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We discuss a new ringdown frequency mode for vacuum perturbations of the Kerr black hole. We
evolve initial data for the vacuum radial Teukolsky equation using a near horizon approximation,
and find a frequency mode analogous to that found in a recent study of radiation generated by a
plunging particle close to the Kerr horizon. We discuss our results in the context of that study.
We also explore the utility of this mode by fitting a numerical waveform with a combination of the
usual quasi-normal modes (QNMs) and the new oscillation frequency.

I. INTRODUCTION

Black holes are born when a massive star exhausts
its nuclear burning processes, leading to a runaway col-
lapse where gravity dominates over all other interactions.
They can also be produced by the merger of binary sys-
tems containing compact stellar remnants, such as neu-
tron stars or smaller black holes. Stellar collapse and
binary mergers resulting in black holes are astrophysical
processes where it is expected that gravitational effects
are strong, resulting in regions of high curvature. Obser-
vations of such processes would provide a strong test of
General Relativity.

Gravitational wave astronomy will provide a power-
ful tool for investigating astrophysical processes involv-
ing highly curved regions of spacetime. In the absence of
external fields and matter, black hole binary mergers are
completely invisible in the electromagnetic spectrum, and
no light can reach observers from the interior of a mas-
sive star undergoing core collapse. In these situations
gravitational waves are expected to carry away as much
as a few percent of the total mass energy of the system,
and can provide direct information about these otherwise
unobservable events (see e.g [1]).

In this study, we focus on the gravitational wave sig-
nal produced in the final stages of the birth of a black
hole, when the gravitational waves can be described using
linear perturbation theory on the Kerr spacetime. Mea-
surement of such waves could provide a key test of the so
called “No-Hair Theorem” of GR. The No-Hair Theorem
is the statement that stationary black hole spacetimes
are described completely using only a few parameters,
namely mass, spin, and electric charge. This theorem
has been proved for the case of Einstein-Maxwell black
hole solutions, through the uniqueness theorem for the
Kerr-Newman black holes [5]. Thus, when a black hole is
born in a merger or stellar collapse, the resulting object
must radiate away all of its multipole moments ℓ ≥ 2
over the course of a ringdown phase. This phase involves
emission of gravitational waves in a well known spec-
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trum of exponentially decaying frequency modes, called
the quasi-normal modes (QNMs) [2–4], and also late time
“tails” which have a power-law fall-off in time. Observed
deviation from QNM oscillation in the ringdown phase
would be indicative that the spacetime is not represented
by perturbations on a Kerr spacetime, and so would be
a violation of the No Hair Theorem [6–9].

In addition to this test, detailed study of QNM ring-
down is a key component in detection of gravitational
waves in the first place. Accurate theoretical and numer-
ical gravitational waveforms are necessary for the suc-
cess of the method of matched filtering, which will be
used to extract the faint signal from the noise in these
experiments. Matched filtering uses a gravitational wave
template to filter the noise and determine if the wave
is present. Accurate modeling of the ringdown phase is
then necessary to build useful theoretical templates.

In this study we focus on black hole mergers, which
provide a cleaner system with definite numerical predic-
tions, and for which the possibility of detection is higher.
The recent strides in numerical relativity [10] have al-
lowed several groups to solve the problem of binary inspi-
ral and merger completely for the first time (see [11, 12]
for recent reviews). Such simulations have provided enor-
mous insight into binary mergers, and indeed they can
serve as a test bed for the theory of black hole perturba-
tions, in addition to providing complete theoretical grav-
itational wave templates. However, the computational
expense of such simulations prohibits their use in gener-
ating a large bank of templates for use in matched filter-
ing. As such, a three stage, semi-analytic approximation
scheme has been developed to treat binary inspirals. This
method has the advantage of reducing the computational
expense for template generation. Also, analytic methods
help to build intuition into the physical processes of the
merger.

The first stage is the long, quasi-static decay of the
orbit of the binary, which is treated using the Post New-
tonian approximation to GR. The next phase is the rapid
merger of the binary, requiring full numerical treatment
(though various methods have been employed to approx-
imate the entire merger, e.g. [13, 14]). Finally, once the
two compact objects are surrounded by a common hori-
zon, the system can be approximated by the evolution
of perturbations of the final Kerr spacetime. The radia-
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tion generated in this phase is governed by the Teukolsky
equation [15]. The QNM frequencies are given by the al-
lowed spectrum of the Teukolsky equation, when physi-
cally appropriate boundary conditions are imposed. The
QNMs are located at the poles in the Green’s function
of the radial Teukolsky equation, and are found using a
variety of methods (see e.g. [4] for a recent review).
Generally, it has been assumed that the QNMs make

up the entire spectrum of oscillations during the ring-
down phase after merger. Here we seek a new frequency,
characterized by the properties of the Kerr horizon. We
are inspired by a study by Mino and Brink [16], which
investigated the radiation of a point particle falling into
a Kerr black hole, using a near horizon expansion to find
the radiation analytically. As the infalling particle ap-
proaches the horizon, its trajectory in Boyer-Lindquist
coordinates asymptotes to pure angular motion around
the black hole with frequency ΩH ,

ΩH =
a

2Mr+
, r+ =M +

√

M2 − a2 . (1)

Here a is the spin parameter, M is the mass, and r+ is
the Boyer-Lindquist radius of the outer horizon. From
the viewpoint of an observer at infinity, the particle is
frozen at the horizon, co-rotating with it and sourcing
radiation at its rotation frequency. Calculations by Mino
and Brink show that the radiation arrives at future null
infinity with an exponential decay,

Ψ4 ∼ e−imΩH t−gH t . (2)

Here Ψ4 encodes the out-going radiation, as discussed
fully in Section II, and m is the azimuthal quantum num-
ber of the radiation. The decay rate gH is the surface
gravity, given by

gH =

√
M2 − a2

2Mr+
. (3)

The frequency here does not depend on details of
the particle’s energy and momentum, because the par-
ticle’s late-plunge trajectory is essentially universal in
the Boyer-Lindquist coordinate system. This suggests
that this oscillation mode, the “horizon mode,” may be
more general than this single case considered by Mino
and Brink. If we take the naive point of view that the
late stages of the merger can be approximated by gravi-
tational perturbations falling onto a final black hole, then
we have a situation where the infalling perturbations will
source outgoing waves like point particles. Though this
viewpoint is crude, it does suggest a search for this new
frequency mode in post-merger ringdowns.
In this paper we will argue for the existence of a hori-

zon mode (HM) with a frequency of mΩH and a decay
constant which we find to be an integer multiple of gH .
We find that the particular decay rate depends on our
model for how the spacetime transitions from the non-
linear merger into the regime of first order perturbations
on the Kerr spacetime.

This paper is organized as follows: Section IIA pro-
vides a simple argument for the presence of this fre-
quency. In Section IIB we derive this mode through a
direct construction, using a simple model for the transi-
tion from merger to ringdown. In Section IIC, we explore
the consequences of a different model for the transition.
In Section III, we reconcile our results with those of Mino
and Brink. In order to test the utility of this new HM,
in Section IV we use the HM in combination with the
QNMs to fit a waveform generated by full numerical gen-
eral relativity, and compare fits that include the HM to
fits with the QNMs alone.

II. THE NEAR HORIZON APPROXIMATION

We first present a heuristic argument for the presence
of a HM analogous to that of equation (2) in the solu-
tions to the Teukolsky equation. We then derive the HM
by evolving initial data for the Teukolsky equation in a
near horizon approximation. Finally, we investigate the
consequences of a different model for the transition of the
spacetime into the regime of linear perturbation theory.

A. Simple Argument for a Horizon Mode

In the Boyer-Lindquist (BL) coordinate system, the
components of the Weyl tensor which represent out-going
perturbations of the Kerr spacetime are represented com-
pactly by the Newman-Penrose curvature scalar,

Ψ4 = Cαβγδn
αm̄βnγm̄δ . (4)

Note that we use a metric signature of (− + ++),
and use the appropriate conventions of [17] for Newman-
Penrose (NP) quantities such as Ψ4. We use the Kinner-
sley null tetrad [18],

lµK =

(

r2 + a2

∆
, 1, 0,

a

∆

)

, (5)

nµ
K =

1

2Σ

(

r2 + a2,−∆, 0, a

)

, (6)

mµ
K =

−ρ̄√
2

(

ia sin θ, 0, 1,
i

sin θ

)

(7)

where

∆ = r2 − 2Mr + a2 , (8)

ρ = − 1

r − ia cos θ
, (9)

Σ = r2 + a2 cos2 θ , (10)

and the overbar represents complex conjugation.
With these choices, Ψ4 satisfies a separable linear wave

equation [15], and can be written as

Ψ4(t, r, θ, φ) = ρ4
∫

dω
∑

ℓm

e−iωt+imφRℓmω(r)Sℓmω(θ) .

