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We consider bouncing cosmologies in which an ekpyrotic contraction phase with w � 1 is followed
by a bouncing phase with w < −1 that violates the null energy condition. The bouncing phase,
induced by ghost condensation, is designed to produce a classically nonsingular bounce at a finite
value of the scale factor. We show that the initial curvature and anisotropy, though diluted during
the ekpyrotic phase, grow back exponentially during the bouncing phase. Moreover, curvature
perturbations and anisotropy are generated by quantum fluctuations during the ekpyrotic phase. In
the bouncing phase, however, an adiabatic curvature perturbation grows to dominate and contributes
a blue spectrum that spoils the scale-invariance. Meanwhile, a scalar shear perturbation grows
nonlinear and creates an overwhelming anisotropy that disrupts the nonsingular bounce altogether.

PACS numbers: 98.80.Cq, 98.80.Bp, 98.80.Es

I. INTRODUCTION

Cosmological models are expected to explain the large
scale properties of the early Universe: the homogeneity,
flatness and isotropy of the background, and the nearly
scale-invariant spectrum of the primordial perturbations.
These conditions can be achieved in either a rapidly ex-
panding (inflationary) phase right after the big bang [1–3]
or a slow contracting (ekpyrotic) phase preceding the big
bang [4, 5]. In order to have the latter scenario, however,
the Universe has to undergo a bounce from the contract-
ing phase to an expanding phase. This transition imposes
an extra condition on cosmological models, namely, the
desired properties of the large scale structure created in
the contracting phase must be propagated safely through
the bounce. The bounce may be induced by quantum
gravity effects when the scale factor shrinks to the Planck
scale near a classical singularity [6–8]. Although theories
of such a quantum bounce (also referred to as a “singular”
bounce) are not fully developed, it is conjectured that
the homogeneity and the scale-invariance conditions gen-
erated before the bounce should pass smoothly through
the bounce [6–9]. The intuition is that the low energy
physics that generates structure on large length scales
should decouple from the physics at high energies and
short lengths that is responsible for the bounce.

An alternative approach that has been pursued in re-
cent years is to realize the bounce in a classically non-
singular way [16, 17, 19]. In this approach the Universe
stops contraction and reverses to expansion at a finite
value of the scale factor a, when classical gravity and ef-
fective field theories are still valid. The intended advan-
tage is that it becomes possible to describe with known
theories the entire evolution of the cosmological back-
ground and the conditions that emerge from the bounce.
To have a nonsingular bounce requires violation of the
null energy condition (NEC). A commonly used approach
is to introduce a scalar field that undergoes ghost conden-
sation [15]. The period during which the NEC is violated
will be referred to as the bouncing phase.

Some earlier studies [19] of nonsingular bounces have
not included an ekpyrotic phase. In those cases, the con-
tracting universe is unstable to the growth of anisotropies
unless one assumes extreme fine-tuning of initial condi-
tions; it is also difficult to produce a sufficiently wide
spectrum of scale-invariant fluctuations. Moreover, some
earlier treatments [17, 19] of the bouncing phase only
consider the last stage when the Hubble parameter H
varies linearly with time and passes through zero. This
period does not cover the whole bouncing phase during
which NEC is violated, leaving out important problems
that arise in earlier stages of the bouncing phase.

In this paper, we consider nonsingular bouncing cos-
mologies that have an ekpyrotic phase prior to the bounc-
ing phase. The ekpyrotic phase stably smooths and flat-
tens the Universe, and leads to the generation of nearly
scale-invariant perturbations. After the ekpyrotic phase,
ghost condensation is triggered to bring the Universe into
a bouncing phase with w < −1 that violates the NEC.
We consider the entire bouncing phase from the start
of NEC violation at Ḣ = 0 to the nonsingular bounce
at H = 0. We examine perturbations around the back-
ground evolution and identify problems that break the
homogeneity, isotropy and scale-invariance conditions.

In a previous paper [20], we argued that the bounc-
ing phase strongly modifies the spectrum of curvature
perturbations. An adiabatic mode, though decaying and
negligible during the ekpyrotic phase, was shown to grow
exponentially just before the bouncing phase when the
equation of state w crosses −1. By the time the Uni-
verse bounces, the total curvature perturbation becomes
dominated by this adiabatic mode, which unfortunately
carries a blue spectrum that is inconsistent with cos-
mological observations. This result does not depend on
how the scale-invariant mode is generated in the ekpy-
rotic phase. To further elaborate this idea, we will show
that our conclusion does not change with different gauge
choices, hence posing a serious physical problem for non-
singular bouncing models.

In addition, we will demonstrate a new effect that sig-
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nificantly amplifies the anisotropy. This amplification oc-
curs gradually through the entire bouncing phase, and is
not noticed in previous analyses that focused only on the
last stage of the bounce when H increases linearly with
time. In our analysis, we find that the scale factor has to
decrease exponentially during the entire bouncing phase,
causing the anisotropy to grow substantially before the
bounce. Consequently, the homogeneity and isotropy of
the Universe achieved in the preceding ekpyrotic phase
are lost. Here we consider both anisotropies that have
classical and quantum origins. The classical anisotropy,
present at the beginning of the ekpyrotic phase, generally
comes to dominate over the ghost condensate field before
the bounce, unless it is tuned to a sufficiently small value
even before the ekpyrotic phase begins. A more serious
issue is the anisotropy induced by quantum fluctuations,
whose amplitude is linked to the amplitude of curvature
perturbations. This quantum generated anisotropy is
negligible during the ekpyrotic phase, but becomes over-
whelmingly large in the bouncing phase. As a result, the
Universe is inevitably led to chaotic mixmaster behav-
ior and contracts to a singularity, a → 0; that is, the
nonsingular bounce is totally disrupted.

In Sec. II, we present a sample model that incorporates
the generic features of an ekpyrotic phase and a nonsin-
gular bouncing phase. The bouncing phase is described
in detail in Sec. III. Then in Sec. IV, we demonstrate
the dramatic growth of curvature perturbation that al-
ters the power spectrum, presenting our analysis in both
the comoving and the synchronous gauges. In Sec. V,
we analyze the evolution of the anisotropy, showing how
it is induced by the curvature perturbation and how it
disrupts the nonsingular bounce. In Sec. VI we argue
that both problems of curvature and anisotropy can be
attributed to the exponential difference between the low
energy scale of ghost condensation and the high energy
scale of the ekpyrotic phase.

II. THE EKPYROTIC NONSINGULAR
BOUNCING MODEL

In this Section, we introduce a generic nonsingular
bouncing cosmology that we will use for our study. Pre-
vious analyses of nonsingular bouncing models can be
divided into those with an ekpyrotic contraction phase
with equation of state w > 1 and those in which the
contraction phase has w strictly < 1. Without an ekpy-
rotic phase, the contraction is unstable to the growth of
anisotropy and the onset of chaotic mixmaster oscilla-
tions [5]. To counter the instability, extreme fine-tuning
of initial conditions must be imposed, or the unstable
contracting phase must be made so short that it is in-
sufficient to explain the large scale uniformity and den-
sity perturbations observed today. For these reasons, the
only cases of interest are those with a long ekpyrotic con-
traction phase with w > 1, followed by a transition to a
bouncing phase with w < −1.
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FIG. 1: The kinetic term P (X) versus X ≡ 1
2
(∂φ)2 in the

effective Lagrangian for the scalar field φ. During the ekpy-
rotic phase, X is in the linear region X � Xc and increases
by a factor e2N . In the transition to the bouncing phase, X
decreases by an even greater factor to reach X = Xc. During
the bouncing phase, X further decreases to X < Xc where
NEC is violated.

The transition is hard to achieve by combining two in-
dependent components with w > 1 and w < −1 respec-
tively, because if the w > 1 component dominates during
the ekpyrotic phase, then the w < −1 component would
grow much more slowly and never come to dominate dur-
ing the bouncing phase. A more economical approach is
to have a single component whose equation of state w
switches from > 1 to < −1 between the ekpyrotic and
the bouncing phase. This scenario is achieved naturally
by having a scalar field that rolls down a steep negative
potential during the ekpyrotic phase, and then undergoes
ghost condensation after the ekpyrotic phase is over. In
this way the entire contracting and bouncing history of
the Universe is driven by the same field.

This framework is described, for instance, in the new
ekpyrotic model [16], where the effective Lagrangian for
the scalar field φ is

L =
√
−g
[
P (X)− V (φ)

]
, X ≡ − 1

2 (∂φ)
2
. (1)

The background metric gµν is taken to be flat Friedmann-
Robertson-Walker,

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (2)

and we use reduced Planck units 8πG ≡ 1. The kinetic
term P (X), shown in Fig. 1, is canonical, P (X) ≈ X,
for large X; but has a minimum at a low energy scale
Xc where ghost condensation takes place. The potential
V (φ) is shown in Fig. 2, where, from right to left, it is first

approximated by a negative exponential, −V0 e−
√

2/p φ

with p� 1; then bottoms out and undergoes a steep rise.
Unlike in [16, 17] where V is designed to bend sharply
at a fine-tuned value above zero, we choose to let it rise
smoothly as in Fig. 2. The Universe evolves through the
ekpyrotic phase (w � 1) to the bouncing phase (w <
−1), with a transient kinetic energy dominated phase
(w ≈ 1) in between, as indicated in the figures.
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FIG. 2: The potential term V (φ) in the effective Lagrangian
for the scalar field φ. The ekpyrotic phase corresponds to the
exponential decline from Vek-beg to Vek-end near the minimum
of the potential. The kinetic phase refers to the quick rise
from Vek-end to Vc ≈ 3p |Vek-end|. The nonsingular bouncing
phase occurs at V > Vc.

The ekpyrotic phase starts at an intermediate energy
scale Xek-beg when the scalar field rolls down the po-
tential from Vek-beg, and ends when the field reaches the
bottom of the potential Vek-end. The negative exponential
form of the potential leads to a homogeneous attractor
solution,

a = α(−t)p, α ≡ aek-end(−Hek-end/p)
p, (3)

H ≡ ȧ

a
= − p

(−t)
, (4)

φ =
√

2p log
(√

V0

p(1−3p) (−t)
)
, (5)

where t is negative and increasing towards zero. This
solution has a constant equation of state,

w = 2
3p − 1� 1 , (6)

where typically p ∼ 10−2 [14]. There is a scaling relation
between the kinetic and the potential energies,

H2 =
p

3p− 1
V = pX , X =

1

2
φ̇2. (7)

According to the first Friedmann equation, we have

H2 =
1

3

(
− 3k

a2
+
σ2
0

a6
+

ρφ0
a3(1+w)

+ · · ·
)
, (8)

where k = 0,±1 represents the spatial curvature, the σ2

term represents the anisotropy (cf. Section V), and the
dots may include matter, radiation, etc. The ratios of the
scalar field energy density to other components, including
curvature and anisotropy, scale as

ρφ
ρk,σ,···

=
a−3(1+w)

a−2∼6
≈ a−

2
p ∝ (−t)−2 ∝ H2. (9)

Therefore, after the ekpyrotic phase, all other compo-
nents including the initial curvature and anisotropy are

suppressed by a factor

(H2)ek-end
(H2)ek-beg

=
Xek-end

Xek-beg
=
Vek-end
Vek-beg

≡ e2N , (10)

where N measures the total number of e-folds of modes
that exit the horizon during the ekpyrotic phase [13].

