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The cause of the accelerated expansion of the Universe poses one of the most fundamental ques-
tions in physics today. In the absence of a compelling theory to explain the observations, a first task
is to develop a robust phenomenological approach: If the acceleration is driven by some form of dark
energy, then, the phenomenology is determined by the form of the dark energy equation of state
w(z) as a function of redshift. A major aim of ongoing and upcoming cosmological surveys is to
measure w and its evolution at high accuracy. Since w(z) is not directly accessible to measurement,
powerful reconstruction methods are needed to extract it reliably from observations. We have re-
cently introduced a new reconstruction method for w(z) based on Gaussian process modeling. This
method can capture nontrivial w(z) dependences and, most importantly, it yields controlled and
unbiased error estimates. In this paper we extend the method to include a diverse set of measure-
ments: baryon acoustic oscillations, cosmic microwave background measurements, and supernova
data. We analyze currently available data sets and present the resulting constraints on w(z), finding
that current observations are in very good agreement with a cosmological constant. In addition we
explore how well our method captures nontrivial behavior of w(z) by analyzing simulated data as-
suming high-quality observations from future surveys. We find that the baryon acoustic oscillation
measurements by themselves already lead to remarkably good reconstruction results and that the
combination of different high-quality probes allows us to reconstruct w(z) very reliably with small
error bounds.

PACS numbers: 98.80.-k, 02.50.-r

I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe little more than a decade ago [1, 2] was a
major surprise. Since then, many observational ef-
forts to understand the underlying cause have been ini-
tiated, such as the recently completed WiggleZ sur-
vey [3] and the ongoing Baryon Oscillation Spectroscopic
Survey (BOSS) [4]. The Dark Energy Survey (DES,
https://www.darkenergysurvey.org/) is scheduled to be-
gin in 2012 and construction of the Large Synoptic Sur-
vey Telescope (LSST) [5] is ongoing. Proposed surveys
include BigBOSS [6], the Wide Field Infrared Survey
Telescope (WFIRST) [7], and Euclid [8]. All these efforts
focus on a set of diverse cosmological probes (supernovae,
baryon acoustic oscillations, clusters of galaxies, weak
lensing, etc.) to combine the best possible observations
in order to help solve the puzzle of cosmic acceleration.

The two currently most popular explanations are a
form of dark energy or a modification of Einstein’s the-
ory of gravity on the largest observable scales. We will
focus in this paper on dark energy as the cause for the ac-
celerated expansion. The simplest way to realize a dark
energy is via a cosmological constant with a dark en-
ergy equation of state specified by w = p/ρ = −1. A

cosmological constant, however, is not theoretically well-
motivated. If we assume that the origin is due to a vac-
uum energy, the predicted value is incorrect at the order
of 1060. Therefore, a more natural realization of dark
energy might be a dynamical field, similar to the infla-
ton that is believed to drive the very early rapid expan-
sion of the Universe. Such a dynamical field, described
for example by quintessence models [9], would lead to
a non-constant dark energy equation of state parameter
w(z). It is therefore one of the major aims of ongoing and
upcoming dark energy missions to measure w(z) and its
time variation with high accuracy. If w(z) is modeled via
a simple parametrizationw(z) = w0+waz/(1+z) [10, 11],
current predictions for future surveys promise measure-
ments of the constant piece at the 1% level accuracy and
of the leading time variance at the 10% level. At present,
the best measurements are accurate to better than 10%
for a constant dark energy equation of state [12–14] and
w0 is constrained at the 20% level if a time variation pa-
rameterized by w0 – wa is allowed. In this case, Ref. [14]
finds an uncertainty in wa of 100%, assuming a flat uni-
verse.

With the prospect of high-accuracy measurements
from supernova (SN) surveys and complementary large-
scale structure probes such as baryon acoustic oscilla-
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tion (BAO) surveys, it is desirable to develop an ac-
curate reconstruction method with reliable error bars
that allows us to extract the dark energy equation of
state from different measurements. While parametric
methods have been widely employed [10, 11, 15], non-
parametric techniques constitute a useful alternative [16].
Non-parametric methods are less susceptible to modeling
bias as no assumptions are made regarding the functional
form for w(z) (for a discussion of modeling bias in para-
metric methods, see Ref. [17]). Of course, if the data
quality is insufficient non-parametric approaches provide
little additional information over that given by a simple
parameterization. Even in this case, however, it is bet-
ter to obtain uncertain results with larger errors than a
possibly biased prediction due to the particular choice
of functional form assumed for w(z), without this bias
being properly reflected in the error estimation.

In this paper, we discuss a recently-introduced recon-
struction method based on Gaussian process (GP) mod-
eling [18, 19]. A GP is a stochastic process in which
each realization is a random draw from a multivariate
Normal distribution. It is characterized by mean and co-
variance functions defined by a small number of parame-
ters. Bayesian estimation methods are used to determine
the parameters of the GP model together with any other
physics parameters. Therefore, the final form of the GP
model is informed by the data itself. The form of the
covariance function is general enough to accommodate a
large variety of possible outcomes for w(z). The only as-
sumptions made are mild constraints on the smoothness
and continuity properties of w(z). It is hard to imag-
ine physically motivated explanations for an accelerated
expansion that are inconsistent with these properties.

In Ref. [19], GP modeling was used to solve the statis-
tical inverse problem of going from observed supernova
data alone to a direct constraint on w(z), resulting in
an allowed 68% acceptance band around w = −1 with a
width of roughly±0.2, over a redshift range of z = 0−1.5
– a striking illustration of the power of the method.

Our purpose here is to extend the above approach (de-
scribed in detail in Ref. [18]) to include different observa-
tional probes of w(z), namely supernova measurements,
cosmic microwave background (CMB) observations, and
BAO results. We begin with an analysis of currently
available data. We find, not surprisingly, that our pre-
dictions are in good agreement with a cosmological con-
stant. Using simulated data, we then explore the ability
to extract variations of w(z) away from a cosmological
constant with improving accuracy and statistics of the
data. The inclusion of the additional BAO and CMB
measurements help greatly to improve these predictions.

The paper is organized as follows. In Section II we
describe the different data sources included in our anal-
ysis, namely, supernova, CMB, and BAO measurements.
In Section III we describe our GP model based recon-
struction method. We carry out an analysis of currently
available data in Section IV. We demonstrate that the
method will allow us to extract variations in the dark

energy equation of state by using simulated data in Sec-
tion V. (This also allows us to study the sensitivity of
extracting cosmological parameters as a function of re-
alizations of the observed data sets, a form of cosmic
variance.) Finally, we conclude in Section VI.

II. DARK ENERGY EQUATION OF STATE

FROM DIVERSE DATA SETS

Type Ia supernova measurements are currently the
best source of information regarding possible deviations
of w(z) from a constant value. In the future, BAO (and
other) measurements will be strong competitors and in
combination will lead to the best possible constraints on
w(z). The complementarity of the different probes is im-
portant to break degeneracies and decrease the overall
errors. In previous work [18] we have shown that our
non-parametric reconstruction method can capture even
relatively sharp transitions in w(z) well provided inde-
pendent knowledge of Ωm is available. Supernova data
alone, however, does not provide this information and one
needs a strong prior on Ωm to obtain good results (justi-
fied by assuming the existence of complementary probes).
In a more direct and complete implementation, as per-
formed here, multiple probes can be directly included in
a joint analysis. This allows us to relax our prior assump-
tions on Ωm and to tighten the final constraints on the
behavior of w(z).
In the following, we provide a brief review of the differ-

ent dark energy probes employed in this paper – super-
novae, BAO, and CMB – and how to extract information
about w(z) from these probes. We focus in this paper on
the geometric probes for w(z). The GP analysis in this
case is very similar for all methods – w(z) is connected
via two derivatives with the different distance measures.
In the next section, we explain in detail how to set up a
joint GP model for the three different observations.