(11)
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Here, Sℓmω(θ) are the spin-weighted spheroidal harmon-
ics [19, 20], with the appropriate spin weight for Ψ4,
s = −2. In the limit ω → 0, they reduce to the spin
weighted spherical harmonics −2Yℓm(θ, φ). The radial
function Rℓmω(r) is the solution to the radial Teukolsky
equation [15]. Note that Ψ4 vanishes in the background
Kerr spacetime, and its perturbed value is independent
of tetrad perturbations and gauge transformations.
We can see the relationship between the scalar Ψ4 and

the outgoing gravitational waveform via its asymptotic
form near future null infinity. In this limit, for asymp-
totically flat spacetimes (see, e.g. [21]),

Ψ4(r → ∞) = −∂2t (h+ − ih×) . (12)

Here the + and × indicate the polarization of the gravi-
tational waves.
In the BL coordinates, using the Kinnersley tetrad, the

asymptotic behavior near the horizon of the two homo-
geneous radial solutions are

Rℓmω(r) ∼







eikr
∗

out-going

∆2e−ikr∗ in-going
, (13)

with k = ω−mΩH . Together with the separation of Ψ4,
equation (11), these solutions are associated with out-
going and in-going radiation at the horizon. The tortoise
coordinate r∗ is defined by dr∗/dr = (r2 + a2)/∆. Note
that r∗ → −∞ as r → r+.
One of these two solutions is selected out as unphysical,

based on its behavior near the event horizon. Here we
repeat an argument first presented by Teukolsky [15]. We
demand that fields neither vanish exactly nor diverge at
the horizon when measured by a physical observer. Near
the horizon, the trajectory of any freely falling observer
will approximately match that of an ingoing null geodesic
(see e.g. [16, 22]), independent of the observer’s energy
or angular momentum, with

t+ r∗ = const, θ = const, φ = ΩHt . (14)

This means that for distant observers, the infalling tra-
jectory does not appear to enter the horizon, but instead
asymptotes to it while circulating around the horizon
with a constant frequency. A more natural set of co-
ordinates is ingoing Kerr coordinates, (v, r, θ, φ̃), where

dv = dt + dr∗, and dφ̃ = dφ + a dr∗/(r2 + a2). Ingoing

null geodesics lie on lines of constant v and φ̃.
In this ingoing coordinate system, the metric does not

become singular at the horizon. However, even in these
coordinates, the Kinnersley tetrad used to define Ψ4 be-
comes singular at the horizon. This can be repaired by
using a Lorentz transform to boost into the reference
frame of an infalling observer who carries a nonsingular
tetrad, namely

lin =
∆

2(r2 + a2)
lK , nin =

2(r2 + a2)

∆
nK (15)

Here the subscript “in” indicates the regular ingoing
tetrad. The tetrad, written in the ingoing Kerr com-
ponents, is

lµin =

(

1,
∆

2(r2 + a2)
, 0,

a

r2 + a2

)

,

nµ
in =

(

0,−r
2 + a2

Σ
, 0, 0

)

,

mµ
in =

−ρ̄√
2

(

ia sin θ, 0, 1,
i

sin θ

)

. (16)

With this tetrad, the physical observer measures a cur-
vature scalar of

Ψin
4 =

[

2(r2 + a2)

∆

]2

Ψ4 . (17)

As a consequence, the two radial solutions in equa-

tion (13) correspond to Ψin
4 ∼ e−iωveimφ̃ and Ψin

4 ∼
∆−2e−iωveimφ̃e2ikr

∗

. The second diverges at the hori-
zon, and so is selected as unphysical. In other words,
if waves emerge from the horizon, then the ingoing ob-
servers will see a diverging curvature due to blueshift
effects. Note that while it is a particular observer that
carries the tetrad of equation (16) near the horizon, these
general results hold for all physical observers. This is be-
cause the tetrad that another physical observer carries
can be related to that in equation (16) through nonsin-
gular Lorentz transformations.

However, if the frequency ω is complex, this divergence
can be removed. To see this, we let ω = mΩH − iγ, and
seek an appropriate γ (the real part of the frequency is
chosen so that the observer does not measure increasingly
rapid oscillations when approaching the horizon). We
note that near the horizon, ∆ ∼ e2gHr∗ . For the physical
observer, then,

Ψin
4 ∼ exp

(

−iωv + imφ̃− 4gHr
∗ + 2γr∗

)

. (18)

We see from this that if

γ = 2gH , (19)

this solution remains regular at the horizon, and the so-
lution decays along the observer’s worldline in just such
a way that the growth is compensated for. This par-
ticular frequency is selected out by a physically allowed
solution of the Teukolsky equation, and so we must con-
sider its place in the usual QNM spectrum. Modes with
γ > 2gH decay exponentially for the physical observer.
In this sense, the decay rate of equation (19) gives the
least damped, physically reasonable mode in this simple
argument.
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B. The Near Horizon Limit: The Σ Boundary

Model

With our heuristic argument in hand, we now derive
the HM using a specific ansatz. In order to keep our
results relevant to the problem of compact binary inspi-
ral, we consider the following model. We imagine that to
the future of some spacelike hypersurface Σ, the space-
time can be described with linear perturbation theory on
the Kerr spacetime, while to the past of Σ the space-
time may be nonlinear. We denote Σ by setting the
Boyer-Lindquist time coordinate t = 0. The past of Σ
represents the inspiral and merger phases of binary co-
alescence. To the future of Σ we can use the Teukolsky
equation to evolve initial perturbations on Σ forward. A
similar ansatz has been used in the Close Limit approach
[23], and Lazarus project [24] which used numerical inte-
gration of the Teukolsky equation to evolve initial data
on an initial time slice [24, 25]. We refer to our model as
the Σ boundary model.
Given this ansatz, we evolve initial data ψ|t=0 ≡

ρ−4Ψ4|t=0 and ∂tψ|t=0, using the Green’s function. The
full details of the analysis are presented in Appendix A.
A near horizon expansion allows us to obtain part of the
evolution analytically. Physically, we postulate that just
after the merger of the binary, the perturbations are con-
centrated in a small region near the horizon, so that the
initial data used in the Green’s function evolution only
has support in a small region near the horizon. This
expansion allows us to use the asymptotic form for the
Green’s function, and to keep terms only to first order
in ǫ ≡ (r − r+)/r+ ≪ 1. While we focus on the physical
picture where the perturbations are concentrated near
the horizon, our results hold for the evolution of the ini-
tial data which is near the horizon even if the data on
the initial surface extends to large r. In addition, due
to redshift effects, this finite region near the horizon pro-
duces (decaying) radiation over an infinite region of null
infinity.
Specifically, let ψ|t=0 and ∂tψ|t=0 be nonzero only be-

tween r+ and (1 + ξ)r+, with ξ ≪ 1. We truncate the
integrals of the Green’s function over the initial perturba-
tion to this small region. To first order in distance from
the horizon, ∆ ≈ 2Mr+κǫ, with κ ≡

√

1− a2/M2. From
Appendix A, equation (A23), we have that Ψ4 takes the
form of equation (11) with the radial function Rℓmω(r)
given to leading order in ǫ by equation (A24),

Rℓmω(r) ≈ −
∫ (1+ξ)r+

r+

dr′
[

βℓmω(r
′) + iωαℓmω(r

′)

2Mr+(κǫ)3

+
(2Mκ+ ima)αℓmω(r

′)

2(Mr+)2(κǫ)3

]

G̃ℓmω(r, r
′) ,

(20)

where the functions αℓmω(r) and βℓmω(r) can be found
from the initial data, using equations (A15), (A16),

(A21), and (A22). The function G̃ℓmω(r, r
′) is the fre-

quency domain radial Green’s function.

In order to evaluate this expression, we insert the ex-
plicit form of the radial Green’s function,

G̃ℓmω(r, r
′) =

1

Wℓmω

{

Rup
ℓmω(r) R

in
ℓmω(r

′) r′ < r

Rin
ℓmω(r) R

up
ℓmω(r

′) r′ > r
.

(21)

The functions Rup
ℓmω and Rin

ℓmω are two homogeneous solu-
tions to the radial Teukolsky equation, with the up-mode
(no radiation from past null infinity) and in-mode (no
radiation from the past horizon) boundary conditions,
respectively. They have the asymptotic forms

Rin
ℓmω(r) →

{

Btrans
ℓmω ∆2e−ikr∗ r → r+

Bref
ℓmωe

iωr∗ +Bin
ℓmωr

−1e−iωr∗ r → ∞ ,

(22)

Rup
ℓmω(r) →

{

Cup
ℓmωe

ikr∗ + Cref
ℓmω∆

2e−ikr∗ r → r+
Ctrans

ℓmω r
3eiωr∗ r → ∞ ,

(23)

where the Wronskian Wℓmω is given by Wℓmω =
2iωBin

ℓmωC
trans
ℓmω .

