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Abstract

We present analytic solutions to a class of cosmological models described by a canon-

ical scalar field minimally coupled to gravity and experiencing self interactions through a

hyperbolic potential. Using models and methods inspired by 2T-physics, we show how ana-

lytic solutions can be obtained in flat/open/closed Friedmann-Robertson-Walker universes.

Among the analytic solutions, there are many interesting geodesically complete cyclic solu-

tions in which the universe bounces at either zero or finite sizes. When geodesic completeness

is imposed, it restricts models and their parameters to a certain parameter subspace, in-

cluding some quantization conditions on initial conditions in the case of zero-size bounces,

but no conditions on initial conditions for the case of finite-size bounces. We will explain

the theoretical origin of our model from the point of view of 2T-gravity as well as from the

point of view of the colliding branes scenario in the context of M-theory. We will indicate

how to associate solutions of the quantum Wheeler-deWitt equation with our classical an-

alytic solutions, mention some physical aspects of the cyclic solutions, and outline future

directions.
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I. INTRODUCTION

In this paper we will analytically express a cyclic universe using exact solutions in a

scalar-tensor theory with a scalar field σ (xµ) minimally coupled to gravity.

The full action of our theory is

S =

∫

d4x
√−g

{

1

2κ2
R (g)− 1

2
gµν∂µσ∂νσ − V (σ)

}

, (1)

where the potential is

V (σ) =

(√
6

κ

)4
[

b cosh4

(

κσ√
6

)

+ c sinh4

(

κσ√
6

)]

. (2)

Here b and c are dimensionless free parameters of the potential, and κ−1 is the reduced

Planck mass κ−1 =
√

~c
8πG

= 2.43×1018GeV
c2

. A plot of the potential energy V (σ) for various

signs and magnitudes of b, c, consistent with stability (b + c) > 0, show that the profile of

this potential is similar to those often used in the study of cosmology. This potential was

chosen because we can solve the equations exactly, thus enabling us to perform the type

of analysis presented in this paper. We assume that the general features discussed here go

beyond the special choice of potential2.

The model of Eqs.(1,2) was initially inspired by 2T physics [3][4][5] as described in [6]

and section (IA) below. The same model fits also in the worldbrane scenario [7], as inspired

by D-branes in M-theory [8]. The ideas of a cyclic universe [2] modeled in Ref.[9] can be

adapted to reproduce the same potential V (σ), thus describing a universe that consists

of two 3+1 dimensional orientifolds that periodically collide with each other by oscillating

in an extra fifth dimension. It is quite interesting that this connection emerged between

2T-gravity and M-theory. In subsections (IA) and (IB) we will comment on the different

origins that converged on this model.

In a previous cosmological application of this model [6] V (σ) was an energy density of

the order of the grand unification scale (mGUT )
4. In that case, b1/4

√
6κ−1 or c1/4

√
6κ−1 were

2 In fact, this is not the only potential for which we are able to give a full analysis with the complete

set of analytic solutions [1]. In the near future we will present a similar discussion for the potentials

V1 (σ) =
(√

6
κ

)4 (

be−2κσ/
√
6 + ce−4κσ/

√
6
)

and V2 (σ) =
(√

6
κ

)4

be2pκσ/
√
6, where b, c, p are dimensionless

real parameters. The profile of V1 (σ) , with c > 0 and b < 0, is similar to the profile of the potential used

initially in the cyclic cosmology model in [2].
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of order mGUT ∼ 1016GeV
c2
, thus leading to dimensionless values for the parameters b or c in

the order of 10−12. Exact solutions have a way of finding applications in various fields. For

physical applications of our solutions, including cyclic cosmology or other future cases, the

value of the parameters b, c, should be chosen appropriately depending on the application.

The complete set of analytic solutions for this model, in a homogeneous, spatially flat,

isotropic Friedmann-Robertson-Walker (FRW) universe, were obtained in our earlier paper

[6], and some of their perturbations were studied in [6][10]. In the current paper we will

emphasize a subset of these solutions that are geodesically complete and describe a universe

smoothly evolving through big bang or big crunch singularities at which the universe shrinks

to zero size, but then it continues to perform periodic expansions and contractions that

describe a cyclic universe, all without violating unitarity or the null energy condition in a

flat universe. We will also include the effect of spacial curvature for the FRW universes

(k = 0,±1) in our new exact solutions, and we will exhibit cyclic solutions with finite size

bounces as well.

Perturbations such as radiation is easily included in the exact solutions, while anisotropy

can be discussed with analytic approximations; but those aspects, as well as the quantum

treatment through the Wheeler-deWitt equation, which require more detailed discussions,

will appear in a separate paper [11].

The complete set of homogeneous, isotropic classical solutions presented in [6] show that,

the generic solutions for the field σ (τ) and the scale factor a (τ) describe a geodesically

incomplete geometry. The geodesic incompleteness can be exhibited in terms of conformal

time τ as defined by the line element ds2 = a2 (τ) (−dτ 2 + ds23) , where ds
2
3 is the line element

of the 3-dimensional space. As an illustration consider the spatially flat case ds23 = d~x · d~x.
The geodesic xµ (τ) of a massive particle in this flat geometry is described by its velocity

d~x (τ)

dτ
=

~p
√

~p2 +m2a2 (τ)
, (3)

where ~p is the conserved 3-momentum. In terms of this conformal time τ , the complete set

of solutions in [6] show that, for the generic solution, the scale factor a (τ) starts out at zero

size at some time a (τ1) = 0 and grows to maximum size a (τ2) = amax in a finite amount

of conformal time (τ2 − τ1) =finite. It turns out that amax is infinite in the case of b ≥ 0 or

finite in the case of b < 0. Furthermore a (τ) has this same behavior in an infinite number of

different disconnected intervals of conformal time τ. Each such separate interval describes a
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universe that starts out with a big bang and expands to maximum size. Moreover there are

other disconnected intervals in which the universe contracts from maximum size to zero size.

Evidently such generic solutions of the Friedmann equations are geodesically incomplete.

If expressed in terms of cosmic time t defined by the line element ds2 = (−dt2 + a2 (t) ds23) ,

the geodesic equation reads

d~x (t)

dt
=

~p

a (t)
√

~p2 +m2a2 (t)
(4)

where a (t) is expressed in terms of cosmic time t. The relation to conformal time is dt =

a (τ) dτ or t (τ) =
∫ τ

τ1
a (τ) dτ, where t (τ1) = 0 defines the big bang at a (t (τ1)) = 0. Hence

t (τ) is given by the area under the curve in a plot of a (τ) versus τ, for some interval

τ1 ≤ τ ≤ τ2, starting with the big bang. An example of a geodesically incomplete curve

a (τ) is Fig.1 in [6] while examples of geodesically complete ones are given in many figures

in the current paper. Since a (τ) in the generic solution is given in disconnected τ intervals,

the cosmic time t (τ) cannot be defined for negative values before the big bang. Hence the

geodesic equation above is artificially stopped at the big bang at the finite value of time

t (τ1) = 0. This is one of the signs of geodesic incompleteness of this geometry. In addition,

when the area under the curve is finite (the solutions for b < 0), the total cosmic time

t (τ2) is also finite, and geodesics are again artificially stopped at a finite value of cosmic

time t (τ2) , providing another sign of geodesic incompleteness. In this way, each interval

that is geodesically incomplete in conformal time appears again as geodesically incomplete

in cosmic time. This type of geometry bounded by singularities, and classical solutions in

them, occur often in General Relativity and are commonly used in its applications, as in

our own paper [6]. But in view of the geodesic incompleteness of the generic solutions of

the Friedmann equations displayed in the conformal frame, it feels that this must be an

incomplete story.

We think that a more satisfactory approach, especially for cosmology, is to find those

solutions that describe a geodesically complete geometry. This type of solution is what we

will describe in the current paper. It turns out that among the classical solutions presented

in [6] there are some unique solutions that are geodesically complete in the Einstein frame.

In this solution the patches of conformal time in which a (τ) is real in the Einstein frame3 are

3 All solutions, including those that are geodesically incomplete in the Einstein frame, are geodesically
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smoothly connected from τ = −∞ to τ = ∞. Then the universe sails smoothly through sin-

gularities, while geodesics of both massless and massive particles smoothly continue through

singularities to the next cycle of the cyclic universe.

The requirements for such solutions depend on whether the bounce is at zero size

a (τbang) = 0 or finite size a (τbang) > 0. In the case of zero size bounce, that occurs when the

spacial curvature is zero, k = 0, initial conditions of the two fields need to be synchronized

and periods of oscillation need to be relatively quantized, as we will described in detail.

These requirements result in some quantization conditions among the available parameters

consisting of integration constants of the differential equations for σ (τ) , a (τ) as well as the

parameters b, c in the potential energy V (σ) , and also radiation and anisotropy parameters

when they are included. Because of these requirements these geodesically complete zero-size

bounce solutions are associated with a countable set of boundary conditions (but still an

infinite set, in the sense described in section (ID)). In the case of finite-size bounce none of

these constraints occur on boundary conditions, but in this case there is spacial curvature,

k/r20 6= 0, which needs to be large enough to compete with the potential energy. In this

case, as long as the parameters that define the model are within a certain continuous region,

the generic solution is the finite-size bounce solution without any further requirements on

boundary conditions.

When perturbations, such as radiation and anisotropy are included, or when quantum

effects in the form of the Wheeler-deWitt equation are taken into account, there still are

geodesically complete solutions that have a similar character to what we will present in this

paper. They still form a countable set for zero size bounces, while they are the generic

solutions for the finite bounces. Either way, the distinguishing character of geodesic com-

pleteness has an appeal that seems important for physical applications, as we will discuss in

a future paper [11].

complete in other frames. Indeed, in the γ-gauge that we will discuss in section (II), all solutions are

geodesically complete. However, as viewed from the point of view of the Einstein frame, a (τ) for such

solutions becomes imaginary in the patches that complete the geodesics in the γ-frame, and hence the

physical meaning in the Einstein frame becomes obscure. We intend to study this phenomenon in a future

paper, but for the current paper we concentrate on only the geodesically complete solutions in which a (τ)

is real for all τ.
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A. 2T-physics origin

We would like to briefly summarize here the main points of how the model in Eq.(1)

relates to 2T-gravity [4][5] in 4-space and 2-time dimensions as the conformal shadow in

3-space and 1-time. More generally, according to 2T-physics, a theory in 1T-physics in

(d− 1) + 1 dimensions is one of the many shadows that comes from d + 2 dimensions [3].

