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We investigate the recently proposed class of chaotic inflation models in supergravity with an
arbitrary inflaton potential V (φ). These models are extended to include matter fields in the visible
sector and we employ a mechanism of SUSY breaking based on a particular phenomenological version
of the KKLT mechanism (the KL model). We describe specific features of reheating in this class of
models and show how one can solve the cosmological moduli and gravitino problems in this context.

I. INTRODUCTION

The simplest and most general version of the inflation-
ary theory is the chaotic inflation scenario [1]. In this
scenario, inflation can occur without any recourse to high
temperature phase transitions, which was the trademark
of old and new inflation. Chaotic inflation may occur in
any model where the scalar potential is sufficiently flat,
including large-field models with potentials as simple as
m2φ2/2, λφ4/4 and λ

4 (φ2−v2)2. However, implementing
this scenario in supergravity is a challenge.

The main difficulty in coupling chaotic inflation to su-
pergravity is related to the Kähler potential K. In min-
imal N = 1 supergravity, the Kähler potential contains
terms proportional to ΦΦ̄. The F-term part of the scalar
potential is proportional to eK , and therefore the poten-
tial scales like e|Φ|
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. This is much too steep for chaotic
inflation at Φ� 1.

One way to overcome this problem is to find flat di-
rections of the inflaton potential in supergravity, see e.g.
[2, 3]. The simplest model of this type was proposed in
Ref. [4]. The basic idea is that instead of considering
a minimal Kähler potential containing ΦΦ̄, one may in-
stead consider the potential (Φ − Φ̄)2/2. This potential
has shift symmetry: It does not depend on the field com-
bination Φ + Φ̄. Therefore the dangerous term eK is also
independent of Φ+Φ̄, which makes the potential flat and
suitable for chaotic inflation, with the field Φ+Φ̄ playing
the role of the inflaton. The flatness of the potential is
broken only by the superpotential mSΦ, where S is an
additional scalar field, which vanishes along the inflation-
ary trajectory. As a result, the potential in the direction
Φ + Φ̄ becomes quadratic, as in the simplest version of
chaotic inflation.

This work was followed by many related papers on this
subject [5, 6]. A similar idea was used in the models of
chaotic inflation in string theory [7]; see [8] for recent
reviews.

Our present goal is to continue investigation of chaotic
inflation in supergravity following the recent series of
papers [9, 10]. There, it was shown that one can sig-

nificantly generalize the model of Ref. [4] by studying
more general Kähler potentials of the functional form
K((Φ − Φ̄)2, SS̄) and by introducing models with a su-
perpotential W = Sf(Φ), where f(Φ) is an arbitrary
holomorphic function. In this class of models one can im-
plement the chaotic inflation scenario with an arbitrary
inflaton potential. This means that all observational re-
sults which can be successfully interpreted in the context
of any phenomenological model of single-field inflation
can also be obtained in the context of inflationary mod-
els based on supergravity. Moreover, according to [11],
some models of this type lead to a natural realization of
the curvaton scenario [12] with a controllable level of non-
gaussianity of the adiabatic perturbations of the metric.
This extends our possibilities even further.

However, a complete model of inflation in supergrav-
ity should address two additional problems. First of all,
it should introduce a small amount of supersymmetry
breaking at the end of inflation. It should also address
the cosmological moduli problem, which plagues many
cosmological models based on supergravity [14]. This
is a generic problem for models based on the simplest
mechanism for breaking supersymmetry using a linear
superpotential [15]. One may try to solve this problem
with a generalization of the Polonyi potential in some of
the new cosmological models [16] using the adiabatic re-
laxation mechanism proposed in [17]. Indeed, our inves-
tigation of this issue suggests that this mechanism does
work for certain versions of our scenario and we discuss
this briefly in section III . Alternatively, one may turn
to non-minimal models based on no-scale supergravity
[18]. While these models can successfully stabilize one
of the two flat directions associated with supersymmetry
breaking [19–21], one of the flat directions is left unfixed.

While no-scale supergravity may be a step in the right
direction, if one wants to consider string theory inspired
versions of supergravity, one may need to take into ac-
count some unusual but rather generic features of string
cosmology based on the KKLT mechanism of vacuum
stabilization [22]. First of all, supersymmetry breaking
is a generic feature of the string theory models with vac-
uum stabilization, which may make other mechanisms
of supersymmetry breaking redundant. Secondly, super-
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symmetry breaking in this class of models cannot be at-
tributed to the F-term alone; one should take into ac-
count the effect of the uplifting of the potential required
for the fine-tuning of the cosmological constant. One may
interpret uplifting either as a soft supersymmetry break-
ing induced by string theory effects [22], or as a D-term
contribution [23, 24]. In this class of models, the Hubble
constant during inflation typically must be smaller than
the gravitino mass, unless one does something special,
e.g. fine-tunes the superpotential of the volume modulus
in a specific way (the KL mechanism) [25]. As we will
see, once both of these effects are taken care of, the cos-
mological moduli problem disappears even without the
use of the mechanism proposed in [16, 17].

To complete our construction of the inflationary sce-
nario based on supergravity we need to construct the
theory of reheating in this scenario. As we will see (see
also [16, 26]), reheating in the theories with flat directions
has some distinguishing features which we are going to
analyze. In particular, the reheating temperature in this
class of models is naturally suppressed [27], which sim-
plifies the solution of the cosmological gravitino problem
[28, 29].

In what follows, we will first describe our approach
to general inflationary potentials based on N = 1 su-
pergravity, see Section II. In section III, we discuss the
mechanism of supersymmetry breaking. After briefly re-
viewing past (more traditional) approaches, we describe
the KL model along with some of its phenomenological
consequences. In section IV, we introduce a combined
theory of inflation and supersymmetry breaking and de-
scribe the evolutionary behavior of our 3-field system.
Reheating in this class of models is discussed in section
V, and our conclusions are summarized in section VI.