Since we are interested in the waves at infinity, r →
∞, we insert the appropriate asymptotic expression for
Rin

ℓmω. Also, since the integral extends only over the
near horizon region, we insert the asymptotic expression
of Rin

ℓmω → Btrans
ℓmω ∆2e−ikr∗ ≈ Btrans

ℓmω (2Mr+κǫ)
2e−ikr∗ .

Thus,

Rℓmω(r → ∞) ≈ Btrans
ℓmω

2iωBin
ℓmω

r3eiωr∗Zℓmω , (24)

Zℓmω = − 2

κ

∫ (1+ξ)r+

r+

dr ǫ−1e−ikr∗
[

Mr+βℓmω(r)

+(iMωr+ + 2Mκ+ ima)αℓmω(r)

]

.

(25)

In order to complete the integration, we need to know
how the initial data behaves to leading order in ǫ. We can
write to leading order αℓmω(r) ≈ α0

ℓmωǫ
n and βℓmω(r) ≈

β0
ℓmωǫ

p. We find the leading order powers n and p by
essentially repeating the argument given in Section IIA,
with some additional care.
Here we cannot follow a single observer who falls past

the horizon, since we wish to know the behavior of Ψ4

on the initial slice Σ. We consider instead a family of
accelerated observers who cross the surface t = 0 at a
variety of radii, extending all the way to the horizon but
not penetrating it. We choose the four-velocities of these
observers at this initial surface to vary with r, u(r), such
that all members of this family carry the regular tetrad
(16). These observers measure an initial perturbation
in their own frames, and for an observer at some r the
measured perturbation is related to that expressed in the
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Kinnersley tetrad by Ψin
4 = [2(r2 + a2)/∆]2Ψ4 ∼ ǫ−2Ψ4.

Since all the observers are physical, we expect that the
perturbation they measure does not diverge as we take
the limit r → r+, moving along the family of observers.
However, this requires that Ψ4 ∼ ǫ2. Thus, we require
n = 2, p = 2 on this interval.
Inserting this into (25) we have

Zℓmω = −
[

Mr+β
0
ℓmω + (iMωr+ + 2Mκ+ ima)α0

ℓmω

]

× 2

κ

∫ r+(1+ξ)

r+

dr ǫ e−ikr∗

=

[

Mr+β
0
ℓmω + (iMωr+ + 2Mκ+ ima)α0

ℓmω

]

× 2

κ

∫ r+(1+ξ)

r+

dr ǫ1−ikr+/κ . (26)

Focusing on the integral, which we denote I, we have

I =
iκ

ω − (mΩH − 4igH)
e(2−ik/2gH ) ln ξ . (27)

Here, there is a pole in the denominator which will select
out the frequency

ωH = mΩH − 4igH , (Σ Model) (28)

when equation (11) is integrated over ω.
Combining equations (11), (24), (26), and (27), we in-

tegrate over ω. We close the contour in the lower half
plane, selecting out the poles of equation (24) by the
residue theorem. The zeros of Bin

ℓmω comprise one set of
poles in the lower half plane, and these poles give the
usual QNM frequencies. We wish to focus on the con-
tribution from the additional pole at ωH , and so from
here we ignore the poles coming from Bin

ℓmω. Similarly,
we will not consider here the influence of the pole at
ω = 0 (actually part of a branch cut along the negative
imaginary axis, which generates the late-time power-law
tails). Also, we will not consider the possible poles in
the terms α0

ℓmω and β0
ℓmω, which receive their frequency

dependence from the projection of the initial data onto
the spheroidal harmonics.
This integral converges for t − r∗ + ln ξ/2gH > 0;

otherwise, we must close the contour in the upper half
plane and the integral vanishes. Noting that as r → ∞,
ρ→ −r−1, we have

Ψ4 =
1

r

∑

ℓm

Z̃ℓmωe
−iωH(t−r∗)+imφ Sℓmω(θ)

×H
(

t− r∗ +
ln ξ

2gH

)

, (29)

Z̃ℓmω =
2πBtrans

ℓmω

ωHBin
ℓmω

[

(MωHr+ +ma− 2iMκ)α0
ℓmω

−iMr+β
0
ℓmω

]

, (30)

where H is the unit step function. In the above, all fre-
quencies are to be evaluated at ωH from (28). As ξ ≪ 1,
the waves at infinity appear at late retarded times. This
sharp turn on of the wave is an artifact of our trunca-
tion of the integral at (1 + ξ)r+. A smoother fall-off of
the initial data with increasing radii would result in a
smoother turn on of the wave at infinity. These waves
at early times are sourced by initial data on Σ which
cannot be evolved using the near horizon approximation.
We see also that the waves continue to reach infinity for
all retarded times after the turn on. As mentioned pre-
viously, this is due to redshift effects near the horizon,
which stretch the radiation from the finite near horizon
region out over an infinite region of null infinity.

C. The Characteristic Boundary Model

While the frequency of the radiation in equation (27)
matches the result of our heuristic argument, the decay
rate does not. The decay rate is determined by the radial
behavior of the initial data, as we can see in equations
(26) and (27). In order that ωH = mΩH − 2igH , the
initial data would need to behave as Ψ4|t=0 ∼ ǫ, which
we have argued against based on our requirement that
physical observers near the horizon measure nonsingular
initial data. However, a change of our ansatz shows that
the initial data can be proportional to ǫ and still represent
physical perturbations. In this case the surface bounding
the regime of linear perturbation theory is an ingoing null
surface, instead of a surface of constant t. This differs
from the Σ boundary model, and so differs from the Close
Limit Approach. We will refer to this second model as
the characteristic boundary model.
As the spacetime transitions into the linear regime, the

nonlinear perturbations radiate away towards infinity or
down into the black hole. We imagine that the regions
of nonlinear evolution are bounded by characteristics of
the linear wave equation. This is a more physically mo-
tivated assumption than a transition in spacetime prop-
erties along the entire surface Σ. The ingoing character-
istics have a trajectory r(t) = r+(1 + e−2gH(t−t0)) [16],
where t − t0 ≫ 1. The comparison of these two models
in both BL (t, r) coordinates and the tortoise (t, r∗) co-
ordinates is given in Figure 1. In the (t, r∗) coordinates,
we see that the horizon is pushed to r∗ → −∞., and that
the initial data of the Σ model is stretched out onto an
infinite interval in r∗. We see in both figures that the
horizon is hidden behind the boundary characteristics,
and our previous argument for the radial dependence of
the initial data on Σ no longer holds. We must find a
new way to determine the r dependence of initial data in
this model.
We will again evolve initial data on the constant time

slice Σ, this time with support only on a small in-
terval outside the boundary characteristics. At time
t = 0, we set the inner boundary of the initial data
set to be at r+(1 + ξ1), and the outer boundary at
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FIG. 1: (color online) Comparison of the Σ and characteristic
models. In both figures, the trajectory of the observer dis-
cussed and the characteristic boundary surface are plotted,
with (θ, φ) suppressed. The thick line is the interval where
the initial data is nonzero, and the two points are ξ1 and ξ2,
respectively. The shaded regions correspond to the nonlinear
regime of each model. Top: Comparison in BL coordinates
of the two models, with the event horizon illustrated. Bot-
tom: Comparison in (t, r∗) coordinates, where the horizon is
pushed to r∗ → ∞.

r+(1 + ξ2). We will use the same physical observers as
before. To first order their trajectories are lines of con-
stant v and φ̃, just like the ingoing boundary character-
istics. The physical observer who passes r+(1 + ξ2) at
t = 0 has a trajectory robs(t) = r+(1 + e−2gH (t−tobs)).
At t = 0 the observer measures an initial perturbation
Ψin

4 ∼ ξ−2
2 Ψ4(robs(0)). At a later time t, the observer

measures Ψin
4 ∼ ξ−2

2 e4gH tΨ4(robs(t)), and so the mea-
sured perturbation grows exponentially in time. How-
ever, the perturbation will also decay in time due to its
evolution. We insist then that the decay be such that this

observer (and similarly, all of the physical observers near
the horizon) do not experience an exponentially growing
perturbation. This will set the behavior of Ψ4 on the
initial surface.
We examine then the perturbation as measured by the

observer along his trajectory. Given data that behaves
as αℓmω = α0

ℓmωǫ
n and βℓmω = β0

ℓmωǫ
n on the initial

surface, we again combine equations (20)- (23), this time
taking the asymptotic limits as r′ → r+ and r → r+. We
focus on the outgoing solution only, since the observer
will not measure the ingoing waves. We find that

Rℓmω(r) ∼ eikr
∗

ω − (mΩH − 2nigH)

×
(

e−2gH(t−tobs)(n−ikr+/κ) − eln ξ1(n−ikr+/κ)

)

.