To have a nonsingular bounce, H has to pass from
negative to zero, requiring a bouncing phase during which
Ḣ > 0. According to the second Friedmann equation,

Ḣ = − 1
2 (ρ+ P ) = − 1

2ρ(1 + w) , (11)

then, the nonsingular bouncing phase must have w < −1,
a violation of NEC. This is not possible if the kinetic term
P (X) is linear in X as in the ekpyrotic phase, because
for the Lagrangian (1) the above equation becomes (Ap-
pendix (B12))

Ḣ = −XP,X , X = 1
2 φ̇

2 , (12)

which implies Ḣ = − 1
2 φ̇

2 ≤ 0 for P (X) = X. The idea
behind the form of P (X) in Fig. 1 is that X exits the
linear region after the ekpyrotic phase, and enters the
ghost condensate region X < Xc where P,X < 0. To be
consistent with the ekpyrotic phase, we must have the
relation Xc < Xek-beg, which implies

Xc

Xek-end
<
Xek-beg

Xek-end
= e−2N . (13)

This exponential factor lies at the core of the problems
that we will show in this paper.

The transition from the ekpyrotic phase to the bounc-
ing phase is mediated by a brief kinetic phase between
the two. As in Fig. 2, after the ekpyrotic phase, the po-
tential V (φ) rises sharply in order to slow down the field
φ and reduce X from Xek-end to Xc. Accordingly, the
equation of state changes from w � 1 to w = −1. This
transient phase lasts much shorter than a Hubble time,
during which the total energy is almost conserved. Let
Vc be the value of the potential when X reaches Xc, then
we have

Vc = 3H2
c ≈ 3H2

ek-end ≈ 3p |Vek-end| , (14)

which means Vc is smaller but of a similar order of mag-
nitude to |Vek-end|.

The bouncing phase begins when X further decreases
to less than Xc, whereby the equation of state w falls
below −1. The kinetic energy of the scalar field,

T (X) = 2XP,X − P , (15)

becomes negative, as shown in Fig. 3. The bounce occurs
when X decreases to the point where the negative kinetic
energy T cancels the positive potential energy V , giving
H2 = 1

3 (T + V ) = 0. Here the negative kinetic energy
does not incur ghost instability around X ≈ Xc as long
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FIG. 3: The kinetic energy T (X) = 2XP,X −P for the scalar
field φ. It is a linear function of X in the region X � Xc, but
becomes negative at X < Xc.

as T,X = P,X + 2XP,XX is positive [15]. This is satisfied
if P (X) grows quickly as X decreases; in particular, if

XP,XX � −P,X , for X < Xc , (16)

which implies a large slope in T . In that case the bounce
would happen at an X very close to Xc where the ghost
condensation model is valid.

We note that the speed of sound,

c2s =
P,X
T,X

=
P,X

2XP,XX + P,X
, (17)

takes the canonical value 1 in the ekpyrotic phase when
P (X) is linear, but becomes negative in the bouncing
phase when X < Xc. Condition (16) is equivalent to
|c2s| � 1 for X < Xc, which limits the rate at which
gravitational instability develops when NEC is violated.
In our analysis, we will avoid the gravitational instabil-
ity by assuming an extremely small value of |c2s| in the
bouncing phase, as quantified in Section IV. Then we can
focus on problems of growing curvature and anisotropy
that arise regardless of the gravitational instability.

III. THE BOUNCING SOLUTION

Before studying the evolution of perturbations, a more
detailed description of the bouncing phase is needed. One
major issue is the curvature and anisotropy terms in the
Friedmann equation (8). The curvature and anisotropy
are exponentially suppressed during the ekpyrotic phase,
but they start to grow faster than the scalar field energy
when w < −1 during the bouncing phase. It is commonly
assumed that the bouncing phase can be made as short as
a few Hubble times, so that the curvature and anisotropy

remain negligible. However, the bouncing phase cannot
be made arbitrarily short. By the end of the ekpyrotic
phase, the Hubble parameter H is negative and exponen-
tially large, so there must be a long period with Ḣ > 0
in order for H to increase to zero.

To determine how long the bouncing phase really lasts,
we solve the equation of motion for the scalar field,

T,X Ẋ + 6HP,X X + V,φ φ̇ = 0. (18)

Using (16), a general solution to Eq. (18) can be found
that describes a nonsingular bounce. First notice that
Eq. (16) implies, upon integration from Xc,

|XP,X | � P , for X < Xc . (19)

Therefore the kinetic energy becomes

T (X) = 2XP,X − P ≈ 2XP,X . (20)

The potential energy and its gradient are nearly constant
during the bouncing phase,

V (φ) ≈ Vc , V,φ ≈ V,φc
, (21)

since

∆V

Vc
≈
(−V,φc

Vc

)
∆φ ≈

(−V,φc

Vc

)√
2Xc ∆tbp . N e−N ,

(22)
and similarly for V,φ, where ∆tbp is the duration of the

bouncing phase as found below. The factors
∣∣−V,φc

Vc

∣∣ and∣∣V,φcφc
Vc

∣∣ are taken to be much greater than 1 yet much

less than eN ; otherwise one has to fine-tune the steep-
ness of the potential to super Planckian scales, which is
unphysical as we shall argue in the end of the paper.

We are now in a position to solve the equation

T,X Ẋ + 3HT + V,φc
φ̇ = 0. (23)

The solution can be described in three stages accord-
ing to whether the friction or the gradient term dom-
inates. At the very beginning of the bouncing phase,
|H| ≈ |Hc| =

√
Vc/3 and |T | is small, hence the fric-

tion term is negligible. Next, the negative kinetic energy
|T | increases and the friction term overtakes the gradi-
ent. Finally, very close to the bounce we have T ≈ −Vc
but |H| becomes small, so that the friction term is again
subdominant to the gradient term. Among these three
stages, the first and the last are both very short and do
not contain interesting features. Indeed, since the fric-
tion and the gradient terms have the same sign during
the bouncing phase, we have

|Ṫ | ≥ V,φ φ̇ ≈ (−V,φc
)
√

2Xc . (24)

Denote

|Tbp-beg| ≡
(−V,φc

Vc

)√
2XcVc/3 , (25)

|Hbp-end| ≡
(−V,φc

Vc

)√
2Xc ; (26)
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then the first stage goes from T = 0 until T ≈ Tbp-beg,
which lasts less than a Hubble time,

tbp-beg − tc ∼
|Tbp-beg|
|Ṫ |

.
(−V,φc

)
√

2Xc/3Vc

(−V,φc
)
√

2Xc

≈ 1

3|Hc|
,

(27)
hence the scale factor does not change much, abp-beg ≈
ac ≈ aek-end. Similarly, the third stage begins from T ≈
Tbp-end = −Vc + 3H2

bp-end, and the time it takes to reach
the bounce can be bounded by

tb − tbp-end ∼
3H2

bp-end

|Ṫ |
.

(−V,φc
/Vc)

2 6Xc

(−V,φc
)
√

2Xc

∼
(−V,φc

Vc

)√ 2Xc

pXek-end

1

|Hc|
.
e−N

|Hc|
, (28)

which is much less than a Hubble time, implying ab ≈
abp-end. Finite factors like p and

(−V,φc
Vc

)
are neglected

in these estimates.
Therefore the bouncing phase mainly consists of the

middle stage during which the friction term dominates
and the gradient is negligible. Under this condition, the
equation of motion simplifies to

Ṫ + 3HT = 0, with H2 = 1
3 (T + Vc). (29)

The bouncing solution is readily given by

T =
−Vc

cosh2
(
3
2 |Hc|(t− t0)

) , (30)

H = |Hc| tanh
(
3
2 |Hc|(t− t0)

)
, (31)

where the bounce is formally at t = t0. This solution
applies between the moments tbp-beg and tbp-end, which
correspond to |T | ∼ |Tbp-beg| and |H| ∼ |Hbp-end| respec-
tively. From the expression (25) and use Eq. (30), we
have

cosh−2
(
3
2 |Hc|(tbp-beg−t0)

)
∼
(−V,φc

Vc

)√ Xc

Xek-end
∼ e−N ,

(32)
which gives

t0 − tbp-beg ≈
N

3|Hc|
. (33)

Similarly, from the expression (26) and use Eq. (31), we
find∣∣∣ tanh

(
3
2 |Hc|(tbp-end−t0)

)∣∣∣ ∼ (−V,φc

Vc

)√ Xc

Xek-end
∼ e−N ,

(34)
which gives

t0 − tbp-end ≈
2e−N

3|Hc|
. (35)

Therefore the middle stage, hence the whole bouncing
phase, lasts approximately for a period

∆tbp ≈ tbp-end − tbp-beg ≈
N

3

1

|Hc|
. (36)

This duration eliminates any hope to complete the
bounce within just a few Hubble times. As a result,
we expect anisotropies to grow significantly during the
bouncing phase. From the bouncing solution (31), the
scale factor a(t) scales as

a ∝ cosh2/3
(
3
2 |Hc|(t− t0)

)
∝ |T |−1/3. (37)

Before the end of the bouncing phase, it contracts by a
factor

abp-end
abp-beg

=
∣∣∣Tbp-end
Tbp-beg

∣∣∣− 1
3 ∼

(−V,φc

Vc

) 1
3
( Xc

Xek-end

) 1
6

. e−
1
3N .

(38)
Therefore, naively, the anisotropy term in the Friedmann
equation (8) would increase by a factor

(σ2)bp-end
(σ2)bp-beg

=
(abp-end
abp-beg

)−6
∼ Xek-end

Xc
& e2N , (39)

which completely cancels the suppression (10) it has
experienced during the ekpyrotic phase. That is, the
anisotropy has returned!

To be more precise, during the ekpyrotic phase the
suppression of anisotropy happens in such a way that
the anisotropy term itself remains almost constant, while
the scalar field energy increases by an exponential factor
e2N . In the bouncing phase, however, the anisotropy
term grows by the same factor e2N , while the scalar field
energy decreases rapidly towards 0. Thus there must
be a point near the end of the bouncing phase where
the anisotropy contribution to the Friedmann equation
(8) overtakes the scalar field energy. After this point,
the nonsingular bouncing solution (31) that assumes the
dominance of the scalar field becomes invalid. To see
how the exponential growth of anisotropy may disrupt
the nonsingular bounce, we need to study perturbations
around the background evolution found above.

IV. CURVATURE PERTURBATION AND
POWER SPECTRUM

Consider linear perturbations about the metric (2),

ds2 = a(τ)2
[
− (1 + 2A)dτ2 + 2(B,i + Si)dτdx

i (40)

+
(
(1− 2ψ)δij + 2E,ij + 2F(i,j) + 2hij

)
dxidxj

]
,

where τ is the conformal time, dt = a dτ . We will denote
conformal time derivative as ′ ≡ d

dτ = a ddt , and spatial

Laplacian as ∇2 ≡ ∂i∂i. The functions A, B, ψ and E
represent the scalar perturbations; Si and Fi, with Si,i =

F i,i = 0, represent the vector perturbations; and hij , with

hii = hij,i = 0, represent the tensor perturbations. The
definition of these perturbative quantities are subject to
gauge transformations of the coordinates, as discussed in
Appendix B. The constant time hypersurface is given by
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the normal nµ = (−a(1 +A),~0 ). The perturbation of its
intrinsic curvature is (Appendix (B5))

δ(3)R =
4

a2
∇2ψ , (41)

hence ψ is referred to as the curvature perturbation. The
shear of the hypersurface is given by (Appendix (B7))

σij = a
[
(σS
,ij − 1

3δij∇
2σS) + σV

(i,j)

]
, (42)

where the scalar and vector contributions are

σS = E′ −B , (43)

σV
i = F ′i − Si , (44)

which will be related to the anisotropy. The evolution of
these perturbative quantities is determined by the Ein-
stein equation and the equation of motion for the scalar
field φ and its perturbation δφ, as shown in Appendix B.