A. Supernova Measurements

In this paper we retain the notation from our previ-
ous work [18]. For completeness, we summarize the im-
portant equations here. The luminosity distance dL as
measured by supernovae is directly connected to the ex-
pansion history of the Universe described by the Hubble
parameter H(z). For a spatially flat Universe, the rela-
tion is given by

dL(z) = (1 + z)
c

H0

∫ z

0

ds

h(s)
, (1)

where c is the speed of light, H0, the current value of the
Hubble parameter (H(z) = ȧ/a, where a is the scale fac-
tor and the overdot represents a derivative with respect
to cosmic time), and h(z) = H(z)/H0. The assump-
tion of spatial flatness is in effect an “inflation prior”,
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although there do exist strong constraints on spatial flat-
ness when CMB and BAO observations are combined
(see, e.g., Ref. [20]). In principle, we can relax this as-
sumption, but enforce it here to simplify the analysis.
Instead of dL(z), supernova data are usually specified

in terms of the distance modulus µ as a function of red-
shift. The relation between µ and the luminosity distance
is

µB(z) = mB −MB = 5 log10

(

dL(z)

Mpc

)

+ 25 (2)

= 5 log10

[

(1 + z)

∫ z

0

ds

h(s)

]

+5 log10

(

c

H0

1

Mpc

)

+ 25,

where we have used Eq. (1). MB is the absolute magni-
tude of the object and mB the (B-band) apparent magni-
tude. Writing out the expression for the reduced Hubble
parameter h(z) in Eq. (2) explicitly in terms of a general
dark energy equation of state for a spatially flat FRW
Universe, one finds:

h2(z) = Ωr(1 + z)4 +Ωm(1 + z)3 (3)

+(1− Ωr − Ωm)(1 + z)3 exp

(

3

∫ z

0

w(u)

1 + u
du

)

,

which leads to the relation,

µB(z) = 25 + 5 log10

(

c

H0

1

Mpc

)

(4)

+5 log10

{

(1 + z)

∫ z

0

ds
[

Ωr(1 + s)4 +Ωm(1 + s)3

+ (1 − Ωr − Ωm)(1 + s)3 exp

(

3

∫ s

0

w(u)

1 + u
du

)]−1/2
}

.

While the term proportional to Ωr (the radiation density
for photons and neutrinos) is negligible at low redshift,
we include it in the equations for completeness – it will
become important for the CMB and BAO measurements.
We use the following relation for Ωr when CMB is added
to the analysis:

Ωr(a) = Ωγ [1 + 0.227Nefff(mνa/Tν)], (5)

where for the standard three neutrino species, Neff =
3.04, we have

mνa

Tν
=

187

1 + z

(

Ωνh
2

10−3

)

, (6)

and

f(y) ≃ [1 + (0.3173y)1.83]1/1.83 (7)

For more details see Ref. [20], specifically Eq. (26) for
the expression for f(y).
Note that H0 in Eq. (4) cannot be determined from

supernova measurements in the absence of an indepen-
dent distance measurement. Thus H0 can be treated as

an unknown and absorbed in a re-definition of the ab-
solute magnitude MB = MB − 5 log10 H0 + 25, which
accounts for the combined uncertainty in the absolute
calibration of the supernova data, as well as in H0. Us-
ing this, the B-band magnitude can be expressed as
mB = 5 log10 DL(z)+MB whereDL(z) = H0dL(z) is the
“Hubble-constant-free” luminosity distance (throughout
this paper we will follow the convention to use capital
letters for Hubble-constant-free distances and small let-
ters for distances measured in Mpc. Different papers use
different conventions.). The measurement of µB is only
a relative measurement and MB allows for an additive
uncertainty which can be left as a nuisance parameter.
To simplify our notation, we absorb 5 log10(H0)−25 into
our definition of the distance modulus, leading to:

µ̃B = mB −MB = µB + 5 log10(H0)− 25

= 5 log10[DL(z)]. (8)

With this definition of the distance modulus we have cal-
ibrated the overall offset of the data to be zero. When
fitting the data, we allow for a systematic calibration shift
error, used to move the entire distance modulus data set
up or down. To account for uncertainties in this cali-
bration, we introduce a shift parameter ∆µ with a broad
uniform prior. The expected value for ∆µ is zero.

B. BAO Measurements

Baryon acoustic oscillations provide another powerful
measurement of the expansion history of the Universe.
In a manner similar to supernovae they yield a geometric
probe of dark energy. By carrying out measurements of
the clustering along the transverse BAO scale one can
obtain the angular diameter distance dA(z), defined as

dA(z) =
1

1 + z

c

H0

∫ z

0

ds

h(s)
, (9)

and by measuring the BAO scale along the line of
sight, one obtains information on the Hubble parame-
ter H(z) itself (for details on future measurements, see,
e.g. Ref. [6]). Both of these measurements will be scaled
by the sound horizon at the epoch of baryon drag, rs(zd),
as given by:

rs(zd) =
c√
3

∫ ∞

zd

ds

H(s)
√

1 + 3Ωb

4Ωγ(1+s)

, (10)

the final measurements being in terms of dA(z)/rs and
H(z)rs. Current data provide information only on the
angular diameter distance. The structure of Eq. (9) with
respect to its w-dependence via two integrals is exactly
the same as for dL(z) given in Eq. (1). This greatly sim-
plifies the task of performing w(z) reconstruction com-
bining both probes.
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C. CMB Measurements

For the CMB measurements we employ the so-called
shift parameter R(z⋆) first introduced by Bond et al. [21]:

R(z⋆) =

√

ΩmH2
0

c
(1 + z⋆)dA(z⋆)

=
√

Ωm

∫ z⋆

0

ds

h(s)
, (11)

where z⋆ is the redshift of decoupling (z⋆ ∼ 1090) and
the angular diameter distance dA is given in Eq. (9). The
shift parameter is related to the peak heights and the lo-
cations of the peaks in the temperature power spectrum
of the CMB. As we will show in our analysis below, the
shift parameter is very helpful in breaking the degeneracy
between Ωm and w(z) when used in a combined analysis
with supernova data. As an alternative to using the full
CMB power spectra, the shift parameter provides a good
way to summarize (see, e.g., Ref. [22]) CMB measure-
ments, hence simplifying dark energy investigations.
One caveat of using R as pointed out in, e.g., Ref. [20]

is the fact that R is a derived quantity from fitting to the
CMB power spectrum and therefore assumes a certain
cosmology. It is therefore important to state explicitly
the assumption made under which the best-fit value for
R was derived. Several groups including Refs. [22–24]
have studied this point in more detail and found that
the constraints on R are relatively stable under minor
modifications of the dark energy parameters underlying
the analysis, including dark energy clustering [24]. It was
found that massive neutrinos had a larger effect onR (few
percent level) [24]. In Ref. [22] an analysis of WMAP-3
data was carried out and it was found that for non-flat
cosmologies, the value for R was similar for different dark
energy models, including constant w and time-varying
w parametrized via w0 + wa(1 − a). In addition, the
best-fit values for R in the current WMAP-7 analysis
are the same within error bars for different underlying
cosmologies, including wCDM and open wCDM models.
In our analysis of currently available data it should

be kept in mind that we use the best-fit value for R de-
rived under the assumptions of a flat FRW universe with
w = −1, an effective number of neutrinos of Neff = 3.04
and a primordial power spectrum close to a power law.
As we show below, the inclusion of R in the analysis in
addition to the supernova data does not alter the result
for w(z) itself, its main contribution is to help relax the
assumption on Ωm. For this reason, the fact that the
value we use for R is derived for a specific model is of
much less consequence. With future data from Planck
the uncertainty on R will be as low as 0.2% at which
point this issue has to be revisited in detail. In the case
of our simulated data, the value of R is obtained for the
correct underlying cosmology, in which case the above
discussion does not apply.
Another issue arises with the CMB measurement point

due to its origin at high redshift. The SNe and BAO data

points occupy a redshift range between z ∈ (0, 2) making
it easier to set up a coherent non-parametric reconstruc-
tion approach. The CMB data point on the other hand
is a single point around z ∼ 1000, so far away that it is
bound to cause problems for any non-parametric method.
Consequently, we have to make some assumptions about
the behavior of w(z) in the range z ∈ (2,∞) – the sim-
plest choice is w = const. Therefore, for the regime where
we do not have SNe data, we assume w = const. and find
the best-fit value.