A useful shadow that appeals to the intuition of physicists accustomed to relativistic field

theory is the one called the conformal shadow. In the conformal shadow there is a local scale

symmetry (Weyl symmetry). The original 2T-gravity in 4+2 dimensions does not have a

Weyl symmetry in 4+2 dimensions, instead this crucial gauge symmetry in 3+1 dimensions

is dictated in the conformal shadow as a remnant of general coordinate transformations in

the extra 1+1 dimensions [5]. Other less familiar shadows provide other descriptions of the

physics that are related by duality transformations to the conformal shadow, and often they

can provide hidden physical information that is systematically missed in the conventional

formulation of 1T-physics [3][12][13].

Besides this duality aspect, 2T-physics may also provide additional constraints on the

interactions of fields in 1T-physics even within the conformal shadow. The constraints in

theories of interest, in the conformal shadow, are mainly on scalar fields and their interac-

tions. These constraints have been determined generally in [14] in the presence of gravity

or supergravity. Most of the emergent constraints can be rephrased as being consequences

of various symmetries in 1T-field theory, but not all of them. Some of those additional

constraints are not motivated by fundamental principles in 1T-physics, as discussed in [14],

so they can be taken as signatures of 2T-physics. Here we will deal only with the simplest

version of scalar fields that obey the constraints. This is the case when all scalar fields

are conformally coupled to gravity in the 1T version. This is a familiar form in 1T field

theory, but 1T-gravity does not require that all the scalars be conformal scalars; by contrast

2T-gravity has this as an outcome for the conformal shadow in one of its allowed versions

(more general form of constrained scalars in [14]).

Moreover, in the conformal shadow there is no Einstein-Hilbert term in the action, so

there is no dimensionful gravitational constant that would break the local Weyl symmetry

explicitly. Instead, the Einstein-Hilbert term emerges from gauge fixing the Weyl symmetry

within the conformal shadow (see below). This is a mechanism called “compensating fields”
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which is familiar in conventional field theory. Such structures of 2T-physics are compatible

with the construction of satisfactory models of a complete theory of Nature directly in

4+2 dimensions, including the standard model [15], its generalizations with supersymmetry

[16][17] or grand unification, gravity [4][5], supergravity [14], all of which lead to applications

in LHC physics and cosmology [6].

The derivation of the conformal shadow in 3+1 dimensions from the 4+2 dimensional

theory is described in detail in [4][5]. For the purpose of the current paper it is possible to

skip this detail and start out directly in 3+1 dimensions by requiring a local scale symmetry

(Weyl symmetry). Then, the ordinary looking model in Eqs.(1,2) can be presented as a

gauge fixed version of the following gauge invariant field theory in 3+1 dimensions, which is

a conformal shadow that contains one scalar field s (x) in addition to a dilaton φ (x), both

conformally coupled to gravity as follows

S =

∫

d4x
√
−g
(

1

2
gµν∂µφ∂νφ− 1

2
gµν∂µs∂νs+

1

12

(

φ2 − s2
)

R (g)− φ4f

(

s

φ

))

. (5)

The field φ (x) has the wrong sign in the kinetic term, so it is a ghost (negative norm4).

This sign of the kinetic term is required by the Weyl symmetry if the sign in front of the

curvature term 1
12
φ2R (g) is positive. However, due to the local scale symmetry the ghost

can be gauge fixed away, so this theory is unitary. The gauge symmetry is preserved for

any potential of the form φ4f
(

s
φ

)

where f (z) is an arbitrary function of its argument

z = s
φ
. In this action there is no Einstein-Hilbert term with a dimensionful gravitational

constant, but instead, the factor (φ2 − s2)
−1

plays the role of a spacetime dependent effective

“gravitational parameter”.

B. Braneworld origin

A cyclic model, inspired by D-branes in M-theory [8], was developed in [2] where it

was discussed for a very different potential than Eq.(2). However, it is possible to recover

4 There are models of cosmology based on the notion of “quintom matter” [18] which also introduce a

negative norm ghost field. We should emphasize that those models have actual ghosts and therefore are

non-unitary and fundamentally flawed. Despite some similarity, our model is fundamentally different

because of the Weyl symmetry that eliminates the ghosts, thus having fewer degrees of freedom. Our

action, our solutions which do not violate the null energy conditions, and the discussion of the physics are

also different.
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precisely the current model of Eqs.(1,2) in the colliding world brane scenario as follows.

One should compare Eq.(27) in Ref.[9] to the model in Eq.(5) before gauge fixing the Weyl

symmetry. Both models have a Weyl symmetry that is a remnant of general coordinate

transformations in extra dimensions (although the extra dimensions in the two cases do

not have identical signatures). One should compare our fields here s (x) , φ (x) to the fields

ψ± (x) in Ref.[9], since they are both conformally coupled scalars and have precisely the same

kinetic energy terms. Furthermore, the potential V (σ) of Eq.(2) is also recovered, if one

replaces the unknown terms in Eq.(27) of Ref.[9], 2WCFT [g+]−2WCFT [g−]+Sm[g
+]+Sm[g

−],

by just a cosmological term on each brane. Namely, replacing the unknown expression by,

b+
√
g++b−

√
g−, where b± are constants, and using their definition of g±, gives

∑

± b±
√
g± =

∑

± b±
√−g (ψ±)

4
. This is indeed the potential bφ4 + cs4 in Eq.(5), which in turn leads to

the potential V (σ) after the Weyl gauge symmetry is fixed to obtain the Einstein frame as

described in [6] and below.

C. Fixing the Weyl symmetry

The Weyl symmetry can be gauge fixed in several forms. In the Einstein gauge de-

noted by a label E, such as φE, sE, g
µν
E , the gauge is fixed such that the curvature term

1
12
(φ2 − s2)R (g) becomes precisely the Einstein-Hilbert term 1

2κ2R (gE) , so that in the Ein-

stein gauge we have
1

12

(

φ2
E − s2E

)

=
1

2κ2
. (6)

In this gauge it is convenient to parametrize φE , sE in terms of a single scalar field σ

φE (x) = ±
√
6

κ
cosh

(

κσ (x)√
6

)

, sE (x) =

√
6

κ
sinh

(

κσ (x)√
6

)

. (7)

Then the gauge fixed form of the action in Eq.(5) takes precisely the form of Eq.(1), where

the potential V (σ) is arbitrary as long as the function f (z) is arbitrary.

The Friedmann-Robertson-Walker metric (FRW) in this gauge takes the form

ds2E = −dt2 + a2E (t) ds23 = a2 (τ)
(

−dτ 2 + ds23
)

, (8)

ds23 =
dr2

1− kr2/r20
+ r2

(

dθ2 + sin2 θdφ2
)

; k = 0,±1. (9)

where ds23 is the metric of the 3-dimensional space, τ is the conformal time and a (τ) ≡
aE (t (τ)) is the cosmological scale whose dynamics we wish to study in this paper. The
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relation between ordinary co-moving time t and the conformal time is5

dt = a (τ) dτ, or t (τ) =

∫ τ

0

a (τ ′) dτ ′. (11)

The scalar curvature of the metric in Eq.(8) is given by

R (gE) =
6

a2
(
ä

a
+
k

r20
), (12)

where r0 is a constant radius that sets the scale of the curvature of 3-space6 when the

dimensionless scale factor is a = 1.

Thus, in this gauge, for the purpose of homogeneous solutions of the equations of motion,

the dynamical variables are a (τ) and σ (τ) which interact with each other as prescribed by

the action (1). Their equations of motion reduce to the Friedmann equations [19] as follows5

ȧ2

a4
=
κ2

3

[

σ̇2

2a2
+ V (σ)

]

− k

r20a
2
, (13)

ä

a3
− ȧ2

a4
= −κ

2

3

[

σ̇2

a2
− V (σ)

]

, (14)

σ̈

a2
+ 2

ȧσ̇

a3
+ V ′ (σ) = 0, (15)

We had previously found all the exact solutions of these equations for the potential V (σ)

given in Eq.(2) and a flat universe k = 0. These were tabulated in [6]. In this paper we will

emphasize the subset of those solutions that are geodesically complete and in addition we

will generalize them by including non-zero spacial curvature k = ±1. Further generalizations

including radiation and anisotropic metrics will be given in [11]. To explain what we mean

by a geodesically complete solution we need the following discussion.

5 In this paper the overdot denotes derivative with respect to conformal time ȧ (τ) ≡ da/dτ and ä (τ) =

d2a/ (dτ)
2
. The derivative with respect to comoving time t can be rewritten by using the chain rule as

d
dt = 1

a(τ)
d
dτ . For example, the Hubble parameter H ≡ 1

aE(t)
daE

dt and its derivative dH
dt +H2 = 1

aE

d2aE

(dt)2
,

are expressed as

H =
ȧ (τ)

a2 (τ)
,
dH

dt
+H2 =

··
a

a3
− ȧ2

a4
. (10)

6 The parameter r0 sets the scale for the curvature. If normalized to today’s curvature, with r0 representing

todays size of the universe, then K = k/r20 is extremely small even when k 6= 0. In that case we can

completely forget the effect of spacial curvature. However, there are cosmological models that play with

the curvature parameter as applied in the early stages of the universe. In that case r0 may be within a

few factors of 10 of the Planck scale, in which case the curvature is enormous. In order not to miss on

possible interesting solutions we will not pre-judge the size of this term and investigate the solutions that

emerge. Then in various physical applications we may or may not neglect the parameter K = k/r20 .
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D. Geodesic completeness

Note that the Einstein gauge in Eq.(6) can be chosen only in patches of spacetime xµ

when the gauge invariant quantity [1− s2 (xµ) /φ2 (xµ)] is positive. This quantity may

be expressed in the Einstein gauge (i.e. when it is positive only) as (1− s2E/φ
2
E) =

(

cosh(κσ/
√
6)
)−2

. We must note that this gauge invariant quantity could vanish at various

times τ . We did in fact find that it does vanish at various values of τ in generic analytic

solutions for σ (τ) , a (τ) given in [6]. However, when (1− s2E/φ
2
E) vanishes φE diverges so as

to maintain the gauge choice for the gauge dependent quantity (φ2 − s2) as given in Eq.(6).

But the Einstein gauge was fixed under the assumption that (φ2 − s2) was positive; if it can

vanish can it also change sign? This is the question that initially motivated two of us [6] to

study this model in the φ, s version, rather than the a, σ version. Will the dynamics require

the gauge invariant quantity (1− s2/φ2) to change sign in some patches of spacetime, thus

creating patches with antigravity? If yes, what would that mean cosmologically for the

universe we live in?