The evolution of the curvature perturbation involves
only the scalar perturbations. To agree with obser-
vations, the contracting phase of the Universe has to
generate a nearly scale-invariant spectrum of curvature
perturbations. Several mechanisms have been proposed
that can give rise to such scale-invariant curvature per-
turbation, including the multi-field entropic mechanism
[16, 21] and the single-field adiabatic ekpyrotic mecha-
nism [22, 23]. Once the generated scale-invariant mode
exits the horizon, it is expected to be conserved on su-
perhorizon scales. Meanwhile, there exists an adiabatic
contribution to the curvature perturbation that is time-
varying according to the equation of state. This adiabatic
contribution generally has a blue spectrum, and is sub-
dominant to the constant scale-invariant modes on large
scales. However, a serious problem arises when the equa-
tion of state w abruptly changes in the transition from
the ekpyrotic phase to the bouncing phase. It happens
that an adiabatic mode grows exponentially as w drops
past −1, and surpasses the scale-invariant mode even on
large scales.

To observe this problem, consider the curvature per-
turbation in the comoving gauge defined by δφ = 0, as
is done in [20]. The curvature perturbation in this gauge
is described by the gauge-invariant quantity (Appendix
(B28))

R ≡ ψ +H
δφ

φ̇
. (45)

The Fourier mode Rk with comoving wavenumber k
obeys the equation (Appendix (B33))

R′′k + 2
z′

z
R′k + c2sk

2Rk = 0, (46)

where z = a
√
−2Ḣ/c2sH

2. After the mode exits the hori-

zon, the k2 term can be treated perturbatively, and the
equation is formally solved by expanding in orders of k2,

Rk = R(0)
k − k

2

∫
dτ

z2

∫
dτ c2sz

2Rk . (47)

The leading order R(0)
k is the solution to the equation

without the k2 term, which contains two general solu-
tions,

R(0)
k = C1(k) + C2(k)

∫
dτ

z2
≡ Rconst

k +Rint
k . (48)

These two terms are the leading adiabatic contributions
to the curvature perturbation; the k-dependence of the
dominant term determines the spectral index of adiabatic
perturbations on large scales.

The k-dependence of the constants C1, C2 can be found
by matching to initial conditions in Minkowski vacuum
when the mode originated from quantum fluctuations
deep inside the horizon. Introducing the canonical vari-
able vk ≡ zRk, Eq. (46) becomes

v′′k +
(
c2sk

2 − z′′

z

)
vk = 0. (49)

During the ekpyrotic phase, c2s = 1 and the scaling so-

lution (7) gives z ∼ (−τ)
p

1−p , so the freeze-out horizon
scale is given by ∣∣∣z′′

z

∣∣∣ =
p (1− 2p)

(1− p)2 τ2
. (50)

Then the solution to Eq. (49) is given by Hankel func-
tions,

vk(τ) =
√
x
[
AH(1)

ν (x) +BH(2)
ν (x)

]
, (51)

where x ≡ k(−τ), and ν = 1
2 −

p
1−p . At early times

when the mode is deep inside the horizon, x � 1, the
solution should be matched to the vacuum solution for a
Minkowski background [24],

vk →
1√
2k
e−ikτ , |kτ | → ∞. (52)

Using the asymptotic behavior of Hankel functions,

H(1,2)
ν (x)→

√
2

πx
e±i(x−

νπ
2 −

π
4 ), x→∞, (53)

we can fix the constants B = 0, A =
√

π
4k e

i( νπ2 +π
4 ).

Therefore, neglecting the constant phase factor, we have

vk(τ) =

√
πx

4k
H(1)
ν (x). (54)

After the mode exits the horizon, the solution approaches
the other limit, x� 1, where it allows the expansion

vk =

√
πx

4k

[
− i2

νΓ(ν)

πxν
+
(
− icos(νπ)Γ(−ν)

2νπ
(55)

+
1

2νΓ(1 + ν)

)
xν +O(x2−ν)

]
, x→ 0.
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From this, the expression for Rk becomes

Rk ≈
√
πp

8

(−τ)
1
2−

p
1−p

(1− p)
p

1−pα
1

1−p

[
− i2

νΓ(ν)

π
k−ν(−τ)−ν

+
(
i
cos(νπ)Γ(1− ν)

2νπν
+

1

2ννΓ(ν)

)
kν(−τ)ν

]
≈
−i√p
2α

1
1−p

k−
1
2+

p
1−p +

√
p

2α
1

1−p
k

1
2−

p
1−p (−τ)

1−3p
1−p , (56)

in the limit of small p, but keeping the exact powers.
These leading terms correspond to the solution (48),

Rconst
k +Rint

k = C1(k) + C2(k)

∫ τ

0

c2sH
2

a2(−2Ḣ)
dτ (57)

= C1(k) + C2(k)
pα

−2
1−p

2− 6p

(
(1− p)(−τ)

) 1−3p
1−p .

Comparing the coefficients, one obtains

C1(k) ≈
−i√p
2α

1
1−p

k−
1
2+

p
1−p ∼ 1√

k
, (58)

C2(k) ≈ α
1

1−p

√
p
k

1
2−

p
1−p ∼

√
k . (59)

Since k3/2|C1(k)| ∼ k, and k3/2|C2(k)| ∼ k2, both Rconst
k

and Rint
k terms have blue spectral indices.

To produce a scale-invariant contribution to the cur-
vature perturbation, we may, for instance, invoke the
entropic mechanism described in [16]. In this mecha-
nism, an independent scale-invariant contribution Rsc-inv

k
is generated from entropic perturbations by an additional
scalar field at the end of the ekpyrotic phase, where

Rsc-inv
k ∼ 1

k3/2
. (60)

Thus the total curvature perturbation is the sum of the
terms,

Rtot
k ≈ Rsc-inv

k +Rconst
k +Rint

k . (61)

By the end of the ekpyrotic phase, according to
Eq. (57),

Rconst
k

∣∣
ek-end

= C1(k), (62)

Rint
k

∣∣
ek-end

≈ C2(k) p2

2(a3H)ek-end
≈ C2(k)

2a3ek-end

√
p3

Xek-end
. (63)

Hence Rint
k is suppressed relative to Rconst

k by a factor∣∣∣∣ Rint
k

Rconst
k

∣∣∣∣
ek-end

≈
∣∣∣∣ p k

(aH)ek-end

∣∣∣∣ ≈√ Xk

Xek-end
≡ e−Nk ,

(64)
where Xk is the kinetic energy at horizon crossing and
Nk is the remaining number of e-folds of the ekpyrotic
phase after the k-mode exits the horizon. Due to its blue

spectrum, the Rconst
k term is in turn dominated by the

scale-invariant term,∣∣∣∣Rconst
k

Rsc-inv
k

∣∣∣∣
ek-end

∼
∣∣∣∣ k

(aH)ek-end

∣∣∣∣ ≈
√

Xk

Xek−end
= e−Nk .

(65)
Hence the integral term is sub-subdominant,∣∣∣∣ Rint

k

Rsc-inv
k

∣∣∣∣
ek-end

∼
∣∣∣∣ k

(aH)ek-end

∣∣∣∣2 ≈ Xk

Xek−end
= e−2Nk .

(66)
Therefore, the total curvature perturbation right after
the ekpyrotic phase is

Rtot
k

∣∣∣
ek-end

≈ Rsc-inv
k ∼ 1

k3/2
, (67)

which confirms that the entropic mechanism produces a
scale-invariant spectrum. We note that the Rsc-inv

k and
Rconst
k terms remain constant afterwards, but the inte-

gral term Rint
k is time-varying even on large scales. The

total curvature perturbation Rk is conserved and scale-
invariant on superhorizon scales only if the time-varying
piece remains negligible.

We now demonstrate that, in fact, the Rint
k term grows

rapidly in the kinetic phase when Ḣ increases from neg-
ative to 0 and w crosses −1. Indeed, from Eqs. (12) and
(17), the integral term can be written as

Rint
k = C2(k)

∫
c2s
a3

H2

−2Ḣ
dt = C2(k)

∫
1

a3
H2

2XT,X

dX

Ẋ
.

(68)
As the field passes the bottom of the potential and climbs
up the other side, its kinetic energy quickly decreases to
X ≈ Xc where P (X) becomes nonlinear. During this
rapid phase the friction term in Eq. (18) can be neglected,
hence

Rint
k

∣∣∣
w→−1

≈ C2(k)

∫
1

a3
H2

2X

dX

V,φ
√

2X

≈ C2(k)
1

2a3c

( H2
c

V,φc

)∫ Xc dX√
2X3

≈ C2(k)

3a3ek-end

( Vc
−V,φc

) 1√
2Xc

, (69)

where the integral in the first line is dominated by con-
tributions from near the upper limit, and so we approxi-
mated the slowly varying quantities by their values there.
Compared to the value in (63) at the end of the ekpy-
rotic phase, the integral term has now been exponentially
amplified,

|Rint
k |w→−1

|Rint
k |ek-end

≈
( Vc
−V,φc

)√Xek-end

Xc
& eN . (70)

It exceeds the scale-invariant term by a ratio∣∣∣∣ Rint
k

Rsc-inv
k

∣∣∣∣
w→−1

∼ Xk

Xek-end

√
Xek-end

Xc
& eN−2Nk > 1,

(71)
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for a wide range of modes with Nk < N/2.
Thus, modes that exit the horizon in the second half of

the ekpyrotic phase, including all modes within current
observable horizon, are overwhelmed by the integral term
which carries a blue spectrum,

Rtot
k

∣∣∣
w→−1

≈ Rint
k ∼

√
k , (72)

in contradiction to observations. Moreover, assuming
that the amplitude of the scale-invariant modes in (71)
matches the amplitude measured by the cosmic mi-

crowave background (CMB), ∆2
Rsc-inv = k3

2π2 |Rsc-inv
k |2 ≈

2.2 × 10−9 [21], then the blue modes will have an ampli-
tude ∆2

R ≈ e2N−4Nk∆2
Rsc-inv , which is already nonlinear

for modes with Nk < N/2−5. Note that these modes re-
main outside the horizon after the ekpyrotic phase, since
the horizon continues to shrink in the kinetic phase. This
can be seen by writing∣∣∣z′′

z

∣∣∣ = a2H2
[

3
(V,φφ

3H2

)
− 6
√

3(1 + w)
(−V,φ

3H2

)
− 2 +

21

2
(1 + w)− 9

2
(1 + w)2

]
, (73)

which is dominated by the first term as w → −1,∣∣∣z′′
z

∣∣∣ ≈ 3
(V,φcφc

Vc

)
(aH)2ek-end. (74)

Since we assumed a steep potential in the kinetic phase,
this expression is generally larger than the value at the
end of the ekpyrotic phase, |z′′/z| ≈ (aH)2ek-end/p, from
Eq. (50).

It remains to show that the dominantly blue curvature
perturbation is maintained through the bouncing phase
without significant changes. By Eq. (68), the change in
the integral term is

∆Rint
k = C2(k)

∫
H2

2a3Ṫ

dX

X
. (75)

We observe that during the whole bouncing phase we
have the relation

H

a3Ṫ
≤ const ≈ 1

3a3ek-end

( Vc
−V,φc

) 1

|Hc|
√

2Xc

. (76)

The equality holds for the bouncing solution due to
Eq. (29) and the scaling relation (37); the value of the
constant is found at the beginning of the bouncing phase
from Eq. (25). The inequality is true in the short stages
before tbp-beg and after tbp-end as a result of Eq. (24).
Therefore we can estimate Eq. (75) as

∆Rint
k .

C2(k)

6a3ek-end

( Vc
−V,φc

) 1√
2Xc

∫
H

|Hc|
dX

X

.
C2(k)

3a3ek-end

( Vc
−V,φc

) 1√
2Xc

∣∣∣∣∆X2Xc

∣∣∣∣ , (77)

where we used the fact that |H| ≤ |Hc| in the bounc-
ing phase, and assumed that ∆X � Xc in order for
the ghost condensate model to be valid. Hence the total
change of the integral term is much less than the value
(69) obtained in the kinetic phase right before the bounc-
ing phase begins.

