for vanishing black hole mass.

III. VARYING EFFECTIVE DIMENSION AND

BLACK HOLE EVAPORATION

For fixed dimension d, the solution (12) with the po-
tential (7) gives a dilaton

X ∼ rd−2 . (14)

As we show in appendix A, the spectral dimension de-
termined from the corresponding dimensionally reduced
d’Alembertian is d. This holds even if d is not an inte-
ger. A varying spectral dimension might thus reasonably
correspond to a varying d in (7).
Let us suppose that over some relevant range of scales,

the effective dimension is a strictly monotonic function
of the diffusion time σ. This behavior occurs in both the
CDT and EDT simulations described in the introduction;
the CDT fit (2) is an example of such a functional depen-
dence. We now make our two key working assumptions:
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1. The diffusion time σ — specifically, the diffusion
time necessary to capture information about the
transverse space of constant r and t — is itself a
strictly monotonic function of the dilaton X .

2. The potential (7) remains valid even when the di-
mension depends on the scale; that is,

U(X) = − 1

X

D(X)− 3

D(X)− 2
. (15)

The first assumption is motivated by the observation that
σ and X both determine the scale: small diffusion times
and small values of the dilaton field both correspond to
small distances, while large σ and X both correspond to
large distances. The second comes from the interpreta-
tion of the second term in the action (6), as described in
the paragraph below that equation, and from the results
of appendix A. We check this assumption for a partic-
ular potential in appendix B, and show that the D(X)
in (15) is in good agreement with the spectral dimension
over the whole range of X , with a maximal deviation of
15% (see Fig. 2 in appendix B).
For the sake of concreteness, we shall assume that the

fit (2) is valid and that the diffusion time is a monotonic
increasing function f of the dilaton X :

D(X) = a− b

c+ f(X)
(16)

In appendix B, we provide a simple toy model with lin-
ear f , which allows us to elucidate certain aspects of the
black hole evaporation. Our main conclusions are inde-
pendent of these specific choices, however; all that mat-
ters is that D(X) is some strictly monotonic function of
X that goes to four forX → ∞ and to some value smaller
than three for X → 0.
Again we determine V (X) from the flat ground state

requirement (10). This choice ensures that the theory
allows 2-dimensional flat spacetime as solution. These
choices above should be considered as working assump-
tions; others are conceivable. However, we believe these
assumptions are sufficiently well-motivated to warrant a
study of their consequences.
We make now our key observation. The function V (X)

vanishes if U(X) vanishes, which happens precisely for
D(X) = 3, regardless of the detailed properties of the
effective dimension as a function of the dilaton. The
vanishing of V implies, in turn, that w′ is zero. Since
surface gravity κ is given by [7, 8]

κ =
1

2
w′

∣

∣

∣

X=Xh

∝ V (Xh) (17)

where Xh is the value of the dilaton evaluated at the
horizon, it follows that the black hole is extremal if
V (Xh) = 0. Consequently, the black hole stops evap-
orating once the horizon drops to a scale for which
D(Xh) = 3.

As a byproduct, we also learn that specific heat must
turn positive before the black hole horizon drops to the
critical size at which D(Xh) = 3. To see this, note
first that the temperature increases monotonically as
long as the effective dimension D(X) is sufficiently close
to four. In that region we recover the standard re-
sult that Schwarzschild black holes have negative specific
heat. Since the temperature drops to zero smoothly as
D(Xh) → 3, it must have a maximum at some value Xc

h,
with 3 < D(Xc

h) < 4. In the region Xh < Xc
h, the spe-

cific heat is therefore positive. Such a behavior might
be expected on general grounds for quantum-corrected
Schwarzschild black holes.
A further byproduct is that a curvature singularity nec-

essarily appears behind the horizon. This can be shown
as follows. The 2-dimensional Ricci scalar is [6]

R = 4Me−Q(X)U ′(X)

∝ (D(X)− 2)(D(X)− 3)−XD′(X)

X2(D(X)− 2)2
. (18)

The curvature diverges at X = 0 and D(X) = 2. Both
loci are always within the black hole region, according to
the results above. While the existence of a curvature sin-
gularity might have been anticipated on general grounds
from singularity theorems, it is not clear that they apply
to a situation in which the effective dimension varies.
Interestingly, the result (18) implies that not even an

observer falling into a black hole is able to resolve scales of
the surface area corresponding to an effective dimension
smaller than two. Thus, even if the effective dimension
near X = 0 were given by, say, DUV = 3/2, no observer
would encounter this value before reaching the singular-
ity.2 Instead, we establish the result that no observer,
inside or outside the horizon, can see a value D(X) < 2.