II. GENERAL INFLATIONARY POTENTIAL

This section reviews the supergravity theory of infla-
tion of [4, 9, 10]. The inflaton sector consists of two
fields: the inflaton field, Φ, and the stabilizer field, S.
The real part of the field Φ will play the role of the in-
flaton. Meanwhile, the fields S and Im Φ will be forced
to vanish during inflation. The scalar potential for un-
charged chiral superfields in N = 1 supergravity is

V = eG
(
GiG

ij̄Gj̄ − 3
)
, (1)

or using

G = K + log |W |2 , (2)

V = eK
(
Kij̄DiWD̄j̄W̄ − 3|W |2

)
, (3)

where DiW ≡ ∂iW + KiW . For generic Kähler poten-
tials, the exponential renders the potential far too steep

for inflation. One way of getting around this problem is
to impose a shift symmetry on Φ. The Kähler potential
is for simplicity chosen to have functional form

K((Φ− Φ̄)2, SS̄) (4)

The shift symmetry not only flattens the potential along
the real Φ direction, but by rescaling the fields, the field
metric can be chosen to be canonically normalized along
the inflaton path S = Im Φ = 0: KSS̄ = KΦΦ̄ = 1.
Furthermore, using a Kähler transformation, K can be
made to vanish along this path.

The superpotential is chosen to be

W = Sf(Φ) , (5)

where f(Φ) is a real holomorphic function such that
f̄(Φ̄) = f(Φ). Any function which can be represented by
Taylor series with real coefficients has this property. This
superpotential has a number of good properties. First,
both W and DΦW vanish at S = 0. As such, the only
non-vanishing contribution to the scalar potential comes
from FS = DSW = f(Φ). Along the inflaton’s trajec-
tory where ImΦ = 0, we obtain the amazingly simple
potential

V = |f(Φ)|2. (6)

Second, the superpotential and Kähler potential are odd
and even respectively, under the transformation S → −S.
Looking at (3), we see that this makes the scalar potential
invariant and that S = 0 is, therefore, an extremum.
Finally, the reality condition implies that both |f(Φ)|2
and K((Φ−Φ̄)2, SS̄) are invariant under Φ→ Φ̄, making
Im Φ = 0 an extremum.

Next consider the stability of potential with respect to
transverse perturbations. Using the basis

S =
1√
2

(s+ iα), Φ =
1√
2

(φ+ iβ). (7)

the inflaton potential becomes

V (φ) = f2(φ/
√

2). (8)

The masses of these fields were calculated in [10] and
found to be

m2
β = V [2(1−KΦΦ̄SS̄) + 2ε− η] , (9)

m2
s = m2

α = V [−KSS̄SS̄ + ε] . (10)

where

ε =
1

2

(
∂φV

V

)2

=
(∂Φf)2

f2
, η =

∂2
φV

V
=
∂2

Φf

f
+

(∂Φf)2

f2

(11)
are slow roll parameters. The degeneracy is explained by
the unbroken R-symmetry S → e2iαS. The dependence
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on KΦΦ̄SS̄ and KSS̄SS̄ can be understood by noting that
the inflaton potential is generated by the F-term of the
S field and the corresponding field metric is

KSS̄ =
1

1 + 2KΦΦ̄SS̄β
2 +KSS̄SS̄(s2 + α2) + ...

. (12)

The condition for a transverse scalar field to remain fixed
despite quantum fluctuations during inflation is m2

⊥ &
H2. If the potential supports slow roll inflation both ε
and η are tiny and can be dropped. Using V = 3H we
get a condition on K:

KΦΦ̄SS̄ .
5

6
, KSS̄SS̄ . −1

3
. (13)

Note that the stability condition is independent of the
details of the inflaton potential as long as the slow roll
parameters are sufficiently small. After inflation, ε and
η grow and at the minimum of the potential, where V =
V ′ = 0, the masses are

m2
φ = m2

α = m2
s = m2

β = ∂2
φV. (14)

As long as the inflationary trajectory is stabilized, the
explicit expression for the Kähler potential does not play
any role for inflation. However, it is helpful to consider
some particular examples.

One may consider a simple polynomial Kähler poten-
tial [9, 10] that is a generalization of the potential used
in [4–6]:

K = SS̄ − 1

2
(Φ− Φ̄)2 − ζ(SS̄)2 +

γ

2
SS̄(Φ− Φ̄)2. (15)

Note that the stabilizing terms −ζ(SS̄)2 + γ
2SS̄(Φ− Φ̄)2

were added to the Kähler potential of the model of [4–6].
This Kähler geometry has KΦΦ̄SS̄ = −γ and KSS̄SS̄ =
−4ζ and the stability conditions during inflation are, for
any sufficiently flat f(Φ), γ & −5/6 and ζ & 1/12.

Another example is the logarithmic Kähler potential
[9, 10], that is a generalization of the potential used in
[30–33]:

K = −3 log
[
1 +

1

6
(Φ− Φ̄)2 − 1

3
SS̄ + ζ(SS̄)2/3

− γ

6
SS̄(Φ− Φ̄)2

]
. (16)

In this case KΦΦ̄SS̄ = −γ+ 1/3 and KSS̄SS̄ = −4ζ + 2/3
and the stability conditions with respect to the genera-
tion of inflationary perturbations of the fields orthogonal
to the inflationary trajectory are γ & −1/2 and ζ & 1/4.

III. THE SCALE OF INFLATION AND SUSY
BREAKING: KL MODEL

In the inflationary model discussed so far, supersym-
metry is unbroken in the vacuum state corresponding

to the minimum of the potential with V = 0. There
are several ways to introduce supersymmetry breaking
to this model. The simplest way is to add the Polonyi
field z with a linear superpotential W = µ(z + b) and
K = zz̄ [15]. For the choice b = 2−

√
3, the scalar poten-

tial has a supersymmetry breaking Minkowski minimum.
The gravitino mass is m3/2 = eG/2 = e2−

√
3µ. There-

fore, to solve the hierarchy problem, one must tune µ to
O(10−15). As is well known, this theory is plagued with
a moduli problem [14] as the two scalars remain light and
will eventually dominate the energy density of the uni-
verse after inflation. Economically, it would be nice to be
able to associate the stabilizer field S with the Polonyi
field z, but we were unable to find a successful model of
this type.