Our analysis differs in an important way from [17, 19],
which considered similar models and concluded that the
comoving curvature perturbation changes negligibly near
the bounce. In those cases, the bounce is analyzed in the
limit that the Hubble parameter varies approximately
linearly with time. From our bouncing solution (31), this
corresponds to the period when |t− t0| � 1/|Hc|, so that

H ≈ 3
2H

2
c (t− t0), Ḣ ≈ 3

2H
2
c . (78)

This is within the last e-fold of the bouncing phase, where
|c2s| � 1 and a ≈ abp-end given in Eq. (38). During this
linear regime the curvature perturbation changes by

∆Rint
k ≈ C2(k)

∫
c2s

a3bp-end

H2

−2Ḣ
dt (79)

� C2(k)

a3bp-end

∫
3

4
H2

c (t− t0)2dt

� C2(k)

a3ek-end

( Vc
−V,φc

)√Xek-end

Xc

1

4|Hc|

∼ C2(k)

a3ek-end

( Vc
−V,φc

) 1√
2Xc

.

Thus, as found by [17, 19], R changes very little from
its value (69) at the beginning of the bouncing phase.
Indeed, we can simply see from the expression (79) that
the integral term is decaying as |H| → 0 at this last stage
of the bouncing phase. However, we emphasize that the
comoving curvature perturbation grows large at a much
earlier stage just before the bouncing phase begins. This
period was ignored in those previous studies, and so the
problem with the blue spectrum was missed.

Finally, let us take care of the gravitational instability
in the bouncing phase when c2s < 0. During the bouncing
phase, perturbation modes may reenter the horizon. For
example, in the case of a slowly varying c2s (i.e. ċs/Hcs �
1) consistent with Eq. (16), the freeze-out horizon scale
corresponding to the bouncing solution (31) and (37) is
given by

z′′

z
≈ a2H2

c

[
− 1

4
− 1

2 cosh2
(
3
2 |Hc|(t− t0)

)
+

9

2 sinh2
(
3
2 |Hc|(t− t0)

)], (80)

which goes from negative to positive and crosses zero at
t0− t ≈ 1.4/|Hc|. Therefore all modes briefly reenter the
horizon around this time, and exit again when t− t0 → 0
approaching the bounce. According to Eq. (49), modes
inside the horizon grow unstable instead of undergoing
oscillations. Since the growth rate is proportional to
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|cs|k, this instability could be tamed if |c2s| is small and
the duration inside the horizon is short. The danger-
ous modes are those on small scales, which reenter the
horizon early in the bouncing phase and stay inside until
very close to the bounce. Their duration inside the hori-
zon can approach the upper bound (36), or in conformal
time,

|cs|k∆τ ∼ |cs| e
N
3 −Nk , (81)

which may create a problem for the modes with Nk <
N/3. To avoid this gravitational instability, the speed of
sound has to be

|c2s| . e−
2
3N . (82)

This is the same condition under which the leading term
(48) dominates the expansion in Eq. (47) and our com-
putations follow. We note that even when gravitational
instability is suppressed under the condition (82), the
problem with the exponential growth of the comoving
curvature perturbation still occurs just before c2s becomes
negative.

Having traced the evolution of the comoving curvature
perturbation through each stage of the contracting phase,
let us now comment on the curvature perturbation in
other gauges. Under a general coordinate transformation
xµ → xµ + ξµ, the curvature perturbation ψ transforms
as (Appendix (B22))

ψ → ψ + aHξ0 . (83)

An immediate consequence is that the curvature pertur-
bation is gauge-invariant at a nonsingular bounce where
H = 0; hence results computed in different gauges must
agree as they approach the bounce. Therefore the expo-
nential growth of curvature perturbation that we found
in the comoving gauge is truly physical and should exist
in other gauges as well. However, although the curvature
perturbation in different gauges end up with the same
value at the bounce, their patterns of growth can be quite
different during the contracting phase before the bounce.
For example, in the longitudinal gauge (Appendix B)
the Newtonian potential Φ grows exponentially during
the ekpyrotic phase, but undergoes no abrupt change
in the transitional kinetic phase, then grows further in
the bouncing phase to reach the same value as R at the
bounce. In the above computations, we chose to study
the comoving curvature perturbation R because it will
be conserved outside the horizon in the expanding phase
including the reheating period, and therefore it is directly
related to the density and temperature fluctuations that
are observed today. It is also a convenient variable to
study because it is almost conserved during both the
ekpyrotic and the bouncing phases, whereas the expo-
nential growth can be clearly confined and ascribed to
the transition between the two phases, during which the
equation of state w changes rapidly.

Since the comoving curvature perturbation R becomes
exponentially large right before the bouncing phase, an-

other natural concern is whether the perturbative compu-
tation breaks down at this point. We address this ques-
tion by noting that the perturbation theory is valid if
there exists one particular gauge in which the pertur-
bations of all relevant physical quantities remain small;
then the variables in other gauges can be formally de-
fined and related to the quantities in this particular gauge
through gauge transformations. In our case, the syn-
chronous gauge plays this role. It can be readily checked
that the physical quantities, including the curvature per-
turbation ψs, the shear perturbation σs (see Section V),
and the matter perturbations δρs, δPs, (ρ + P )δus, all
remain finite during the transitional kinetic phase in this
gauge. In particular, the curvature perturbation ψs in
the synchronous gauge can be related to R through (Ap-
pendix (B49))

ψs = R−H
∫ t

0

Ṙ
H
dt′ . (84)

After the k mode ψsk exits horizon, we may insert the
leading terms of Rk from (48) to find (for brevity we will
omit the subscript k from here on)

ψs ≈ C1(k) + C2(k)

∫ t

0

dt′Ḣ

∫ t′

0

dt′′
c2sH

2a3Ḣ
. (85)

Due to the presence of Ḣ in the outer integral, the sec-
ond term remains small when Ḣ → 0, so that the cur-
vature perturbation is well behaved in this gauge when
the equation of state w crosses −1. Hence it is indeed
legitimate to carry our computations beyond this point
into the bouncing phase.

Nevertheless, even the synchronous curvature pertur-
bation ψs has to grow exponentially near the bounce to
match the value of R. To prove this, let us evaluate
Eq. (85) in the bouncing phase as follows. First denote

ψconst
s + ψint

s ≡ C1(k) + C2(k)

∫ t

0

dt′Ḣ · I(t′) , (86)

where I(t′) is the inner integral in (85). In the kinetic
phase, similar to Eq. (69), I(t′) can be computed as

I(t′) ≡
∫ t′

0

dt′′
c2sH

2a3Ḣ
≈ Hc

2a3c

∫
dX/X

(−V,φ)
√

2X

t′→tc−−−→ 1

3a3ek-end

( Vc
−V,φc

) 1

|Hc|
√

2Xc

. (87)

Here this huge growth as t′ → tc is tempered by Ḣ → 0
in the outer integral in (86), hence does not show in ψint

s .
Then in the bouncing phase, as for Eqs. (75) and (77),
I(t′) can be found to stay nearly constant,

∆I ≈
∫ X

Xc

H

2a3Ṫ

dX

X

.
1

3a3ek-end

( Vc
−V,φc

) 1

|Hc|
√

2Xc

∣∣∣∆X
2Xc

∣∣∣� I(tc). (88)
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Therefore it simply contributes a constant factor to the
outer integral in (86), which leads to

ψint
s ≈ C2(k)

∫ t

0

dt′Ḣ
1

3a3ek-end

( Vc
−V,φc

) 1

|Hc|
√

2Xc

≈ C2(k)

3a3ek-end

( Vc
−V,φc

) 1√
2Xc

∫ H

Hc

dH

|Hc|
. (89)

Clearly when H → 0 near the bounce, ψint
s approaches

the same value as Rint given by Eq. (69), which is ex-
ponentially large and nonlinear for a wide range of k
modes. From the above derivation we also see that ψs

becomes exponentially large only when |H| � |Hc| near
the bounce. This corresponds to |t− t0| � 1/|Hc| in the
bouncing solution (31), which is within the last e-fold
before the bounce. We shall see below that during this
time the anisotropy grows large and nonlinear, too.

V. ANISOTROPY AND NONSINGULAR
BOUNCE

Anisotropy is described by the shear of the constant
time hypersurface. In Appendix A we derive the gen-
eralized local Friedmann equations, and show that the
anisotropy term exactly corresponds to the squared mag-
nitude of the shear. Here we illustrate a simpler case with
a flat, homogeneous, but anisotropic metric,

ds2 = −N 2dτ2 + a2 γ̃ij(dx
i + βidτ)(dxj + βjdτ), (90)

where the lapse N , the shift a2βi, and the spatial metric
a2γ̃ij depend only on τ . We choose the scale factor a(τ)
such that det γ̃ij = 1. The extrinsic curvature of the

constant time hypersurface with normal nµ = (−N ,~0 )
is given by

Kij = nj;i = 1
3θγij + σij , (91)

where it is decomposed into the expansion θ and the shear
σij by using the projection tensor γµν = gµν + nµnν ,

θ ≡ ni;i =
3H
N

, (92)

σij ≡ ni;j − 1
3γijn

k
;k =

a2

2N
γ̃ ′ij , (93)

and H ≡ a′

a is the conformal Hubble parameter. The
squared magnitude of the shear is given by

σ2 ≡ 1
2σ

ijσij =
1

8N 2
γ̃ij γ̃ ′jkγ̃

k`γ̃ ′`i . (94)

For a perfect fluid at rest, e.g. a homogeneous scalar
field, the Einstein equations can be written as

ρ = −G0
0 =

1

3
θ2 − σ2 , (95)

3p = Gii = − 2

N
θ′ − θ2 − 3σ2 , (96)

0 = Gij − 1
3δ
i
jG

k
k =

1

N
σij
′ + θσij . (97)

In physical time dt = Ndτ , the Hubble parameter is
H = H/N = θ/3, and the first two equations reduce to
the Friedmann equations,

H2 = 1
3 (ρ+ σ2) , (98)

Ḣ = − 1
2 (ρ+ p)− σ2 . (99)

The third Einstein equation becomes

σ̇ij + 3Hσij = 0, (100)

which implies that the shear scales as

σij ∝
1

a3
, σ2 ∝ 1

a6
. (101)

Thus the anisotropy term in the Friedmann equation (8)
is precisely the squared shear of the constant time hyper-
surface. More general cases with nonflat and inhomoge-
neous metrics are dicussed in Appendix A.

For our analysis of the bouncing dynamics, we
again consider the perturbatively inhomogeneous and
anisotropic metric (40),

ds2 = a2
[
− (1 + 2A)dτ2 + 2(B,i + Si)dτdx

i

+
(
(1− 2ψ)δij + 2E,ij + 2F(i,j) + 2hij

)
dxidxj

]
.

Small anisotropies can be analyzed by studying the shear
perturbation of the constant time hypersurfaces. The
normal to these hypersurfaces is nµ = (−a(1 + A),~0 ),
and the shear is given by (Appendix (B7))

σij = a
(
(E′,ij −B,ij)− 1

3δij∇
2(E′ −B)

)
+ a
(
F ′(i,j) − S(i,j)

)
. (102)

It involves both the scalar and the vector perturbations,
which evolve independently at linear order. The scalar
part of the shear is coupled to the curvature perturbation
through Einstein equations, while the vector part scales
in a simple manner with the scale factor a. Therefore, we
expect the anisotropy to grow significantly whenever the
curvature perturbation becomes large, or when the scale
factor shrinks exponentially as in the bouncing phase de-
scribed in Section III. In that case, the rise of a large
anisotropy would substantially alter the dynamics of the
contracting Universe and potentially demolish the non-
singular bounce.