III. RECONSTRUCTION WITH GAUSSIAN

PROCESS MODELING

A. Overview

Our nonparametric reconstruction method based on
GP modeling and Markov chain Monte Carlo (MCMC),
with application to supernova data is described in
Refs. [18, 19]. We refer the reader to these papers for
details on the implementation of the GP model. Here,
we provide a general introduction and explanation of the
idea behind the reconstruction process with GP models
and then focus on how to extend the method to include
multiple data sources.
Gaussian processes extend the multivariate Gaussian

distribution to function spaces, with inference taking
place in the space of functions. The defining property of
a GP is that the vector that corresponds to the process at
any finite collection of points follows a multivariate Gaus-
sian distribution. Gaussian processes are elements of an
infinite dimensional space, and can be used as the ba-
sis for a nonparametric reconstruction method. Gaussian
processes are characterized by mean and covariance func-
tions, defined by a small number of hyperparameters [25].
The covariance function controls aspects such as rough-
ness of the candidate functions and the length scales on
which they can change; aside from this, their shapes are
arbitrary. The use of Bayesian estimation methods (in-
cluding the MCMC algorithm) allows us to estimate the
hyperparameters of the GP correlation function together
with any other parameters, comprehensively propagating
all estimation uncertainties [26].
Following the definition of a GP, we assume that, for

any collection z1, ..., zn, w(z1), ..., w(zn) follow a multi-
variate Gaussian distribution with a constant negative
mean and exponential covariance function written as

K(z, z′) = κ2ρ|z−z′|α . (12)

Here ρ ∈ (0, 1) is a free parameter that, together with κ
and the parameters defining the likelihood, are fit from
the data (ρ and κ are the hyperparameters of the GP
model, for a more detailed discussion see Appendix A).
The form of the assumed correlation function implies
that, theoretically, there is non-zero correlation between
any two points. The parameter ρ controls the exponen-
tial decay of the correlation as a function of distance in
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redshift, but it does not provide a bound for the correla-
tion between two points.
The value of α ∈ (0, 2] influences the smoothness of the

GP realizations: for α = 2, the realizations are smooth
with infinitely many derivatives, while α = 1 leads to
rougher realizations suited to modeling continuous non-
differentiable functions. Here we use α = 1 to allow for
maximum flexibility in reconstructing w. (For a com-
prehensive discussion of different choices for covariance
functions and their properties, see Ref. [25].) We set up
the following GP for w:

w(u) ∼ GP(ϑ,K(u, u′)). (13)

The process is started using a mean value of ϑ = −1;
given current observational constraints on w this is a
natural choice. Even though the mean is fixed, each GP
realization actually has a different mean with a spread
controlled by κ and the means are adjusted during the
analysis to slightly different values suggested by prelimi-
nary runs (we use this strategy for some of the simulated
data sets below). This adjustment is informed purely by
the data and demonstrates the flexibility of the approach.
In principle, the mean could also be left as a free parame-
ter. After the adjustment we measure the posterior mean
and ensure that it is close to the prior mean.

B. Combining Multiple Data Sources

In order to determine the optimal values for the GP
modeling parameters and the cosmological parameters,
we follow a Bayesian analysis approach [27]. We use
MCMC algorithms to fit for the parameters [26], result-
ing in posterior estimates and probability intervals for
Ωm and ∆µ, and the hyperparameters that specify the
GP model, κ and ρ. We choose the following priors for
the hyperparameters:

π(κ2) ∼ IG(6, 2), (14)

π(ρ) ∼ Beta(6, 1). (15)

Here the notation “∼” means “distributed accord-
ing to”, and IG is an inverse Gamma distribution
prior, with the probability density function f(x;α, β) =
βαx−α−1Γ(α)−1 exp(−β/x), with x > 0. The probabil-
ity distribution of the Beta prior is given by f(x;α, β) =
Γ(α+β)xα−1(1−x)β−1/[Γ(α)Γ(β)] (for examples of these
distributions, see, e.g., Ref. [19]).
Turning to the cosmological parameters, we choose:

π(Ωm) ∼ N(0.27, 0.042) SN data only, (16)

π(Ωm) ∼ U(0, 1) combined analyses, (17)

π(∆µ) ∼ U(−0.5, 0.5), (18)

π(σ2) ∝ σ−2 SN data, (19)

π(σ2
B) ∝ σ−2

B BAO data, (20)

where U is a uniform prior, with the probability den-
sity function f(x; a, b) = 1/(b − a) for x ∈ [a, b] and

zero otherwise. N is a Gaussian (or Normal distributed)
prior with the probability density function f(x;µ, σ2) =

exp[−(x− µ)2/(2σ2)]/
√
2πσ2. The squared notation for

the second parameter in N(µ, σ2) is used to indicate that
σ is the standard deviation (to prevent possible confusion
with the variance σ2). (The parameters in the U and IG
distributions do not have this same meaning of mean and
standard deviation as in the Normal distribution.) σ2

and σ2
B are the variable variance parameters associated

with the SNe and BAO measurements respectively.
The prior for Ωm for the analysis of supernova data

alone is informed by the 7-year WMAP analysis [20] for
a wCDM model combining CMB, BAO, andH0 measure-
ment. Once a second cosmological probe is included in
the analysis, the assumption on this prior can be relaxed
and we choose a uniform prior for the analysis of the com-
bined data sets. As mentioned previously, we also allow
for uncertainty in the overall calibration of the supernova
data, ∆µ, and choose a wide, uniform prior for ∆µ.
Next we discuss the likelihoods for the different probes.

We assume that the SNe, CMB, and BAO measurements
are independent of each other which allows us to derive
a likelihood for each probe separately. The likelihood for
the supernova data is given by:

LSN(σ, θ) ∝
(

1

τiσ

)n

exp

(

−1

2

n
∑

i=1

(

µi − µ(zi, θ)

τiσ

)2
)

,

(21)
where θ encapsulates the cosmological parameters as well
as the hyperparameters, i.e., {∆µ,Ωm, κ, ρ} and σ2 is the
associated variance, expected to be close to unity. τi
is the standard error measure associated with the data
points, resulting from, e.g., the light curve fitting process.
We assume no correlation between supernova distance er-
rors and do not include any systematic errors. Both of
these would obviously degrade the error bands in a full
analysis; we do not include them here to keep the analy-
sis simpler, though our framework in principle allows for
them. We have an equivalent expression for the CMB
data:

LCMB(θ) ∝ 1

τz∗

exp

(

−1

2

(

y∗ −R(z∗, θ)

τz∗

)2
)

. (22)

Since we only have one data point, we cannot assign a
variance parameter.
The likelihood for the BAO data is slightly more com-

plicated. For future surveys, for each BAO point we
will have two observed distance measures. These mea-
surements (y1i, y2i) are correlated and we assume that
they have a correlated and bivariate Normal distribution,
given by:

[

y1i
y2i

]

∼ MVN

[[

DA(zi)/rs
H(zi) ∗ rs

]

, σ2
BK

]

, (23)

where

K =

[

σ2
y1i

r12iσy1i
σy2i

r21iσy1i
σy2i

σ2
y2i

]

, (24)
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FIG. 1. Results for reconstructing w(z) from currently available data. The top row shows reconstruction results for w(z) (blue
line; the red dashed line shows w = −1) for an exponential covariance function, i.e. α = 1, including different cosmological
probes, the second row shows the corresponding posterior for Ωm (red lines: priors, black lines: posteriors). The first column
shows the results from supernova data only, the second column includes CMB measurements, the third column uses supernova
and BAO data, and the fourth column shows the results for a combined supernova-BAO-CMB analysis. The light blue contours
show the 95% confidence level, the dark blue contours the 68% confidence level. As is to be expected, the error bars shrink
somewhat if more data sources are included, though the effect is small due to the limited number of extra data points. As
found previously by others (e.g., Ref. [13]), current data are consistent with a cosmological constant.

TABLE I. Union 2 Data set- 95% PIs, the last two columns are results from Ref. [13], Table 11 for comparison.

Data Type Ωm ∆µ σ2 ρ κ2 ϑ Ωm [13] w [13]

SNe 0.279+0.070
−0.074

−0.003+0.028
−0.028

0.985+0.124
−0.110

0.870+0.127
−0.303

0.353+0.393
−0.192

-1.00 0.270+0.021
−0.021

-1 (fixed)

SNe+BAO 0.302+0.051
−0.048

−0.004+0.028
−0.027

0.981+0.122
−0.109

0.864+0.132
−0.322

0.363+0.437
−0.202

-1.07 0.309+0.032
−0.032

−1.114+0.098
−0.112

SNe+CMB 0.274+0.049
−0.041 −0.002+0.028

−0.027 0.982+0.123
−0.109 0.865+0.132

−0.333 0.358+0.447
−0.199 -1.00 0.268+0.019

−0.017 −0.997+0.050
−0.055

SNe+BAO+CMB 0.289+0.044
−0.038

−0.005+0.027
−0.027

0.981+0.122
−0.109

0.869+0.127
−0.302

0.366+0.436
−0.201

-1.01 0.277+0.014
−0.014

−1.009+0.050
−0.054

and σB is the associated variance parameter. This leads
to the following likelihood for the BAO data:

LBAO(σB , θ) ∝
1

|σ2
BK|m/2

exp

(

− 1

2σ2
B

m
∑

i=1

(

D
T
K

−1
D
)

)

,

(25)
with

D =

(

y1i −Da(z)/rs
y2i −H(z) ∗ rs

)

. (26)

Current measurements yield data only for T (z) =
rs(zd)/dV (z), where dV (z) = [(1 + z)2d2Acz/H(z)]1/3.
The likelihood given in Eq. (25) therefore simplifies for

current BAO data to

LBAO(σB , θ) ∝
(

1

τiσ

)m

exp

(

−1

2

m
∑

i=1

(

y∗i − T (zi)

τiσB

)2
)

,

(27)
with m = 2. We will use Eq. (25) for the simulated data
and Eq. (2) for the real data.