In our previous study in [6] our exact solutions for φ, s showed that generically the

dynamics does require the gauge invariant (1− s2/φ2) to change sign. However, the point

at which (1− s2/φ2) vanishes corresponds to a big bang or a big crunch singularity where

the scale factor in the Einstein gauge vanishes a2 (τ) = aE (t (τ)) = 0 (recall a (τ) is gauge

dependent), so the physical interpretation for our own universe may be stopped exactly

where (1− s2/φ2) vanishes, and therefore the solution could be stopped artificially at that

moment in conformal time τ. This is geodesically incomplete, as well as gauge dependent

from the point of view of a (τ) as defined in the Einstein frame. But nevertheless, if one

insists that the theory is defined only in the Einstein frame, one could accept a geodesically

incomplete patch for a physical interpretation in the usual interpretation of gravity. This

type of geodesically incomplete solution, which is very common in applications of gravity,

was used in the application to an inflating universe we discussed in our previous paper [6].

In the current paper we take the point of view that geodesically complete solutions are

more satisfactory. To discover and better understand the solution, we examine the factor

(φ2 − s2) that multiplies R (g) in the action. To overcome the gauge dependent description,

of the Einstein or other frames, we focus on the gauge invariant quantity (1− s2/φ2). The

point at which it vanishes corresponds to the big bang or big crunch. When it is positive
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we can choose the Einstein gauge to describe ordinary gravity, but in patches when it is

negative there is antigravity. Only the geodesically complete solutions has no antigravity

by having (1− s2/φ2) ≥ 0 as a function of τ . Of course, quantum corrections near singu-

larities may smooth out the behavior of solutions. Notwithstanding the cloudiness of our

understanding of quantum gravity at this time, it still seems to us attractive to identify the

geodesically complete geometries and solutions in the applications to cosmology, expecting

that this feature survives the quantum effects, as it seems to be the case at the level of

the Wheeler-deWitt equation [11]. Hence we will identify the circumstances in which there

are geodesically complete solutions in which the quantity (1− s2/φ2) never changes sign7.

We found that this is indeed possible, and we explicitly obtained those unique geodesically

complete solutions that are presented in the present paper and in [11].

As we will see in the explicit solutions given below, it turns out geodesic completeness, for

the bounce at zero size, requires two ingredients. First, the parameters in the model have to

be in a certain range and satisfy certain quantization conditions. In other words not every

model can yield geodesically complete cosmological solutions with zero size bounces. For

example, in the case of the flat FRW universe and in the absence of any perturbations, the

ratio of the parameters b/c in the potential V (σ) above must be in the range −1
4
≤ (b/c) ≤ 4

and must be quantized as in Eq.(30). This condition on b/c is relaxed in the presence of more

parameters, such as curvature (k = ±1) or radiation, but there is always one combination

of parameters and initial conditions that is quantized. Second, even with the quantized

parameters, initial conditions for φ (τ) , s (τ) must be synchronized with each other in order

to generate geodesically complete solutions in which (1− s2/φ2) never changes sign. If initial

conditions are not synchronized, then (1− s2/φ2) will change sign and all solutions will be

geodesically incomplete; but this is what we want to avoid, and on this basis we consider

the solutions with synchronized boundary conditions, namely only the geodesically complete

ones, as being those that provide a fuller story of cosmology.

We have also found exact analytic solutions, that obey φ2 − s2 > 0 at all times, in which

the initial conditions need not be synchronized or the parameters of the model need not be

quantized. Such solutions occur in the presence of spacial curvature in the closed universe

k = 1, and provide a cyclic cosmology where the universe bounces at a finite size. For this

7 I. Bars thanks Paul Steinhart for stimulating discussions that led us to focus on this question.
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to be possible the curvature needs to be large enough to compete with the potential energy

V (σ) , as will be discussed in sections (IVC,IVD).

Since (1− s2/φ2) never changes sign for such solutions the physics at all times is com-

patible with Einstein’s gravity, since then one can indeed choose the Einstein gauge, Eq.(6),

at all times in such a universe.

If one takes the point of view that the theory is defined directly in the Einstein frame

in terms of a, σ, as in Eq.(1), then the φ, s configurations in which (1− s2/φ2) changes sign

is a spurious outcome of the parametrization in terms of φ, s in Eq.(5). In that case all

field configurations in which (1− s2/φ2) is negative are excluded by definition. If one also

requires geodesic completeness then the solutions we present below are the only ones that

satisfy the criteria.

This avoids the question of what happens to the physics for those solutions that

are geodesically complete in a more general sense than the Einstein frame, by allowing

(1− s2/φ2) to change sign. If the theory is defined at a more fundamental level (as in 2T-

physics, or as in the colliding branes scenario) in which one would accept all the consequences

of the action in the φ, s version of Eq.(5), then one must investigate the properties of those

solutions as well. What we do know from our explicit solutions [6], in the cases in which

initial conditions are not synchronized or parameters are not quantized, is that the quantity

(φ2 − s2) does not remain negative after switching sign, but oscillates back to positive. So, it

appears that the universe recovers from antigravity and comes back to a period of time with

ordinary gravity. However, if allowed to continue its motion in complete geodesics, the sign

changes back and forth again and again. Perhaps the physics appears to be all wrong dur-

ing the time periods (or more generally spacetime patches) where (φ2 − s2) is negative, but

we don’t really know the physical cosmological consequences of such solutions for our own

universe. We think that it would be interesting to find out eventually the physical viability

and meaning in cosmology of the more general geodesically complete solutions allowed by

the action Eq.(5). So we will not throw away yet the generic solutions which were included

in the list in ([6]), nor will we settle the associated physics questions in this paper. So, at a

less ambitious level, for the moment we concentrate only on the geodesically complete cases

that also satisfy φ2 − s2 ≥ 0, as required by the action Eq.(1).
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II. ANALYTIC SOLUTIONS

To analyze the model in the φ, s version we find it useful to gauge fix the Weyl symmetry

in other forms. A very useful gauge is to choose the conformal factor of the metric to be 1.

We will call this the γ-gauge. In this gauge we will denote the fields with a label γ, such

as φγ, sγ, g
µν
γ . Then, the Robertson-Walker metric in this gauge loses the scale factor since

aγ = 1

ds2γ = −dτ 2 + dr2

1− kr2/r20
+ r2

(

dθ2 + sin2 θdφ2
)

, (16)

and its curvature is a constant given by

R (gγ) = 6K, with K ≡ k

r20
, k = 0,±1. (17)

In this γ-gauge there is no scale factor for the universe, but now both φγ (x) , sγ (x) are

dynamical variables, with φγ having the wrong sign in the kinetic term. The advantage of

this gauge is that the dynamics of φγ, sγ become much simpler and can be solved exactly

in certain cases. After obtaining the solution one can transform back to the Einstein gauge

to find a (τ) , σ (τ) . For the case of only time dependent fields the gauge fixed form of the

action (5) is

L =
1

2

(

−φ̇2
γ + ṡ2γ

)

− K

2

(

−φ2
γ + s2γ

)

− φ4f

(

s

φ

)

. (18)

But one should also remember that τ reparameterization symmetry of general relativity

requires the vanishing Hamiltonian constraint (this is the G00 = T00 Einstein equation)

H =
1

2

(

−p2φ + p2s
)

+
K

2

(

−φ2
γ + s2γ

)

+ φ4f

(

s

φ

)

= 0, (19)

where the canonical momenta are pφ = −φ̇γ and ps = ṡγ. The negative norm ghost is

eliminated because of this constraint on the phase space (φγ, sγ, pφ, ps). The Wheeler-deWitt

(WdW) equation of our theory HΨ (φ, s) = 0 takes an interesting form in the φ, s basis
(

1

2

(

∂2φ − ∂2s
)

+
K

2

(

−φ2
γ + s2γ

)

+ φ4f

(

s

φ

))

Ψ (φ, s) = 0. (20)

As a side remark, note that for K > 0 (closed universe) and in the absence of the

potential, φ4f( s
φ
) = 0, the system in Eqs.(18-20) describes the SO(1, 1) Lorentz symmet-

ric relativistic harmonic oscillator in 1+1 dimensions, with (φ, s) representing the (“time”,

“space”) directions respectively. As in other cases of harmonic oscillator in several dimen-

sions, this system has a larger hidden symmetry, which is SU(1, 1) ⊃SO(1, 1) in this case.
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The quantum version of the relativistic harmonic oscillator (i.e. the WdW equation for

f (s/φ) = 0) was studied and solved exactly in sections VI, VII and Appendix of a recent

paper [20] by using unitary representations of SU(1, 1) . This may be taken as a toy model

to begin a study of the WdW equation for our case8. Of course, we are interested in the full

WdW equation, including the potential energy φ4f
(

s
φ

)

, radiation, and anisotropy, as will

be discussed elsewhere [11].

We now turn to the classical equations of motion satisfied by φγ, sγ, including the po-

tential energy. Such classical solutions provide a semi-classical approximation to the WdW

equation. We are interested in an exactly solvable case so that we can study the issues we

raised with certainty. One of those exactly solvable cases corresponds to a special form of

the potential, namely φ4f (s/φ) = bφ4 + cs4, that in turn corresponds to the hyperbolic

potential V (σ) given in Eq.(2). The equations of motion for φγ (τ) and sγ (τ) are directly

obtained from the Lagrangian or Hamiltonian given above. But it is also instructive to derive

the equations directly from the Friedmann equations in Eqs.(13-15) by using the following

8 The WdW equation HΨ(φ, s) = 0 is satisfied by an infinite set of solutions of the relativistic harmonic

oscillator [20]. These are Ψ (φ, s) =
∑∞

n=0 cnψn (φ)ψn (s) , where the cn are arbitrary and ψn (φ) , ψn (s)

are the standard 1-dimensional harmonic oscillator wavefunctions that satisfy the eigenvalue equations
1
2

(

−∂2φ +Kφ2
)

ψn (φ) = Enψn (φ) and
1
2

(

−∂2s +Ks2
)

ψn (s) = Enψn (s) , where En =
√
K
(

n+ 1
2

)

. For

all these solutions Ψ (φ, s) has an overall gaussian factor exp[−
√
K
2

(

φ2 + s2
)

] times a polynomial. This

shows that the probability distribution |Ψ(φ, s)|2 for these generic solutions is not purely “timelike” (not

φ2 > s2), but rather it covers both “timelike” and “spacelike” regions in (φ, s) space. This is not surprising

since for generic boundary conditions the classical equations also do not obey φ2 (τ)−s2 (τ) ≥ 0 at all times.