(31)

Integrating equation (11) with this radial function, and
noting again that for the observer vobs = t + r∗ is con-
stant, so that t = vobs − r∗, we have

Ψ4(robs) ∼ e−imΩHt−4ngH t

[

H(t+tobs)−H
(

2t+
ln ξ1
2gH

)]

.

(32)
For n = 1, the decay of the perturbation along the world-
line of the observer is just enough to cancel the exponen-
tial growth. The initial data on Σ can be taken to be
proportional to ǫ.
With the initial data, we can return our attention to

the perturbations measured at infinity. Repeating the
analysis of Section IIB with this initial data, we have for
r → ∞

Ψ4 =
1

r

∑

ℓm

Z̃ℓmωe
−iωH(t−r∗)+imφSℓmω(θ)

×
[

H

(

t− r∗ +
ln ξ2
2gH

)

−H

(

t− r∗ +
ln ξ1
2gH

)]

,

(33)

with Z̃ℓmω as in equation (30) but with ωH given by

ωH = mΩH − 2igH . (BoundaryModel) (34)

We have recovered the decay rate indicated by the heuris-
tic argument of Section IIA. The difference of step func-
tions here and in equation (32) is again due to the sharp
truncation of the integral at each end of the interval on
Σ. Now the radiation turns off due to the truncation of
the initial data at the boundary characteristic ξ1. At this
retarded time the gravitational radiation would give way
to radiation sourced by the perturbations in the nonlin-
ear region of spacetime on Σ. For this second model it
seems that a method for evolving data along character-
istics would be better suited than evolution from a con-
stant time slice. Such a characteristic evolution has been
presented for the Schwarzschild black hole, for example
in [26]. Others [27] have presented numerical evolution
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of characteristics, again for the Schwarzschild black hole.
Another possible formulation which would be natural in
this context would be the use of an asymptotically hy-
perboloidal spacelike surface in place of Σ, as discussed
in [28].

III. RECONCILIATION WITH THE

MINO-BRINK MODE

In Section IIB and IIC, we saw that the condition
that physical observers measure regular curvature near
the horizon determines the decay rate for the gravita-
tional radiation at infinity. In fact, the mode of Mino
and Brink, with frequency ω = mΩH − igH , has a decay
rate which violates the regularity conditions discussed in
both sections. Its decay rate is too small, for example
compared to equations (28) and (34) with decay rates
γ ≥ 2gH . Thus, although the mode found in [16] moti-
vates our study, the two results are in disagreement. In
this section, we first provide a simple alternative estimate
for the expected decay rate of radiation from a point par-
ticle, using the notation of Newman and Penrose for con-
venience [29]. With this estimate as motivation, we then
find that correction of an error in [16] unexpectedly leads
to the vanishing of the first order mode discussed there.
We conclude that the actual leading order radiation from
an infalling point particle has a decay rate which matches
our characteristic boundary model in Section IIC.

A. Point Particle Radiation in Newman-Penrose

Formalism

We wish to calculate the radiation generated by a
point particle at the last stages of its plunge into a Kerr
black hole. Once again, the radiation is described by
the Teukolsky formalism, this time with the appropriate
source term for the matter content. However, it will turn
out to be convenient to make the near horizon expansion
in the Newman-Penrose formalism, in order to obtain an
estimate for the behavior of the radiation. As we show
in Appendix B, we can write to leading order in ∆ (ǫ)
near the horizon, using the Kinnersley tetrad,

(D̂∆̂ + 4γD̂)Ψ4 ≈ 4πT4 , (35)

where

D̂ = lµK∇µ , (36)

∆̂ = nµ
K∇µ , (37)

γ =
r −M

2Σ
, (38)

and where the source term T4 is given by (B2).

In addition, we can approximate

D̂ ≈ r2+ + a2

2∆
(∂t + ∂r∗ +ΩH∂φ) ≡

r2+ + a2

2∆
L+, (39)

∆̂ ≈ r2+ + a2

2Σ
(∂t − ∂r∗ +ΩH∂φ) ≡

r2+ + a2

2Σ
L−, (40)

and write

M2r2+(L+L− + 4gHL+)Ψ4 ≈ 4πΣ∆T4 . (41)

In absence of T4, this directly gives the asymptotic ingo-
ing and outgoing waves of equation (13). Let us specialize
Ψ4 to a particular azimuthal quantum number, m, and
we have

L± = ∂t ± ∂r∗ + imΩH . (42)

We turn now to T4. We expand the stress-energy ten-
sor of a point particle in terms of the azimuthal quantum
number m to match the expansion of Ψ4 implicit in (42),
which gives

T µν = µ
uµuν√−g

1

ut
δ(r − r(t))δ(θ − θ(t))eim(φ−φ(t)) (43)

= µ
uµuν

utΣ

dr∗

dr
δ(r∗ − r∗(t))δ(χ− χ(t))eim(φ−φ(t)) ,

(44)

Here we have defined χ ≡ cos θ, and used the properties
of the delta function. The mass of the particle is given by
µ. If we define v = t+ r∗ and u = t− r∗, and once again
use the properties of the delta function, we can write

δ(r∗ − r∗(t)) = δ

(

u− v

2
− r∗

(

u− v

2

))

(45)

= 2
δ(v − v0(t))

du/dt
, (46)

where v0(t) is the value at which the argument of the
delta function in (45) vanishes, which is at first order
simply the value v0 = const to which the trajectory
asymptotes. Also, to leading order the trajectory will
have t = −r∗, so du/dt = 2 to leading order.
We have then that

T µν = µ
2uµuν

utΣ

dr∗/dr

du/dt
δ(v−v0(t))δ(χ−χ(t))eim(φ−ΩH t) .

(47)
We must now project T µν onto the null Kinnersley ba-
sis in order to find T4, see (B2). This will result in a
projection of the four velocity onto the Kinnersley basis,
for example with un = uµn

µ, and in this basis some of
the components are vanishing or divergent as r → r+ (as
seen in Section IIA). In order to examine the leading or-
der behavior near the horizon, it is then best to express
the four velocity components in terms of the regular, in-
going basis, related to the Kinnersley tetrad by (15). In
the ingoing basis, we have

u = ulinlin + uninnin + uminmin + um̄inm̄in , (48)
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with ul,n,m,m̄
in all smooth and finite throughout the trajec-

tory — including on and within the future horizon. The
four velocity in the Kinnersley basis can be expressed as

u = ullK + unnK + ummK + um̄m̄K (49)

=
∆

2(r2 + a2)
ulinlK +

2(r2 + a2)unin
∆

nK + uminmK

+um̄inm̄K . (50)

Finally, we lower the tetrad indices on the components
of the four velocity using the null metric

η̂ab =







0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0






. (51)

This gives us

unun = ∆2(ulin)
2 , (52)

unum̄ = −∆ulinu
m
in , (53)

um̄um̄ = (umin)
2 . (54)

Let us first consider Tm̄m̄, which gives the dominant
contribution T4m̄m̄ to T4,

T4m̄m̄ ≈ −(∆̂ + 2γ)∆̂Tm̄m̄ (55)

It turns out that to first order ∆̂Tm̄m̄ = 0. We can see
this by noting that at first order

Σut ≈ (r2 + a2)2

∆
(E − ΩHLz) (56)

Tm̄m̄ ≈ µ
(umin)

2eim(φ−ΩH t)

2Mr+(E − ΩHLz)
δ(v − v0)δ(χ− χ0) ,(57)

with χ0 = cos θ0 the value of χ to which the particle
asymptotes to at the horizon. Acting on this with ∆̂
from (40), we get

∆̂Tm̄m̄ ∼ r2+ + a2

2Σ
(−imΩHTm̄m̄ + imΩHTm̄m̄) = 0 .