It is in principle possible to relieve this problem by
modifying the theory so that the field z obtains a large
mass during inflation and adiabatically relaxes to its
minimum [17]. For example, one could add a quartic
term to the Kähler potential K = zz̄ + R (zz̄)2 and
also add a quadratic term to the superpotential so that
W = µ(b+ z + cz2). For given values of R and c, b must
be fine-tuned to recover a Minkowski vacuum. For large
R, adiabatic relaxation will occur [16, 17].

Another alternative is to begin with a Kähler potential
of the no-scale form. For example, the Kähler potential
K = −3 log(c + z + z̄ + b(z + z̄)4 − ΦΦ̄/3) will fix the
real part of z, and generate a large gravitino mass (for
large c) [19]. However this formalism is only suited for
small field inflation, see e.g. [34]. Another choice is K =
−3 log(z+ z̄−ΦΦ̄)+(1+κSSS̄+κz(z+ z̄−ΦΦ̄))SS̄ [21].
This model allows for generalized inflationary potentials
of the type discussed in the previous section, and fixes the
combination z + z̄ − ΦΦ̄. However, these theories leave
behind a (near) massless degree of freedom associated
with Im z.

String theory suggests another approach to supersym-
metry breaking, which we are going to pursue in this
paper. In string theory, one must consider stabilization
of the volume modulus ρ to explain why our universe is
4d rather than 10d. The simplest approach to this issue
is based on the KKLT mechanism [22]. In this theory,
one first finds a stable supersymmetric vacuum with a
negative vacuum energy density VAdS, and then uplifts it
until its vacuum energy becomes positive but negligibly
small, about 10−120 in Planck units. After the uplifting,
supersymmetry breaks down, and the gravitino mass has
a simple relation to the depth of the original AdS mini-
mum [25]:

m2
3/2 = |VAdS|/3 . (17)

Thus the mechanism of supersymmetry breaking is built
into the new generation of string theory models. One
can add to it other mechanisms of supersymmetry break-
ing, such the Polonyi mechanism [15], dynamical super-
symmetry breaking [35], an O’Raifeartaigh mechanism
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[36, 37] or something else. However, this would make the
models much more complicated. Therefore, in this paper
we will concentrate on the string theory based mecha-
nism of supersymmetry breaking, without adding to it
any optional parts.

One should note that in the simplest versions of the
KKLT construction a rather unusual problem has to be
addressed: the Hubble constant during inflation cannot
be greater than the gravitino mass, H . m3/2 [25]. The
reason is that in the simplest KKLT models, the bar-
rier separating the stabilized dS vacuum from the 10d
Minkowski vacuum has a height proportional to m2

3/2.
When the inflationary potential is added to the system,
it may lift the dS minimum above the barrier. If this
happens, the universe decompactifies and becomes 10-
dimensional.

One can try to solve this problem in several different
ways, see for example [6, 25, 38, 39]. The simplest mecha-
nism involves a slightly generalized KKLT model, which
is sometimes called the KL model [25]. In this model,
the Kähler potential of the volume modulus ρ describing
the size of compactification is the same as in the simplest
KKLT model, KKL = −3 ln[(ρ + ρ̄)], but instead of the
standard KKLT superpotential W = W0 + Ae−aρ, one
uses the racetrack superpotential

WKL = W0 +Ae−aρ −Be−bρ . (18)

For a particular choice

W0 = −A
(
aA

bB

) a
b−a

+B

(
aA

bB

) b
b−a

, (19)

the potential V (ρ) has a supersymmetric Minkowski min-
imum at Imρ = 0 and

σ0 =
1

a− b
ln

(
aA

bB

)
, (20)

where σ is a real part of the field ρ. In this minimum

W (σ0) = 0 , DρW (σ0) = 0 , V (σ0) = 0 . (21)

The shape of the potential, V , for a particular set of
parameters A = B = 1, a = π/25, b = π/10, is shown
in Fig. 1, as a function of the canonically normalized
volume modulus field

√
3/2 lnσ.

One can show that because of the relationsW (σ0) = 0,
DρW (σ0) = 0, the mass squared of the field σ at the
minimum of the potential with V = 0, as well as the
mass squared of the imaginary component of the field ρ,
is given by 2

9σ0W
2
ρ,ρ(σ0). In the KL model, one finds

m2
σ =

2

9
aA bB (a− b)

(
aA

bB

)− a+ba−b

ln

(
aA

bB

)
. (22)

For the particular choice of parameters

A = B = 1, a = π/25, b = π/10 (23)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3

2
ln Σ

-4. ´ 10-6

-2. ´ 10-6

2. ´ 10-6

4. ´ 10-6

6. ´ 10-6

V

FIG. 1. Scalar potential of the KL model for the values of the
parameters A = B = 1, a = π/25, b = π/10 as a function of
the canonically normalized volume modulus field

√
3/2 lnσ.

one hasmσ ∼ 1.3×10−2, in Planck units, so it is typically
much heavier than the inflaton field, which, in the sim-
plest model of chaotic inflation has mass mφ ∼ 6× 10−6.
Thus the problems discussed above associated with fix-
ing both components of the Polonyi-like field are resolved
in the KL model. This hierarchy of mass scales is one
of the necessary conditions which is required to ignore
the dynamics of the volume modulus σ during inflation.
More exact requirements will be discussed in Section IV.

It will be useful to understand the properties of the
KL potential and the mass of the volume modulus under
the simultaneous rescaling of the parameters A → CA,
B → CB. This rescaling does not affect the position of
the minimum σ0, but it increases the value of W0 and
the mass of the volume modulus by a factor C, and it
increases the height of the barrier in the KL potential
by a factor C2. Meanwhile the simultaneous rescaling
a→ ca and b→ cb decreases σ0 by a factor of c, increases
mσ by a factor of c3/2, and increases the height of the
barrier by a factor of c. These facts will be important for
our discussion of moduli stabilization during inflation in
the context of this scenario.

In the KL model discussed so far, supersymmetry is
unbroken in the vacuum state corresponding to the min-
imum of the potential with V = 0. The scale of super-
symmetry breaking will be determined by a slight per-
turbation of the superpotential (18) by adding to it a
small constant ∆W ∝ µ. Independent of the sign of
∆W , the constant shifts the minimum of the potential
V from zero to its negative value VAdS < 0. Therefore
VAdS in the first approximation must be proportional to
−∆W 2. After some algebra, one finds that the position
of the minimum shifts from σ0 by ∆σ = 3∆W

2σ0Wρ,ρ
, and the

potential at the minimum becomes

VAdS(∆W ) = −3(∆W )2

8σ3
0

= −3

8

(
a− b

ln
(
aA
bB

))3

(∆W )2 .