Only special boundary conditions with synchronized phases for φ (τ) , s (τ) at τ = 0 can yield classical

solutions that have this property, as we have explained in the text. Similarly, the relativistic harmonic

oscillator has just one quantum state whose probability distribution is concentrated in the timelike region

φ2 ≥ s2; has a damping factor of the form exp
(

−
(

φ2 − s2
))

and vanishes on the “lightcone” φ2 = s2. This

was given in the appendix of [20] (interchange spacelike with timelike in that appendix). This solution

is the “timelike singlet of SU(1, 1)” [20]. There is also a separate “spacelike singlet of SU(1, 1)”, while

the other generic solutions correspond to a superposition of other non-singlet unitary representations of

SU(1, 1) [20]. Referring to the comments of the last two paragraphs in section (ID), if the fundamental

action is in the Einstein frame (as in Eq.(1)), then only the timelike SU(1, 1) singlet is acceptable as a

solution of the WdW equation. If, on the other hand, the starting point is more general (as in action

(5)), then in order to favor only the solutions that are consistent with φ2 − s2 > 0, the model should

have an additional ingredient. This could be an appropriate potential energy term, effects of radiation,

curvature, etc., or some appropriate constraint that is natural in the model. This would then characterize

the “right” model.
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connection between the γ-gauge and the Einstein gauge (derived in [6])

a2 =
κ2

6

(

φ2
γ − s2γ

)

, σ =

√
6

κ

1

2
ln

(

φγ + sγ
φγ − sγ

)

, (21)

which gives

V (σ) =
62

κ4
bφ4

γ + cs4γ
(

φ2
γ − s2γ

)2 . (22)

Inserting these in the Friedmann equations we obtain the equations for φ, s as follows

0 = φ̈γ − 4bφ3
γ +Kφγ, (23)

0 = s̈γ + 4cs3γ +Ksγ, (24)

0 =

(

1

2
φ̇2
γ − bφ4

γ +
1

2
Kφ2

γ

)

−
(

1

2
ṡ2γ + cs4γ +

1

2
Ks2γ

)

. (25)

The important observation is that the second order equations for φ, s decuple from each

other, so they are exactly solvable. The third equation simply states that the energy of the

φ solution must be matched to the energy of the s solution Eφ = Es. Once the solution

is obtained it is transformed back to the Einstein frame by using Eqs.(21), thus providing

the desired solutions for a (τ) , σ (τ) in the Einstein frame. The general generic solutions of

these equations, for all possible ranges of the parameters and boundary conditions are listed

in [6] for the K = 0 case. The solutions are expressed in terms of Jacobi elliptic functions9

as given in [6] and below.

Now we focus on the subset of solutions that satisfy the criteria we laid out. When

the spacial curvature of the FRW universe is zero (i.e. k = 0), we found that geodesically

9 The Jacobi elliptic functions that we need for our solutions are denoted as sn (z|m) , cn (z|m) , dn (z|m) .

These are periodic functions that have properties similar to trigonometric functions. The following for-

mulas [21] are directly useful to verify our solutions explicitly. The derivative of Jacobi elliptic functions

are given in terms of expressions somewhat similar to those for trigonometric functions.

d

dz
sn (z|m) = cn (z|m)× dn (z|m) , (26)

d

dz
cn (z|m) = −sn (z|m)× dn (z|m) , (27)

d

dz
dn (z|m) = −m× sn (z|m)× cn (z|m) . (28)

They also satisfy quadratic relations, such as

(sn (z|m))
2
+ (cn (z|m))

2
= 1; m (sn (z|m))

2
+ (dn (z|m))

2
= 1. (29)
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complete solutions, with (φ2 − s2) ≥ 0 at all times, can occur only when the ratio b/c takes

on the following quantized values in the range −1
4
≤ b

c
≤ 4, with c positive, c > 0, and

b =



















4c
n4

0

− c
(n+1)4

, with n = 1, 2, 3, · · · . (30)

Note that each value of n defines a given model. The explicit solutions are given in

Eqs.(32,41,49) for b > 0, b < 0 and b = 0 respectively. When additional parameters, such

as curvature, radiation, etc. are included in the model, then this quantization condition on

the model is relaxed, but still some combination of parameters and integration constants

must be quantized as we will discuss. Furthermore, if the spacial curvature is sufficiently

large, so that the curvature term in the action can compete with the potential, then we

find, geodesically complete, finite, bouncing solutions of a cyclic universe where the bounce

occurs at a minimum finite size of the universe. For such cases there is no quantization

condition on the parameters of the model, but instead, the initial conditions on the fields

must be within a certain range defined by those parameters.

Before we give the mathematical details, we first explain how the physics is easily captured

by interpreting these decupled equations in terms of an analog mechanical problem of a

particle moving in a potential. In the case of φ the Hamiltonian is H (φ) = 1
2
φ̇2 + V (φ) ,

with V (φ) = 1
2
Kφ2 − bφ4, while in the case of s the Hamiltonian is H (s) = 1

2
ṡ2 + V (s) ,

with V (s) = 1
2
Kφ2+ cs4. According to Eq.(25) the only acceptable solutions for φ, s are the

ones that satisfy

H (φ (τ)) = H (s (τ)) = E (31)

The corresponding potentials are depicted in Figures-(1,22,27) for the cases of k = 0,±1.

We have included the cases of positive b (heavy solid curve V (φ)) and negative b (dashed

curve V (φ)). We have drawn the pictures for only positive c (solid thin curve V (s)) while

for negative c the V (s) curve is reflected from the horizontal axis in each figure.

These figures, combined with the physical intuition of a particle in potential, capture the

physical aspects of our solutions. We approach the mathematical analysis systematically for

each figure and investigate the various ranges of the parameters b, c,K and the integration

parameter E.We will start with the simplest case of zero curvature and analyze it thoroughly

in section (III). We will then discuss the positive/negative curvature cases separately in
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sections (IV,V) respectively.

III. THE FLAT (k = 0) FRW UNIVERSE

We first discuss the flat case (k = 0) that has the fewest parameters. For k = 0 the only

possible solutions are for Es = Eφ > 0 as shown by the horizontal dashed line in Fig.(1). In

the case of s, the potential is an infinite positive well (V (s) = cs4 with c > 0), therefore the

particle is trapped in the well, and s (τ) oscillates back and forth between turning points

−s0 (Es) < s (τ) < s0 (Es) given by cs40 = Es. In the case of φ, if b is negative (dashed curve

V (φ) = −bφ4 with b < 0) its behavior is similar to the one just described for s, so φ (τ) also

oscillates back and forth −φ0 (Eφ) < φ (τ) < φ0 (Eφ) at the energy level Eφ = Es. But if b

is positive, then the particle is in an inverted well (heavy curve V (φ) = −bφ4 with b > 0).

So, at the energy level Eφ = Es, which is higher than the peak of the hill, the particle

will come up the hill from φ = −∞, go over the top of the hill, and slide down the hill to

infinitely large positive values of φ. The trip may also happen in reverse direction depending

on initial conditions. It turns out that the trip from φ = −∞ to φ = ∞ is completed in

a finite amount of conformal time τ , so allowing all possible values of proper time, φ (τ)

repeats the trip periodically again and again by jumping from φ = ∞ to φ = −∞. Such

solutions (given analytically in [6]) solve all the equations but do not yet address the sign

of (φ2 (τ)− s2 (τ)) .

Τ/T

k= 0 
V(s) V(s)

V(Φ) for b<0V(Φ) for b<0

V(Φ) for b>0V(Φ) for b>0

0

E(Φ)=E(s)>0

FIG. 1: The flat FRW universe, k = 0.

In order to have the oscillation amplitude of φ to be larger than the amplitude of s it

is necessary to have − c
4
< b < 4c (consistent with the curves as drawn in the figure). The
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lower bound − c
4
< b for negative b, is partially understood from the figure which shows

that the turning point for φ should be at a greater distance from the origin as compared to

the turning point for s. However the 1
4
factor in − c

4
< b and the upper bound b < 4c for

positive b, emerge from the details of the solutions in Eqs.(32,41,49). This is a constraint

on the model. If the potential energy V (σ) does not satisfy this property it will not be

possible to maintain φ2 (τ) ≥ s2 (τ) at all times. In addition, to insure φ2 (τ) ≥ s2 (τ) , we

must (i) synchronize the initial conditions of the φ, s particles at the origin at τ = 0, namely

φ (0) = s (0) = 0, and (ii) also require that their periods are commensurate, so that at the

time τ when φ returns back to zero s also returns to zero at the same time (although s could

make several returns to zero in the meantime). Commensurate periods can be arranged only

by quantizing the parameter b/c. This too is a condition on the model. If the quantization is

not satisfied in the model (φ2 (τ)− s2 (τ)) will change sign periodically as a function of time.

But when the potential V (σ) satisfies the required conditions the model yields geodesically

complete solutions in which (φ2 (τ)− s2 (τ)) never changes sign, but periodically touches

zero, which corresponds to a big crunch smoothly followed by a big bang. This is just the

solution we sought as given in Eqs.(32,41,49). We see that the model has to be “right” to

be able to yield such a solution.

A. b > 0 case

The solutions that satisfy this description are a subset of those in [6] and explicitly given

by the following expressions. For positive b, c, the only geodesically complete solution occurs

for the quantized values of b = 4c/n4, with n = 1, 2, 3, · · · , as follows

φγ (τ) =
κn√
48cT

sn
(

2τ
nT

|1
2

)

1 + cn
(

2τ
nT

|1
2

) , sγ (τ) =
κ√
48cT

sn
(

τ
T
|1
2

)

dn
(

τ
T
|1
2

) (32)

Here the Jacobi elliptic functions, sn (z|m) etc. (see footnote 9), appear only for the case of

the parameter m = 1/2. The energy level Eφ = Es is parametrized in terms of the parameter

T which provides a scale for conformal time, as

Eφ = Es =
1

16cT 4
, (33)

where T (or Es = Eφ) is one of the integration parameters that appears in integrating

the differential equations. Note that this T is related to the overall factor in Eq.(32) that

determines the amplitude of oscillations of sγ (τ) .
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It is easy to verify that these are solutions of Eqs.(23-25) by using the properties of Jacobi

elliptic functions given in footnote 9. The plot of these functions in Fig.(2) conveys their

periodic properties and show how φ2
γ (τ) ≥ s2γ (τ) at all times. The quantum n = 5 chosen

Φ

s

bang turn crunch

n=5

-20 -10 10 20

-5

5

FIG. 2: φγ (τ) and sγ (τ) plotted for n = 5, κ =
√
6, T = 1, c = 1/8.

for this figure corresponds to the ratio of the periods of φ versus s. The times at which φ and

s vanish together φγ (τ) = sγ (τ) = 0 are the only times when φ2
γ (τ) = s2γ (τ) , at which point

the universe goes through smoothly from a big crunch to a big bang. At an intermediate

time τ = τturn the quantity φ2
γ (τ)− s2γ (τ) attains a maximum; this is the turnaround point

at which the universe stops expanding and begins contracting. These features are seen in

Fig.(3) for the scale factor a (τ) , and the scalar σ (τ) which are given by Eqs.(21).

a a a
a

Σ

Σ

Σ Σ

bang turn crunch
Σ

bang turn crunch

n=5

b = 4 c �54

10 20 30 40

-10

-5

5

10

15

FIG. 3: a (τ) and σ (τ) plotted for n = 5, κ =
√
6, T = 1, c = 1/8.