(58)
So we see that

∆̂Tm̄m̄ ∼ ∆. (59)

Physically, this is because ∆̂ takes its derivative almost
along the direction of motion, along which Tm̄m̄ does not
change to first order. This means that the exact con-
tribution of Tm̄m̄ to T4 must be re-examined with other
terms included, and its contribution is in fact at the order
of Tm̄n. Thus, we expect

(L+L− + 4gHL+)Ψ4 ∼ ∆2δ(v − v0) (60)

We have a simple scenario: if we integrate across the
v = v0 surface, removing the derivatives ∂v = (∂t+∂r∗)/2

from the left hand side, we will have a u-dependent Ψ4,
which obeys

Ψ4 ∼ ∆2 ∼ e4gHr∗ ∼ e−4gHt . (61)

Here we have recovered the decay rate near the horizon
discussed in Section IIC. This indicates that the corre-
sponding decay rate of the waves as r → ∞ is that of
equations (33)-(34). However, this argument lacks the
detailed calculations of Mino and Brink, who found a
mode with a slower decay rate. Under examination, how-
ever, it is an error in [16] which leads to a mode with a
spuriously low decay rate. We discuss this in the next
section.

B. Eliminating the Leading Order Frequency Mode

of Mino and Brink

We turn now to the study by Mino and Brink, which
we abbreviate as MB. In this study, the source term is
evolved using the Green’s function method much as Sec-
tion II of our study, resulting in an integrand for the
integral (21) which has a pole at ω = mΩH − igH , i.e.
equation (MB 3.7). The pole then selects out this os-
cillation frequency for the outgoing radiation at infinity.
However, it turns out that this pole is canceled out by
terms in the amplitude Z̃ℓmω, when an error in MB is cor-
rected for. We find this error in going from (MB A14) to
(MB B4). The first equation gives a piece of the Fourier
decomposition of the source term T4, and is drawn from
[30], equations (2.21) and (2.25) therein.
Taking the leading order contribution of (MB A14), we

find that (MB B4) should read at leading order

Am̄m̄0 → κa2EISCO

4
√
2πMr3+

[

−ikr+
κ

+

(

kr+
κ

)2]

×r+ − ia cos θ0
r+ + ia cos θ0

sin2 θ0Sℓmωǫ
−1 , (62)

where θ0 is the value of θ that the point particle asymp-
totes to on the horizon, and EISCO contains information
on the particle’s constants of motion. This equation dif-
fers from MB by the factor of −1 in front of the term
ikr+/κ. When this difference is accounted for, we have
for (MB 3.6)

Z̃ℓmω ∝ (ω −mΩH + igH)(ω −mΩH + 2igH) . (63)

The first root of Z̃ℓmω then cancels the pole in the de-
nominator of (MB 3.7). It also appears that the second
root removes the frequency mode our rough argument in
Section IIIA suggests. However, (63) holds only to first
order, and at second order there are additional terms not
proportional to these roots. While a second surprising
cancellation can only be ruled out by a careful study of
the MB analysis at second order (or an equivalent for-
mulation), it would seem unlikely that the next order
of frequency mode would vanish as well. Such a careful
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FIG. 2: (color online) A comparison of the real and imag-
inary parts of ωH (dashed) and the first four QNMs, with
ℓ = 2 ,m = ±2 (solid).
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FIG. 3: (color online) The section of the numerical waveform
given in Scheel et. al. over which t0 ranges in the overlap
integral. Here we give both the real (solid) and imaginary
(dashed) portions of M0rΨ4.

study goes beyond the scope of this paper. However, in-
vestigation does indeed show that at second order there
is a HM with a decay rate of 2gH [31].

IV. NUMERICAL STUDY

In the previous sections we argued for the presence of
a HM in the ringdown spectrum. In this section we test
a numerical waveform for evidence of this mode. For this
study we use the publicly available waveform generated
by Scheel et. al. [32] by the evolution of an equal mass
black hole binary through merger and ringdown. First
we compute the overlap between the final portion of the
numerical waveform and either a combination of QNM
oscillations, or a combination of QNM oscillations and
the HM, in order to see if the given combination is a
good fit to the waveform. Next, we use a best-fit of the
overlap to extract the mass and spin of the black hole
from the waveform. Again, we compare the extraction
using just the QNMs with an extraction which includes
the HM.

For our HM, we focus on the less damped of the two fre-
quencies discussed in Section II, ωH = mΩH−2igH . This
mode agrees with the frequency mode from the point par-
ticle plunge discussed in Section III, and also from the
more physically motived model of the perturbed black
hole’s transition into the linear perturbation regime, dis-
cussed in Section IIC. Throughout this section we will
discuss only the dominant ℓ = 2, m = 2 mode in the
spherical harmonic decomposition of the waveform. Note
that, because of the rotation of the Kerr black hole, there
is a Zeeman-like splitting of the QNMs into modes which
corotate with the black hole and modes which counter-
rotate with the hole. The counter-rotating mode frequen-
cies are equivalent to the ℓ = 2, m = −2 QNM fre-
quencies, but with a negative real part of the frequency,
ωCR
nℓm = −ω̄nℓ−m (see [7] for a detailed discussion). Each

additional overtone we consider in the numerical analysis
in the following sections thus adds two distinct modes.

Figure 2 compares the real and imaginary parts of ωH

with those of the first four QNM for ℓ = 2, m = 2 (coro-
tating modes) and ℓ = 2, m = −2 (counter-rotating
modes), as a function of a/M . These QNM frequency val-
ues are drawn from [33] and calculated using the methods
discussed in [4], whose values are used throughout this
study. Note also that while many studies refer to n = 0 as
the slowest decaying QNM, here we count overtones from
n = 1. The corotating QNMs generally have a higher fre-
quency than the HM, and the first two QNMs have slower
decay rates. The third corotating QNM has a compara-
ble decay rate, and the fourth decays faster than the HM.
Meanwhile, the counter-rotating QNMs decrease in fre-
quency with increasing a/M , until they oscillate slower
than the HM. The decay rates of the counter-rotating
QNMs also remain nearly constant over the whole range
of a/M , and so in this case the third and fourth QNMs
both decay more quickly than the HM over a large range
of a/M . As a/M goes to zero, ωH ceases to drive oscil-
lations, and the HM simply decays exponentially. Also,
we see that as a/M goes to zero, the degeneracy between
co- and counter-rotating modes is restored. Finally, in
Table IV we give numerical values for the QNMs, eval-
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(n, ℓ, m) MωQNM

(1,2,2) 0.52670 + 0.08129i

(2,2,2) 0.51486 + i0.24581i

(3,2,2) 0.49296 + 0.41513i

(4,2,2) 0.46387 + 0.58873i

(5,2,2) 0.43291 + 0.76035i

(1,2,-2) 0.31072 + 0.08874i

(2,2,-2) 0.27312 + 0.27733i

(3,2,-2) 0.21198 + 0.49963i

(4,2,-2) 0.15865 + 0.75811i

(5,2,-2) 0.12707 + 1.03031i

m MωHM

2 0.37177 + 0.43089i

TABLE I: Values of the QNMs and HM evaluated at the spin
parameter af/Mf = 0.68646 appropriate for the final black
hole of [32].

uated at af/Mf for the final, merged black hole whose
spectrum we study [32] (in units of the initial ADM mass
of the binary), as well as the value of the HM at this spin
parameter.

A. Comparison of Overlaps

Consider the final portion of the numerical waveform,
ψ(t)H(t − t0), with H(t) the unit step function, and t0
a constant which we consider to be the time where the
ringdown phase begins. We wish to see how well a wave-
form made from a linear combination of damped sinu-
soids, ψk = e(−iωk−γk)(t−t0)H(t− t0), can be made to fit
ψ. Since we do not know a priori at what point in the
numerical waveform the ringdown phase begins, we vary
t0 as a free parameter in our study. This allows us to see
where in the waveform our combination of sinusoids fails
to be a good fit; at sufficiently early t0 we do not expect
a particular combination of ψk to model the chosen sec-
tion of the waveform accurately. However, a combination
of ψk that fits the waveform well over a range of t0 that
includes the early parts of the ringdown more accurately
represents the frequency spectrum of the ringdown than
another set of damped sinusoids that first fails at a larger
value of t0.

