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Gravitational-wave searches for the merger of compact binaries use matched-filtering as the
method of detecting signals and estimating parameters. Such searches construct a fine mesh of
filters covering a signal parameter space at high density. Previously it has been shown that singular
value decomposition can reduce the effective number of filters required to search the data. Here we
study how the basis provided by the singular value decomposition changes dimension as a function
of template bank density. We will demonstrate that it is sufficient to use the basis provided by
the singular value decomposition of a low density bank to accurately reconstruct arbitrary points
within the boundaries of the template bank. Since this technique is purely numerical it may have
applications to interpolating the space of numerical relativity waveforms.

I. INTRODUCTION

Several broadband laser interferometer gravitational-
wave (GW) detectors are operating at high sensitivities
and will continue to improve over the next decade [1–5].
As detectors improve it is increasingly likely that GW
astronomers will observe gravitational radiation emitted
from the coalescence of compact binary systems involving
neutron stars and or stellar mass black holes [6].

Because compact binary coalescence (CBC) waveforms
are well modeled, GW searches for such signals are con-
ducted by matched filtering the detectors’ data with
banks of template waveforms, chosen to adequately cover
a region of the signal parameter space [7]. For GW sig-
nals from the merger of compact objects with negligi-
ble spin, this parameter space is defined by functions
of the masses of the two objects. To search for sig-
nals within this parameter space, a bank of templates
is constructed to sample the parameter space sufficiently
densely such that there is minimal loss of signal-to-
noise ratio (SNR). Traditionally, template banks used
to search this two-dimensional signal parameter space
have been constructed using the (A2)∗ lattice [8], referred
to as “hexagonally-placed” template banks. This prob-
lem becomes more difficult in higher dimensions, where
other types of template placement algorithms have re-
cently been investigated [9–12].

In [13] the singular value decomposition (SVD) was ap-
plied to CBC waveforms to show how hexagonally-placed
template banks with M templates could be implemented
with N ′ � 2M filters (2M being the nominal number of
filters required for the M 2-phase templates). This was
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achieved by truncating the SVD of the matrix consisting
of the time-series of the template waveforms. Here we
demonstrate that the bases identified by the SVD is effec-
tive at spanning the space of all CBC waveforms within
the region of parameter space sampled by the original
bank. We find that the SVD of a low-density bank pro-
vides a basis suitable for constructing all the waveforms
from a higher-density bank, even waveforms at arbitrary
locations within that region of parameter space. Such a
basis could be used to reduce the computational cost of:
1) performing hierarchical searches of parameter space
that minimize waveform-mismatch errors associated with
identifying signals in the data, 2) running parameter es-
timation algorithms that take the inner-product between
the data and millions of waveforms, and 3) generating
computationally costly waveforms.

This paper is organized as follows. Sec. II describes
how we apply the SVD to approximately embed the sig-
nal manifold in a vector space. Sec. III tests this embed-
ding by reconstructing various points in the manifold.
Finally, Sec. IV expands on possible applications of this
technique.

II. ENCLOSING THE SIGNAL SPACE WITH
SINGULAR VALUE DECOMPOSITION

In this section we explore how the number of basis
vectors required to reconstruct a template bank scales
with the initial density of the template bank. We define
a template bank of signal waveforms covering a patch
P of the signal manifold, which is used to test for the
presence and strength of signals from P in the detec-
tors’ data. We construct a signal matrix in the same
manner as [13]. Specifically, we create a real-valued ma-
trix H by alternately filling its rows with the real and
imaginary parts (cosine and sine) of the template wave-
form time series from a CBC template bank covering P,
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H = {Hαj} = {<~h1,=~h1,<~h2,=~h2, ...,<~hM ,=~hM}T.

As in [13], we constructed the template matrix with
chirp masses Mc = Mη5/6, where M = m1+m2 is the to-
tal mass and η = m1m2/M

2 is the symmetric mass ratio,
of 1.125M� ≤Mc < 1.240M� and component masses of
1M� ≤ m1,m2 < 3M�. Template banks covering this
region are created using template placement algorithms
of the LIGO Algorithms Library [14]. Template place-
ment is done in the (τ0, τ3) plane, where τ0 and τ3 are
defined as

τ0 = 5
256 (πf0)

−8/3
M
−5/3
c , (1)

τ3 = π
8 (πf0)

−5/3
M
−2/3
c η−3/5, (2)

and where f0 is some fiducial frequency, which we choose
to be f0 = 60 Hz.

The non-spinning waveforms for each template are pro-
duced to 3.5 post-Newtonian (PN) order, sampled at
2048 Hz, up to the Nyquist frequency of 1024 Hz. The
last 10 seconds of each waveform, whitened with the ini-
tial LIGO amplitude spectral density, are used to con-
struct H. The SVD is then applied to H, decomposing
the matrix into two unitary matrices, V and U, and a
diagonal matrix Σ

H = VΣUT, (3)

where U is a matrix composed of basis vectors (i.e., unit-
norm time-series vectors), V is a matrix composed of
reconstruction coefficients, and Σ is a matrix containing
the singular values of H.