A parametric plot for φγ (τ) , sγ (τ) is given in Fig.(4), with φ on the horizontal and s on

the vertical. This captures similar information to Fig.(2). It is for the model b/c = 4/n4
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with n = 5, which leads to the 5 nodes in the figure. The time after the first node is a

fast inflation period, as seen also from Fig.(3). In a semi-classical approach to the Wheeler-

deWitt equation, the curve shows the region in (φ, s) space where the WdW wavefunction

Ψ (φ, s) is expected to have the largest probability. This is the unique curve (for the n = 5

model) purely in the “timelike” region φ2 (τ)−s2 (τ) > 0 in (φ, s) space. The corresponding

WdW wavefunction is the analog of the “timelike SU(1, 1) singlet” in footnote (8).

s
Φ turn

FIG. 4: The arrow at the origin marks the crunch/bang moments and the arrows at the ends mark

the turnarounds.

Other quantities of interest to convey the properties of the solution include the Hub-

ble parameter H = ȧ
a2

(see footnote 5), the kinetic energy of the σ field, K (τ) = σ̇2

2a2
,

its potential energy V (σ (τ)) and the equation of state parameter given by w (τ) =

(K (τ)− V (τ)) / (K (τ) + V (τ)). Their plots appear in Figs.(5,6,7).

bang turn crunch

H

H
Σ

Σ

Σ
H

n=5

10 15

-0.4

-0.2

0.2

0.4

0.6

FIG. 5: Hubble parameter H (τ) and σ (τ) for n = 5.

The Hubble parameter decreases from infinity at the big bang, quickly approaching a

constant at the turnaround (with a few small ripples depending on n), switches to negative

at turnaround and then slowly reaches negative infinity at the big crunch.

The potential and kinetic energies of the σ field are fairly close to each other in magnitude

most of the time. At the turnaround the kinetic energy vanishes K (τturn) = 0 while the

potential energy is a constant V (τturn) = 62b/κ4 (since σ = 0 at turnaround). Both K (0)
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V

K

K

V

K

V

bang turn crunch

4 6 8 10 12 14 16

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

FIG. 6: Kinetic K (τ) = σ̇2/2a2 and potential energies V (σ (τ)) of the σ field, for n = 5.

w w

bang turn crunch

n=5

Near the singularity the potential energy 

     is larger than the kinetic energy

     At the singularity w=-1/9, or V

K
=

5

4

5 10 15 20

-1.0

-0.5

0.5

1.0

1.5

2.0

FIG. 7: The equation of state w = (K − V ) / (K + V ) , for n = 5.

and V (0) are infinite at the bang or crunch, but V (0) is larger at the singularity since

w (0) = −1/9 as seen in Fig.(7).

The behavior of various quantities near the bang/crunch singularity is better understood

by studying the Taylor expansion near τ → 0 for any value of n as follows
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a (τ) → κ

T
√
48c

( τ

T

)3
√
4 + n4

2
√
5n2

[

1 +
(n2 − 4)

60n2

( τ

T

)4

+O
( τ

T

)8
]

(34)

ȧ (τ)

a (τ)
→ 1

T

( τ

T

)−1
[

3− n4 − 4

15n4

( τ

T

)4

+O
( τ

T

)8
]

(35)

H (τ) →
√
48c

κ

( τ

T

)−4
[

6
√
5n2

√
4 + n4

−
√
5 (n4 − 4)

30n2
√
4 + n4

( τ

T

)4

+O
( τ

T

)8
]

(36)

σ (τ) →
√
6

κ

[

− ln
( τ

T

)2

+
1

2
ln

80n4

4 + n4
+
n4 − 4

240n4

( τ

T

)4

+O
( τ

T

)8
]

(37)

σ̇ (τ) →
√
6

κT

( τ

T

)−1
[

−2 +
n4 − 4

60n4

( τ

T

)4

+ O
( τ

T

)8
]

(38)

V (σ (τ)) → 288c

κ4

( τ

T

)−8
[

50n4

(4 + n4)
− 5 (n4 − 4)

3 (n4 + 4)

( τ

T

)4

+O
( τ

T

)8
]

(39)

K (σ (τ)) → 288c

κ4

( τ

T

)−8
[

40n4

(4 + n4)
+

2 (n4 − 4)

3 (n4 + 4)

( τ

T

)4

+O
( τ

T

)8
]

(40)

w (τ) → −1

9
+

2 (n4 − 4)

81n4

( τ

T

)4

+O
( τ

T

)8

The last expression shows that w = −1/9 at the singularity for all values of n. This behavior

seems to be surprising according to common lore.

We emphasize that this behavior near the singularity is only for our geodesically complete

analytic solutions that satisfy both the relative quantization of their periods as well as the

synchronization of the initial conditions. If either of these is not satisfied (i.e. for non-

geodesically complete solutions in only the Einstein frame) the behavior near the singularity

is radically different. This behavior seems to be of measure zero in the space of all solutions.

In our next paper [11] we will further analyze this issue including the effects of anisotropy

and the quantum effects via the Wheeler-deWitt equation.

B. b < 0 case

We repeat the same type of analysis for b < 0 which refers to Fig.(1) with the dashed

curve representing V (φ) . Geodesically complete solutions occur only if b/c has one of the

quantized values b/c = −1/ (n+ 1)4, with n = 1, 2, 3, · · · . Then the unique solution is

φγ (τ) =
κ (n + 1)√

48cT

sn
(

τ
(n+1)T

|1
2

)

dn
(

τ
(n+1)T

|1
2

) , sγ (τ) =
κ√
48cT

sn
(

τ
T
|1
2

)

dn
(

τ
T
|1
2

) . (41)
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We provide a few plots similar to the ones in the previous subsection for the model n = 5.

Despite some similarities, there are notable differences in the behavior as compared to the

b > 0 case of the previous section as indicated in the following comments.

Φ

s

bang
crunch

turn

n=5

-20 -10 10 20

-5

5

FIG. 8: φ (τ) , s (τ) , have finite amplitudes.

n=5

a

Σ

bang
turn crunch

-20 -10 10 20

-10

-5

5

10

FIG. 9: a (τ) has a finite maximum.

From Figures 8,9 we see that the universe grows up to a maximum finite size before it

turns around. Another way of plotting the information in Fig.8 is the parametric plot for

φ (τ) , s (τ) in Fig.(10); note the 5 nodes corresponding to n = 5. As in the previous case,

s

Φ

n=5

FIG. 10: Crunch/bang is at the origin, turnaround at the edges.

this figure is associated with the semiclassical probability distribution of the Wheeler-deWitt

wavefunction in (φ, s) space.
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FIG. 11: Behavior of σ (τ) , H (τ)

b = -c � Hn+1L4

n=5

a
..

a3
-

a
  2

a4
acc=

The Hubble parameter has some periods of nearly constant behavior.

The accelaration  is positive in those time neighborhoods, somewhat

suggestive of the current acceleration period of the universe.   

H

H

Hacc

acc acc

acc

10 15

-0.04

-0.02

0.02

0.04

FIG. 12: Temporary inflation periods.

From Figs.(11,12) we see that there are temporary inflation periods during which H (τ) is

temporarily almost a constant, and the acceleration10 is positive, as seen in Fig.12. The

number of such temporary acceleration periods is determined by n.

It is interesting to speculate on whether this could be a mechanism to explain the current

accelerated inflation state of our universe; namely could it be that we currently are in such

a period which is inflationary only temporarily on the scale of the lifetime of the universe?
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V and K are close to each other in magnitude.
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K is always positive, V alternates signs.

At bang/crunch they are both infinite 

V is larger, V/K=5/4 at bang/crunch.
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FIG.13: Energy components of σ field.
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Near the singularity the potential energy

is higher than the kinetic energy. At the

singularity w= -1/9, or V �K =
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4
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At turnaround w=¥ or K= -V
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FIG.14: Equation of state w (τ) .

10 The acceleration is defined in the Einstein frame as d2aE(t)
dt2 . This may be written in terms of conformal

time as 1
a∂τ

(

1
a∂τa

)

. For the purpose of the plot we have defined the quantity “acc”, as the acceleration

divided by an extra factor of a.
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The energy of the σ field is small except near the bang/crunch where it is infinite. The

equation of state w (τ) grows to infinity at turnaround w (τturn) = ∞, while it takes the

value w (0) = −1/9 at the bang/crunch where V (0) /K (0) = 5/4, while V (0) , K (0) are

both infinite.