Let us first look at the vector perturbations that fol-
lows very simple behavior. The vector part of the shear
perturbation is given by

σV
ij = a

(
F ′(i,j) − S(i,j)

)
≡ a σV

(i,j) , (103)

where

σV
i ≡ F ′i − Si , (104)

and σVi
,i = 0. The variable σV

i is gauge-invariant by
itself, and evolves according to the equation (Appendix
(B63))

σV
i
′ + 2H σV

i = 0, (105)
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which implies

σV
i ∝

1

a2
, (106)

and hence

σVi
j =

1

a2
σV
ij =

1

a
σV
(i,j) ∝

1

a3
, (107)

in agreement with (101). Unlike in an expanding uni-
verse, the vector perturbation σV

i , if nonzero, grows in
the contracting universe as the scale factor a decreases.
Therefore, in general, the vector perturbation should not
be overlooked in analyzing bouncing cosmologies [25],
since it naturally creates anisotropy and may disrupt the
bounce. As we argued in Section III, the exponential
growth of anisotropy in the bouncing phase may cause
the breakdown of perturbation theory near the bounce.
However, since the vector perturbation is not sourced by
the scalar field, it will remain negligible if it is extremely
small initially. In this sense, the problem with the vec-
tor part of the anisotropy can be resolved by fine-tuning
initial conditions.

Suppose that the universe is homogeneous but there
exists some initial anisotropy σ2

ek-beg at the beginning of
the ekpyrotic phase. We would like to determine if, af-
ter exponential amplification in the bouncing phase, it
may dominate the energy density and prevent the non-
singular bounce. For this purpose, we shall include the
anisotropy term in the Friedmann equations and reana-
lyze the bouncing behavior of the Universe. Under the
approximations (20) and (21), the Friedmann equations
become

3H2 = ρφ + σ2 ≈ T + Vc + σ2, (108)

Ḣ = −XP,X − σ2 ≈ −T
2
− σ2. (109)

In order to reach a nonsingular bounce in the presence
of a nonzero σ2, ρφ must decrease to a negative value to

cancel the σ2 in (108). Meanwhile, Ḣ must stay positive
before H hits zero; hence, the kinetic energy T has to
be sufficiently negative so that its magnitude is larger
than 2σ2 in (109). From Eq. (37) we know that in the
bouncing phase T scales as 1/a3, slower than σ2 which
grows as 1/a6. Therefore if σ2 starts with too large an
initial value, it may overtake the scalar field energy and
prevent the bounce.

Here we derive a general condition for the nonsingular
bounce to happen. Our only assumption is that X, and
hence T , is monotonically decreasing with time in the
bouncing phase, which is guaranteed by the steep poten-
tial that slows down the field φ. Let the anisotropy be
σ2
1 at some time t1 when it is still much smaller than the

scalar field energy ρ1. Introduce the variable

q ≡
(a1
a

)3
, (110)

which starts from q = 1 and increases as a decreases.
Since σ2 ∝ a−6 ∝ q2, we have

dσ2

dq
= σ2

1 · 2q. (111)

For the scalar field, from Eq. (23), we have

ρ̇φ + 3HT = 0, (112)

and hence

dρφ
dq

=
T

q
≤ T1

q
, (113)

since T is monotone decreasing. Therefore, Eq. (108)
satisfies

d(3H2)

dq
≤ −|T1|

q
+ 2σ2

1 q, (114)

which integrates to give

3H2 ≤ 3H2
1 − |T1| log q + σ2

1(q2 − 1). (115)

To have a bounce at finite a, or finite q, a sufficient condi-
tion is that the RHS has a root in q > 1, or equivalently,
the minimum of the RHS is less than 0. The minimum
is at q2 = |T1|/2σ2

1 , where the RHS equals

ρ1 +
|T1|
2
− |T1|

2
log
|T1|
2σ2

1

.

Requiring this to be less than 0, we find the condition

σ2
1 ≤
|T1|
2

exp{− 2ρ1
|T1| − 1}. (116)

This condition applies for any point t1 in the bouncing
phase, in particular the last stage where Eq. (29) and
hence T ∝ 1/a3 does not hold. Nonetheless, since it is
sufficient at any point t1, we may find the mildest condi-
tion by a proper choice of t1. Let t1 be within the middle
stage where we can use T ∝ 1/a3. Extrapolating back to
the beginning of the bouncing phase, we need to have

σ2
bp-beg ≤

a61
a6bp-beg

|T1|
2

exp{− 2(Vc−|T1|)
|T1| − 1}

=
|Tbp-beg|2

2|T1|
exp{1− 2Vc

|T1|}. (117)

The mildest condition is established at t1 → tbp-end where
|T1| → |Tbp-end| ≈ Vc, which imposes

σ2
bp-beg ≤

|Tbp-beg|2

2Vc
e−1 ≈

(−V,φc

Vc

)2 Xc

3e
∼ Xc . (118)

Therefore, since σ2 is nearly constant through the ekpy-
rotic phase, the condition on the initial value of σ2

ek-beg
is simply

σ2
ek-beg . Xc , (119)
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which has to be much less than ρφek-beg ≈ 3pXek-beg. In

other words, to prevent the anisotropy from becoming a
problem during the bouncing phase, the initial conditions
must be fine-tuned so that the ekpyrotic phase is highly
isotropic to begin with.

Condition (119) applies for not only the vector per-
turbation but any initial anisotropy that scales as 1/a6,
including any initial scalar contributions. However, for
scalar perturbations, large anisotropy can arise even if
there is no initial anisotropies classically, because the
scalar perturbation is continuously sourced by the quan-
tum fluctuations of the scalar field. We demonstrate
that the scalar shear perturbation is induced during the
ekpyrotic phase and grows exponentially large near the
bounce.

The scalar part of the shear perturbation is given by

σS
ij = a

(
(E′,ij −B,ij)− 1

3δij∇
2(E′ −B)

)
≡ a

(
σS
,ij − 1

3δij∇
2σS
)
, (120)

where

σS ≡ E′ −B . (121)

Under the coordinate transformation xµ → xµ + ξµ, σS

transforms as (Appendix (B23))

σS → σS − ξ0 , (122)

and thus is not gauge-invariant. In the comoving gauge,
σS is described by the gauge-invariant quantity

σc ≡ σS − δφ

φ′
. (123)

The evolution of σc is coupled to the comoving curva-
ture perturbation R through the equations (Appendix
(B30∼B32))

σ′c + 2Hσc +
R′

H
+R = 0, (124)

R′ + c2sH
H′ −H2

∇2(R+Hσc) = 0. (125)

Thereby the scalar shear and curvature perturbations
source each other to grow from quantum fluctuations to
classical perturbations when the modes exit the horizon.
From the second equation above we can solve for σc in
terms of R,

σc =
H′ −H2

c2sk
2H2

R′ − R
H
. (126)

Since we know from Section IV that the comoving curva-
ture perturbation R undergoes exponential amplification
right before the bouncing phase when w crosses −1, we
expect the comoving shear perturbation σc to follow the
same growth. Indeed, using the leading order solution

(48) plus the expansion (47) of R, we find, up to order
O(k1/2),

σc =− C2(k)

2k2a2
− C1(k)

a2

∫ t

0

dt′a (127)

+
C2(k)

a2

(
a

H

∫ t

0

dt′
c2sH

2

2a3Ḣ
+

∫ t

0

dt′
aḢ

H2

∫ t′

0

dt′′
c2sH

2

2a3Ḣ

)
.

Along the same lines as for Eqs. (69) and (85), we see that

the third term increases exponentially as Ḣ → 0, while
the fourth and all higher order terms are well behaved
and finite. Compared to the leading term, σc becomes
dominated by the third term which surpasses the leading
term by a factor

σc|w→−1
σc|ek-end

≈ 2k2

3(aH)2ek-end

( Vc
−V,φc

)√pXek-end

2Xc
∼ eN−2Nk .

(128)
Note that this is the same exponential factor as in (71),
by which the comoving curvature perturbation R grows
when w → −1 for the range of modes with Nk < N/2.

However, this huge growth of the comoving shear per-
turbation does not imply the breakdown of perturbation
theory at this point. As we have seen in Section IV, in
the synchronous gauge the curvature perturbation ψs re-
mains small throughout the contracting phase until very
near the bounce. Accordingly, the shear perturbation
would also remain small in this gauge. The synchronous
shear perturbation σs can be related to the comoving
shear perturbation σc through the gauge transformation
(Appendix (B50))

σs = σc +
1

a

∫ t

0

Ṙ
H
dt′ . (129)

After the mode exits the horizon, we use Eqs. (127) and
(57) to find, up to order O(k1/2),

σs =− C2(k)

2k2a2
− C1(k)

a2

∫ t

0

dt′a+
C2(k)

a2

(
a

H

∫ t

0

dt′
c2sH

2

2a3Ḣ

+

∫ t

0

dt′
aḢ

H2

∫ t′

0

dt′′
c2sH

2

2a3Ḣ

)
− C2(k)

a

∫ t

0

dt′
c2sH

2a3Ḣ

=− C2(k)

2k2a2
− C1(k)

a2

∫ t

0

dt′a+
C2(k)

a2
×(∫ t

0

dt′
aḢ

H2

∫ t′

0

dt′′
c2sH

2

2a3Ḣ
− a

∫ t

0

dt′
Ḣ

H2

∫ t′

0

dt′′
c2sH

2

2a3Ḣ

)
=− C2(k)

2k2a2
− C1(k)

a2

∫ t

0

dt′a

− C2(k)

a2

∫ t

0

dt′aH

∫ t′

0

dt′′
Ḣ

H2

∫ t′′

0

dt′′′
c2sH

2

2a3Ḣ
. (130)

From the first to the second line it is clear that the grow-
ing term in σc is absorbed by the gauge transformation
term, leaving behind an integral that is well behaved as
Ḣ → 0, similar to Eq. (85).
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Moreover, using similar calculations that lead to (89),
σs in the bouncing phase can be evaluated as

σs ≈−
C2(k)

2k2a2
− C1(k)

a2

∫ t

0

dt′a

− C2(k)

a2

∫ t

0

dt′aH · 1

H

1

3a3ek-end

( Vc
−V,φc

) 1√
2Xc

≈− C2(k)

2k2a2
−
[
C1(k) +

C2(k)

3a3ek-end

(−Vc/V,φc)√
2Xc

]
1

a2

∫ t

0

dt′a

≈− C2(k)

2k2a2
− C1(k)

a2
abp-beg
|Hc|

− 1

a2
C2(k)

3a2ek-end

(−Vc/V,φc)

|Hc|
√

2Xc

.

(131)

The integral in the second line is found by using
(37), which rapidly converges to the constant value ≈
abp-beg/|Hc|. From the last line we see that all three
terms scale equally as 1/a2 near the bounce, which co-
incides with the vector perturbation (106) and likewise
leads to

σs
i
j =

1

a

(
σs,ij − 1

3δij∇
2σs
)
∝ 1

a3
(132)

that resembles Eq. (101) in the homogeneous case. We
also find that the third term in (131) dominates over the
first (and second) term by a ratio

2k2

3a2ek-end

(−Vc/V,φc
)

|Hc|
√

2Xc

∼ k2

(aH)2ek-end

√
Xek-end

Xc
∼ eN−2Nk

(133)

for modes with Nk < N/2, similar to (128) but only at a
much later time in the bouncing phase.