(24)
In this minimum, the value of the superpotential (in-
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cluding the additional constant ∆W ), remains equal to
∆W up to small corrections O(∆W )2. Supersymmetry
in the minimum is still unbroken, DρW = 0, whereas
Wρ = 3

2σ0
∆W .

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a
term

∆V ≈ |VAdS(∆W )| σ
n
0

σn
. (25)

In the original KKLT construction it was assumed that
n = 3 [22], but according to [40] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [23, 24].
Because of the dependence of the uplifting term on σ,
the minimum after the uplifting shifts to slightly greater
values of σ. However, this effect is extremely small, being
proportional to (∆W )2. Therefore, as a first approxima-
tion, the position of the minimum, as well as the values
of W and of its first derivative Wρ, remain the same as
they were before uplifting, independent of n.

After uplifting to the present state with a nearly van-
ishing vacuum energy, the gravitino mass becomes

m3/2 =
√
|VAdS|/3 =

1

2
√

2

(
a− b

ln
(
aA
bB

))3/2

|∆W | . (26)

In particular, for A = B = 1, a = π/25, b = π/10,
one has m3/2 ∼ 3 × 10−2|∆W | ∼ 2.3mσ|∆W |. To have
m3/2 ∼ 1 TeV, which is about 0.4×10−15 in Planck units,
one should have |∆W | ∼ 10−14. This means that to make
the gravitino mass comparable to the electroweak scale,
we must introduce a small parameter ∼ 10−14, which is
comparable to the small parameter, µ, required in the
standard Polonyi superpotential. In other words, the de-
gree of fine-tuning required in this model is the same as
in the more traditional mechanisms of supersymmetry
breaking.

Note that in this class of models, unlike in the simplest
KKLT models, the mass of the volume modulus, as well
as the inflaton mass, can be many orders of magnitude
greater than the gravitino mass, and the light Polonyi
field is not required for supersymmetry breaking. This is
a considerable advantage, which allows one to solve the
cosmological moduli problem in this class of models.

It would be interesting to find out how generic models
of this type are in the landscape. We do not have a
complete answer to this question; certainly these models
are fine-tuned. However, we would like to mention an
interesting aspect of this class of models revealed in [41].

Vacuum stabilization in string theory is quite compli-
cated because one should achieve stability with respect
to all string theory moduli. This problem was solved for
a particular class of models, see e.g. [42], but it is cer-
tainly true that the requirement of stability with respect

to all moduli is a significant constraint, limiting the total
number of stable string theory vacua. In this respect,
it is interesting that all Minkowski vacua with unbroken
supersymmetry are stable automatically [41], due to the
positive energy theorem in supergravity [43].

We would like to go beyond this simple statement and
find what happens when one introduces supersymmetry
breaking in the KL model. Let us first analyze the sec-
ond derivative of the F-term potential V , Eq. (3), for
all scalars in supergravity at the supersymmetric mini-
mum in terms of a covariantly holomorphic complex grav-
itino mass eK/2W ≡ m(z, z̄), related to the (real) grav-
itino mass, m2

3/2 = |mm̄| = eG. The complex masses
of the chiral fermions in N = 1 supergravity are equal
to DiDjm ≡ mij , D̄īD̄j̄m̄ ≡ m̄īj̄ . At the supersym-
metric minimum one has ∂iV = 0, Dim ≡ mi = 0,
D̄īm̄ ≡ m̄ī = 0. As a result, in a supersymmetric
Minkowski minimum, where m = m̄ = 0, the matrix
of the second derivatives of the potential V is positive
definite,

∂i∂j̄V |Mink = mikK
kk̄ m̄k̄j̄ = |mij̄ |2 ≥ 0 , (27)

in agreement with the general stability expectations
based on [43]. This is exactly what we found in the par-
ticular version of the KL model studied above, with the
masses of the real and imaginary part of the field ρ being
quite large, O(10−2) in Planck units.

If we modify this model and add the term ∆W , the
Minkowski minimum becomes a supersymmetric AdS ex-
tremum, with the second derivatives of the potential at
∂iV = 0 given by

∂j∂iV = −mjim̄ , ∂j̄∂īV = −m̄j̄īm ,

∂j̄∂iV = −2Kj̄imm̄ + mikK
kk̄ m̄k̄j̄ . (28)

This mass matrix differs from Eq. (27) by small terms
proportional to the gravitino mass.

In the simplest versions of the KKLT model, the mass
of the volume modulus typically is of the same order as
m3/2. That is why vacuum stability in these models is
not automatic, and the situation may become even more
complicated after the uplifting, see for example [44] and
references therein.

In this respect, the situation in the KL model is much
better. If the mass matrix in the Minkowski vacuum is
positive definite, |mij |2 > 0, i.e. if it is a minimum, then
it should remain a minimum of the scalar potential after
adding the term ∆W , if the gravitino mass m3/2 ∼ ∆W
is much smaller than |mij |. In the particular model con-
sidered above this condition is easily satisfied. This re-
sult is unchanged by uplifting. The uplifting term de-
pends only on the field σ, which is strongly stabilized
near σ0. As we already mentioned, after uplifting, the
field σ in the KL model remains practically unchanged;
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its modification is suppressed by (∆W )2, which in our
case is O(10−28). That is why the second derivatives of
the potential V after uplifting remain the same as before
uplifting: The potential is simply shifted upwards with-
out changing its shape with respect to all moduli fields.
This means that if the gravitino mass is sufficiently small,
supersymmetry breaking in the KL model does not desta-
bilize the potential [41].

This suggests that at least some part of the fine-tuning
involved in the formulation of the KL-type models is jus-
tified by vacuum stability which is much easier to achieve
in these models. Moreover, these considerations hint to-
wards a possible reason for the smallness of supersym-
metry breaking: The smaller is the gravitino mass, the
easier it is to stabilize the vacuum in this class of string
theory models.