The behavior of various quantities near the bang/crunch singularity is given by the Taylor

expansion near τ → 0 for any value of n as follows

a (τ) → κ

T
√
48c

( τ

T

)3

√

(n + 1)4 − 1

2
√
5 (n + 1)2

[

1−
( τ

T

)4 (n+ 1)4 + 1

60 (n+ 1)4
+O

( τ

T

)8
]

(42)

ȧ (τ)

a (τ)
→ 1

T

( τ

T

)−1
[

3− (n+ 1)4 + 1

15 (n + 1)4

( τ

T

)4

+O
( τ

T

)8
]

(43)

H (τ) →
√
48c

κ

( τ

T

)−4 6
√
5 (n + 1)2

√

(n + 1)4 − 1

[

1− (n+ 1)4 + 1

180 (n+ 1)4

( τ

T

)4

+O
( τ

T

)8
]

(44)

σ (τ) →
√
6

κ

[

− ln
( τ

T

)2

+
1

2
ln

80 (n + 1)4

(n+ 1)4 − 1
+

(n+ 1)4 + 1

240 (n+ 1)4

( τ

T

)4

+O
( τ

T

)8
]

(45)

σ̇ (τ) →
√
6

κT

( τ

T

)−1
[

−2 +
(n+ 1)4 + 1

60 (n+ 1)4

( τ

T

)4

+O
( τ

T

)8
]

(46)

V (σ (τ)) → 288c

κ4

( τ

T

)−8
[

50 (n+ 1)4
(

(n + 1)4 − 1
) − 5

3

(n+ 1)4 + 1
(

(n+ 1)4 − 1
)

( τ

T

)4

+O
( τ

T

)8
]

(47)

K (σ (τ)) → 288c

κ4

( τ

T

)−8
[

40 (n+ 1)4
(

(n + 1)4 − 1
) +

2

3

(n + 1)4 + 1
(

(n + 1)4 − 1
)

( τ

T

)4

+O
( τ

T

)8
]

(48)

w (τ) → −1

9
+

2

81

(n+ 1)4 + 1

60 (n + 1)4

( τ

T

)4

+O
( τ

T

)8

C. b = 0 case

Finally, for vanishing b = 0, the solution corresponds to the n → ∞ limit of either the

positive or negative b branches, and is given by

φγ (τ) =
κ√
48cT

τ

T
, sγ (τ) =

κ√
48cT

sn
(

τ
T
|1
2

)

dn
(

τ
T
|1
2

) . (49)

We provide a few plots similar to the ones in the previous subsections.
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FIG.16: There is a single crunch/bang.

(50)

Φ

s

FIG. 17: Parametric plot equivalent to Fig.15.

These plots correspond to the n = ∞ limit of the previous plots for either b > 0 or b < 0.

Therefore their interpretation is similar to the discussion above
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FIG.18: H (τ) , σ (τ) decrease.
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The Hubble parameter has some periods of nearly constant behavior.

The accelaration  is positive in those time neighborhoods, somewhat

suggestive of the current acceleration period of the universe.   
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FIG.19: Temporary acceleration periods.

(51)

The temporary acceleration periods persist.
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Both K and V decrease rapidly to zero

soon after the crunch/bang. w changes

sign since K-V keeps changing sign.

4 6 8 10

0.001

0.002

0.003

0.004

FiG.20: The energy of σ field decreases.

w

Near the singularity the potential energy

is higher than the kinetic energy. At the

singularity w= -1/9, or V �K =
5

4
.

2 4 6 8 10

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

FIG.21: Equation of state w (τ) .

(52)

The behavior of the energy, pressure and the equation of state are indicated on the figures.

The behavior of various quantities near the bang/crunch singularity is given by the Taylor

expansion near τ → 0 as follows. These agree with the n = ∞ limit of the previous cases

a (τ) → κ

T
√
48c

( τ

T

)3 1

2
√
5

[

1− 1

60

( τ

T

)4

+O
( τ

T

)8
]

(53)

ȧ (τ)

a (τ)
→ 1

T

( τ

T

)−1
[

3− 1

15

( τ

T

)4

+O
( τ

T

)8
]

(54)

H (τ) →
√
48c

κ

( τ

T

)−4
[

6
√
51− 1

6
√
5

( τ

T

)4

+O
( τ

T

)8
]

(55)

σ (τ) →
√
6

κ

[

− ln
( τ

T

)2

+
1

2
ln 80 +

1

240

( τ

T

)4

+O
( τ

T

)8
]

(56)

σ̇ (τ) →
√
6

κT

( τ

T

)−1
[

−2 +
1

60

( τ

T

)4

+O
( τ

T

)8
]

(57)

V (σ (τ)) → 288c

κ4

( τ

T

)−8
[

50− 5

3

( τ

T

)4

+O
( τ

T

)8
]

(58)

K (σ (τ)) → 288c

κ4

( τ

T

)−8
[

40 +
2

3

( τ

T

)4

+O
( τ

T

)8
]

(59)

w (τ) → −1

9
+

2

81

( τ

T

)4

+O
( τ

T

)8
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IV. THE CLOSED (k = +1) FRW UNIVERSE

For k = +1 the system of equations is Eqs.(23-25). This amounts to the motion of two

particles φ, s satisfying the equations of motion derived from Hamiltonians

H (φ) =
1

2
φ̇2 + Vb (φ) , H (s) =

1

2
ṡ2 + Vc (s) , (60)

with

Vc (s) =
1

2
Ks2 + cs4, and Vb (φ) =

1

2
Kφ2 − bφ4, (61)

as plotted in Fig.(22) for K = +1/r20, and whose energies are constrained by

Hφ = Hs. (62)

The motion changes character depending on whether Eφ = Es is larger or smaller than the

peak of the inverted double well in Fig.(22), i.e. the maximum of Vb>0 (φ). This critical

value is given by

E∗ =
K2

16b
. (63)

Therefore we need to discuss separately the high and low energy levels Eφ = Es above and

below this critical value as shown in Fig.(22).

k= +1 

V(s)V(s)

V(Φ) for b<0V(Φ) for b<0

V(Φ) for b>0V(Φ) for b>0

0

Τ/T

E(Φ)=E(s)>0

E(Φ)=E(s)>0

FIG. 22: The closed FRW universe, k > 0.

A. Higher level E > E∗, and b > 0 or b < 0

For the higher level of Es = Eφ > E∗, the intuitive physics discussion works in exactly the

same way as the discussion for the k = 0 case at the beginning of section (III), for both b ≥ 0
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or b ≤ 0. In the case of b > 0, the particle sγ (τ) is trapped in an infinite well and oscillates

between turning points ±s0 (E), while φγ (τ) oscillates from minus infinity to plus infinity.

In the case of b < 0 both particles are trapped in infinite wells, so they oscillate between

turning points ±φ0 (E) and ±s0 (E) respectively. The turning points ±φ0 (E), ±s0 (E) are
the points where the curves Vc (s) , Vb<0 (φ) intersect the horizontal curve Eφ = Es = E as

seen in the figure.

Hence for all cases b ≥ 0 or b ≤ 0 at the higher energy level of Es = Eφ, the geodesically

complete motion is described by plots of φγ (τ) , sγ (τ) that are similar in character to the

k = 0 case given in Figs.(2-21). In particular for very small curvature K (large values of the

curvature radius r0), the K 6= 0 plots should approach the K = 0 plots. Therefore, we will

not include the K 6= 0 plots here.

The exact solutions for the higher energy level are denoted as s+γ (τ) , φ+
γ (τ) where the

superscript “+” refers to E > E∗ with Es = Eφ = E. The solution s+γ (τ) is given by

s+γ (τ) =

√

1−K2T 4
s

8cT 2
s

sn
(

τ
Ts
|ms

)

dn
(

τ
Ts
|ms

) ,
ms (E) ≡ 1

2
(1−KT 2

s (E))

Ts (E) ≡ (16cE +K2)
−1/4

(64)

while φ+
γ (τ) has the following expressions for b > 0

φ+
γ,b≥0 (τ) =

√

1

8bT 2
+

sn
(

τ
T+

|m+

)

1 + cn
(

τ
T+

|m+

) ,
m+ (E) ≡ 1

2
+KT 2

+ (E)

T+ (E) ≡ (64bE)−1/4
, (65)

or b < 0

φ+
γ,b≤0 (τ) =

√

1−K2T 4
−

8 |b| T 2
−

sn
(

τ
T
−

|m−

)

dn
(

τ
T
−

|m−

) ,
m− (E) ≡ 1

2

(

1−KT 2
− (E)

)

T− (E) ≡ (16 |b|E +K2)
−1/4

(66)

Note that all symbols T,m that appear in the Jacobi elliptic functions are determined in

terms of the energy level E = Es = Eφ as given above. The T± (E) are determined in terms of

E, b, c,K by the energy condition Eφ = Es = E, by using the following expressions computed

from the Hamiltonians H (φ) , H (s) given in Eqs.(60-62) for the solutions s+γ (τ) , φ+
γ (τ)

above

Es =
1

16cT 4
s

(

1−K2T 4
s

)

, E+
φ =

1

64bT 4
+

, E−
φ =

1

16 |b| T 4
−

(

1−K2T 4
−
)

. (67)

Note also we have assumed that Es = E±
φ = E is higher than the critical value E∗ in Eq.(63).

This yields the expressions for Ts,± (E) , ms,± (E) given above as well as the ranges for these
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parameters as a function of the energy level as follows

KT 2
s (E) <

√

|b|
|b| + c

, KT 2
− (E) <

1√
2
, , KT 2

+ (E) <
1

2
, (68)

which determines the possible range of values for ms, m± as E changes in the range E ≥ E∗

1

2

(

1− (1 + c/ |b|)−1/2
)

< ms (E) ≤
1

2
; (

1

2
−

√
2

4
) < m− (E) ≤ 1

2
;

1

2
≤ m+ (E) < 1.

(69)

It is easy to see that in the zero curvature limit K → 0 these solutions reduce to Eqs.(32)

for b ≥ 0 or Eqs.(41) for b ≤ 0.

As they stand these solutions do not yet satisfy the requirement φ2 (τ) ≥ s2 (τ) at all

times. This can be satisfied only by requiring the period of φ to be a multiple integer of the

period of s. The analytic expression for this conditions is

b ≥ 0 : T+Q (m+) = 2nTsQ (ms) , n = 1, 2, 3, · · · (70)

b ≤ 0 : T−Q (m−) = nTsQ (ms) , n = 1, 2, 3, · · · (71)

where the quantity Q (z) is a well known special function, namely the quarter period of the

corresponding Jacobi elliptic function, and is given by the following integral representation

of the EllipticK integral

Q (z) =

∫ π/2

0

dθ
√

1− z sin2 θ
= EllipticK (z) . (72)

The consequence of this is to require a certain combination of parameters (b, c,K,E) to be

quantized. The range of parameters in the model (b, c,K,E) that can satisfy the constraint

can be determined numerically11 by using the expressions above. Therefore only a model

that can satisfy this condition can give the corresponding geodesically complete solutions.