IV. ADDING A COSMOLOGICAL CONSTANT

In the derivation above, the assumption (10) of a flat
ground state was crucial. Let us relax this assumption to
allow for de Sitter or anti-de Sitter ground states. This is
of interest in part because our present Universe appears
to have a positive cosmological constant [9, 10]. On more
theoretical grounds, 3-dimensional general relativity has

2 Recall that D(X) is essentially a spectral dimension measured
with a diffusion time determined by the area of the space of
constant r and t. One could imagine a local observation made
by a freely falling observer at a much smaller scale (with the
caveat that such a process might create another black hole). As
mentioned at the end of the introduction, such an observation
would not be easily described in the framework of spherically
symmetric dimensional reduction, and our arguments do not say
anything about the possible outcome. But such a measurement
would also not capture the properties of the black hole, which
are our main interest here.
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no black hole solutions unless a negative cosmological
constant is present [11, 12], and one might worry that
the critical dimension of three derived above may merely
reflect this fact.
Given a dilaton gravity model (6) obtained from the

dimensional reduction of D-dimensional Einstein gravity,
we can add a cosmological constant by a simple shift of
the potential V (X) [6, 7],

VΛ(X) = −λ2e−2Q(X) U(X) + ΛN(X)X . (19)

Here λ is a dimensionful constant that sets the physical
scale, Λ is the cosmological constant, and N(X) > 0
is a D-dependent normalization. Some standard choices
are N(X) = D(X)(D(X) − 1) and N(X) = 1. Our
conclusions below are independent of the precise choice
of N(X), as long as it contains no zeros or singularities
for D ≥ 2. We assume that this is the case. With this
change, Hawking evaporation no longer stops at D(X) =
3, but continues until some other value of D, which is
determined by the condition VΛ(X) = 0, i.e.,

D(X)− 3

D(X)− 2
=

Λ

λ2
X2N(X)e2Q(X) . (20)

The key observation is that the right hand side of (20) is
always positive (negative) for a positive (negative) cos-
mological constant. This means that (20) must have a
solution with D(X) > 3 for Λ > 0, and with D(X) < 3
for Λ < 0.
Moreover, it is clear that for Λ < 0 a solution must ex-

ist with D(X) > 2. Indeed, for any finite negative value
of Λ the right-hand side is bounded from below, while the
left-hand side is unbounded from below as D → 2 from
above. Hence if one plots the two sides as functions of
X , the curves must intersect at some X = Xc such that
D(Xc) lies between two and three.
Thus, for Λ > 0, Hawking evaporation stops at some

critical value Xc with D(Xc) > 3, while for Λ < 0, the
evaporation stops at a critical value with 2 < D(Xc) < 3.
Clearly, if Λ is tiny, the critical dimension at which evap-
oration stops is very close to three. If Λ is large and
negative, on the other hand, an external observer can
resolve distance scales small enough to correspond to a
dimension smaller than three. It remains true, however,
that D = 2 is an absolute bound for any observer, in-
side or outside the horizon, regardless of the value of
the cosmological constant. This bound is insensitive to
the details of any of our choices — the relationship be-
tween spectral dimension and diffusion time, the rela-
tionship between the diffusion time and the dilaton field,
the normalization of the cosmological constant — as long
as these respect the plausible monotonicity properties we
introduced above.
We conclude that no observer — outside or inside the

black hole — is capable of resolving (radial) distances
that correspond to an effective dimension smaller than
two. These results provide independent evidence in fa-
vor of the proposal [3] that quantum gravity should be
effectively 2-dimensional at small distance scales.
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Appendix A: Dimensional reduction and the

spectral dimension

Consider any space in which a diffusion process can be
defined. Such a process is characterized by a heat ker-
nel K(x′,x;σ). The spectral dimension is the dimension
measured by the rate of diffusion [1, 2],

Dspec(σ) = −2σ
d

dσ
lnK(x,x;σ) . (A1)

For a flat d-dimensional space, the heat kernel is [13]

K(x′,x;σ) = (4πσ)−d/2 exp

{

−|x′ − x|2
4σ

}

(A2)

and it is easily checked that Dspec = d.
In the dimensional reduction we have considered here,

a d-dimensional spacetime is treated as if it had only two
dimensions. If the lower dimensional model reflects the
true physics, though, it must somehow capture the full
spectral dimension. To see how this works, consider first
the case of a flat spacetime, with a dimensionally reduced
(Euclidean) d’Alembertian