We can find the combined likelihood simply by mul-
tiplying the individual likelihoods since we assume the
different probes are uncorrelated:

Ltotal = LSNe ∗ LCMB ∗ LBAO. (28)
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IV. RESULTS FOR CURRENT OBSERVATIONS

We begin our analysis by reconstructing w(z) from cur-
rently available data. We use the supernova data set re-
cently released by Amanullah et al. [13]. This so-called
Union-2 compilation (extending the Union compilation
from Ref. [28]) consists of 557 supernovae between red-
shift z = 0.015 and z = 1.4. The magnitude errors in the
data set range between 0.08 and 1.02, with an average
error of ∼ 0.2.
In addition to the supernova data we include the most

recent BAO measurements from the Two-degree-Field
Galaxy Redshift Survey (2dFGRS) at z = 0.2 and the
Sloan Digital Sky Survey (SDSS) [29] at z = 0.35 given
by

rs(zd)/dV (z = 0.2) = 0.1905± 0.0061, (29)

rs(zd)/dV (z = 0.35) = 0.1097± 0.0036. (30)

For the CMB analysis, we use the most recent measure-
ment of the shift parameter R from WMAP-7 [20], given
by

R(z⋆) = 1.719± 0.019. (31)

In order to have a complete description of the problem we
have to specify some additional cosmological parameters
that are expected to have little or no effect on dark en-
ergy. These parameters – fixed at the best-fit WMAP-7
values from their ΛCDM analysis – are: Ωγ = 4.897·10−5,
zd = 1020.3, z⋆ = 1090.79, and Ωb/Ωγ = 914.54.
We carry out four different analyses: supernova data

by themselves with a Gaussian prior for Ωm given in
Eq. (16), and combined analyses for supernova data and
CMB, supernova data and BAO, and for all three probes.
For the combined data sets we can relax the prior as-
sumptions on Ωm and use a wide uniform prior, given
in Eq. (17). The results are summarized in Table I and
Figure 1.
All results are consistent with a cosmological constant,

i.e. w = −1, as can be seen in the first row in Fig-
ure 1. The supernova data by themselves have only mod-
est constraining power on Ωm and therefore force us to
choose a rather strong prior. The lower panels in Fig-
ure 1 show the prior (red line) and posterior (black line)
for Ωm demonstrating this point clearly. If we include
either CMB or BAO or both, the constraints on Ωm get
much better. As can been seen in Table I, the error es-
timates for Ωm shrink by almost a factor of two if all
probes are combined. Overall, the supernova data by
themselves lead to a slightly lower value of Ωm, while
the combination with CMB data leads to a higher value.
The inclusion of the BAO points shifts up the value for
Ωm considerably, by more than 10% compared to the
supernova–CMB analysis. Nevertheless, within the error
bars, all values for Ωm are consistent and agree well with
the best-fit WMAP-7 values including different probes
(e.g. for a ΛCDM model including CMB, BAO, and SNe
data they find Ωm = 0.278 ± 0.015). The value for the
shift parameter ∆µ is very close to zero in all cases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
2.
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1.
5

−
1.
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−
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5
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0

z

w
i(

z)

FIG. 2. A few random GP realizations for w(z) for the SNe-
only data (left upper panel in Figure 1).

A brief check against the results of Ref. [13] also shows
very good agreement. For ease of comparison, we quote
their results in the last two columns of Table I for the
case of a flat Universe and w = const. The trends in
the best-fit value for Ωm are exactly the same as we find,
the value is lowest for the case of supernova+CMB data
and highest for supernova+BAO data. They also find
that for the supernova+BAO analysis, w is slightly be-
low w = −1 while for all other cases it is very close to
w = −1. Their analysis is also consistent with a cosmo-
logical constant. It is interesting to note that our error
estimates for w(z) are similar to the findings of Aman-
ullah et al., even though their assumption of w = const.
is more restrictive. This shows that our method leads to
tight error bounds without loss of flexibility in allowing
for time variations in w(z).

To underline this flexibility, we show a handful of real-
izations of the accepted GP trajectories in Figure 2. (Tra-
jectories such as these make up the error bands for w(z).)
The trajectories show that the GP approach easily allows
for substantial variation in the z-dependence of w(z) with
only modest smoothness restrictions. The trajectories al-
low for much more flexibility than the more traditional
parametric forms, such as a w0-wa parametrization. As
we show in the Appendix, the smoothness assumption
can be relaxed if desired by choosing less informative pri-
ors for the hyperparameters ρ and κ2. In this case, much
“noisier” w(z) trajectories can be incorporated, but their
physical relevance is doubtful. We believe that the choice
of hyperparameter priors made here is a sensible one, pro-
viding a good balance between allowed variability and
noise within individual trajectories.

The realizations also show that interpretation of the
correlation length (λ = −1/ lnρ) requires some care. The
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correlation length refers to a statistical average across all
trajectories and does not directly address the perceived
variability of individual realizations. In particular, the
correlation length is not determined by the range over
which the data has been gathered but by the behavior of
the data and by the size of the observational errors. The
variability of individual realizations is also determined by
the normalization amplitude as set by κ2 (see Appendix
A for further discussion). Thus, the values for ρ close to
one that we find do not imply that our reconstruction re-
sults cannot pick up variations in w(z) spanning redshift
ranges on scales smaller than the range investigated in
the data.

V. RESULTS FOR SIMULATED DATA

In this section we investigate how well our method
works for reconstructing w(z) with future high-quality
data. Current limitations – uncertainties in the data and
limited statistics – prevent us from extracting possible
time variations in w(z) reliably. The error bands are rel-
atively large and results are in complete agreement with
a cosmological constant. Future measurements will hope-
fully change this: if there is a small time variation in w(z)
we should be able to detect it. In a previous paper [18],
we generated a supernova data set, assuming high-quality
measurements from a WFIRST-like mission. We showed
that a set of ∼ 2300 supernovae out to a redshift of
z = 1.7 and perfect knowledge of Ωm allows us to confi-
dently extract time variations in the dark energy equa-
tion of state. We also showed that larger uncertainties in
Ωm degraded this result due to well-known degeneracies
between w and Ωm. These degeneracies can be broken by
including different data sources. We show in the follow-
ing that a combination of accurate supernova data with
results from a BAO survey such as BigBOSS will provide
sufficient information to enable a reliable and interesting
reconstruction of w(z). The combination of these differ-
ent data sources eliminates the degeneracy problem and
provides reliable constraints on the time variation of w(z)
without requiring “perfect” knowledge of Ωm.

A. The Simulated Data

We generate simulated data for all three probes (su-
pernovae, BAO, CMB) and three different cosmological
models. The models used are the same as in our pre-
vious work (see Ref. [18] for more details). Model 1
has a constant dark energy equation of state w = −1,
Model 2 is based on a quintessence model with a min-
imally coupled scalar field and a dark energy equation
of state w(z) = (φ̇/2 − V0φ

2)/(φ̇2/2 + V0φ
2), and for

Model 3 we choose a slightly more extreme quintessence
model with w(z) = −1.0006 + 308472/(exp[20/(1 + z) +
617439]). The resulting equations of state are shown in
Figure 3. For each model we choose Ωm = 0.27 and fix

H0 = 70.4 km/s/Mpc, ωb = 0.0226, ωγ = 2.469 · 10−5,
z⋆ = 1090.89, and zd = 1020.5. While Model 3 is already
ruled out observationally, it provides a good example for
a rather sharp transition in w(z). For each model we
create two data sets: (i) We assume the best-possible
scenario, a space mission to obtain supernova measure-
ments out to redshift z = 1.7 and in addition a BigBOSS-
like BAO survey, and CMB data; (ii) good ground-based
supernova measurements in combination with BigBOSS
and CMB measurements. In the following we provide
some details on the assumptions for the different data
sets.