B. Lower level E < E∗, and b < 0

When the energy is less than the critical value, the exact solutions are denoted as

s−γ (τ) , φ−
γ (τ) where the superscript “−” refers to the energy interval 0 < Es = Eφ =

11 For example, using Mathematica, which recognizes the function EllipticK(z), one can plot

T±Q (m±) /TsQ (ms) as a function of one of the parameters E, b, c,K (example b) while the other three

are chosen arbitrarily. When the plot matches an integer n, this fixes the value of the remaining parameter

(i.e. b in the example above) in terms of the integer n and the other three parameters.
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E < E∗. We consider at first the case of b < 0, for which Vb<0 (φ) is represented by the

dashed curve. There is no difference in this case with the b < 0 case above, so the formulas

above apply, namely s−γ (τ) is the same as s+γ (τ), and φ−
γ,b<0 (τ) is the same as φ+

γ,b<0 (τ) ,

except for the fact that now the energy is in the range 0 < E < E∗

s−γ,b<0 (τ) =

√

1−K2T 4
s

8cT 2
s

sn
(

τ
Ts
|ms

)

dn
(

τ
Ts
|ms

) ,
ms (E) ≡ 1

2
(1−KT 2

s (E))

Ts (E) ≡ (16cE +K2)
−1/4

, (73)

φ−
γ,b<0 (τ) =

√

1−K2T 4
−

8 |b| T 2
−

sn
(

τ
T
−

|m−

)

dn
(

τ
T
−

|m−

) ,
m− (E) ≡ 1

2

(

1−KT 2
− (E)

)

T− (E) ≡ (16 |b|E +K2)
−1/4

. (74)

Since the energy is less than the critical value, 0 ≤ Es = Eφ ≤ E∗, we must now restrict the

range of the parameters m, T to
√

|b|
|b| + c

≤ KT 2
s (E) ≤ 1,

1√
2
≤ KT 2

− (E) ≤ 1, (75)

which implies

0 ≤ ms (E) ≤
1

2

(

1−
√

|b|
|b| + c

)

, m− (E) ≤ 1

2

(

1− 1√
2

)

. (76)

To obtain geodesically complete solutions the analog of the quantization condition in Eq.(71)

must be further imposed, T−Q (m−) = nTQ (m).

C. Lower level E < E∗, and b > 0, finite bounce

For the case of b > 0 (Vb>0 (φ) represented by the inverted double well in Fig.(22)) there

are new features. For φ now there is the possibility to either be trapped inside the false

vacuum, or be outside of it, depending on initial conditions. When φ is trapped in the false

vacuum it should oscillate between two turning points; when it is outside it should oscillate

between a finite value and infinity. So the solution has the form

φ−,in
γ,b≥0 (τ) =

√

KT 2
in − 1√

2bTin
sn

(

τ

Tin
|min

)

,
min (E) ≡ (KT 2

in (E)− 1)

Tin (E) ≡
(

K
2
+
√

K2

4
− 4bE

)−1/2 , (77)

φ−,out
γ,b≥0 (τ) =

√

KT 2
out + 1√

2bTout

1

cn
(

τ+τ0
Tout

|mout

) ,
mout (E) ≡ −1

2
(KT 2

out (E)− 1)

Tout (E) ≡ (K2 − 16bE)
−1/4

. (78)
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Meanwhile s (τ) continues to oscillate as before between two turning points, so it is still

given by the same expression, namely

s−γ,b>0 (τ) =

√

1−K2T 4
s

8cT 2
s

sn
(

τ
Ts
|ms

)

dn
(

τ
Ts
|ms

) ,
ms (E) ≡ 1

2
(1−KT 2

s (E))

Ts (E) ≡ (16cE +K2)
−1/4

. (79)

The energies of these solutions are computed in terms of the parameters m, T by using the

Hamiltonians in Eqs.(60-62) as follows

Es =
1

16cT 4
s

(

1−K2T 4
s

)

, Ein
φ =

KT 2
in − 1

4bT 4
in

, Eout
φ =

K2T 4
out − 1

16bT 4
out

. (80)

All energies must be positive and equal to each other Eout
φ = Es = E and Ein

φ = Es = E, as

well as smaller than E∗. This yields the expressions for Ts,in,out (E) and ms,in,out (E) given

above as well as the ranges for these parameters as a function of E, as follows

1 ≥ KT 2
s (E) ≥

√

b

c+ b
, 2 ≥ KT 2

in (E) ≥ 1, KT 2
out (E) ≥ 1.

Similarly, the range of values for the parameters ms, min, mout are then as follows

0 ≤ ms (E) ≤
1

2

(

1−
√

b

b+ c

)

, 0 ≤ min (E) ≤ 1, mout (E) ≤ 0. (81)

To obtain the geodesically complete solution, in the case of the inside solution the quan-

tization condition TinQ (min) = nTQ (m) is required11. However, in the case of the outside

solution no quantization condition is needed as explained below.

We now comment on the outside solution given by φ−,out
γ,b>0 (τ) , s

−
γ,b>0 (τ) in Eqs.(78,79)

because it is different in character as compared to all the previous cases. It describes a

periodically contracting/expanding universe with bounces that occur at minimum finite

values of the scale factor, while the maximum is infinite. φ−,out
γ,b>0 (τ) describes the behavior

of φ outside of the false vacuum, the amplitude for φ is always larger than the amplitude

for s−γ,b>0 (τ) at all times and for all boundary conditions, including the additional arbitrary

parameter τ0. This solution represents cyclic bounces at finite minimum sizes of the universe.

This is shown in Fig.(23). The cyclic bounce occurs for all values of c > 0, all values of

b > 0, and all values of the relative initial conditions τ0 at τ = 0. This is why we added

an additional phase τ0 in the expression of φ−,out
γ,b>0 (τ). There is no need to synchronize the

boundary conditions at τ = 0 for φ (0) , s (0) in order to get geodesically complete solutions
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FIG. 23: φ−,out
γ,b>0 (τ) and s

−
γ,b>0 (τ) for the bouncing solution.

that satisfy φ2 (τ) ≥ s2 (τ) at all times. Moreover, b/c need not be quantized since the

periods of φ, s can now be arbitrary relative to each other.

The corresponding plots for the scale factor a (τ) and σ (τ) for the bounce are given

in Fig.(24). The minimum size of the scale factor a (τ) ∼
√

φ2
γ (τ)− s2γ (τ) at the bounce

a aa

Σbounce turnaround
Σ

-4 -2 2 4

2

4

6

FIG. 24: The bounce and turnaround.

instant is not the same each time since the initial values of φ (τ) , s (τ) are not synchronized

and their periods are not related.

For this bounce solution to play a physical role in cosmology we need the curvature

terms Kφ2, Ks2 to be able to compete with the potential terms bφ4, cs4. For this to be

phenomenologically tenable in a complete cosmological model, a period of inflation must
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follow after the bang so that the universe inflates to its current size and to its almost flat

current condition (since r0 would not be identified with today’s size of the universe).

As a limiting case of the above solutions we point out the special case of the b > 0 scenario

when E = E∗. As seen from Fig.(22), the φ field sits still on top of the hill while the s field

oscillates in a finite range. The maximum size of the universe is a finite number determined

by the constant value of the φ field.

D. The case of c < 0

There are also geodesically complete solutions when c < 0 and b > 0 which we will outline

very briefly. The φ, s Hamiltonians are the same as before, as in Eq.(60-62), with K > 0.

There exist two interesting classes of geodesically complete solutions that satisfy φ2−s2 ≥ 0,

which can occur when c < 0 and b > 0. This happens when the corresponding potentials

V (φ) , V (s) take the form in Figs.(25,26).

V(Φ) b>0

V(s) c<0

k=+1

FIG. 25 : s oscillates inside, φ outside.

V(s) c<0

V(Φ) b>0

high level E(Φ)=E(s)>0

low level E(Φ)=E(s)>0

k=+1

FIG.26 : s inside, φ depends on E.

The first case is depicted in Fig.(25) when 0 ≤ E ≤ Vmax (s) =
K2

16|c| , and Vmax (φ) =
K2

16b
is

higher, i.e. with b < |c| . Then s oscillates in the region of a false vacuum, while φ oscillates

outside of the false vacuum all the way to infinity. This is similar to the finite bounce

solution we discussed in section (IVC) and figures (23,24). For completeness we record the

solution

s−γ,c≤0 (τ) =

√

KT 2
c − 1

√

2 |c|Tc
sn

(

τ

Tc
|mc

)

,
mc (E) ≡ (KT 2

c (E)− 1)

Tc (E) ≡
(

K
2
+
√

K2

4
− 4 |c|E

)−1/2 , (82)
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and

φ−,out
γ,b≥0 (τ) =

√

KT 2
out + 1√

2bTout

1

cn
(

τ+τ0
Tout

|mout

) ,
mout (E) ≡ −1

2
(KT 2

out (E)− 1)

Tout (E) ≡ (K2 − 16bE)
−1/4

. (83)

As in the previous case of the bounce, this solution also represents cyclic bounces at finite

minimum sizes of the universe, similar to those in Figs.(23,24). It occurs for all values of

b > 0 and c < 0 provided b < |c| , and provided K is large enough so that the curvature terms

Kφ2, Ks2 are able to compete with the potential term bφ4, cs4. The parameters (c, b,K) do

not need to satisfy any quantization conditions. Also, the synchronization of the relative

phase is not needed, hence we have allowed the additional integration constant τ0 in the

solution in Eq.(83).

The second case is depicted in Fig.(26) when 0 ≤ E ≤ Vmax (s) , where Vmax (s) = K2

16|c|

and Vmax (φ) = K2

16b
, with b > |c| . Then s oscillates in the region of a false vacuum, while

the behavior of φ depends on whether the energy is low (below Vmax (φ)) or high (between

Vmax (φ) and Vmax (s)). The analytic solutions are similar to the ones discussed above,

except that now c < 0, and the energy E is limited to the region 0 ≤ E ≤ Vmax (s) . For

completeness we list the geodesically complete solutions that satisfy φ2 − s2 ≥ 0, together

with the quantization condition for their periods
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and

low :



















































s+γ,c≤0 (τ) =

√
KT 2

c −1√
2|c|Tc

sn
(

τ
Tc
|mc

)

,
mc (E) ≡ (KT 2

c (E)− 1)

Tc (E) ≡
(

K
2
+
√

K2

4
− 4 |c|E

)−1/2

φ+,in
γ,b≥0 (τ) =

√
KT 2

b
−1√

2|c|Tb

sn
(

τ
Tb

|mb

)

,
mb (E) ≡ (KT 2

b (E)− 1)

Tb (E) ≡
(

K
2
+
√

K2

4
− 4bE

)−1/2

TbQ (mb) = nTcQ (mc)

. (85)

35



In the low energy level it is also possible for φ to oscillate on the outside of the false vacuum.

In that case the solution is given by

low :
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(86)

In this case there is no quantization condition on the parameters, and there is an additional

integration constant τ0 which is arbitrary.