∆ = ∂2
τ + ∂2

r + (∂r lnX)∂r +
1

r2
∆̃d−2 (A3)

where the dilaton is the surface area, X ∼ rd−2, and
∆̃d−2 is the Laplacian on the (d−2)-sphere. The first two
terms yield the intrinsic 2-dimensional d’Alembertian,
while the last two terms capture information about the
remaining d − 2 dimensions. We can similarly split the
dimension d into two parts, one corresponding to the 2-
dimensional d’Alembertian and one coming from the di-
mensional dependence of the dilaton field on r:

d = 2 +
d(lnX)

d(ln r)
(A4)

We shall now show that as long as the diffusion time
σ is not too small, this is a good approximation of the
spectral dimension Dspec, even if d is not an integer.
We are interested in a spherical reduction, in which

only the zero angular momentum modes are present. The
eigenvalues of ∆̃d−2 are ℓ(ℓ + d − 3), so for these ℓ = 0
modes, the last term in (A3) drops out. The operator
(A3) is hermitian with respect to the integration measure

dµ = dτ dr rd−2 (A5)

and has nonsingular orthonormal eigenfunctions

fωk(t, r) =

√

k

2π
r

3−d

2 eiωtJν(kr) with ν = d−3
2 (A6)
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with eigenvalues −ω2− k2. We can use these to evaluate
the heat kernel for ∆ (again with ℓ = 0):

K0(r
′, t′, r, t;σ) =

∫

dω dke−σ(k2+ω2)f∗

ωk(t
′, r′)fωk(t, r)

=
1√
2πσ

(rr′)
3−d

2 e−(t′−t)2/4σ 1

2σ
e−(r′2+r2)/4σIν

(

r′r

2σ

)

(A7)

It may be checked that this is equivalent to the angular
average of the flat space heat kernel (A2) over a (d− 2)-
sphere of fixed r and τ .
To obtain a spectral dimension, we need a logarithmic

derivative of this quantity. For small σ, the argument
of the modified Bessel function is large, and we can use
the asymptotic behavior Iν(z) ∼ ez/

√
2πz. It is then

easy to check that Dspec ∼ 2: in this limit, the heat
kernel does not see the higher dimensional space. This
means that the diffusion time must not be too small (as
compared to X2/(d−2)), since otherwise the s-waves are
not sensitive to the higher dimensions, but merely feel
the presence of the time and radial coordinates. This
observation provides an independent motivation for our
first working assumption in section III. For large σ, on
the other hand, we can exploit the asymptotic behavior
of the modified Bessel function at small argument,

Iν(z) ∼
(12z)

ν

Γ(ν + 1)
, (A8)

to approximate the heat kernel. We find

K0(r, t, r, t;σ) ∼ σ−
d

2 e−r2/2σ (A9)

giving the desired spectral dimension

Dspec = d . (A10)

For d = 4, the heat kernel (A7) can be expressed in
terms of elementary functions, and the crossover between
the “small σ” and “large σ” regimes can be investigated
analytically. This crossover happens quite rapidly, at rel-
atively small values: if we define a dimensionless variable
s =

√
σ/r, we find that Dspec rises from very nearly two

at s = 0.4 to very nearly four at s = 4 (see Fig. 1).
Now let us consider the generalization to non-integer

dimension. The dimension entered our derivation only
in the behavior of the dilaton, X ∼ rd−2, and in the r
dependence of the potential term in (A3). But nothing
in the derivation required that d be an integer. Hence
if the dilaton behaves as X ∼ rd−2 and the potential
term has a lowest eigenvalue of zero, the spectral dimen-
sion is d, whether d is an integer or not. Equivalently,
Dspec = 2 + d(lnX)/d(ln r), just as suggested in (A4).
For a spectral dimension that varies slowly with scale
— more precisely, one that varies slowly compared to
the low-lying eigenfunctions of (A3) — this should re-
main a good approximation. As we show in appendix B
below, this certainly seems to be the case in a simple,

0 1 2 3 4
s

2.0

2.5

3.0

3.5

4.0

Dspec

FIG. 1: Spectral dimension Dspec for d = 4 as function of s

explicit model, in which the spectral dimension calcu-
lated by (A4) and the effective dimension in the dilaton
potential agree well over a very large range of values of
X .