1. Supernova Measurements

As mentioned above we investigate two different sets of
simulated supernova measurements. The first one is the
same as used in Ref. [18]. It contains 2298 data points
distributed over a redshift range of 0 < z < 1.7 with
larger concentration of supernovae in the midrange red-
shift bins (0.4 < z < 1.1) and at low redshift (z < 0.1).
The exact distribution is shown in Ref. [18] in Figure 1.
For the distance modulus we assume an error of τi = 0.13.
The measurements are presented in the following form:

µ̃i = αi + ǫi. (32)

In this notation, the observations µ̃i follow a normal dis-
tribution with mean α(zi), the standard deviation being
set by the distribution of the error, ǫi, representing a
mean-zero normal distribution with standard deviation,
τiσ. Here, τi is the observed error and σ accounts for a
possible rescaling. In addition, we assume that the errors
are independent.
For the second set of simulated supernova data we con-

sider the same number of data points as currently avail-
able from ground-based surveys, augmented with some

0 0.5 1 1.5
z

-1

-0.9

-0.8

-0.7

-0.6

-0.5

w
(z

)

Model 1
Model 2
Model 3

FIG. 3. Dark energy equation of state w(z) for our three
simulated models.
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FIG. 4. Redshift distribution of the small supernova data set.
The simulated data has exactly the same distribution as the
real data.

higher redshift observations such as those that have been
obtained with the Hubble Space Telescope (557 measure-
ments total). The redshift distribution is shown in Fig-
ure 4. The distribution extends to z = 1.4 with a maxi-
mum at low redshift and around z = 0.3. Only a handful
of supernovae are available at higher redshifts. Since we
assume that the measurements are of somewhat lower
quality, we increase the errors on the distance modulus
to τi = 0.15.

2. CMB Measurements

For the CMB points we use the following realizations
(the exact values for R for each model are given in paren-
theses):

Model 1 :R(z⋆) = 1.736± 0.019(Rex = 1.723), (33)

Model 2 :R(z⋆) = 1.716± 0.019(Rex = 1.702), (34)

Model 3 :R(z⋆) = 1.683± 0.019(Rex = 1.670). (35)

3. BAO Measurements

Future BAO surveys such as BigBOSS will obtain
measurements of the angular diameter distance, dA(z),
as well as the Hubble parameter H(z), in terms
of the sound horizon at the epoch of baryon drag,
rs(zd). For our simulated BAO data sets, we follow
the specifications for a BigBOSS survey as outlined in
http://bigboss.lbl.gov/docs/BigBOSS NOAO public.pdf.
We assume a survey area of 24000 deg2 (covering north-
ern and southern skies) and adopt the galaxy density
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FIG. 5. Two realizations of 20 simulated BAO points for
a BigBOSS-like survey. Left column: angular distance di-
ameter, right column: Hubble parameter, both appropriately
scaled by the sound horizon as relevant to BAO measure-
ments. Model 1 (w = const.) is shown with error bars with
one standard deviation. For Model 2 (green dashed) and
Model 3 (blue dotted) we show the exact predictions.

distribution estimated in the BigBOSS proposal (Table
2.3 in the aforementioned document). In this proposal,
measurements from luminous red galaxies and emission-
line galaxies are combined. The resulting distribution
accounts for several sources of inefficiency (discussed
in the BigBOSS proposal) leading to a degradation of
the galaxy number density at high redshift. Often a
constant galaxy density over the whole redshift range is
assumed. We studied this case as well and found that
the eventual results in both cases are very similar. In
order to derive estimates for the errors of the simulated
measurements, we use a publicly available code from
Ref. [30]. The formula used to obtain BAO errors in
this code is a 2D approximation of the full Fisher matrix
formalism. In Ref. [30], the results for the full Fisher
matrix calculation and this method are shown to match
well. Although these results are for ΛCDM, they should
hold reasonably well for other cosmologies.

The input parameters for the code are: σ8 at the
present epoch, Σ⊥ = Σ0G = transverse rms Lagrangian
displacement, with G = growth factor normalized such
that G = (1 + z)−1 at high redshift, Σ0 = 12.4h−1 Mpc
for a cosmology with σ8 = 0.9 at present and scaling
linearly with σ8; Σ‖ = Σ0G(1 + f) = line of sight rms
Lagrangian displacement, with f = d(lnG)/d(lna), G,Σ0

as before; and the number density = 3 × 10−4h3/Mpc3

(Cf. Ref. [6]). G, f, σ8 are input correctly for each model.
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The biggest possible source of error are the formulae used
for Σ⊥,Σ‖; these were shown to be reasonable fits to the
true values in Ref. [31]. The value of Σ0 given is also for
the cosmology used in Ref. [31]. For a different cosmol-
ogy, Σ0 would obviously be different, and the simplest
way to deal with this, as suggested in the paper, is to
scale it linearly with σ8. This may not be completely ac-
curate as we use very different cosmological models but
should yield a reliable estimate.

Figure 5 shows two realizations for a ΛCDM model
(Model 1) for the angular distance diameter DA(z)/rs in
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FIG. 6. Left column: reconstruction result for w(z) for re-
alization I of the BAO data later used in combination with
the small supernova sample. Right column: results for real-
ization II later used in combination with the large supernova
sample. Top to bottom: results for Models 1 - 3. The dashed
line shows the underlying theoretical model, the dark blue
region shows the 68% confidence level, the light blue region
the 95% confidence level, the dark blue line shows the mean
reconstructed history. The error bands represent the single re-
alization reconstruction error. In all cases, the reconstruction
results capture the “truth” within the error bands reliably.

the left column and for the Hubble parameter H(z)rs in
the right column. In addition, we show the exact pre-
dictions for Model 2 and 3. We use two realizations for
the BAO data to demonstrate the dependence of the re-
construction as a function of realization. Because obser-
vations represent only one realization, this imposes an
an irreducible limitation on the reconstruction program,
whether non-parametric or not. We will return to this
issue in future work.

B. Results

1. Prelude

Before we present our results for the combined analysis
of different cosmological probes we show the constraints
we obtain from the simulated BAO data alone on w(z).
The results are already remarkably good. We choose a
flat prior for Ωm for this analysis.
Figure 6 shows the results for both realizations pre-

sented in Figure 5, Table II provides the best fit values
for Ωm all three models for the left column (Realization
I) and Table III for the right column (Realization II).
For Model 1 (first row) the predictions are slightly low
for the first realization but overall the results are consis-
tent with the input model., w = −1. We verified that
this result does not change considerably if we tighten the
prior on Ωm. Similar trends can be seen for Model 2 and
3. We will come back to these trends later in the dis-
cussion on the results for combined data sets. The value
for Ωm for realization I (Table II) is slightly high in all
cases – adding CMB measurements decreases the error
on Ωm but in fact shifts the best fit values even higher.
The second realization leads to values for Ωm very close
to the input value for BAO measurements only, the CMB
point again shifts it up slightly. The reconstruction from
the BAO data alone works remarkably well – in all cases
the underlying model is captured within the error bars
reliably.

2. Combining Different Data Sets

Next we present the results for Model 1 - 3 for several
different combinations of data as discussed above:

Ground-based supernova mission (Figs. 7-9, upper rows;
Table II):

• 557 supernovae out to z = 1.4, τi = 0.15

• supernovae + CMB measurement

• supernovae + 20 BAO points (realization I)

• supernova + BAO + CMB measurements

Space-based supernova mission (Figs. 7-9, lower rows;
Table III):
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FIG. 7. Reconstruction results for the model with w = −1. From left to right different probes are considered, SNe, SNe+CMB,
SNe+BAO, and a combination of all three measurements. The red dashed line shows the truth, the blue solid line the mean
result for the reconstruction. The blue shaded region shows the 68% confidence level, the light blue shaded region the 95%
confidence level. The upper row shows the results for the small supernova data set (557 supernovae with τi = 0.15 out to
z = 1.4) while the lower row shows potential space-based supernova measurements (2298 supernovae with τi = 0.13 out to
z = 1.7). The CMB data point is the same in all cases where it is included, the BAO data are of same quality but two different
realizations out to z = 2. Note that the redshift range varies in the different panels depending on which probes are included.