For two waveforms s1(t) and s2(t) cut off at t0, we first
define the inner product

〈s1|s2〉 ≡
∫ +∞

t0

s̄1(t)s2(t)dt . (64)

The overlap, ρ, of two waveforms is given by the magni-
tude of the normalized inner product of the waveforms.
Our goal then is to maximize the overlap of ψ(tr) and

FIG. 4: (color online) Comparisons of 1 − ρmax for overlaps
using just the QNMs (solid) and those which replace one QNM
pair with the HM (dashed). The top panel compares the first
QNM pair (both co-and counter-rotating) with the HM alone.
The second panel compares the first two QNM pairs with the
first QNM pair and the HM. Subsequent panels compare the
first n (n = 3, 4, 5 )QNM pairs with the first n− 1 pairs and
the HM.

the combination
∑

k

αkψk,

ρ2 =

|
〈
∑

k

αkψk|ψ
〉

|2

〈∑
k

αkψk|
∑

k

αkψk〉
=

∑

k,j

ᾱkAkĀjαj

∑

l,m

ᾱlBlmαm
, (65)

where Ak ≡ 〈ψk|ψ〉 , Blm ≡ 〈ψl|ψm〉. This maximum
overlap characterizes how well the ψk can be made to
approximate ψ, given the optimum choice of αk. The
maximization yields1

ρ2max[ψ; {ωk, γk}] =
ĀkB

−1
kj Aj

〈ψ|ψ〉 . (66)

Using this equation to compute ρmax, we take the
first n QNMs (recall that each overtone includes two fre-

1 The Lagrange multiplier method yields ~A ~A†~α = λB~α, with λ

already the extremum. This means λ should be the maximum

eigenvalue of M = B
−1 ~A ~A†. However, since M only has one

non-zero eigenvalue, we have λ = trM = ~A†
B

−1 ~A.
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quency modes, both the co- and counter-rotating modes),
and compute the maximum overlap with the numeri-
cal waveform as a function of the starting time t0. We
then find the maximum overlap using the first (n − 1)
QNMs and the HM. Here, and throughout this section,
we normalize our units by M0, the sum of the initial
ADM masses for the two black holes that merge [32].
In these units, the mass Mf of the final black hole is
given as Mf/M0 = 0.95162 ± 0.00002, and its spin af
by af/M0 = 0.65325 ± 0.00004. For large values of t0,
only the least damped mode contributes to the waveform,
and so any ψk that includes the first QNM will provide
ρmax ≈ 1. Therefore it is useful to investigate 1 − ρmax.
Figure 3 plots the segment of the waveform over which we
range t0 for the overlap calculations. Figure 4 compares
1−ρmax on a log scale for overlaps using the QNMs alone
to those including the HM. In the context of gravitational
wave signals, it is preferable to have a good overlap for
t0 close to the peak of the signal. This is when the grav-
itational wave signal is strongest, and also the point in
the waveform when the number of QNMs that make a
significant contribution to the waveform is the greatest,
before the most-damped QNMs become negligible.

We see that the horizon mode alone provides a poor
fit for the waveform for all values of t0, and that the first
two QNMs provide a better fit at earlier t0 than the first
QNM and the horizon mode. Replacing the nth QNM
with the HM gives comparable results at n = 4, and
provides a (very slight) improvement at early t0 for n ≥ 5.
We note that this improvement becomes apparent at a t0
earlier than the peak value of |ψ|, which occurs at tmax =
3953.8M0. This means even for n ≥ 5, the HM makes an
improvement only when portions of the waveform which
should not be well modeled by a set of damped sinusoids
are included in the overlap. In fact, we find empirically
that adding modes with low decay rates always tends to
improve overlap calculations at early values of t0. This
is due to the fact that less damped modes will better
fit the region near the peak of the waveform. In this
case we would expect comparable results from the n = 3
mode addition and the HM mode addition, and for the
HM to improve the overlap compared to n = 4; however,
the single HM must compete with the pair of co- and
counter-rotating modes that make up the next overtone.
For these reasons, we find that overlap comparisons do
not provide a compelling case for the presence of the HM
in the waveform, nor do they rule the mode out.

As a second test, we would like to investigate the use of
the HM in performing parameter extraction from a ring-
down waveform. This practical test of the utility of the
HM is more physically motivated than overlap compar-
isons, and can provide better evidence for the presence
of the HM in the waveforms.

B. Extraction of Mass and Black Hole Spin

As a second test, we will extract the mass M and the
spin parameter a from the waveform. We extract the
mass first. To do this, we set a/M0 to the value given in
[32] for the final black hole, but allow M to vary (note
that the QNMs and the HM are function of a/M , not
a/M0). We then calculate ρmax as a function of M , us-
ing equation (66), and find the value of M which maxi-
mizes ρmax. When doing so, there is a distinct residual
oscillation in the extracted value ofM/M0. Investigation
reveals that the residual oscillation is compensated for by
including the first ℓ = 4, m = 4 corotating QNM in the
fit. Appendix C gives a brief discussion of the possible
sources of this mode mixing in the numerical waveform.
The top panel of Figure 5 gives the extracted M as a

function of t0, for two sets of frequency modes. The first
set is composed of the first three ℓ = 2, m = 2 QNM pairs
(co- and counter-rotating), plus the first corotating ℓ = 4,
m = 4 QNM. The second set replaces the third ℓ = 2,
m = 2 QNM pair with the HM. We expect the extraction
to fail at early values of t0, where the sinusoids are a poor
fit to the waveform, and at late values of t0, where the
waveform has decayed significantly. Indeed, one can see
in the top panel of Figure 5 that the extraction begins to
diverge as portions of the waveform preceding the peak of
|ψ| at tmax = 3953.8M0 (shown with a solid vertical line)
are included in the extraction, corresponding to values of
t0 earlier than the peak. The middle and bottom pan-
els of Figure 5 show the results of the same extraction,
using the first four and five ℓ = 2, m = 2 QNM pairs,
respectively, and comparing to extractions which replace
the QNM pair with the largest decay with the HM. We
see in these figures that the extraction can be carried out
to even earlier values of t0 than the peak of ψ, but since
these extractions include portions of the waveform which
do not correspond to ringdown, we do not expect these
early time extractions to be accurate.
In all cases, Figure 5 shows that the substitution of the

HM does not improve the extraction over the next most
damped QNM. We find the mean and RMS deviation of
the extraction over an interval t0/M0 = [3954, 4074] for
all three extractions. This interval covers a region of t0
that begins just outside the peak and continues until the
extractions begin to diverge rapidly. We compare to the
mass given in [32] giving a difference in extracted mass of
∆MQNM =Mf −MQNM for the fits that use only QNMs
and ∆MHM =Mf −MHM for those that include the HM.
We present the values of ∆M in Table I. We see that in
all cases, the HM gives a comparable extraction. For the
extractions that use a larger number of QNMs, we see
that the RMS deviation grows. This appears to be due
to the fact that the extractions with a larger number of
modes diverge slightly earlier than those with n = 3 and
n = 2 QNMs shown in the top panel of Figure 5.
We carry out the same test for the spin of the black hole

a/M0, by fixing the mass M at its final value and allow-
ing a/M0 to vary. The results are given in Figure 6. The
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n QNMs ∆MQNM ∆aQNM

(M0 × 10−3) (M0 × 10−3)

3 1.23± 1.66 0.20± 3.36

4 1.70± 1.96 1.23± 4.95

5 0.84± 8.14 2.55± 8.74

n QNMs ∆MHM ∆aHM

(M0 × 10−3) (M0 × 10−3)

2 0.53± 1.37 0.42± 2.95

3 1.15± 1.73 1.57± 5.07

4 0.40± 8.03 3.00± 8.93

TABLE II: Extracted masses and spin parameters, for extrac-
tions using the first n QNMs, and extractions using the first
n QNMs plus the HM.

situation is the same as in the case of the mass extrac-
tions. We calculate the mean and RMS deviation from
the mean on the interval t0/M0 = [3954, 4074], and com-
pare the extracted spin parameters to that given in [32],
and give the results for ∆a in Table IVB. Once more,
extractions with just QNMs are essentially the same as
those with the HM replacing the most rapidly decaying
QNM of a given set. From these extraction tests, we
cannot conclude that the HM is present in the numerical
waveforms.

V. DISCUSSION

Using two methods, we have found an additional ring-
down mode for the Kerr black hole. This HM depends
only on the fundamental properties of the black hole:
it oscillates at the horizon frequency of the black hole,
and decays at a rate proportional to the surface gravity
of the black hole. It will arise when generic initial per-
turbations source linear gravitational radiation, a situa-
tion that would occur as the spacetime transitions from
a regime of stronger, nonlinear perturbations into a fi-
nal ringdown phase. This occurs at the last stage of a
compact binary merger, or stellar core collapse resulting
in a black hole. We emphasize that this mode is not in
the QNM spectrum which is generally taken as the com-
plete spectrum for the ringdown of a black hole. At the
same time, this oscillation mode is part of what is nor-
mally considered the “ringdown” phase of an event that
results in a final black hole, since it arises in linearized
perturbation theory about the final black hole.
In fact we have discussed two possible decay rates for

the HM, each dependent on our model of how the space-
time transitions from nonlinear evolution into the linear
regime. One mode, found using a naive model of tran-
sition at a set time slice, decays rapidly. The second
was found by noting that nonperturbative regions of the
spacetime should be bounded by ingoing and outgoing
characteristics, and is physically better motivated. It
has a decay rate γ = 2gH , approximately the same de-