A more detailed study of vacuum statistics in string
theory landscape is required to evaluate potential signif-
icance of these arguments. But quite independently of
these considerations, we already found that this class of
models has an important advantage that we would like to
reemphasize: They help solve the long-standing cosmo-
logical problem associated with light moduli fields, such
as the Polonyi field. Such fields typically accumulate a
significant amount energy and decay too slowly, which
leads to disastrous cosmological consequences [14]. In
the KL model, this problem does not appear because we
do not need to have light Polonyi fields; supersymmetry
breaking is associated with the volume modulus. In the
KL models, this field is superheavy by construction.

Before returning to our central question of inflation,
we comment on the phenomenology induced by the KL
model. If we extend the theory to include a minimally
coupled matter sector, our Kähler potential becomes

K = −3 ln[(ρ+ ρ̄)] + yiȳi (29)

along with the superpotential

W = W (ρ) +WSM (yi) , (30)

where we include standard model fields, yi and WSM (yi)
is the Standard Model superpotential (we are using yi to
denote both the scalar component and superfield). The
scalar potential is given by

VSM =
e|yi|

2

8σ3
0

(∣∣∣∣∂WSM

∂yi
+ ȳiW

∣∣∣∣2 + 3 |WSM |2 − 3 |W |2
)
,

(31)
whereW = WSM +∆W and we assume a sum over Stan-
dard Model fields). In the low energy limit, the potential
at the uplifted minimum (i.e. subtracting the contribu-
tion from Eq. 24), can be written as

VSM =
1

8σ3
0

(∣∣∣∣∂WSM

∂yi

∣∣∣∣2 + (∆W )2yiȳi (32)

+

[
(∆W )(ȳi

∂WSM

∂yi
− 3WSM ) + h.c.

])
,

or

VSM =

∣∣∣∣∂WSM

∂yi

∣∣∣∣2 +m2
3/2y

iȳi (33)

+

[
m3/2(ȳi

∂WSM

∂yi
− 3WSM ) + h.c.

]
after a rescaling of the superpotential WSM →
2
√

2σ
3/2
0 WSM . This corresponds to a standard minimal

supergravity model (mSUGRA) with a universal scalar
mass, m0 = m3/2 and a trilinear supersymmetry break-
ing A-term, A0 = 0 (and a bilinear term B0 = −m0).
This is distinct from the prediction of the Polonyi model
where A0 = (3−

√
3)m0 and B0 = (2−

√
3)m0 or no-scale

supergravity with A0 = B0 = m0 = 0.

IV. INFLATION IN COMBINED THEORY

Next we study the inflation potential in the combined
theory

K = Kinf((Φ− Φ̄)2, SS̄)− 3log(ρ+ ρ̄) , (34)

W = Sf(Φ) +W0 +Ae−aρ −Be−bρ + ∆W . (35)

Supergravity couples the inflaton and KL sectors to each
other. In this section, we discuss how the inflation model
in section II is affected by the KL sector. In the sim-
plest string theory inflation models based on the KKLT
scenario, the energy stored in the inflaton potential can
destabilize the volume modulus if it is too large, leading
to the constraint H . m3/2 [25]. In the KL model, this
constraint disappears because the height and steepness
of the stabilization potential are not related to the grav-
itino mass, so they can be very large. A useful quantity
that parametrizes the relative size of the inflaton poten-
tial and the KL-barrier is

δ = −3
√

3

4

f(φ/
√

2)

σ2
0W
′′
KL

. (36)

For the parameters in (23) this is δ ∼ 4.3f(φ/
√

2) � 1.
One may also consider the models with large SUSY
breaking and large gravitino mass, as in [6], but we will
follow the conventional route and assume that the grav-
itino mass is many orders of magnitude smaller than the
Hubble constant during inflation. For this reason, we can
neglect the term ∆W in our investigation of inflation.

In addition to stabilization of the volume modulus, one
should take care of the stability of the fields S and Im Φ.
If the masses of some of these fields at S = Im Φ = 0 are
smaller than H, then they can easily shift away from the
origin, and the resulting inflationary evolution becomes
very complicated [6]. In some cases, this may lead to
undesirable isocurvature perturbations, or to the realiza-
tion of the curvaton scenario [12], as recently discussed
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FIG. 2. The first of these plots shows the potential with
the parameters in (23) as a function of φ and σ. The Käh-
ler potential has KSS̄SS̄ = 0 (no stabilization of s, as in [6]).
For each value of φ and σ, s is adjusted so that the potential is
minimized. The red line shows the inflaton trajectory. Infla-
tion is possible for |φ| < 140; further increase of φ destabilizes
the potential. The second plot corresponds to the situation
where we stabilize s near s = 0 by taking KSS̄SS̄ = −4. We
increase A and B by a factor of 5, to increase the height of the
barrier. In this regime inflation is possible for φ well above
1000, in Planck units. In the investigation of the observational
consequences of inflation in this regime one can ignore the KL
potential and use the results of the previous investigation of
chaotic inflation in supergravity [9, 10].

in [11]. In our investigation, we will try to find a regime
such that the volume modulus ρ is strongly stabilized
near the minimum of the KL potential at ρ = σ0 and the
fields S and Im Φ are strongly stabilized near their zero
values. In this case, the inflaton field will travel along
the real Φ axis with S ≈ 0 and ρ ≈ σ0, and inflation will
occur just like in the single field chaotic inflation model
with the potential V = f2(φ/

√
2) [9, 10].