V. THE OPEN (k = −1) FRW UNIVERSE

For k = −1, the dynamics of φ, s is described by the Hamiltonians in Eqs.(60,62) with

K < 0. The corresponding potentials V (φ) , V (s) are plotted in Fig.(27).

k= -1 

V(s)V(s)

E(Φ)=E(s)>0

E(Φ)=E(s)<0
V(Φ) for b<0V(Φ) for b<0

V(Φ) for b>0V(Φ) for b>0

0 Τ/T

FIG. 27: The open FRW universe, k < 0.

For the negative energy level Es = Eφ < 0, there cannot exist geodesically complete

solutions that satisfy φ2 (τ)−s2 (τ) ≥ 0 at all times because of the following argument. The

energy Es = Eφ must be above the minimum of V (s) at the double well to have a solution

for s. Then the quantity φ2 − s2 always changes sign, whether b > 0 or b < 0. For example,

suppose s is at the minimum of V (s) , so the solution s (τ) is just a constant. But φ (τ)

oscillates between two turning points φmin (E) < φ (τ) < φmax (E) , while sometimes φ2 − s2

is positive and sometimes it is negative. The figure above is drawn for the case |b| < c. If
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we take |b| > c then V (s) will be like the dashed curve and while V (φ) will be like the solid

thin curve (for b < 0) or the solid thick curve (for b > 0). In these cases again there are no

solutions such that φ2 − s2 remains positive at all times.

For the positive energy level Es = Eφ > 0, there are geodesically complete solutions that

satisfy φ2 − s2 > 0 at all times. In fact this case is formally identical to the case discussed

in section (IVA). In the present case K < 0, c > 0, while b can have either sign. The exact

solutions are parallel to Eqs.(64-66) except for replacing K = − |K| . Thus, the solutions are

s+γ (τ) =

√

1−K2T 4
s

8cT 2
s

sn
(

τ
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|ms

)

dn
(

τ
Ts
|ms

) ,
ms (E) ≡ 1

2
(1 + |K|T 2

s (E))

Ts (E) ≡ (16cE +K2)
−1/4

(87)

while φ+
γ (τ) has the following expressions for b > 0
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, (88)

or b < 0

φ+
γ,b≤0 (τ) =

√

1−K2T 4
−

8 |b| T 2
−

sn
(
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T
−

|m−

)

dn
(

τ
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−
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) ,
m− (E) ≡ 1

2

(

1 + |K|T 2
− (E)

)

T− (E) ≡ (16 |b|E +K2)
−1/4

(89)

As they stand these solutions do not yet satisfy the requirement φ2 (τ) ≥ s2 (τ) at all

times. This can be satisfied only by requiring the period of φ to be a multiple integer of the

period of s. The analytic expression for this conditions is, as before

b ≥ 0 : T+Q (m+) = 2nTsQ (ms) , n = 1, 2, 3, · · · (90)

b ≤ 0 : T−Q (m−) = nTsQ (ms) , n = 1, 2, 3, · · · (91)

Note that in the limit K → 0 these solutions reduce to the solutions for the flat case with

b ≥ 0 and b ≤ 0. We will not discuss them in any more detail here since this K < 0 case is

similar to the previous discussion for both K > 0 and K = 0.

VI. SUMMARY AND OUTLOOK

We have thoroughly analyzed a simple model of a scalar field interacting with gravity in

3+1 dimensions. The model was derived from 2T-gravity in 4+2 dimensions as the “3+1
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dimensional conformal shadow” [4][5][6] and can also be constructedI B in the colliding branes

scenario [2] in 4+1 dimensions using the worldbrane notions [7] inspired by M-theory [8].

An essential feature of the model in 3+1 dimensions is an underlying local conformal

symmetry (Weyl symmetry) exhibited in the action of Eq.(5). There is no fundamental

gravitational constant in this model, but instead there is a gauge dependent dynamical

“gravitational parameter” which plays precisely the role of the gravitational constant when

the Weyl symmetry is gauge fixed to the Einstein frame, thus agreeing with the standard

form of Einstein’s gravity and its interactions with matter.

This raised the question of whether the dynamics could force the “gravitational param-

eter” (φ2 (xµ)− s2 (xµ))
−1

to change sign in some patches of space-time where antigravity

would emerge, and whether the existence of such patches could have observational conse-

quences in our current universe in the context of cosmology or otherwise. This is the question

that motivated our investigation.

We found out that generically the gravitational parameter does change sign dynamically,

and that this change of sign is not a gauge artifact since the gauge invariant quantity

(1− s2/φ2) can be used to monitor the sign change. So our model indicates that patches of

antigravity could exist, but we have also found that such patches cannot be reached from

our current universe without going through singularities, such as the big bang or big crunch

(perhaps others, such as black holes as well).

We have not yet answered what the physical implications of this phenomenon may be

for our current universe, but instead we have limited the current investigation to finding

and classifying those classical solutions in the context of cosmology that are geodesically

complete for all times. By all times we mean that one must go beyond the gauge dependent

definition of “time” and instead seek geodesically complete solutions in all possible choices

of “time”, thus being able to connect information before and after singularities. In this way

one is not limited to only some patches while declaring ignorance about other patches12.

We found that the conformal time τ is a good evolution parameter for our purpose, so

12 Of course, we must expect modifications of the classical equations due to quantum gravity especially near

singularities. We may need to wait a long time before one is sure about what quantum gravity really

is. Given this cloudiness of our knowledge at the present time, we feel that the geodesically complete

approach we are pursuing here will still be relevant, and perhaps even provide guidance to clarify the

issues in future research.
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we analyzed the solutions for all values of τ from minus infinity to plus infinity. In this

way we learned that the gauge invariant quantity (1− s2 (τ) /φ2 (τ)) oscillates back and

forth between patches where it is positive and negative (namely gravity/antigravity), and

this information is carried smoothly through the singularities. In fact we learned that the

point in time where there is a singularity in the Einstein frame (divergent scalar curvature)

does not look like a singularity at all in other convenient gauge choices of the Weyl gauge

symmetry.

This paper was focussed on finding and classifying the complete subset of all classical

cosmological solutions for which (1− s2 (τ) /φ2 (τ)) never changes sign for all times. Thus,

for the classical solutions exhibited in this paper the universe remains always in the gravity

patch, never shifting to antigravity. The universe starts expanding with a big bang, but

eventually it turns around (at a finite or infinite size, depending on the sign of the parameter

b) and begins to contract, leading to a big crunch. But this is followed with the same periodic

pattern of a big bang, turnaround, big crunch, again and again indefinitely to the future as

well as to the past.

There are such cyclic solutions in which the universe never contracts to zero size, and

bounces back after contracting to a finite size. So in these finite bounce solutions the universe

never hits a curvature singularity (as defined in the Einstein frame). These solutions are

possible for the closed universe. The finite bounce solutions exist for a large range of the

parameters b, c,K that define the model, but one of the integration constants E (which

amounts to energy initial conditions for the scalar fields s or φ) must lie in a certain range

defined by the parameters b, c,K, while the other integration constant τ0 is arbitrary.

There are also cyclic solutions in which the universe contracts to zero size periodically,

thus hitting the curvature singularity (in the Einstein frame) at the big crunches/bangs.

These cyclic solutions occur for the flat, open and closed universes, but only if some initial

conditions for the φ, s fields are synchronized (the integration parameter τ0 set to τ0 = 0)

and a quantization condition is imposed on a combination of the parameters b, c,K and the

integration parameter E. Thus not every model is capable of yielding geodesically complete

cyclic solutions, as illustrated clearly in the case of the flat universe.

Evidently the next stage of this research is to analyze what happens to these solutions

under perturbations. This is the topic of our next paper in Ref.[11] where in addition to

curvature K, radiation and anisotropy are included both at the classical and quantum (in
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the sense of the Wheeler-deWitt equation) levels. According to our current understanding,

very similar geodesically complete solutions exist in the presence of these perturbations. The

question of the physics of antigravity and its effect on our current era of cosmology is an

interesting topic that we intend to pursue as a natural evolution of the present discussion.

We hope to report on these details in the near future.
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[8] P. Hořava and E.Witten, Nucl. Phys. B460 (1996) 506 [arXiv:hep-th/9510209; hep-

th/9603142].

[9] P. McFadden and N. Turok, “Conformal Symmetry of Brane World Effective Actions”, Phys.

Rev. D71 (2005) 021901 [arXiv:hep-th/0409122].

[10] S-H. Chen, J. B. Dent, ”A new approach to the vacuum of inflationary models”,

arXiv:1012.4811.

40



[11] I. Bars, S-H. Chen, N. Turok, to appear.

[12] I. Bars, S-H. Chen and G. Quelin, “Dual field theories in (d-1)+1 emergent spacetimes from

a unifying field theory in d+2 spacetime,” Phys. Rev. D76 (2007) 065016 [arXiv:0705.2834

[hep-th]].

[13] I. Bars, and G. Quelin, “Dualities among 1T-field theories with spin, emerging from a unifying

2T-field theory”, Phys. Rev. D77 (2008) 125019 [arXiv:0802.1947 [hep-th]].

[14] I. Bars, “Constraints on interacting scalars in 2T field theory and no scale models in 1T field

theory”, Phys. Rev. D82 (2010) 125025 [arXiv:1008.1540 [hep-th]].

[15] I. Bars, “The standard model of particles and forces in the framework of 2T-physics”, Phys.

Rev. D74 (2006) 085019 [arXiv:hep-th/0606045]. For a summary see “The Standard Model

as a 2T-physics theory”, arXiv:hep-th/0610187.

[16] I. Bars and Y.C. Kuo, “Field theory in 2T-physics with N = 1 supersymmetry” Phys.

Rev. Lett. 99 (2007) 41801 [arXiv:hep-th/0703002]; ibid. “Supersymmetric field theory in

2T-physics,” Phys. Rev. D76 (2007) 105028,. [arXiv:hep-th/0703002].

[17] I. Bars and Y.C. Kuo, “N=2,4 Supersymmetric gauge field theory in 2T-physics” Phys. Rev.

D79 (2009) 025001 [arXiv:0808.0537].

[18] Z-K Guo, Y-S Piao, X-M Zhang, Y-Z Zhang, “Cosmological evolution of a quintom model of

dark energy”, Phys. Lett. B608 (2005) 177 [arXiv:astro-ph/0410654].

[19] A. Friedmann, Z. Phys. 10 (1922) 377, translation in General Relativity and Gravitation, 31

(1999) 1991.

[20] I. Bars, “Relativistic harmonic oscillator revisited”, Phys. Rev. D79 (2209) 045009

[arXiv:0810.2075].

[21] M. Abramowitz, I.A. Stegun, ”Handbook of Mathematical Functions”, Dover (1965), ISBN

0486612724.

41