• 2298 supernovae out to z = 1.7, τi = 0.13

• supernovae + CMB measurement

• supernovae + 20 BAO points (realization II)

• supernova + BAO + CMB measurements

As for the real data, we choose a stronger prior for
Ωm in the case of analyzing supernova data only while
we use a flat prior for any combination of data. Fig-
ure 7 shows the results for Model 1. The reconstruction
from supernova data only works very well – the additional
data points (comparing the upper and lower panel) help
reduce the error bands (note that the redshift range in
the lower row showing the results for 2298 supernovae
extends out further) and also lead to a better estimate
for Ωm with tighter error bounds, given in Tables II, III.
The addition of the CMB point (second column in Fig-
ure 7) allows us to choose a much less strict prior on Ωm,
i.e. a flat prior. Overall, the reconstruction works well
with the combination of supernova and CMB measure-
ments, the error bands on w(z) shrinking considerably.
The estimate for Ωm is slightly too high leading to a small
overall underestimation of w(z) [we remind the reader of
the degeneracy of Ωm and w(z)].

In the third column we show the supernova+BAO
analysis. In this case, both results extend to z = 1.7
due to the presence of BAO data at those redshifts. In
the upper row, where the supernova data only covers a
redshift range out to z = 1.4, the overall result is sim-
ilar to the result from the BAO data only (Figure 6)
though the error bands shrink considerably. Combining
all three data sets leads to even narrower error bands
(fourth column). In the lower row the small downward
trend from the CMB point is compensated by the small
upward trend from the BAO measurements at high red-
shifts, leading to an almost perfect reconstruction result.
In the upper row, both CMB and BAO realizations have
a small downward trend in w(z) which is seen in the final
result. Overall, the “truth” is captured well in all cases
and lies well within the error bounds. We would like to
emphasize that the dark blue line in the figures only rep-
resents the mean of the reconstruction result; much more
significant are the error bands themselves – these must
capture the true underlying model to establish a valid
approach.
The results for Model 2 and 3 are similar, shown in

Figures 8 and 9. Model 2 exhibits a small time variation
which could be extracted from future data. The powerful
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FIG. 8. Same as in Figure 7 but for Model 2, the quintessence model.

TABLE II. Posterior 95% PIs, 557 SNe points

Data Type Data Ωm ∆µ σ2 σ2
B ρ κ2 ϑ

SNe µ1 0.282+0.064
−0.069 0.003+0.026

−0.027 1.05+0.13
−0.12 n/a 0.87+0.12

−0.30 0.35+0.41
−0.19 -1.00

µ2 0.277+0.070
−0.075 0.002+0.026

−0.026 1.05+0.13
−0.12 n/a 0.88+0.12

−0.30 0.35+0.40
−0.19 -0.87

µ3 0.291+0.071
−0.082 0.007+0.027

−0.027 1.05+0.13
−0.12 n/a 0.85+0.14

−0.30 0.37+0.44
−0.21 -1.00

SNe+CMB µ1 0.293+0.043
−0.038 0.004+0.026

−0.026 1.05+0.13
−0.12 n/a 0.87+0.13

−0.30 0.36+0.41
−0.20 -1.07

µ2 0.297+0.046
−0.042 0.002+0.026

−0.025 1.05+0.13
−0.12 n/a 0.87+0.12

−0.31 0.36+0.45
−0.20 -0.94

µ3 0.277+0.065
−0.050 0.009+0.026

−0.026 1.05+0.13
−0.12 n/a 0.85+0.14

−0.31 0.37+0.46
−0.21 -0.78

SNe+BAO µ1 0.280+0.016
−0.015 0.004+0.023

−0.022 1.05+0.13
−0.12 0.89+0.60

−0.37 0.90+0.10
−0.26 0.34+0.40

−0.18 -1.04
µ2 0.280+0.017

−0.016 0.002+0.024
−0.023 1.05+0.13

−0.12 0.88+0.60
−0.36 0.88+0.11

−0.29 0.34+0.40
−0.19 -0.94

µ3 0.283+0.018
−0.019 0.008+0.026

−0.026 1.05+0.13
−0.12 0.88+0.61

−0.37 0.81+0.14
−0.26 0.39+0.48

−0.22 -0.73
SNe+BAO+CMB µ1 0.280+0.015

−0.015 0.004+0.023
−0.023 1.05+0.13

−0.12 0.89+0.60
−0.36 0.90+0.10

−0.26 0.34+0.39
−0.18 -1.05

µ2 0.280+0.016
−0.015 0.002+0.024

−0.023 1.05+0.13
−0.12 0.88+0.60

−0.36 0.88+0.11
−0.26 0.35+0.40

−0.19 -0.95
µ3 0.284+0.017

−0.017 0.008+0.026
−0.025 1.05+0.13

−0.12 0.87+0.60
−0.36 0.80+0.15

−0.26 0.37+0.42
−0.20 -0.73

BAO µ1 0.280+0.030
−0.028 n/a n/a 0.90+0.61

−0.37 0.88+0.12
−0.30 0.36+0.41

−0.19 -1.05
µ2 0.276+0.035

−0.032 n/a n/a 0.89+0.62
−0.37 0.86+0.13

−0.31 0.34+0.38
−0.18 -0.92

µ3 0.297+0.037
−0.044 n/a n/a 0.92+0.66

−0.39 0.82+0.16
−0.28 0.37+0.42

−0.20 -0.75
BAO+CMB µ1 0.281+0.025

−0.024 n/a n/a 0.89+0.61
−0.37 0.88+0.11

−0.28 0.35+0.39
−0.19 -1.07

µ2 0.279+0.029
−0.025 n/a n/a 0.89+0.61

−0.37 0.88+0.12
−0.29 0.35+0.41

−0.19 -0.95
µ3 0.296+0.035

−0.035 n/a n/a 0.92+0.66
−0.39 0.81+0.16

−0.31 0.37+0.41
−0.20 -0.74

combination of all three probes can be gauged by the
relatively small error bands shown in the fourth column
in Figure 8. At low to intermediate redshifts (out to
z ∼ 0.6) a cosmological constant is clearly disfavored.
The supernova data alone would not have had enough
information to disfavor w = −1 at any redshift, as the
error bands in this case clearly include a cosmological
constant. The inclusion of high redshift supernova data

improves the results somewhat, the overall reconstruction
shown in the lower left corner of Figure 8 is excellent with
narrow error bands. In this case, the constraints for Ωm

are also very close to the input value for the theoretical
model with tight error bands.

Model 3 has a rather strong variation in w(z). While
this model is observationally ruled out already, it pro-
vides a good testbed for our new approach to demon-
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FIG. 9. Same as in Figure 7 but for Model 3.