Supergravity introduces a number of couplings be-
tween the inflation and KL sector. The scalar potential
can be decomposed as

V = eKinfVKL +
Vinf + 3eKinf |Winf|2

(ρ+ ρ̄)3
+ Vmix. (37)

The subscripts "inf" and "KL" denote the potentials in
the decoupled limits studied in previous sections and

Vmix =
eKinf

(ρ+ ρ̄)3

(
Kab̄KaKb̄|WKL|2

+2Re
[
Kab̄DaWinfKb̄W̄KL

−(ρ+ ρ̄)WKL,T W̄inf
])
. (38)

This potential has a number of interesting features. First,
Vmix vanishes at ρ = σ0 since WKL = WKL,T = 0. Sec-
ondly, the 3|Winf|2-term in (37) is due to the no-scale
form of KKL: in particular, the term KT T̄ |KTW |2 in-
cludes

KT T̄KTKT̄ |Winf|2 = 3|Winf|2. (39)

This cancels the −3|W |2 term in (3) and the inflaton
sector thus inherits the no-scale structure of the KL sec-
tor. Finally, during inflation, the inflaton won’t exactly
follow S = 0, σ = σ0 but be displaced transversely by a
small amount {δs, δσ}. The biggest effect comes from the
term Vinf/(ρ+ ρ̄)3 which, if it becomes large enough, can
destabilize the KL-barrier. As long as the perturbation
is small the new minimum can be found by expanding
the potential to quadratic order and solving for the dis-
placement that puts the first derivative to zero. The first
derivative along the unperturbed trajectory is ∂φ

∂s
∂σ̃

V (φ, 0, σ0) =

 √2ε
0

−
√

6

V, (40)

where σ̃ is the canonically normalized σ-field. The deriva-
tives along the imaginary directions all vanish. The sec-
ond derivatives are block diagonal and the block with the
real parts of the fields is

∂2
φ,s,σ̃V =

 η 0 −2
√

3ε
0 3 + ε−KSS̄SS̄

3
δ

−2
√

3ε 3
δ 8 + 3

δ2

V, (41)

The mixing between φ and σ̃ can be neglected when
ε � 1 � 1/δ and will be dropped from now on. The
perturbation to the inflaton path is then

δs =

√
6δ

KSS̄SS̄ − ε
+O(δ2) ,

δσ =
2σ0δ

2

3

(
1− 3

KSS̄SS̄ − ε

)
+O(δ3) . (42)

One may start the investigation of the inflationary
regime for the simplest case, KSS̄SS̄ = 0, which was stud-
ied in detail in [6] for the case of a quadratic potential,
i.e. for W = mSΦ, see the first plot in Figure 2. In this
case, δs is suppressed by δ/ε (instead of δ) and can thus
be O(1) even in the region where δ � 1. As a conse-
quence, the second order expansion of the potential used
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to find (42) cannot be trusted and the corrections to the
effective inflation potential can be big. This is not nec-
essarily a problem and inflation can be successful [6]. It
does, however, make analytic treatment hard as the KL-
and inflation-sectors cannot be disentangled. As a result,
for each new set of parameters, one should check numer-
ically whether the field S is light, which may lead to
isocurvature/curvaton perturbations of metric. In addi-
tion, in the absence of stabilization, the field range where
inflation may happen is rather limited, see the first plot
in Figure 2.

Meanwhile, in the case when δ � 1 and KSS̄SS̄ =
O(1), the deviations δs and δσ are very small and the ex-
pressions (42) can be trusted. The range of stability can
be further increased by making the KL-barrier higher,
easiest done by A → CA and B → CB. This makes
the barrier higher by a factor of C2. For a quadratic
potential this increases the range of stability by a factor
C. This is demonstrated in the lower plot in Figure 2
for W = mSΦ. We took KSS̄SS̄ = −4 and increased
the parameters A and B in (23) by a factor of 5. The
mass parameter m (which is not the inflaton mass) is
taken to be m = 2.4 × 10−4 so that the full potential
|f(φ/

√
2)|2/8σ3

0 , is consistent with the COBE normal-
ization. As we see, the inflationary trajectory is well
stabilized. The field σ is practically unchanged during
the last 60 e-folds of inflation. Inflation may happen for
the fields φ well above 1000. This means that the slow
roll eternal chaotic inflation scenario [45] can be realized
in this model.

Next we turn to the transverse masses. To lowest order
in δ they are

m2
β = [2(1−KSS̄ΦΦ̄) + 2ε− η]V ,

m2
s = m2

α = (ε−KSS̄SS̄)V ,

m2
σ = m2

Imρ = 3V/δ2 =
2

9
σ0W

2
ρ,ρ(σ0) . (43)

These are identical to those in the decoupled limit dis-
cussed in the earlier sections. This is quite surprising
since ∂2

sV differs from (10) by the term 3V (which is due
to (39)). However, looking at the two last rows/columns
in (41) we see that this term, together with the 1/δ en-
hanced terms combine into(

3 3
δ

3
δ

3
δ2

)
V =

3

δ2

(
δ
1

)(
δ 1

)
V. (44)

The new term in ∂2
sV is thus absorbed into a slight ro-

tation of the heavy σ state. The masses should be cal-
culated at the point (42) but the correction coming from
this is subdominant. We thus conclude that the KL- and
inflation-sectors effectively decouple in the limit where
δ � 1 and KSS̄SS̄ = O(1). Therefore, for the investi-
gation of the observational consequences of this model,
one can simply use the analytical results obtained in
[9, 10] for the simple supergravity model involving only

the fields S and Φ, ignoring the evolution of the volume
modulus in the KL model. A brief overview of these re-
sults was given in Section II.

V. REHEATING

Reheating after inflation often can be divided into sev-
eral qualitatively different stages. Depending on the
choice of the inflationary model, reheating may begin
with a stage of preheating, a non-perturbative regime
of parametric resonance, which rapidly converts the en-
ergy of the inflaton field to energy of other particles and
classical waves [46]. However, eventually this stage ends
while some energy still remains stored in the oscillating
inflaton field. When the amplitude of this field becomes
small enough, one can use the elementary approach to
the theory of reheating which describes the perturbative
decay of inflaton particles where the reheating tempera-
ture after this decay is given by TR ∼

√
Γ, and Γ is the

inflaton decay rate, in Planck units [47].

Perturbative reheating is efficient and can lead to the
complete decay of the inflaton field only if this decay
continues at a constant rate Γ in the limit when the am-
plitude of the oscillations of the inflaton field vanishes. In
other words, it should be a decay process φ → anything
rather than some interaction φ + φ → anything . This
condition is not automatically satisfied in our class of
models. Suppose, for example, that in addition to the
fields Φ, S and T , we also have matter fields y. Consider
the diagrams φ → y + y. The corresponding interaction
constant is proportional to ∂φ,y,yV at the minimum of
the potential. This is a straightforward calculation and
we find

∂φ,y,yV =
1

2σ3
0

f(φ)f ′(φ), (45)

when evaluated at the minimum of V (φ) with S = 0.
But in our model V (φ) ∼ f(φ)2, so at the minimum of
the potential in a (nearly) Minkowski vacuum, the decay
constant for the process φ→ y + y vanishes.