We note that the scalar shear perturbation is generated
by quantum fluctuations and cannot be fine-tuned away.
To see whether the resulting anisotropy grows nonlinear,
we estimate the size of the anisotropy by computing the
self-correlation function of the scalar shear perturbation,

〈(σS)2〉 = 〈 12 σ
Sij(~x)σS

ij(~x)〉

=

∫
d3k

(2π)3
1

2a2

∣∣∣(− kikj + 1
3δijk

2
)
σS
k

∣∣∣2
=

∫
1

6π2a2
|σS

k|2 k6dk . (134)

The integration is carried over the modes that exit the
horizon in the second half of the ekpyrotic phase, i.e.
those that have 0 < Nk < N/2 and are dominated by the
third term in (131). Modes with Nk > N/2 are negligible
since the power spectrum of σS is deeply blue, whereas
the modes with Nk < 0 remain inside the horizon un-
til very close to the bounce, contributing only vacuum
fluctuations that can be eliminated by renormalization.
Therefore, as we approach the putative bounce, a lower

estimate of the anisotropy is

〈(σS)2〉 &
(aH)ek-end∫

e−
N/2 (aH)ek-end

1

6π2a6

∣∣∣ C2(k)

3a2ek-end

(−Vc/V,φc)

|Hc|
√

2Xc

∣∣∣2 k6dk

≈ 1

108π2a6
(−Vc/V,φc

)2

a4ek-endH
2
cXc

(aH)ek-end∫
|C2(k)|2k6dk

≈ 1

108π2a6
(−Vc/V,φc)

2

a4ek-endH
2
ek-endXc

a2ek-end
8p

(aH)8ek-end

∼ a6ek-end
a6

( Vc
−V,φc

)2 Xek-end

Xc
H4

ek-end , (135)

where we used the expression (59) for C2(k). At t →
tbp-end, we have

〈(σS)2〉bp-end &
a6bp-beg
a6bp-end

e2N H4
ek-end ∼ V 2

c e
4N . (136)

In order for the anisotropy not to become a problem,
condition (116) requires that

σ2
bp-end ≤

Vc
2e
. (137)

This can be satisfied only if V 2
c e

4N . Vc , or

Vc . e−4NM4
Pl (138)

in reduced Planck units. However, in order for the
scale-invariant modes to match the observed amplitude
δρk
ρ ∼ 10−5, the potential energy at the end of the ekpy-

rotic phase needs to satisfy
√

2Vek-end/p ∼ 10−3M2
Pl [21],

which implies

Vc ≈ 3pVek-end ∼ p210−6M4
Pl . (139)

For a typical value of p ∼ 10−2 [14], the condition (138)
is incredibly far from being satisfied.

Since the scalar shear perturbation σS is not gauge-
invariant, we must explain our gauge choice for comput-
ing (135). Recall that condition (137) is obtained for the
homogeneous case by using the Friedmann equations of
the Hubble parameter H. In the inhomogeneous case, the
Friedmann equations should be generalized to equations
of the local expansion θ of the constant time hypersur-
face (see (A38, A39) in Appendix A). In general, the
expansion θ is not uniform on the hypersurface, and its
gradient along the hypersurface is determined by a sup-
plementary equation (A40). In order to apply condition
(137), it is preferable to adopt the constant mean cur-
vature gauge described in Appendix A. In this gauge
Eq. (A40) vanishes identically, so that θ is indeed uni-
form and equal to 3H on the constant time hypersur-
face. This gauge coincides with the synchronous gauge
in the homogeneous case. For linear perturbations, this
gauge reduces to the uniform Hubble gauge defined in
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Appendix B. The scalar shear perturbation in the uni-
form Hubble gauge can be computed through (B57) and
is found to be equal to the synchronous shear pertur-
bation σs to leading order, which is what we used to
compute Eq. (135) above.

It is worth contrasting the uniform Hubble gauge with
the longitudinal gauge in which the scalar shear pertur-
bation σS is set to zero identically. The vanishing shear
perturbation in the longitudinal gauge does not mean
that the bouncing phase is free from problems. Accord-
ing to Eqs. (B51) and (B17), the variation of the local
Hubble parameter over the constant time hypersurface is
given by

δH = −(H′−H2)δu+ 1
3∇

2σS . (140)

In the longitudinal gauge, though σS = 0, the velocity
perturbation δu = σc (Appendix (B40)) grows exponen-
tially due to Eq. (128). Therefore the local Hubble pa-
rameter is extremely inhomogeneous over the hypersur-
face, which means the nonsingular bounce is ill defined
in this gauge even when the background Hubble param-
eter H vanishes. In the uniform Hubble gauge, however,
δH = 0 on every constant time hypersurface, hence the
bounce would be reached simultaneously at the hypersur-
face on which H = θ/3 = 0. Therefore the nonsingular
bounce is well defined in this gauge, and the huge growth
of anisotropy is indeed physical.

In a consistent perturbative analysis, the σ2 term in
the Friedmann equations should be negligible to linear
order. The exponentially large 〈(σS)2〉 that we found in
(135) implies that the perturbation theory is no longer
valid. Therefore we expect the anisotropy generated by
quantum fluctuations to become nonlinear and dominate
over the scalar field energy before the bounce. Once the
anisotropy takes over, the Universe will be driven to a
BKL like contraction phase that ends in an extremely
inhomogeneous and anisotropic singular crunch [26, 27].

VI. CONCLUSION

We have examined a cosmological model of a contract-
ing universe that smoothly connects an ekpyrotic phase
with a nonsingular bounce. We have shown how the non-
singular bouncing phase spoils the flatness, homogene-
ity, and isotropy condition, as well as the scale-invariant
perturbations generated during the ekpyrotic phase. We
have identified four different effects that create problems
for nonsingular bouncing models:
• gravitational instability: This problem is caused by
c2s becoming negative in the bouncing phase. One solu-
tion is to have c2s remain exponentially small during the
bouncing phase, as in (82). Alternatively, it has been
suggested [16, 18] to restrict the bouncing phase to one
Hubble time; this requires tuning (−V,φc

/Vc) to be expo-
nentially large, which is not viable, as shown below.
• regrowth of initial anisotropy: The initial

anisotropy suppressed during the ekpyrotic phase is ex-
ponentially amplified to even greater magnitudes during
the bouncing phase according to Eq. (39). This cre-
ates a problem for the nonsingular bounce unless the
initial anisotropy present before the ekpyrotic phase is
fine-tuned to an extremely small value given by (119),
e.g. by having a dark energy dominated expanding phase
preceding the ekpyrotic phase, as in [10, 11].
• blue spectrum of curvature perturbations: As
first discovered in [20], a sub-subdominant component of
adiabatic curvature perturbation generated from quan-
tum fluctuations in the ekpyrotic phase grows to domi-
nate over the scale-invariant component as the bouncing
phase begins, resulting in a blue power spectrum that
is inconsistent with observations. This problem occurs
when the equation of state w passes through −1, and it
persists even if the gravitational instability is suppressed.
• growth of quantum induced anisotropy: The
scalar shear perturbation generated from quantum fluc-
tuations in the ekpyrotic phase grows exponentially dur-
ing the bouncing phase and contributes a large anisotropy
that dominates the energy density and prevents the non-
singular bounce. This problem is due to both the equa-
tion of state w passing through −1 and the scale factor a
decreasing exponentially in the bouncing phase. It per-
sists even if the first two problems are avoided.

According to Eqs. (70), (38), and (135), it would ap-
pear that the last two problems could be resolved if the
factor (−V,φc

/Vc) is made to be at least of order eN ; the
first two problems would not occur either if this condition
were achieved, which amounts to keeping the duration of
the bouncing phase within one Hubble time. However,
this condition requires |V,φc

| & Vc e
N , and by Eq. (139)

the value of |V,φc
| would exponentially exceed the Planck

scale. It is then unavoidable to consider quantum gravity
effects in this approach, which defeats the purpose of the
nonsingular bounce to avoid those effects.

It is worth noting that none of the above four prob-
lems appear in the singular bounce, as in the cyclic model
[10, 11]. The first two problems disappear because in the
singular bounce c2s is always positive and the horizon is
forever shrinking. Moreover, in the singular case, w re-
mains > 1 throughout the contraction phase and the en-
ergy density is increasing all the way to the bounce, so the
curvature and anisotropy never grow to dominate. But
in the nonsingular approach considered here, w must fall
below −1 and X must fall below Xc, and it is during this
phase that the curvature and shear perturbations grow
to make the universe inhomogeneous and anisotropic.

In the introduction to this paper, we noted a de-
coupling argument suggesting that the bouncing phase
should not affect the large scale density perturbations
or the isotropy of the Universe, as long as the bounce
occurs at much higher energy densities than during the
ekpyrotic phase when the perturbations are first gener-
ated. Our conclusion does not contradict this intuition,
but instead supports it: the failure of the nonsingular
bounce considered here is precisely due to the fact that
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the bounce is mediated by ghost condensation, a low en-
ergy effect rather than a high energy one.

Indeed, from Eqs. (70) and (39) it is clear that both
growths of curvature and anisotropy are proportional to
the same factor Xek-end/Xc, the ratio between the high
energy scale near the end of the ekpyrotic phase and the
low energy scale associated with the ghost condensation.
In order to consistently merge the ekpyrotic phase with
the bouncing phase through ghost condensation, these
energy scales have to satisfy the hierarchy

Xc � Xek-beg � Xek-end . (141)

Therefore the exponentially large factor is inherent in
such ekpyrotic nonsingular bouncing models. Our calcu-
lation illustrates how this same factor naturally shows up
and leads to the four problems listed above.

Therefore, we conjecture that any form of nonsingular
bouncing models would suffer from these problems unless
the hierarchy (141) can be relaxed. This may happen
either by reducing the energy ratio between the beginning
and the end of the ekpyrotic phase, or by raising the
energy scale of the bounce. The first possibility is to seek
a nonlinear realization of the ekpyrotic phase in which X
varies within a limited range. The other possibility is
to induce a bounce with physics of a much higher energy
scale. We are currently attempting to construct examples
of both types.
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Appendix A: Generalized Friedmann equations

1. spatial hypersurfaces and timelike congruences

Consider a spacetime (M, ggg) foliated by a family of
spacelike hypersurfaces {Στ , τ ∈R}, we may construct
a coordinate system that is adapted to the foliation as
follows [28]. Take τ to be the natural time coordinate,
then the lapse function N is defined as

N ≡
(
− (∂τ)2

)−1/2
. (A1)

Let nnn be the timelike unit vector normal to the constant
time hypersurfaces, then by definition nµ = (−N ,~0 ).
The spatial coordinates are fixed by choosing a shift vec-
tor βββ defined as

βββ ≡ ∂∂∂τ −Nnnn , (A2)

which implies nµ = ( 1
N ,−

βi

N ). Under this coordinate
system, the metric can be written as

ds2 = −N 2dτ2 + γij(dx
i + βidτ)(dxj + βjdτ), (A3)

or in matrix form,

gµν =

(
g00 g0j
gi0 gij

)
=

(
−N 2 + βkβ

k βj
βi γij

)
, (A4)

where βi = γijβ
j . Accordingly, the inverse metric is

given by

gµν =

(
g00 g0j

gi0 gij

)
=

(
− 1
N 2

βj

N 2

βi

N 2 γij − βiβj

N 2

)
, (A5)

where γij is the inverse of the 3-matrix γk`.
The intrinsic curvature of the hypersurface Σ is given

by the Ricci tensor (3)Rij associated with the induced
spatial metric γij on the hypersurface. γij can be pushed
forward to form a projection tensor γγγ in M,

γµν ≡ gµν + nµnν . (A6)

The extrinsic curvature of the hypersurface Σ is then
given by

Kµν ≡ γκµγλνnκ;λ , (A7)

where semicolon ; denotes the covariant derivative com-
patible with the metric (A3). It can be shown that Kµν is
symmetric, Kµν = Kνµ, and tangent to the hypersurface,
Kµνn

ν = 0. The mean curvature of the hypersurface is
1/3 of the trace K ≡ Kµ

µ = Ki
i.

The 4-dimensional Riemann tensor Rµλνκ of the space-
timeM can be related to the intrinsic and extrinsic cur-
vatures of the hypersurface Σ through the Gauss-Codazzi
relations [28], especially,

γµαγ
ν
βRµλνκn

λnκ + γµαγ
ν
βRµν

= (3)Rαβ +KKαβ −KαµK
µ
β , (A8)

2Rµνn
µnν +R = (3)R+K2 −KijKij , (A9)

Rµνn
µγνα = −K|α +Kµ

α|µ , (A10)

where | denotes covariant derivative associated with the
induced spatial metric γγγ.