TABLE III. Posterior 95% PIs, 2298 supernova

Data Type Data Ωm ∆µ σ2 σ2
B ρ κ2 ϑ

SNe µ1 0.270+0.032
−0.043 −0.003+0.019

−0.018 0.97+0.06
−0.05 n/a 0.90+0.10

−0.27 0.34+0.37
−0.18 -1.00

µ2 0.263+0.046
−0.051 −0.004+0.018

−0.018 0.97+0.06
−0.06 n/a 0.90+0.10

−0.27 0.34+0.40
−0.18 -0.87

µ3 0.327+0.040
−0.070 −0.007+0.019

−0.019 0.97+0.06
−0.06 n/a 0.85+0.14

−0.32 0.35+0.40
−0.19 -0.92

SNe+CMB µ1 0.278+0.024
−0.024 −0.003+0.020

−0.019 0.97+0.06
−0.06 n/a 0.89+0.11

−0.32 0.34+0.39
−0.18 -1.04

µ2 0.279+0.027
−0.026 −0.006+0.019

−0.018 0.97+0.06
−0.06 n/a 0.90+0.10

−0.29 0.34+0.38
−0.19 -0.90

µ3 0.292+0.050
−0.043 −0.002+0.021

−0.020 0.97+0.06
−0.06 n/a 0.81+0.16

−0.29 0.40+0.48
−0.24 -0.82

SNe+BAO µ1 0.269+0.011
−0.011 −0.002+0.021

−0.019 0.97+0.06
−0.06 1.29+0.87

−0.54 0.88+0.12
−0.36 0.35+0.45

−0.20 -0.97
µ2 0.269+0.011

−0.010 −0.005+0.020
−0.018 0.97+0.06

−0.06 1.30+0.87
−0.54 0.89+0.10

−0.28 0.35+0.40
−0.19 -0.88

µ3 0.268+0.013
−0.015 −0.002+0.021

−0.022 0.97+0.06
−0.06 1.22+0.85

−0.52 0.75+0.21
−0.32 0.40+0.47

−0.22 -0.63
SNe+BAO+CMB µ1 0.269+0.010

−0.010 −0.001+0.018
−0.017 0.97+0.06

−0.06 1.31+0.88
−0.54 0.90+0.10

−0.30 0.35+0.42
−0.19 -1.00

µ2 0.270+0.010
−0.010 −0.004+0.018

−0.017 0.97+0.06
−0.06 1.31+0.88

−0.54 0.91+0.09
−0.29 0.34+0.40

−0.19 -0.90
µ3 0.269+0.011

−0.011 0.002+0.020
−0.021 0.97+0.06

−0.06 0.66+0.46
−0.28 0.76+0.18

−0.31 0.39+0.48
−0.21 -0.71

BAO µ1 0.270+0.036
−0.049 n/a n/a 1.33+0.92

−0.56 0.86+0.14
−0.31 0.35+0.41

−0.20 -1.00
µ2 0.264+0.037

−0.041 n/a n/a 1.33+0.92
−0.56 0.87+0.13

−0.31 0.35+0.40
−0.19 -0.88

µ3 0.278+0.052
−0.059 n/a n/a 1.35+1.03

−0.60 0.77+0.20
−0.30 0.37+0.45

−0.20 -0.68
BAO+CMB µ1 0.279+0.031

−0.025 n/a n/a 1.35+0.92
−0.56 0.88+0.11

−0.31 0.35+0.41
−0.19 -1.03

µ2 0.275+0.032
−0.027 n/a n/a 1.35+0.93

−0.56 0.88+0.11
−0.32 0.36+0.43

−0.20 -0.92
µ3 0.285+0.039

−0.044 n/a n/a 1.38+1.01
−0.62 0.78+0.20

−0.32 0.40+0.47
−0.22 -0.70

strate that more complicated dark energy equations of
state can be reconstructed. As discussed in detail in
Ref. [18] the degeneracy between Ωm and w(z) makes
the reconstruction task rather difficult – the left panels in
Figure 9 show the constructed w(z) from supernova data
only with a Gaussian prior on Ωm. The error bars are
rather wide and include a cosmological constant comfort-
ably. The addition of the CMB point already improves

the result considerably, in this case we choose a flat prior
on Ωm. The best-fit value for Ωm is very close to the
input value of 0.27 compared to the case where we ana-
lyze supernova data only. The inclusion of the BAO data
(third and fourth column) in both cases (557 and 2298
supernova data points) improves the results even more.
The time dependence is well captured and the estimate
for Ωm is also very good.
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Some final remarks on the content of Tables II and III:
in addition to the results discussed above, we provide
some information on the results for the combination of
BAO and CMB measurements. Overall, the extra infor-
mation from the CMB measurement does not help very
much to improve the results, contrary to what we find
when we add this information to the supernova data. In
addition to the constraints on the cosmological parame-
ters and error behavior of the data (given by σ for the
supernova data and σB for the BAO data) we list the
final hyperparameters for the GP model in the last three
columns. Perhaps the most interesting parameter here is
the adjusted mean value for w(z) given by ϑ in the last
column. As described in Ref. [18] in detail, we start the
GP model with some value for ϑ (in the case of Model 1,
ϑ = −1 is the natural choice for example) and run the
reconstruction program for some time. The results then
have information about an improved value for the mean
of the GP model and the analysis framework can be ad-
justed accordingly. As can be seen in the Tables, the final
values for ϑ are close to the mean value of the underlying
truth. Because the adjustment scheme works extremely
well, we started basically all reconstruction evaluations
at ϑ = −1, the GP model automatically suggesting bet-
ter mean values if the choice was non-optimal. Overall,
the reconstruction of w(z) works very well when multiple
sources are included.

VI. CONCLUSION

In this paper we have introduced a new non-parametric
reconstruction scheme for the dark energy equation of
state w(z) combining multiple cosmological probes. The
reconstruction scheme is based on a GP modeling ap-
proach and provides very good constraints on w(z) with
reliable error bars. The basic method was introduced in
Ref. [18] for supernova data only. Here we extend the
methodology to include BAO and CMB measurements.
We have carried out an analysis of currently available
data and found excellent agreement with a cosmological
constant consistent with a large number of recent pub-
lications, including Refs. [12, 13, 20, 29]. We have also
demonstrated our method on simulated data for differ-
ent cosmological models. In all cases, the GP model ap-
proach performed very well.
An important aspect of our new approach (as stressed

in Refs. [18, 19]) is the simultaneous constraint of the
cosmological parameters as well as the hyperparameters
of the GP model from the data. In comparison to para-
metric approaches, our new method is more flexible and
can therefore capture even subtle time variations in w(z)
if the data quality is good enough. It produces narrow
error bands over the full redshift ranges considered. For a
more detailed comparison with parameterized methods,
see Ref. [18].
The combination of different data probes mitigates the

problem of degeneracies between w(z) and Ωm as is to

be expected. An encouraging observation is that even
the BAO data alone (of high quality from a BigBOSS-
like survey) can deliver good constraints on the time de-
pendence of the dark energy equation of state, clearly
competitive with space based supernova observations.
Our new non-parametric reconstruction approach

lends itself to analysis of the promise of future dark en-
ergy probes in a reliable way. For example, possible ten-
sion in the data due to, e.g., insufficient understanding of
systematic errors would lead to an increase in the error
bands when combining different probes (a different at-
tempt to solve this problem with parametric methods is
discussed in e.g. Ref. [32]). The GP based approach can
therefore help to optimize future dark energy missions.

Appendix A: The GP Hyperparameters

The main feature that distinguishes the GP model ap-
proach from most other reconstruction schemes is the in-
troduction of the so-called hyperparameters. The values
for the hyperparameters are informed by the data sets
themselves and determine the final outcome. Obviously,
some assumptions have to be made and priors chosen for
the hyperparameters. Fully non-informative priors in our
case may not be mathematically feasible (for a detailed
discussion on the choices of priors for Gaussian processes
see [33]). We will elaborate on our assumptions and the
prior choices we made in this appendix.
The GP approach has one main underlying assump-

tion: continuity in w(z). It is therefore rather different
from the Principal Component Analysis (PCA) method
which assumes a piecewise constant w(z). The GP
method is completely continuous and fully defined for all
values of the domain and does not rely on its grid as break
points or binning of any kind. The GP is fully defined in
this case by its correlation function; we use the power ex-
ponential family: K(z, z′) = κ2ρ|z−z′|α . The parameters
(ρ,κ,α) are correlated with one another and do not have a
simple interpretation. In our analysis we lock α to a cer-
tain value. A value of α = 2 (Gaussian correlation) leads
to very smooth (infinitely differentiable) results and does
not allow for enough flexibility in capturing nontrivial be-
havior in w(z) well. Thus, we have been using α=1 (ex-
ponential correlation) for this analysis, which provides a
continuous GP (but non-differentiable everywhere). The
other two parameters κ and ρ are variable and the best-fit
values are dictated by the data.
Just as α influences the (small-scale) smoothness of the

result, so does ρ. The smaller the value for the correlation
length ρ, the more “features” will be picked up in w(z)
including unwanted noise. In other words, a very small
correlation length can lead to overfitting. This can be
avoided by choosing an informative prior for ρ. To eluci-
date this point further we investigate two different priors
for ρ, a uniform, flat prior π(ρ) ∼ U(0, 1) and a more
informative prior π(ρ) ∼ Beta(6, 1) which we also use in
the main analysis. In Figure 10 (left column), we show
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FIG. 10. Reconstruction results for w(z) from 2298 simu-
lated SNe measurements for different priors on ρ. Left col-
umn: w(z) reconstruction with 68% and 95% confidence lim-
its, right column: prior (red line) and posterior distribution
(black line) for ρ. Upper row: flat prior on ρ, π(ρ) ∼ U(0, 1).
Right column: informative prior on ρ, π(ρ) ∼ Be(6, 1).

the differences for the reconstructed w(z) for the two dif-
ferent priors (we use the simulated data for w = const.,
2298 SNe measurements). The uniform prior (upper row)
produces a much noisier reconstruction result compared
to the more informative prior (lower row). Also, the er-
ror bands increase due to the larger uncertainty in ρ.
One important point to note in Figure 10 is that even for
the flat prior, ρ shows a tendency toward high values –
near unity in the posterior – justifying the more informa-
tive prior we use for the main analysis. In addition, the
assumption of smoothness also suggests the more infor-
mative prior. The rather large values of ρ found in the
final analysis indicate a rather smooth behavior of w(z).