FIG. 5: (color online) Values for the extracted masses MQNM

(solid) andMHM (dashed) as functions of t0, for three extrac-
tions. The top panel compares the first three QNM pairs with
the first two and the HM. The middle panel compares the first
four QNM pairs with the first three and the HM. The bottom
panel compares the first five QNM pairs with the first four
and the HM. The solid horizontal line is at M/M0 = 0.95162,
the mass of the final black hole as given in [32]. The solid
vertical line gives the peak of |ψ|.
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FIG. 6: (color online) Values for the extracted spins aQNM

and aHM as functions of t0, for three extractions. The top
panel compares the first three QNM pairs with the first two
and the HM. The middle panel compares the first four QNM
pairs with the first three and the HM. The bottom panel
compares the first five QNM pairs with the first four and the
HM. The solid horizontal line is at a/M0 = 0.65325, the spin
of the final black hole as given in [32]. The solid vertical line
gives the peak of |ψ|.

cay rate as the n = 3, ℓ = 2,m = 2 QNM. We find that
this mode has the same influence on overlap calculations
as the n = 4 pair of QNMs, though it does not appear
to improve parameter extraction over the use of an ad-
ditional QNM pair with n ≥ 4. Due to its comparable
decay rate to the n = 3 QNMs, it should be considered
in the construction of waveform templates that use n ≥ 3
QNMs. The HM should also be included as part of the
ringdown spectrum when considering the potential use
of an observed ringdown signal as a test of the No-Hair
Theorem. Otherwise, the presence of this non-QNM os-
cillation in the spectrum might lead one to conclude that
the signal was emitted from an object other than a Kerr
black hole.

The analytic approach presented here also builds some
intuition into the origin of various frequency modes of lin-
ear perturbations of the Kerr spacetime. The HM studied
here arises when the influence of perturbations near the
horizon are considered. Integration of these initial per-
turbations using the Green’s function approach results in
the presence of a pole in the frequency integral of equa-
tion (11). This mode depends only on the properties of
the black hole which govern its near horizon geometry.
Meanwhile, the usual QNMs arise because of the poles in
the Wronskian of the radial Green’s function, equations
(22)-(23). In our model, these modes arise due to the
interaction of the initial perturbations with the compli-
cated potential of the wave equation present further from
the event horizon, a situation analogous to that explored
for Schwarzschild black holes by Price [26]. In this work,
decaying perturbations on the surface of a collapsing star
are associated with outgoing radiation; comparison of our
results with [26] indicates that our HM is associated with
the decaying mode at the stellar surface, but that the ro-
tation of the Kerr black hole in our case guarantees that
this mode oscillates with the horizon frequency in addi-
tion to its simple decay.

We have also reviewed the problem of gravitational
radiation from a point particle infalling near the hori-
zon. Previous work [16] both motivated this study and
guided our investigation. However, our results conflict
with those of the motivating study. In investigating this
discrepancy, we have found an error in the original cal-
culation of [16], the correction of which cancels the first
order results for the radiation at infinity. We have also
argued that the form of the next order correction agrees
with our results for vacuum perturbations. We leave the
detailed calculation of the correct second order terms to
a future study [31].

Future study using a variety of numerical waveforms
will be key in determining the importance of the HM
in template generation and gravitational wave detection.
In a simulation where the excitation of slowly decaying
QNMs is suppressed, we would expect the HM to be a
clear component of the ringdown. Future study of how
one might suppress this QNM excitation would be valu-
able, and such simulations would provide the best testing
ground for the presence of the HM in numerical simula-
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tions. In addition, the properties of the near horizon
region, the HM itself, and the regularity conditions on
the initial data discussed here may be of interest in the
mathematical study of the stability of the Kerr black hole
(see e.g. [34] and the references therein).
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Appendix A: Green’s Function Formalism For the

Teukolsky Equation

The Teukolsky equation, for spin s = −2, can be writ-
ten in Boyer-Lindquist coordinates using the Kinnserly
tetrad as [15]

L[ψ] = ∆−2T , (A1)

with L the linear Teukolsky operator described below;
ψ = Ψ4/ρ

4; and the source term T a complicated func-
tion of the stress energy tensor T µν, the Kinnersley
tetrad, and the Kerr rotation coefficients. The Teukolsky
operator is

L = Lr + Lθ + A1∂
2
t +A2∂t +A3∂t∂φ +A4∂

2
φ

+A5∂φ +A6 , (A2)

Lr = −∂r(∆−1∂r) , (A3)

Lθ = − 1

∆2 sin θ
∂θ(sin θ∂θ) , (A4)

A1 =
(r2 + a2)2

∆3
− a2 sin2 θ

∆2
, (A5)

A2 =
4M(r2 − a2)

∆3
− 4(r + ia cos θ)

∆2
, (A6)

A3 =
4Mar

∆3
, (A7)

A4 =
a2

∆3
− 1

∆2 sin2 θ
, (A8)

A5 =
4a(r −M)

∆3
+

i cos θ

∆2 sin2 θ
, (A9)

A6 =
4 cot2 θ + 2

∆2
. (A10)

We introduce the adjoint operator L∗, which is
the Teukolsky operator with the substitutions (∂t →

−∂t, ∂φ → −∂φ), and the Green’s function G(x′µ;xµ)
for L, which obeys L[G(x′µ;xµ)] = L∗[G(x′µ;xµ)] =
δ(t′ − t)δ(r′ − r)δ(θ′ − θ)δ(φ′ − φ) ≡ δ4(x′µ − xµ). Now,
note that given a pair of functions u and v we have

uL∗[v]− vL[u] = ∂r[∆
−1(v∂ru− u∂rv)]

+
1

sin θ
∂θ[v sin θ∂θu− u sin θ∂θv]

+A1∂t[u∂tv − v∂tu]−A2∂t[uv]

+A3[∂t(u∂φv)− ∂φ(v∂tu)] +A4∂φ[u∂φv − v∂φu]

−A5∂φ[uv] . (A11)

Now, we let u = ψ(xµ), v = G(x′µ;xµ), and we in-
tegrate the entire expression over the domain of interest
for our situation, t ∈ [0,∞), r ∈ (r+,∞), θ ∈ [0, π],
φ ∈ [0, 2π], using spherical polar coordinates and a Eu-
clidean volume element d4x ≡ dtd3x = r2 sin θ dtdrdθdφ.
To evaluate the left side of equation (A11) we note

∫

d4x ψ(xµ)L∗[G(x′µ;xµ)] =

∫

d4x ψ(xµ)δ4(x′µ − xµ)

= ψ(x′µ) . (A12)

Also, we have
∫

d4x G(x′µ;xµ)L[ψ(xµ)] =

∫

d4x G(x′µ;xµ)∆−2T .

(A13)

On the right hand side of equation (A11), we note
that the terms involving A4 and A5 vanish when inte-
grated over φ, due to the periodicity of φ. The term
−A3∂φ(v∂tu) vanishes for the same reason. The first
term becomes a boundary term when integrated over r.
In order to have only ingoing waves at the horizon, and
only outgoing waves at infinity, we must impose homoge-
neous boundary conditions on ψ(xµ) and G(x′µ;xµ), and
so this term also vanishes. The term involving derivatives
of θ vanishes when integrated over θ, since we require that
the initial data and the Green’s function be regular on the
boundary of [0, π]. The terms involving A1 and A2 are
total derivatives in time, and so when we integrate over
t we remove the time derivatives and evaluate the terms
on the boundary at t = 0. Since our physical source is
transient, the terms vanish at the bound of t → ∞. We
have

ψ(x′µ) =

∫

d4x G(x′µ;xµ)∆−2T

+

∫

d3x A1∂tG(x
′µ;xµ)ψ(xµ)

∣

∣

∣

∣

t=0

−
∫

d3x A1G(x
′µ;xµ)∂tψ(x

µ)

∣

∣

∣

∣

t=0

−
∫

d3x A2G(x
′µ;xµ)ψ(xµ)

∣

∣

∣

∣

t=0

+

∫

d3x A3∂φG(x
′µ;xµ)ψ(xµ)

∣

∣

∣

∣

t=0

(A14)
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Thus far we have kept the source term T in place for
comparison with other studies of the evolution of the
Teukolsky equation. In this study we are interested in
the vacuum case, and so we set T = 0 here and through-
out Section II.
We can further simplify this expression for ψ(xµ) by

performing the angular integrations. Let us expand the
initial perturbation in terms of spherical harmonics,

ψ(t, r, θ, φ)

∣

∣

∣

∣

t=0

=
∑

ℓ′,m′

aℓ′m′(r)Yℓ′m′(θ, φ) ,(A15)

∂tψ(t, r, θ, φ)

∣

∣

∣

∣

t=0

=
∑

ℓ′,m′

bℓ′m′(r)Yℓ′m′(θ, φ) .(A16)

In addition, we expand the Green’s function in the fre-
quency domain, where it can be written down explicitly
in terms of the spin-weighted spheroidal harmonics and
the Green’s function for the radial Teukolsky equation
[15, 17],

G(x′µ;xµ)

∣

∣

∣

∣

t=0

=

∫

dω

(2π)2
e−iωt′

∑

ℓ,m

G̃ℓmω(r
′, r)

×Sℓmω(θ
′)S̄ℓmω(θ)e

im(φ′−φ) .