We next check the coupling of the inflaton to Standard
Model fermions. Starting with the chiral fermion mass
matrix,

eG/2χ̄i
(
Gij +GiGj −Gijm̄Gnm̄Gn

)
χj , (46)

which becomes

−eK/2χ̄i
(
Wij −

2

3

WiWj

W

)
χj , (47)

when the Goldstino component is subtracted out. But
because KΦ = WΦ = 0 at the minimum and we have
assumed WiΦ = 0, there are no direct decays of the in-
flaton to chiral fermions. A similar argument pertains to
the coupling of the inflaton to a scalar-fermion-gaugino.
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In more conventional minimal supergravity models,
there is in fact a minimal decay rate for the infla-
ton through 3-body gravitational decays [29, 48], which
places constraints on inflationary models from the over-
production of gravitinos [49, 50]. Our computation of
the direct decay of the inflaton to matter includes gravi-
tational decays but other channels including the decay to
gravitinos are possible, and we check these as well. For
example, in the KL model, one can compute the infla-
ton couplings to the modulus σ. However, we find this
coupling is the same as in Eq. (45) multiplied by a fac-
tor 6/σ2

0 , and hence also vanishes. The coupling of the
inflaton to gravitinos is given by

− 1
8ε
µνρσ

(
GΦ∂ρΦ−GΦ̄∂ρΦ̄

)
ψ̄µγνψσ ,

− 1
8e
G/2

(
GΦΦ +GΦ̄Φ̄

)
ψ̄µ [γµ, γν ]ψν . (48)

But as before, because GΦ = KΦ + WΦ/W , and KΦ =
WΦ = 0 at the minimum (recall W =∆W ∝ m3/2), there
is no contribution from these terms. Indeed, it would
appear that there are no decay channels available for in-
flaton decay. This is very reminiscent of the situation in
no-scale supergravity [27].

There is also the possibility that the inflaton can decay
to a single gravitino and inflatino. This coupling is given
by

eG/2Giψ̄µγ
µχi. (49)

Therefore the decay constant for φ→ χi+ gravitino is

eG/2GiΦ = eK/2 (KiΦW +WiΦ) . (50)

Decays of an inflaton to a gravitino plus inflatino (φ̃) are
suppressed because the first term is proportional to the
gravitino mass (eK/2W ) and the second term vanishes
(WΦΦ = 0). However, in principle decays to a gravitino
+ an S-ino are possible sinceWSΦ = m. While this decay
does not contribute to reheating, it could be problematic
because of the generation of gravitinos. However, for
m3/2 � mφ, there is a phase space suppression of order
(m3/2/mφ)2 [51], for this decay due to degeneracy (mφ−
ms̃ ∼ m3/2).

There is one remaining channel to check, the decay of
the inflaton to the stabilizers, S. According to (14), the
masses of the fields φ and s are equal to each other at
the minimum of the potential, and therefore the decay
φ→ s+ s (as well as the decay s→ φ+ φ which we will
discuss later) is kinematically forbidden.

The suppression of the decay probability of the infla-
ton field is simultaneously a curse and a blessing. It is a
blessing because with the decay suppressed, the reheat-
ing temperature can easily satisfy the bound T . 108

TeV, which is usually required to avoid the cosmological
gravitino problem for a gravitino at the TeV mass scale
[28]. It is a curse because this result implies that unless

we do something else, there will be no reheating in this
model.

In the past, the absence of a decay route φ→ anything
for the inflaton was found to be generic in no-scale super-
gravity [27]. A similar problem appeared in the context of
string cosmology, in racetrack inflation [52]. Fortunately,
this is not a real problem. In all supergravity models
without a direct decay of the inflaton into standard model
scalars and fermions there remains a possibility for infla-
tons to decay to gauge fields and gauginos through a cou-
pling in the gauge kinetic function [27, 52, 53], hαβ(ϕ).
The supergravity Lagrangian terms of interest include

− 1
4 (Rehαβ)FαµνF

βµν + i
4 (Imhαβ)εµνρσFαµνF

βρσ

+
(

1
4e
G/2h∗αβn̄G

kn̄Gkλ
αλβ + h.c.

)
. (51)

In N = 1, d = 4 supergravity the couplings hαβ can
be arbitrary holomorphic functions of scalar fields. For
small Φ, at the end of inflation, one can expand hαβ in
terms of Φ:

hαβ =
(
h(ρ) + dφΦ

)
δαβ . (52)

This would induce a coupling to gauge bosons

−1

4
〈∂hαβ
∂Φ
〉ΦFαµνF βµν = −dφδαβ

4
√

2
φFαµνF

βµν , (53)

which leads to reheating via the decay of the inflaton field
to gauge fields.

Note that this mechanism only works if the couplings
hαβ are not constants, but functions of scalars. As we
already mentioned, this is indeed allowed by the rules of
N = 1 supergravity. A possible string theory origin of
the scalar-vector coupling was discussed in [52], where
a proposal was made to use the string theory type con-
struction where the standard model particles can live on
anti-D3 branes at the end of the throat or on the wrapped
D7 branes. In this case, the axion partner Y of the vol-
ume modulus couples to the vector fields like Y Fµν F̃µν
and the volume modulus X as XFµνFµν . However, we
can now make the strong statement: Field-independent
(i.e. constant) couplings hαβ = δαβ are forbidden in all
versions of extended supergravity N ≥ 2. Thus, in all
of such models, the scalar-vector couplings are not only
possible but unavoidable [54]. Therefore the coupling of
the inflaton field to vectors fields is expected to appear
in N = 1 supergravity models inspired by extended su-
pergravity and/or string theory. Such couplings provide
the decay route for the inflaton.

Similar couplings exist for gauginos,

1
4 〈(e

G/2h∗αβ Φ̄
GkΦ̄Gk)Φ〉Φλαλβ + h.c.

= 1
4 〈e

G/2h∗αβ Φ̄
GΦΦ̄GΦΦ〉Φλαλβ + h.c.