In [13], it was demonstrated that truncating the re-
construction of H to use only the N ′ basis vectors with
the largest singular values results in an average frac-
tional SNR loss 〈δρ/ρ〉 proportional to the sum of the
discarded singular values squared. In this investigation,
we truncate these reconstruction matrices at 〈δρ/ρ〉 =
10−7. This corresponds roughly to the truncation error
of IEEE 754 32-bit floating-point numbers.

We explore how the number of basis vectors changes as
the number of rows in H is increased by generating tem-
plate banks for P with increasing density (i.e., increasing
minimal match). We confirmed that the number of basis
vectors required to reconstruct H saturates at a partic-
ular value of minimal match. Fig. 1 shows that as the
minimal match of the template bank is increased, result-
ing in denser samplings of P, the number of basis vectors
needed to reconstruct H to the required accuracy satu-
rates around a minimal match of ∼ 89.9%. This indicates
that P is able to be embedded—to an accuracy of 1 part
in 107—in a vector space consisting of ∼ 150 dimensions.

In the next section we will demonstrate how the basis
waveforms identified by the coarsely sampled bank can
be used to reconstruct templates at arbitrary points on
the signal manifold.
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FIG. 1. The number of filters as a function of minimal match,
which increases with the density of the template bank. The
total number of filters in the template bank, N , is shown by
the dashed line. The number of filters needed to reconstruct
the template matrix such that 〈δρ/ρ〉 = 10−7, N ′, is shown
by the solid line. We find that the number filters needed
to reconstruct H saturates when the minimal match reaches
∼ 89.9%.

III. EFFICIENT RECONSTRUCTION OF
WAVEFORMS IN THE MANIFOLD

In order to determine how well these waveforms can
be reconstructed, we compute a quantity called the av-
erage fractional SNR loss δρα/ρα. This quantity can be
thought of as the mismatch between the original wave-

form ~hα and the reconstructed waveform ~h′α, averaged
over the phase angle. It tells us how far the reconstructed
waveform is from the original waveform. This quantity
can be split into two pieces,

δρα
ρα

=

(
δρα
ρα

)
⊥

+

(
δρα
ρα

)
‖
, (4)

where (δρα/ρα)⊥ is due to the (in)completeness of the
basis vectors, and (δρα/ρα)‖ is due to the truncation of
the SVD reconstruction. The first piece is given in terms
of the SVD quantities by

(
δρα
ρα

)
⊥

= 1−

[
1

2

N∑
µ=1

(
v2(2α−1)µ + v2(2α)µ

)
σ2
µ

]1/2
, (5)

where v(2α−1)µ and v(2α)µ are the reconstruction coeffi-
cients for the real and imaginary parts, respectively, of
the αth waveform associated with the µth basis vector
and are elements of V, σµ is the µth element of Σ, and
the sum is over all of the terms of V and Σ. The sec-
ond piece is given by Eq. (25) of [13] in terms of SVD
quantities,(

δρα
ρα

)
‖

=
1

4

N∑
µ=N ′+1

(
v2(2α−1)µ + v2(2α)µ

)
σ2
µ, (6)
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FIG. 2. A visual representation showing the two types of
points of P that we can choose to reconstruct. The left car-
toon shows an example point that is in H, and thus in P.
The right cartoon shows an example point that is not part of
H but is in P.

10−16 10−12 10−8 10−4 100

δρα /ρα

10−1

100

101

102

103

104

#

(δρα /ρα )

(δρα /ρα )

δρα /ρα

FIG. 3. Histograms of (δρα/ρα)⊥, (δρα/ρα)‖, and δρα/ρα for
the waveforms that went into the construction of H. As ex-
pected, (δρα/ρα)⊥ is around numerical error and the average
δρα/ρα (solid line) matches the expected fractional SNR loss
(dashed line).

where the sum is over the truncated terms of V and Σ.

We test this embedding of the signal manifold to see
how well various points in the manifold can be recon-
structed. The tests points we reconstruct are of two
types: 1) those from the original signal matrix H, 2)
those absent from H but within P. These two types of
tests are illustrated in Fig. 2.

A test of the first type is shown in Fig. 3. For these
points, since the SVD provides an exact decomposition of
H, (δρα/ρα)⊥ should be identically zero, which is what
is observed to numerical precision. We also see that the
average reconstruction accuracy for points from H agrees
with our chosen value of 10−7. This result is expected as
it is an extension of the investigation from Fig. 4 of [13]
applied to a more stringent reconstruction accuracy.