Appendix B: Paper-and-pencil example

A simple dilaton gravity model that realizes the fea-
tures discussed in the main text can be obtained by
choosing

D(X) = 4− 5c/2

c+X
(B1)

for the effective dimension in (15). By construction, we
have DIR = 4 and DUV = 3/2, as in the EDT result (3).
The action is then given by (6) with potentials

U(X) = − X − 3c/2

2X2 − cX/2
V (X) = −X5 X − 3c/2

(X − c/4)6
,

(B2)
and a convenient choice of integration constants yields

w(X) = exp {−Q(X)} = 2X3(X − c/4)−5/2 . (B3)

The deformed Schwarzschild black hole is then described
by the line element (13) with Killing norm

ξ(X) = 1− 2M (X − c/4)5/2

X3
. (B4)

The dilaton field evaluated at the horizon, Xh, can be
expressed in terms of the black hole mass M by solving
ξ(Xh) = 0 numerically. Applying the general results of
[7, 8], we obtain a Hawking temperature

TH =
w′(X)

4π

∣

∣

∣

∣

X=Xh

=
1

4π

X3
h − 3cX2

h/2

(Xh − c/4)7/2
(B5)

=
1

8πM

(

1 +
5c

8M2
+O(c2/M4)

)
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The Bekenstein–Hawking entropy is

SBH =
2πXh

G2
= 4πM2

(

1− 5c

16M2
+O(c2/M4)

)

,

(B6)
where we set G2 = 2 in order to obtain the entropy in 4-
dimensional Planck units where GN = 1. That this is the
correct value of the 2-dimensional gravitational coupling
constant G2 can be seen, e.g., from Eqs. (5)-(8) in [14].
The specific heat is then

C = 2π
w′

w′′

∣

∣

∣

X=Xh

= 4π
Xh(Xh − c/4)(Xh − 3c/2)

−X2
h + 3cXh + 3c2/2

. (B7)

For large black holes, those with M2 ≫ c, the standard
Schwarzschild results are recovered. Thus, black hole
evaporation initially follows rather precisely the semi-
classical approximation. For smaller black holes, how-
ever, the thermodynamic properties deviate appreciably
from the semiclassical results. In particular, in the in-
terval 3c/2 < Xh < c(3 +

√
15)/2, the specific heat is

positive. At Xh = c(3 +
√
15)/2 it has a pole, indicat-

ing a Hawking–Page-like phase transition. In the limit
Xh → 3c/2, the black hole temperature and specific heat
both drop to zero, in accordance with the third law. Spe-
cific heat scales linearly with temperature for small T , as
in a degenerate Fermi gas. The Sommerfeld constant
scales like c3/2, C/T |T→0 ∼ c3/2.
From (B1), we see that the endpoint of Hawking evapo-

ration corresponds to an effective dimension of D = 3, as
expected from the general discussion. The entropy of the
final extremal black hole is S = 3πc/2, and thus depends
on microscopic details. A singularity occurs at X = c/4,
corresponding to the universal result D = 2. This exam-
ple not only realizes the general features discussed in the
body of the paper, but also provides the first concrete
dilaton gravity model for an evaporating Schwarzschild
black hole with bounded Hawking flux, and indeed re-
covers the end state predicted in [15].
We can also compare the effective dimension (B1) to

the estimate of the spectral dimension in appendix A.

1 10 100 1000 104 105 106
z

0.85

0.90

0.95

1.00

Dspec

D HXL

FIG. 2: Ratio Dspec/D(X)

There, we showed that if the spectral dimension varies
slowly, it is approximately given by equation (A4). From
the solution for the dilaton (12) with the function Q(X)
as in (B3), we have

r =

√
c

16

[√
z − 1

(

8 +
9

z
− 2

z2

)

− 15 arctan
√
z − 1

]

,

(B8)
where z = 4

cX is a rescaled dilaton field, and the integra-
tion constant is chosen so that r = 0 at the singularity.
Hence, again using (12), we have

Dspec =
1

4

1

(z − 1)2

[

16z2 − 7z + 6− 15z2
arctan

√
z − 1√

z − 1

]

.

(B9)

It is easy to check that Dspec approaches four for large
X , and that it is nonsingular at z = 1 (i.e., X = c/4), ap-
proaching two. Figure 2 shows the ratio Dspec/D(X) as
a function of z in a log-linear plot. The ratio is nearly one
for the entire range, with a maximum deviation of about
15% around z = 15, supporting our heuristic arguments
in the body of this paper.
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