Consider the congruence of the integral curves of the
timelike normal vector nnn. Such an integral curve can be
regarded as the worldline of an Eulerian observer [28],
who is defined to have a 4-velocity equal to nnn. The co-
variant derivative of the timelike vector nµ can be kine-
matically decomposed as [29]

nµ;ν = θµν + ωµν − aµnν , (A11)

where

aµ ≡ ṅµ ≡ nνnµ;ν (A12)



16

is the acceleration of the Eulerian observer, and the ex-
pansion tensor θµν and the vorticity tensor ωµν are sym-
metric and antisymmetric respectively. It can be shown
(e.g. [30] ) that for the unit vector nnn normal to the hy-
persurface Σ, the vorticity tensor ωµν vanishes, and the
expansion tensor θµν = nµ;ν + aµnν is equal to the ex-
trinsic curvature Kµν . Decomposing θµν further into the
trace and the traceless parts, we have

nµ;ν = 1
3θγµν + σµν − aµnν , (A13)

where the volume expansion

θ ≡ nµ;µ (A14)

is equal to the trace of extrinsic curvature K, and the
shear σµν is traceless and symmetric. Both the shear σµν
and the acceleration aµ are tangent to the hypersurface,
σµνn

ν = aνn
ν = 0. For the general metric (A3) and the

normal vector nµ = (−N ,~0 ), the expansion, shear, and
acceleration can be explicitly computed to be

θ =− 1

N
βk,k +

1

2N
γijγ ′ij −

1

2N
γijγij,kβ

k , (A15)

σij =− 1

2N
γij ′ − 1

N
γk(iβ

j)
,k +

1

2N
γij,kβ

k (A16)

+
1

6N
γij
(
− γk`γ ′k` + 2βk,k + γk`γk`,mβ

m
)
,

ai =
1

N
γijN,j . (A17)

Using the kinematic decomposition, the Gauss-
Codazzi relations (A8, A9, A10) can be written as

γµαγ
ν
βRµλνκn

λnκ + γµαγ
ν
βRµν

= (3)Rαβ + 2
9θ

2γαβ + 1
3θσαβ − σαµσ

µ
β , (A18)

2Rµνn
µnν +R = (3)R+ 2

3θ
2 − 2σ2 , (A19)

Rµνn
µγνα = − 2

3θ|α + σµα|µ , (A20)

where σ2 ≡ 1
2σ

ijσij is the squared magnitude of the shear
[29, 31, 33].

To study the kinematic evolution of the timelike con-
gruence, let us first introduce the Fermi derivative DF

ds
[29] that propagates a timelike vector VVV along its inte-
gral curve, DF

ds VVV = 0. The Fermi derivative of a vector
field XXX with respect to VVV is defined as

DF

ds
Xµ ≡ Ẋµ − V µV̇νXν + V̇ µVνX

ν , (A21)

while for a covariant vector ωωω it is

DF

ds
ωµ ≡ ω̇µ − VµV̇ νων + V̇µV

νων , (A22)

and similarly for tensors. It reduces to the covariant
derivative D

dsX
µ ≡ Ẋµ ≡ V νXµ

;ν if the integral curve

of VVV is a geodesic, i.e. when V̇ µ = 0.

The Fermi derivative of the expansion tensor θµν with
respect to nnn is given by [29]

DF

ds
θµν =−Rµλνκnλnκ − θµλθλν − 2n(µθν)λa

λ

+ γλµγ
κ
νa(λ;κ) + aµaν . (A23)

The trace of this equation gives the Raychaudhuri equa-
tion,

θ̇ = −Rλκnλnκ − 1
3θ

2 − 2σ2 + aµ;µ. (A24)

And the traceless part of the equation gives

DF

ds
σµν =−Rµλνκnλnκ − 2

3θσµν − σµλσ
λ
ν + γλµγ

κ
νa(λ;κ)

+ aµaν + 1
3γµν

(
Rλκn

λnκ + 2σ2 − aλ;λ
)
.

(A25)

Multiplying by γµiγνj and using Eqs. (A18, A19), we find

DF

ds
σij = γµiγνjRµν − (3)Rij − θσij − niσjkak

− 1
3θn

iaj + ai;j + aiaj + ȧinj

− 1
3γ

i
j(R+Rµνn

µnν − (3)R+ aµ;µ). (A26)

2. local Friedmann equations

The dynamics of the timelike congruence is determined
by the Einstein equation relating the spacetime curvature
and the matter stress-energy tensor. Consider the matter
source to be a perfect fluid with stress-energy tensor

Tµν = (ρ+ P )uµuν + Pgµν , (A27)

where ρ and P are the rest energy density and pressure,
and uuu is the 4-velocity of the fluid. The fluid velocity
relative to the Eulerian observer is

UUU =
uuu

Γ
−nnn , (A28)

where the Lorentz factor Γ is given by

Γ = −nµuµ = (1− UµUµ)−1/2. (A29)

Accordingly [28], the energy density as measured by the
Eulerian observer is

E = Tµνn
µnν = Γ2(ρ+ P )− P , (A30)

the momentum density as measured by the Eulerian ob-
server is

pα = −Tµνnµγνα = (E + P )Uα , (A31)

and the stress tensor with respect to the Eulerian ob-
server is

Sµν = γλµγ
κ
νTλκ = (E + P )UµUν + Pγµν . (A32)
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The trace of the stress-energy tensor is given by T ≡
Tµµ = −ρ + 3P , while the trace of the relative stress
tensor is S ≡ Sµµ = T + E. The Einstein equation can
be written as

Rµν = Tµν − 1
2gµνT , (A33)

the trace of which gives

R = −T = ρ− 3P . (A34)

Projecting the Einstein equation along the normal vector
nnn, we find

Rµνn
µnν = E + 1

2 (−ρ+ 3P ) , (A35)

whereas the mixed projection with nnn and γγγ gives

Rµνn
µγνα = −pα = −(E + P )Uα , (A36)

and the full projection onto the hypersurface Σ gives

γµiγνjRµν = Sij − 1
2γ

i
j(−ρ+ 3P )

= (E + P )U iUj + 1
2γ

i
jρ . (A37)

Finally, we can use the above equations to write
Eqs. (A19), (A24), (A20) and (A26) as

( 1
3θ)

2 = 1
3

(
E − 1

2
(3)R+ σ2

)
, (A38)

1
3 θ̇ = − 1

2

(
4E−ρ

3 + P
)

+ 1
6
(3)R− σ2 + 1

3a
µ
;µ , (A39)

1
3θ|i = 1

2

(
E + P

)
Ui + 1

2σ
j
i|j , (A40)

and

DF

ds
σij = (E + P )U iUj − (3)Rij − θσij

− niσjkak − 1
3θn

iaj + ai;j + aiaj + ȧinj

− 1
3δ
i
j(E − ρ− (3)R+ aµ;µ). (A41)

Eqs. (A38) and (A40) are equivalent to the (00) and (0i )
components of the Einstein equation; Eq. (A39) cor-
responds to the trace of the (ij) components, whereas
Eq. (A41) corresponds to the traceless part.

These equations closely resemble the Friedmann equa-
tions for a homogeneous universe. The expansion θ can
be considered as 3 times the local Hubble parameter [34],
then Eqs. (A38) and (A39) are the local Friedmann equa-
tions. Note that according to Eq. (A40) the local Hubble
parameter may vary from point to point on the constant
time hypersurface. In the homogeneous case, the fluid
stress-energy tensor Tµν is diagonal; the expansion θ and
the shear σij do not depend on spatial coordinates, while
the acceleration aµ vanishes. Accordingly, Eqs. (A38,
A39) reduce to the Friedmann equations,

H2 = 1
3

(
ρ− 1

2
(3)R+ σ2

)
, (A42)

Ḣ = − 1
2

(
ρ+ P

)
+ 1

6
(3)R− σ2 . (A43)

Eq. (A40) vanishes identically, whereas Eq. (A41) sim-
plifies to

σ̇ij = −3Hσij − (3)Rij + 1
3δ
i
j
(3)R . (A44)

3. gauge choices

We may choose certain gauge for the coordinates where
equations (A15∼A17) and (A38∼A41) simplify. First let

γij ≡ a2 γ̃ij , (A45)

where the scale factor a is such that det γ̃ = 1. The

conformal Hubble parameter is therefore H ≡ a′

a . Note
that here the scale factor a may depend on the spatial
coordinates, and so does H. Then the expansion, shear,
and acceleration become

θ =
3

N
H− 3

N
a,k
a
βk − 1

N
βk,k , (A46)

σij =− 1

2Na2
γ̃ij ′ − 1

Na2
γ̃k(iβ

j)
,k +

1

2Na2
γ̃ij,kβ

k

+
1

3Na2
γ̃ijβk,k , (A47)

ai =
1

Na2
γ̃ijN,j . (A48)

To specify a gauge, the time slicing can be fixed by either
choosing a foliation condition for the whole spacetime, or
by starting from an initial Cauchy surface and choosing
a lapse function N . Then the spatial coordinates can be
fixed by choosing a shift vector βi.

The comoving gauge is defined such that the folia-
tion {Στ} is everywhere orthogonal to the fluid velocity
uuu, i.e. the Eulerian observer is comoving with the fluid,
so that nnn = uuu. This gauge exists when the fluid does
not have vorticity, which is true for a scalar field. In this
gauge the relative velocity UUU vanishes, so the Eulerian
observer simply measures the comoving energy density
and stress tensor,

E = ρ , Sµν = Pγµν . (A49)

We may further fix the spatial gauge by choosing βi = 0,
so that the expansion and the shear simplify to

θ =
3

N
H , σij =

1

2N
γ̃ikγ̃ ′kj . (A50)

Here the expansion θ may depend on spatial coordinates,
hence the local Hubble parameter is not uniform on the
constant time hypersurface. Also, since the fluid is in
general not free streaming, the acceleration aµ does not
vanish. The local Friedmann equations become

( 1
3θ)

2 = 1
3

(
ρ− 1

2
(3)R+ σ2

)
, (A51)

1
3 θ̇ = − 1

2

(
ρ+ P

)
+ 1

6
(3)R− σ2 + 1

3a
µ
;µ , (A52)

1
3θ|i = 1

2σ
j
i|j , (A53)

and the shear σij evolves according to

DF

ds
σij =− θσij − (3)Rij + 1

3δ
i
j(

(3)R− aµ;µ) (A54)

− uiσjkak − 1
3θu

iaj + ai;j + aiaj + ȧiuj .
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The synchronous gauge is defined such that N =
1 and βi = 0, which fixes the coordinates given the
choice of an initial Cauchy surface and spatial coordi-
nates therein. In this gauge the acceleration vanishes
according to Eq. (A17), so the integral curve of nnn, or the
worldline of the Eulerian observer, is a geodesic. Then
Eq. (A39) becomes

1
3 θ̇ = − 1

2

(
4E−ρ

3 + P
)

+ 1
6
(3)R− σ2 , (A55)

and Eq. (A41) simplifies to

σ̇ij = −θσij + (E+P )U iUj − (3)Rij − 1
3δ
i
j(E− ρ− (3)R),

(A56)
where the Fermi derivative reduces to the covariant
derivative.