A test of the second type is shown in Fig. 4. To choose
points uniformly from P but absent from H, we gener-
ate a denser template bank within the same region of
parameter space described in the Sec. II. Specifically,
we generate this template bank with a minimal match
of 99%. In order to test the reconstruction accuracy of
these waveforms, we project the real and imaginary parts
of the waveforms onto the basis vectors from the SVD of

H

v′αµ =
1

σµ

∑
j

hαjuµj , (7)

where v′αµ represents a reconstruction coefficient associ-
ated with the µth basis vector for the real or imaginary
part of the αth waveform from the denser template bank,
σµ is the µth element of Σ, hαj is the jth time sample
of the real or imaginary part of the αth waveform from
the denser template bank, and uµj is the jth time sample
from the µth basis vector in U. The real and imaginary
parts of the waveforms from the denser template bank
are then reconstructed using

h′αj =
∑
µ

v′αµσµuµj . (8)

The distribution of δρα/ρα for these waveforms, left
panel of Fig. 4, shows a tail extending to large mis-
matches. Examining where these large mismatches are
located in parameter space, we find they originate from
near the boundaries of P. Removing the test points near
the boundaries in the τ0 direction, shown in Fig. 5, we
find the tail of large mismatches disappears.

An additional test of the second type, which systemat-
ically explores the reconstruction accuracy near a point
whose waveform went into H, is shown in Fig. 6. The left
panel shows a set of three nearest-neighbor templates.
We investigate how the reconstruction accuracy varies
as one moves from point A to the central point, point
B. Point B is assumed to have the largest mismatch
between its waveform and the waveforms from any of
the three surrounding points. We also compute the mis-
match between the waveforms along AB and the wave-
form of point A with and without maximizing over phase
and time, called the fitting factor and match respectively.
The fitting factor falls to the minimal match of the tem-
plate bank when comparing the waveforms from A and B,
which is expected as the minimal match involves maxi-
mizing over phase and time. The reconstruction accuracy
associated with SVD projection is consistently high and
close to the chosen reconstruction accuracy of 1 part in
107.

IV. DISCUSSION

These investigations show that the SVD can be used
to find a set of basis vectors that not only span the signal
matrix H, but also enclose the signal manifold P sampled
by H.

GW pipelines that search for known waveforms, such
as GWs from CBCs, commonly compute waveform con-
sistency statistics that compare the observed response of
a template waveform filter to the data with what one
would expect given the presence of that signal. These
consistency statistics are found to perform better when
the mismatch between the template waveform and the
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FIG. 4. (left) Histograms of (δρα/ρα)⊥, (δρα/ρα)‖, and δρα/ρα for waveforms from P that were not in H. (δρα/ρα)⊥ is seen ot
be of the same order of magnitude as (δρα/ρα)‖. The peak of δρα/ρα is above the expected fractional SNR loss for waveforms
from H (dashed line), however the average δρα/ρα is skewed to large values by a tail in the distribution. (right) How these
mismatches vary across P, averaged over the τ3 direction. The largest mismatches come from near the borders of the template
bank in the τ0 direction. Fig. 5 restricts our attention to the central 75% of the domain of P, whose boundaries are shown by
the vertical lines.
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FIG. 5. Histograms of (δρα/ρα)⊥, (δρα/ρα)‖, and δρα/ρα
for waveforms from P that were not in H, similar to the
right panel of Fig. 4, however eliminating test points near
the boundaries in the τ0 direction. The average δρα/ρα (solid
line) accuracy is slightly worse than the expected fractional
SNR loss (dashed line).

signal waveform is small [15]. Filtering with a fixed den-
sity template bank can introduce mismatch between the
nearest template and the signal. This mismatch can be
greatly reduced if one is able to find the exact point in
parameter space where the signal is located and filter the
data using that point. Using the SVD basis vectors, one
could reconstruct a point closer to the point of the signal
and improve the waveform consistency statistics.

Parameter estimation techniques for GWs from CBCs
often use Monte Carlo Markov Chain algorithms to
search the parameter space. This involves producing
waveforms and filtering the data against many points
of the parameter space, building up probability density
functions associated with each parameter. If one filtered

the data using the basis vectors from the SVD, it would
be simple to reconstruct to high accuracy the output one
would have seen if one had filtered the data using any
waveform from within the parameter space, which could
be used to map out the probability density functions im-
plicitly.

Finally, some waveforms are computationally costly to
produce. Such is the case to a limited extent for wave-
forms produced by solving PN differential equations and,
as an extreme case, solving the full Einstein Equations us-
ing Numerical Relativity. The SVD could be used to gen-
erate numerically interpolated waveforms starting from a
limited sampling of the parameter space.

In order to gain benefit from these applications, it
would be necessary to determine the reconstruction coef-
ficients in a computationally efficient manner. This work
has not tried to address this problem as: 1) it has as-
sumed the target waveforms are known, and 2) it com-
putes the reconstruction coefficients using computation-
ally expensive inner products. Generation of these recon-
struction coefficients warrants future investigation as the
benefits derived from this technique would be substan-
tial.
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one of those points, A, with the point B, the central point of A and two of its nearest neighbors. Point B is situated such that
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waveform from the corresponding point along AB. The dark-grey curve shows the fitting factor, which is the match maximized
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