(A17)

So, we have ∂φG(x
′µ;xµ) = −imG(x′µ;xµ). With this,

we can now perform the integration over φ, using the
identity

∫ 2π

0

dφ

2π
ei(m−m′)φ = δmm′ , (A18)

which allows us to resolve the summation over m′ con-
tained in equation (A15)-(A16). From here, it is con-
venient to impose the near horizon approximation, for
which the motivation is discussed in Section IIB. We keep
terms only to the leading order in ǫ = (r − r+)/r+ ≪ 1.
In this approximation, we have that ∆ ≈ 2Mr+κǫ, with

κ ≡
√

1− a2/M2. To first order in ǫ,

A1 ≈ (2Mr+)
−1(κǫ)−3 , (A19)

−imA3 −A2 ≈ − 2Mκ+ ima

2(Mr+)2(κǫ)3
. (A20)

We note that all θ dependence for these functions enters
in at second order in the near horizon expansion. We
define

αℓmω(r) ≡
∑

ℓ′

aℓ′m(r)

√

(2ℓ′ + 1)(ℓ′ −m)!

4π(ℓ′ +m)!

×
∫ π

0

sin θdθPℓ′m(cos θ)S̄ℓmω(θ),(A21)

βℓmω(r) ≡
∑

ℓ′

bℓ′m(r)

√

(2ℓ′ + 1)(ℓ′ −m)!

4π(ℓ′ +m)!

×
∫ π

0

sin θdθPℓ′m(cos θ)S̄ℓmω(θ),(A22)

where Pℓm(x) are the associated Legendre polynomials.
The functions αℓmω(r) and βℓmω(r) are nonzero only on
the interval r ∈ [r+, (1 + ξ)r+], which allows us to trun-
cate the radial integrals in equation (A14). In fact, we
only desire the leading order behavior in ǫ of these func-
tions, and this is discussed in Section IIB.
Inserting equations (A15) - (A21) into (A14), and ex-

changing primed and unprimed labels, we have finally

ψ(xµ) =

∫

dω

2π

∑

ℓm

e−iωt+imφRℓmω(r)Sℓmω(θ), (A23)

Rℓmω(r) = −
∫ (1+ξ)r+

r+

dr′
[

βℓmω(r
′) + iωαℓmω(r

′)

2Mr+(κǫ)3

+
(2Mκ+ ima)αℓmω(r

′)

2(Mr+)2(κǫ)3

]

G̃ℓmω(r, r
′) .

(A24)

We resolve this expression in Section IIB.

Appendix B: The Teukolsky Equation in the

Newman-Penrose Formalism

We refer the reader to [17, 29] for the full formalism.
Here we simply collect some of the longer expressions
used for Section IIIA.
From (2.14) of [15] we have
[

(∆̂ + 3γ − γ̄ + 4µ+ µ̄)(D̂ + 4ǫ− ρ)

−(δ̄ − τ̄ + β̄ + 3α+ 4π)(δ − τ + 4β)

−3Ψ2

]

ΨB
4 = 4πT4. (B1)

Here Ψ2 refers to the background value of the Newman-
Penrose (NP) scalar, Ψ2 =Mρ3 for Kerr. The scalar ΨB

4

is the perturbative value of Ψ4, which is zero at leading
order for Kerr. Here, D̂, ∆̂, δ are all derivative opera-
tors along the directions of the null basis, and the Greek
characters represent combinations of the spin coefficients.
Also note the unfortunate but standard use of π on the
left hand side to refer to one of the spin coefficients in the
null tetrad, while on the right side it refers to the numer-
ical π from the Einstein field equations. It is generally
clear which is which, and in any case the NP coefficient
enters at sub-leading order here. The source term T4 is
given by

T4 = (∆̂ + 3γ − γ̄ + 4µ+ µ̄)
[

(δ̄ − 2τ̄ + 2α)Tnm̄

−(∆̂ + 2γ − 2γ̄ + µ̄)Tm̄m̄

]

+(δ̄ − τ̄ + β̄ + 3α+ 4π)
[

(∆̂ + 2γ + 2µ̄)Tnm̄

−(δ̄ − τ̄ + 2β̄ + 2α)Tnn

]

. (B2)

Here, the terms Tab are the components of the stress-
energy tensor in the tetrad basis, Tnn = Tµνn

µnν , Tnm̄ =
Tµνn

µm̄ν , etc.
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To specialize to the near horizon approximation, we
note that D̂ contains ∆−1, and therefore dominates over
all the other terms. In addition, we have γ = γ̄ = ρρ̄(r−
M)/2 and µ = 0, to first order.

Using the commutation relation between D and ∆̂
(NP4.4), we have, near the horizon

∆̂D̂ − D̂∆̂ = 2γD̂ + (lower order terms) (B3)

which subsequently gives the O(∆−1) term on the left-
hand side of the equation

(D̂∆+ 4γD̂)Ψ4 (B4)

We investigate this expression more fully in Section IIIA.

Appendix C: Mode Corrections to the Wavefunction

The presence of oscillation at the n = 1, ℓ = 4, m = 4
corotating QNM merits some brief discussion. Figures 7
and 8 give the extraction ofM and a using the first three
QNM pairs (and comparing the the first two QNM pairs
with the HM), without the ℓ = 4, m = 4 mode included.
Comparison with the topmost panels of Figures 5 and 6
shows that the distinct oscillation is successfully removed
by including this mode.
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FIG. 7: (color online) Extraction of the mass M/M0 as a
function of t0, using only first three QNM pairs (solid) or the
first two QNM pairs and the HM (dashed). Here we do not
include the corotating n = 1, ℓ = 4, m = 4 mode.

A certain amount of mode mixing between the QNMs
is expected due to the fact that the waveform is decom-
posed into spin weighted spherical harmonics during the
extraction of the waveform. In fact, the angular eigen-
functions of the Teukolsky equation are the spin weighted
spheroidal harmonics. These functions become the usual
spherical harmonics when aω = 0. Using this fact, the
spheroidal harmonics can be expanded in terms of spin
weighted spherical harmonics and powers of aω, as first

discussed in [20]. Only spherical harmonics with the same
s and m contribute in the expansion. As such, we see
immediately that the mixing with the ℓ = 4, m = 4
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FIG. 8: (color online) Extraction of the spin a/M0 as a func-
tion of t0, using only first three pairs QNMs (solid) or the first
two QNM pairss and the HM (dashed). We do not include
the corotating n = 1, ℓ = 4, m = 4 mode.

QNM frequency cannot arise from the decomposition into
spherical harmonics. The portions of the waveforms that
can mix into the ℓ = 2, m = 2 waveform arise from the
expansions of S32, S42, etc. Explicitly, the expansion of
the spheroidal harmonic for s = −2, is

Sℓm = −2Yℓm + 4aω
∑

ℓ 6=ℓ′

√

2ℓ+ 1

2ℓ′ + 1

Cℓ′m
ℓ1m0C

ℓ′m
ℓ120 −2Yℓm

[ℓ(ℓ+ 1)− ℓ′(ℓ′ + 1)]

+O(a2ω2) , (C1)

where Caα
bβcγ are the usual Clebsch-Gordon coefficients.

For both the horizon mode and the lowest order QNMs,
aω < 1 is true for all a/M , and so the expansion
isn’t obviously divergent, although it is only good when
a/M ≪ 1. The inclusion of additional QNM frequencies
with m = 2 does not remove the residual oscillation in
the extraction ofM and a seen in Figures 7 and 8 (though
a corotating ℓ = 3, m = 2 reduces the amplitude of the
oscillation somewhat). In fact, extractions using a large
number of modes generally have sharp features, in addi-
tion to systematic deviations from the values of M and
a given in [32].
The presence of the ℓ = 4, m = 4 mode in the

ℓ = 2, m = 2 waveform is unexpected, and we attribute
it to errors arising from the numerical generation and ex-
traction of the waveform. The spectral code used in [32]
generates its gauge dynamically, and while the waveform
extraction method attempts remove gauge effects, studies
find that these gauge effects still generate errors [35]. We
suspect such gauge errors are the source of mode-mode
mixing.
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