Another useful gauge is the constant mean curva-
ture gauge in which the foliation is such that the mean
curvature θ/3 is constant on each time slice. In other
words, the Hubble parameter H is uniform on each con-
stant time hypersurface, and does not depend on the spa-
tial coordinates. In this gauge, the Friedmann equations
(A38, A39) become

H2 = 1
3

(
E − 1

2
(3)R+ σ2

)
, (A57)

Ḣ = − 1
2

(
4E−ρ

3 + P
)

+ 1
6
(3)R− σ2 +

1

3
aµ;µ , (A58)

and Eq. (A40) becomes a constraint on the shear,

σji|j = −(E + P )Ui. (A59)

Appendix B: Linear perturbations

On the perturbative level, the general metric (A3) can
be expanded about the flat FRW metric as, to linear
order,

ds2 = a(τ)2
[
− (1 + 2A)dτ2 + 2(B,i + Si)dτdx

i (B1)

+
(
(1− 2ψ)δij + 2E,ij + 2F(i,j) + 2hij

)
dxidxj

]
,

where A, B, ψ and E represent the scalar perturbations;
Si and Fi, with Si,i = F i,i = 0, represent the vector

perturbations; and hij , with hii = hij,i = 0, represent
the tensor perturbations [32]. Comparing to (A3), we
identify the lapse, shift and the spatial 3-metric to be,
also to linear order,

N = a (1 +A), (B2)

βi = a2(B,i + Si), (B3)

γij = a2
(
(1− 2ψ)δij + 2E,ij + 2F(i,j) + 2hij

)
. (B4)

Accordingly, the constant time hypersurface has a time-
like normal vector nµ = (−a(1 + A),~0 ). The intrinsic
curvature of the hypersurface is given by [35]

(3)R =
4

a2
∇2ψ , (B5)

whereas the trace of the extrinsic curvature K, or equally
the expansion θ, is given by

θ =
1

a

[
3H(1−A)− 3ψ′ +∇2(E′ −B)

]
. (B6)

Note that the expansion only involves the scalar pertur-
bations. The shear of the constant time hypersurface is
given by [33]

σij = a
(
(E′,ij−B,ij)− 1

3δij∇
2(E′−B)

)
+ a
(
F ′(i,j)−S(i,j)

)
≡ a

(
σS
,ij − 1

3δij∇
2σS
)

+ a σV
(i,j) (B7)

where the scalar shear perturbation is defined as

σS ≡ E′ −B , (B8)

and the vector shear perturbation is

σV
i ≡ F ′i − Si . (B9)

For the matter source, consider a scalar field φ with
Lagrangian L = P (φ,X), where X = − 1

2 (∂φ)2. The
corresponding stress-energy tensor is

Tµν = P,X ∂µφ∂νφ+ P gµν , (B10)

which takes the form of a perfect fluid (A27) with pres-
sure P , energy density ρ = 2XP,X − P , and velocity

uµ = ∂µφ/
√

2X . In accordance with the homogeneous
FRW background metric, the scalar field is assumed to
be homogeneous on the background level as well. There-
fore the background values φ, X, and hence ρ, P , are all
functions of time τ only, and uµ = (−a,~0 ). Since the
shear vanishes at this level, the background equations of
motion are fully captured by the Friedmann equations,

H2 = 1
3ρ = 1

3 (2XP,X − P ) , (B11)

Ḣ = − 1
2 (ρ+ P ) = −XP,X . (B12)

Then let us consider a small perturbation δφ(τ, ~x )
about the background value φ(τ), which also creates a

perturbation about X(τ), δX = 2X(−A+ δφ′

φ′ ). Accord-

ingly, the perturbations in velocity, energy density, and
pressure are given by, to linear order,

δu0 = −aA , δui = a δu,i , δu ≡
( δφ
−φ′

)
, (B13)

δρ = − 2

a2
(H′−H2)

[ 1

c2s

(
δu′ +Hδu−A

)
− 3Hδu

]
,

(B14)

δP = − 2

a2
(H′−H2)

[
δu′ +

(
2H+

(H′−H2)′

(H′−H2)

)
δu−A

]
,

(B15)

where the speed of sound is c2s =
P,X
ρ,X

, which only needs

be kept to zeroth order. Here we have assumed φ′ < 0 to
agree with our model in the text.
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The equations of motion for the linear perturbations
are given by the perturbed Einstein equation, δGµν =
δTµν . (Alternatively, one may impose the conservation of
energy and momentum [35], plus the equation of motion
for the scalar field.) At linear order, the scalar, vector,
and tensor perturbations evolve independently and can
be treated separately. In the following we discuss the
scalar and vector perturbations.

1. scalar perturbations

The equations for the scalar perturbations are

2

a2

[
3H(ψ′+HA)−∇2

(
ψ +H(E′−B)

)]
= −δρ, (B16)

2

a2

[
− (ψ′+HA)

]
= (ρ+ P )δu , (B17)

2

a2

[
ψ −A+ (E′−B)′ + 2H(E′−B)

]
= 0 , (B18)

2

a2

[
(ψ′+HA)′ + 2H(ψ′+HA) + (H′−H2)A

]
= δP ,

(B19)

where the matter perturbations are given in terms of
the scalar field perturbation δφ through Eqs. (B13, B14,
B15). These equations correspond to the scalar modes
of the (00), (0i), traceless (ij), and the trace (ii) compo-
nents of the Einstein equation. There are 4 degrees of
freedom in these equations, namely A, ψ, σS = E′−B,
and δφ. However, as we shall see below, these variables
are not independent since there exists one gauge redun-
dancy. Therefore, after gauge fixing, we are left with 3
physical degrees of freedom. Accordingly, given the mat-
ter perturbations in the form (B13) ∼ (B15), one of the
equations in (B16) ∼ (B19) is redundant.

Consider the infinitesimal coordinate transformation

xµ → xµ + ξµ , (B20)

where for the scalar mode, ξi can be written as ξi ≡ ξ,i.
From the transformation rules of the metric tensor gµν
and the scalar φ, one finds that the perturbative quanti-
ties transform as

A→ A− 1
a (a ξ0)′ , (B21)

ψ → ψ +H ξ0 , (B22)

σS → σS − ξ0 , (B23)

δφ→ δφ− φ′ ξ0 . (B24)

Thus they can be unambiguously defined provided a spec-
ified choice of time slicing, ξ0. Some commonly used
gauges are [33]: the synchronous gauge in which one sets
A = 0; the flat gauge in which ψ = 0; the longitudinal
gauge in which σS = 0; the comoving gauge in which
δu = 0, or equivalently δφ = 0 in our case; the uniform

density gauge in which δρ = 0; and the uniform Hubble
gauge in which θ = 3H/a, as detailed below. To com-
pletely fix the gauge, one also needs to specify a choice
of spatial coordinates, ξ. Since B and E transform as

B → B + ξ0 − ξ′ , (B25)

E → E − ξ , (B26)

one commonly chooses to set B = 0.

Comoving gauge: δu = δφ = 0. This gauge is de-
fined only for φ′ 6= 0. The physical degrees of freedom
in this gauge can be represented by the gauge-invariant
quantities

Ac ≡ A+
1

a
(a δu)′ = A+

1

a

(
a
δφ

−φ′
)′
, (B27)

R ≡ ψ −H δu = ψ −H
( δφ
−φ′

)
, (B28)

σc ≡ σS + δu = σS +
( δφ
−φ′

)
. (B29)

The equations of motion are the simplest in this gauge,

−∇2R−H∇2σc = −(H′−H2) 1
c2s
Ac , (B30)

R′ +HAc = 0 , (B31)

R−Ac + σ′c + 2Hσc = 0 . (B32)

Eliminating Ac and σc, one obtains a simple equation for
R alone,

R′′ + 2
z′

z
R′ − c2s∇2R = 0, (B33)

where z = a
√
−2(H′−H2)/c2sH2 .

Longitudinal gauge: σS = 0. Perturbations in this
gauge [32] are represented by the gauge-invariant quan-
tities

Φ ≡ A− 1

a
(a σS)′ , (B34)

Ψ ≡ ψ +H σS , (B35)

δφ ≡ δφ− φ′ σS . (B36)

Φ is referred to as the Newtonian potential, which is equal
to the longitudinal curvature perturbation Ψ as a result
of Eq. (B18), Φ − Ψ = 0. Hence it suffices to have two
more equations of motion,

3H (Ψ′ +HΦ)−∇2Ψ = −a
2

2
δρ , (B37)

Ψ′ +HΦ = (H′−H2) δu , (B38)

where δu = ( δφ
−φ′ ), and

δρ = − 2

a2
(H′−H2)

[ 1

c2s

(
δu′+H δu−Φ

)
−3H δu

]
. (B39)
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It is easy to relate the perturbations in the longitudinal
gauge to that in the comoving gauge. In particular, by
Eq. (B36), we have

δu =
( δφ
−φ′

)
+ σS = σc , (B40)

and similarly, by Eqs. (B35), (B30) and (B31),

Ψ = R+H σc = −H
′−H2

H c2s
∇−2R′ . (B41)

Synchronous gauge: A = 0. This gauge has a residual
degree of freedom, ξ0 = C(~x)/a, where C(~x) is an arbi-
trary function of spatial coordinates. We can construct
the following quantities that represent the perturbations
in this gauge,

ψs ≡ ψ +
H
a

∫ τ

aAdτ ′ , (B42)

σs ≡ σS − 1

a

∫ τ

aAdτ ′ , (B43)

δφs ≡ δφ−
φ′

a

∫ τ

aAdτ ′ , (B44)

which are invariant up to the residual gauge freedom that
can be absorbed into the constant of integration. The
equations of motion for these physical degrees of freedom
in this gauge can be expressed as

3Hψ′s −∇2ψs −H∇2σs = −a
2

2
δρs , (B45)

ψ′s = (H′−H2)δus , (B46)

ψs + σ′s + 2Hσs = 0 , (B47)

where δus = ( δφs

−φ′ ), and

δρs = − 2

a2
(H′−H2)

[ 1

c2s

(
δu′s +Hδus

)
− 3Hδus

]
. (B48)

By Eqs. (B42) and (B31), the synchronous curvature per-
turbation ψs can be related to the comoving curvature
perturbation R through

ψs = R+
H
a

∫ τ

aAcdτ
′ = R− H

a

∫ τ a

H
R′dτ ′ . (B49)

Similarly, by Eqs. (B43) and (B31), the synchronous
shear perturbation σs can be expressed in the comoving
gauge as

σs = σc −
1

a

∫ τ

aAcdτ
′ = σc +

1

a

∫ τ a

H
R′dτ ′ . (B50)

Uniform Hubble gauge: δH ≡ −HA−ψ′+ 1
3∇

2σS = 0.
By Eq. (B6), the correction to the local conformal Hubble
parameter at linear order is

δH ≡ a

3
θ −H = −HA− ψ′ + 1

3
∇2σS , (B51)

which transforms as δH → δH − (H′−H2)ξ0 − 1
3∇

2ξ0

under the coordinate transformation (B20). Therefore,
we can define the following gauge-invariant quantities to
represent the perturbations in this gauge where δH = 0,

AH ≡ A−
1

a

(
a

(H′−H2) + 1
3∇2

δH
)′
, (B52)

ψH ≡ ψ +
H

(H′−H2) + 1
3∇2

δH , (B53)

σH ≡ σS − 1

(H′−H2) + 1
3∇2

δH , (B54)

δφH ≡ δφ−
φ′

(H′−H2) + 1
3∇2

δH . (B55)

The curvature perturbation ψH and shear perturbation
σH in this gauge can be expressed in the comoving gauge
as

ψH =
(H′−H2)

(H′−H2) + 1
3∇2

(
− R′

3c2sH
+R

)
, (B56)

σH =
(H′−H2)

(H′−H2) + 1
3∇2

σc . (B57)

2. vector perturbations

There are no vector contributions to the stress-energy
tensor from the scalar field, so the equations of motion
are simply

1

2a2
∇2(F ′i − Si) = 0 , (B58)

1

a2

[
(F ′(i,j) − S(i,j))

′ + 2H(F ′(i,j) − S(i,j))
]

= 0 , (B59)

which correspond to the vector modes of the (0i) and (ij)
components of the Einstein equation respectively. The
combination

σV
i ≡ F ′i − Si (B60)

is by itself gauge-invariant under the vector mode of the
coordinate transformation

xi → xi + ηi , (B61)

where ηi,i = 0. Therefore the vector shear perturbation

σV
i is the one and only physical degree of freedom, which

obeys the equations

∇2σV
i = 0 , (B62)

σV
i
′ + 2H σV

i = 0 . (B63)
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