= −dφδαβ
4
√

2
m3/2φλ

αλβ + h.c. , (54)
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where we have used eG/2GΦΦ = −m3/2 (WΦΦ = 0).
Thus, the decay to gauginos is suppressed by a factor
of (m3/2/mφ)2 relative to the decay to gauge bosons.

Using a non-trivial gauge kinetic function as in Eq.
(52), we can compute the total decay rate into gauge
bosons as

Γ(φ→ AµAµ) ∼ 10−2 × d2
φ

m3
φ

M2
p

. (55)

Note that this decay rate is suppressed by a factor d2 as
compared to the standard expectation for the rate of de-
cay of the inflaton field in supergravity Γ(φ→ AµAµ) ∼
10−2 m

3
φ

M2
p
. This reduces the reheating temperature, which

makes it easier to solve the primordial gravitino problem.

To give a particular example, one may consider the
simplest chaotic inflation model with V = m2

φφ
2/2 and

mφ ∼ 6 × 10−6, in Plank mass units. Our results imply
the reheating temperature of order

TR ∼ dφ × 109 GeV . (56)

As long as dφ . 10−1, excessive reheating and the ther-
mal production of gravitinos will not occur.

Before concluding this section, we would like to dis-
cuss what may happen in those versions of our model
where the field S remains very light during inflation and
its perturbations are generated, in addition to the per-
turbations of the inflaton field. In this case, at the end of
inflation the field S does not exactly vanish, but instead
it takes different values in different parts of the universe.
One can show that the decay of the field S to matter
fields is also suppressed. In particular, the vertex ∂s,y,yV
corresponding to decay S → y + y in the limit S → 0
is proportional to f(φ), so it vanishes when evaluated at
the minimum of V (φ) with S = 0, f(φ) = 0.

If the field S does not decay, its perturbations will
result in undesirable isocurvature perturbations of met-
ric. However, just as the inflaton field, the field S may
decay due to the interaction to vector fields with an anal-
ogous coupling constant ds. If ds � dφ, the field S may
decay much later than the inflaton field, as in the cur-
vaton scenario [11, 12]. In this case the perturbations of
the field S generated during inflation produce adiabatic
perturbations of metric. Under certain conditions, these
perturbations of metric may be non-gaussian, which may
provide additional flexibility to fit new and coming ob-
servational data.

However, the curvaton scenario requires many addi-
tional nuts and bolts [11–13]. For example, it could lead
to a significant non-gaussianity under the condition that
the amplitude δS/|S| is relatively large. To make this
condition compatible with the smallness of the pertur-
bations of metric, one may require, e.g., that the main
contribution to the density of the universe at the time

of the decay of the field S is given not by the classical
field S, but by the S-particles produced during reheat-
ing [11, 13]. But in the simplest version of our model
the inflaton field does not decay to S-particles. One can
construct models where such a decay is possible due to
non-perturbative effects at the very end of inflation or
at the early stages of reheating, e.g. due to a tempo-
rary destabilization of the field S at the end of inflation.
This can be achieved by a proper choice of the Kähler
potential, see [33] for a discussion of a closely related
regime. Thus, one can implement the curvaton scenario
in our model, but it requires additional specification and
tuning of its parameters.

Meanwhile in the regime ds & dφ, which is perhaps
more natural, the field S decays before or shortly after
the decay of the inflaton field. In this regime, the con-
tribution of the field S and the products of its decay to
the energy density of the universe typically remains much
smaller than the corresponding contribution of the infla-
ton field. In this case, the perturbations of the field S do
not lead to significant perturbations of metric, so one can
safely ignore the perturbations of the field S even if its
mass is much smaller than H during inflation. Therefore
in this regime the perturbations of metric are correctly
described by the theory of the single inflaton field φ.

VI. CONCLUSIONS

In this paper, we incorporated the recently developed
class of models of chaotic inflation in supergravity [9, 10]
into a theory of supersymmetry breaking. We analyzed
the possibility of introducing low-scale SUSY breaking
based on the KL model of vacuum stabilization in string
theory [25] (see also [6]). This mechanism does not re-
quire the introduction of additional moduli fields respon-
sible for SUSY breaking, such as Polonyi fields. This
solves the cosmological moduli problem which plagues
many cosmological models based on supergravity. Fur-
thermore, this mechanism of SUSY breaking has certain
distinguishing features which can be tested experimen-
tally.

The models of Refs. [9, 10] describe inflation with an
arbitrary inflaton potential, which corresponds to a flat
direction in the Kähler manifold. In general, unification
of these models with the models describing volume mod-
ulus stabilization in string theory is rather nontrivial.
The large energy density of the inflaton field may affect
other scalars (the moduli) and bend or even eliminate the
flat direction of the potential. This may make inflation
impossible [25], or at least make it much more compli-
cated, requiring a detailed numerical investigation of the
simultaneous evolution of many different scalar fields [6].

Fortunately, our results show that in the class of mod-
els of Refs. [9, 10] unified with the KL model one can



11

stabilize the inflationary trajectory and preserve the po-
tential along the inflationary direction for a very large
range of the values of the inflaton potential V (φ). In
other words, one can reach a certain decoupling, when
the KL scenario takes care of the volume modulus stabi-
lization in string theory, as well as the low-scale SUSY
breaking, whereas all observational consequences of in-
flation remain the same as in the simple supergravity
models of Refs. [9, 10].

Finally, we analyzed reheating after inflation in this
scenario. We have shown (see also [16, 26, 27, 53]) that
the standard mechanism of reheating with the decay rate
Γ ∼ m3

φ does not work in this class of inflationary mod-
els because the flatness of the inflationary potential is
related to the vanishing of the Kähler potential along
the inflationary trajectory. However, the inflatons can
decay to gauge fields and gauginos through a coupling in
the gauge kinetic function. This leads to a natural sup-

pression of the decay rate and simplifies the solution of
the cosmological gravitino problem.

In conclusion, we constructed a broad class of string
theory inspired models of chaotic inflation in supergrav-
ity, with a functional freedom of choice of the inflaton
potential and the Kähler potential. These models may
describe low scale SUSY breaking and they do not suffer
from the cosmological moduli and gravitino problems.
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