Finally, we also loosen the prior for κ2 to demonstrate
that our results are overall rather non-sensitive to the
choices of the priors for the hyper-parameters. Our find-
ings are summarized in Figure 11.

The upper left panel in Figure 11 shows the result for
the reconstruction of w(z). For κ2 we choose a Gamma-
distributed prior in this case (κ2 ∼ G(1, 0.5)) (lower right
panel, prior in red). This prior does allow for a long pos-
itive tail for κ2 but is not as strongly peaked close to
zero as the inverse Gamma distribution. The posterior
(in black) is sharply peaked at small values, in agreement
with our more informative prior choice. The left lower
panel shows the prior and posterior for ρ, a very simi-
lar result to Figure 10 (flat prior on ρ, inverse Gamma
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FIG. 11. Reconstruction results following Figure 10, but now
in addition to using a uniform prior for ρ we loosen the κ2

prior: κ2
∼ G(1, 0.5), ρ ∼ U(0, 1). The left upper panel

shows the reconstruction result for w(z) and the right upper
panel shows some realizations (similar to Figure 2). The error
bands in the prediction for w(z) do increase in this case as
expected. This case shows the most relaxed priors we study
for this data set.

prior for κ2). The error bands increase somewhat in this
case but overall the reconstruction procedure works suc-
cessfully. The upper right panel shows some of the re-
alizations for w(z). This figure demonstrates how much
variation the GP model allows. Compared to Figure 2 it
also shows that the choice of priors in this case drasti-
cally relaxes the assumption of smoothness on w(z), the
dark blue realization for example showing very large vari-
ations. Note that the peaks in the density distribution
for κ2 and ρ are similar as in the case of more informative
priors. These results show nicely that our prior choices
in the main paper are sensible and not overly restrictive.
They also demonstrate that the correlation length is not
a simple specifier of the variabilty across realizations, as
previously discussed in Section IV.

ACKNOWLEDGMENTS

We would like to thank the Institute for Scalable Sci-
entific Data Management for supporting this work. Part
of this research was supported by the DOE under con-
tract W-7405-ENG-36. UA, SH, KH, and DH acknowl-
edge support from the LDRD program at Los Alamos Na-
tional Laboratory. KH was supported in part by NASA.



16

SH and KH acknowledges the Aspen Center for Physics,
where part of this work was carried out. We would like

to thank Andreas Albrecht, Eric Linder, Adrian Pope,
Martin White, and Michael Wood-Vasey for useful dis-
cussions.

[1] A.G. Riess et al. [Supernova Search Team Collaboration],
Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201.

[2] S. Perlmutter et al. [Supernova Cosmology Project Col-
laboration], Astrophys. J. 517, 565 (1999), arXiv:astro-
ph/9812133.

[3] M.J. Drinkwater et al., Mon. Not. Roy. Astron. Soc. 401,
1429 (2010), arXiv:0911.4246 [astro-ph.CO].

[4] D. Schlegel, M. White, and D. Eisenstein,
arXiv:0902.4680 [astro-ph.CO]

[5] LSST Science Book, Version 2.0. [LSST Science
Collaborations and LSST Project Collaboration],
arXiv:0912.0201 [astro-ph.IM].

[6] D.J. Schlegel et al., arXiv:1106.1706 [astro-ph.CO].
[7] N. Gehrels, arXiv:1008.4936 [astro-ph.CO].
[8] A. Refregier, A. Amara, T. D. Kitching, A. Ras-

sat, R. Scaramella, J. Weller and f. t. E. Consortium,
arXiv:1001.0061 [astro-ph.IM].

[9] C. Wetterich, Nucl. Phys. B 302, 668 (1988); B. Ra-
tra and P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988);
P.J.E. Peebles and B. Ratra, Astrophys. J. 325, L17
(1988); R.R. Caldwell, R. Dave and P.J. Steinhardt,
Phys. Rev. Lett. 80, 1582 (1998) .

[10] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10,
213 (2001), arXiv:gr-qc/0009008.

[11] E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003),
arXiv:astro-ph/0208512.

[12] M. Hicken et al., Astrophys. J. 700, 1097 (2009),
arXiv:0901.4804 [astro-ph.CO].

[13] R. Amanullah et al., Astrophys. J. 716, 712 (2010),
arXiv:1004.1711 [astro-ph.CO].

[14] M. Sullivan et al., arXiv:1104.1444 [astro-ph.CO].
[15] A.R. Cooray and D. Huterer, Astrophys. J. 513, L95

(1999), arXiv:astro-ph/9901097; I. Maor, R. Brustein
and P.J. Steinhardt, Phys. Rev. Lett. 86, 6 (2001)
[Erratum-ibid. 87, 049901 (2001)], arXiv:astro-
ph/0007297; J. Weller and A.J. Albrecht, Phys.
Rev. Lett. 86, 1939 (2001), arXiv:astro-ph/0008314.

[16] R.A. Daly and S.G. Djorgovski, Astrophys. J. 597,
9 (2003), arXiv:astro-ph/0305197; D. Huterer and
A. Cooray, Phys. Rev. D 71, 023506 (2005), arXiv:astro-
ph/0404062; C. Zunckel and R. Trotta, Mon. Not. Roy.
Astron. Soc. 380, 865 (2007), arXiv:astro-ph/0702695;
C. Clarkson and C. Zunckel, Phys. Rev. Lett. 104,

211301 (2010), arXiv:1002.5004 [astro-ph.CO].
[17] F. Simpson and S.L. Bridle, Phys.Rev. D, 73, 083001

(2006), arXiv:astro-ph/0602213.
[18] T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann,

S. Habib, and D. Higdon, Phys. Rev. D 82, 103502
(2010), arXiv:1009.5443 [astro-ph.CO].

[19] T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann,
S. Habib, and D. Higdon, Phys. Rev. Lett. 105, 241302
(2010), arXiv:1011.3079 [astro-ph.CO].

[20] E. Komatsu et al. [ WMAP Collaboration ], Astrophys.
J. Suppl. 192, 18 (2011), arXiv:1001.4538 [astro-ph.CO].

[21] J.R. Bond, G. Efstathiou, and M. Tegmark, Mon.
Not. Roy. Astron. Soc. 291, L33 (1997), arXiv:astro-
ph/9702100.

[22] Y. Wang and P. Mukherjee, Phys. Rev. D 76, 103533
(2007), arXiv:astro-ph/0703780.

[23] O. Elgaroy and T. Multamaki, Astron. & Astrophys.
471, 65 (2007), arXiv:astro-ph/0702343.

[24] P.S. Corasaniti and A. Melchiorri, Phys. Rev. D 77,
103507 (2008), arXiv:0711.4119 [astro-ph].

[25] S. Banerjee, B.P. Carlin, and A.E. Gelfand, Hierar-

chical Modeling and Analysis for Spatial Data, New
York: Chapman and Hall (2004); C.E. Rasmussen and
K.I. Williams, Gaussian Processes for Machine Learning,
Boston: MIT Press (2006).

[26] D. Gamerman and H.F. Lopes, Markov Chain Monte

Carlo: Stochastic Simulation for Bayesian Inference,
New York: Chapman and Hall (2006).

[27] A. Gelman, B. Carlin, H. Stern, and D. Rubin, Bayesian
Data Analysis, New York: Chapman and Hall (2004).

[28] M. Kowalski et al., Astrophys. J. 686, 749 (2008).
[29] W.J. Percival et al., Mon. Not. Roy. Astron. Soc. 401,

2148 (2010), arXiv:arXiv:0907.1660 [astro-ph].
[30] H-J. Seo and D. J. Eisenstein, Astrophys. J 665, 14

(2007), astro-ph/0701079.
[31] D. J. Eisenstein, H-J. Seo, and M. White, Astrophys. J.

664, 660 (2007), astro-ph/0604361.
[32] C. Escamilla-Rivera, R. Lazkoz, V. Salzano and

I. Sendra, arXiv:1103.2386 [astro-ph.CO].
[33] J.O. Berger, V. de Oliveira, and B. Sansó, Journal of the
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