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The advent of precise measurements of the cosmic microwave background (CMB) anisotropies
has motivated correspondingly precise calculations of the cosmic recombination history. Cosmic
recombination proceeds far out of equilibrium because of a “bottleneck” at the n = 2 level of
hydrogen: atoms can only reach the ground state via slow processes: two-photon decay or Lyman-α
resonance escape. However, even a small primordial abundance of molecules could have a large effect
on the interline opacity in the recombination epoch and lead to an additional route for hydrogen
recombination. Therefore, this paper computes the abundance of the H2 molecule during the cosmic
recombination epoch. Hydrogen molecules in the ground electronic levels X1Σ+

g can either form from

the excited H2 electronic levels B1Σ+
u and C1Πu or through the charged particles H+

2 , HeH+ and
H−. We follow the transitions among all of these species, resolving the rotational and vibrational
sub-levels. Since the energies of the X1Σ+

g –B
1Σ+

u (Lyman band) and X1Σ+
g –C

1Πu (Werner band)
transitions are near the Lyman-α energy, the distortion of the CMB spectrum caused by escaped
H Lyman-line photons accelerates both the formation and the destruction of H2 due to this channel
relative to the thermal rates. This causes the populations of H2 molecules in X1Σ+

g energy levels
to deviate from their thermal equilibrium abundances. We find that the resulting H2 abundance is
10−17 at z = 1200 and 10−13 at z = 800, which is too small to have any significant influence on the
recombination history.

PACS numbers: 98.70.Vc, 95.30.Ft, 98.62.Ra

I. INTRODUCTION

The era of percent-level precision cosmology started
with the exquisite measurements of the cosmic microwave
background (CMB) anisotropies by the Wilkinson Mi-

crowave Anisotropy Probe (WMAP) satellite [1]. The
CMB anisotropies are a very useful tool for cosmologists
for two reasons. First, the shapes and normalizations
of the temperature and polarization spectra are sensitive
to a host of cosmological parameters [2]. Second, the
physics underlying the CMB power spectrum is thought
to be well understood. It can be calculated by linear
perturbation theory of the Einstein and Boltzmann equa-
tions around a homogeneous, isotropic background [3–5];
the perturbation equations can be solved rapidly by mod-
ern numerical codes that have achieved agreement at the
0.1% level in code comparisons [6]. However, to solve
these equations one needs to know the number density of
free electrons as a function of redshift ne(z), the so called
recombination history, which enters into these equations
through the Thompson scattering of photons from free
electrons.

The first cosmological recombination calculations were
carried out more than 40 years ago [7, 8], showing the
importance of non-equilibrium hydrogen recombination
because of the high optical depth of the Lyman series
lines in the early universe. A hydrogen atom can only
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reach its ground state from the H i 2s level or 2p levels
via two-photon decay and redshifting out of the Lyman-α
line, respectively. The early analyses assumed Boltzmann
equilibrium of all n ≥ 2 levels of hydrogen, and thus
had to follow only ionized hydrogen H+ + e−, excited
hydrogen H∗(n ≥ 2), and ground-state hydrogen H(1s).

To obtain ne(z) to high accuracy, it is necessary to in-
clude additional physics. Thus theorists have considered
helium recombination [9–18]; deviations from Boltzmann
equilibrium for the n ≥ 2 levels of hydrogen [19–23]; a
host of two-photon processes [12, 15, 24–29]; the trans-
port of photons near Lyman-α due to multiple resonant
scattering [29–37]; and cross-talk among various lines and
the photoionization continuum [14, 38, 39].

The workhorse recombination code Recfast, used for
WMAP parameter constraints, was a fitting function
to such non-equilibrium calculations including all of the
physical processes recognized as important in the year
∼2000 [40, 41], and there have been some subsequent
updates [42]. Recfast was sufficiently accurate for the
observations of its time, however to fully take advan-
tage of the power of the Planck satellite data (launched
2009) it is important to find ne(z) to the sub-percent
level [42, 43]. This realization triggered a flurry of pa-
pers considering a host of new phenomena that could
affect the recombination history to the percent and sub-
percent level, culminating in two new publicly available
codes that properly treat the radiative transfer effects in
hydrogen and helium recombination [44, 45].

The current paper is a continuation of the same ef-
fort to reach the required level of accuracy. We con-
sider how the formation and destruction of hydrogen



2

molecules (H2) in the X1Σ+
g , B

1Σ+
u and C1Πu electronic

states can change the recombination history (see Ap-
pendix A for the explanation of molecular term symbols).
The reason that H2 might be able to change the recom-
bination history is that the Lyman and Werner bands
(X1Σ+

g –B
1Σ+

u and X1Σ+
g –C

1Πu) are near the Lyman-
α energy (hνLyα = 10.2 eV). Thus the excitation, de-
excitation, photodissociation, and photoassociation of
the H2 molecule can shuffle photons between the red and
the blue sides of the Lyman-α line. In an expanding Uni-
verse, a photon redder than Lyman-α is likely to simply
redshift and eventually become a part of the far-infrared
background, whereas a photon bluer than Lyman-α will
redshift into the Lyman-α frequency and excite a ground-
state hydrogen atom (which at z > 900 would have been
likely to be photoionized).

To assess how much effect this mechanism can have on
the hydrogen atom abundance we do an order of mag-
nitude calculation. The rate of absorption of photons
by a single H2 molecule is nγσc, where σ ∼ 10−18 cm2

is the average photon absorption cross section over the
Lyman-Werner band region and c is the velocity of light.
Also, nγ is the number density of distortion photons, i.e.
photons that are in excess of the black-body spectrum,
because in thermal equilibrium the rate of absorption and
emission of photons in any given line must be equal ac-
cording to detailed balance, so only distortion photons
can cause a net absorption rate. The total number of
photons absorbed per unit volume by H2 molecules dur-
ing the recombination era per hydrogen nucleus is then

∼ nH2nγσc∆t

nH
. Here, ∆t ≈ ∆ ln(a)/H ∼ 1013 sec is the

duration of recombination, where a is the scale factor
and H is the Hubble parameter around the recombina-
tion era. Since most of the distortion photons come from
hydrogen recombination nγ ∼ nH . The change in the
ground state abundance of atomic hydrogen due to this
effect, taking nH ∼ 400 cm−3 in the recombination era,
is then ∆xHI ∼ 108x[H2]. So, even a tiny quantity of
molecular hydrogen can have a noticeable effect on the
recombination history. It is worth noting that some mod-
els of early Universe chemistry have found x[H2] & 10−12

[46, 47] during the recombination epoch with simplified
(i.e. not level-resolved) reaction networks.

The calculation of the abundance of hydrogen
molecules has already been considered by many authors
but for a different cosmological goal, that is to assess the
effect of the H2 molecule on the cooling of metal-free gas
and its implications for primordial star formation [48–56].
Since direct radiative association to the X1Σ+

g electronic

level, i.e. 2H→H2(X
1Σ+

g ) + γ is forbidden, two sepa-
rate hydrogen atoms must reach the ground state of H2

through an intermediate route. For the case of the post-
recombination era when kBTCMB < 0.2 eV the accessible
routes are through the H+

2 [48] and H− [49, 50] intermedi-
ate states. Indeed, complex reaction networks have been
constructed to follow hydrogen chemistry [46, 53, 57–
60]. These have identified in particular the significance
of the recombination-induced CMB spectral distortion

[17, 61, 62] in controlling pregalactic photochemistry, the
importance of rate coefficients [63–65], and the impor-
tance of following transitions among the various rota-
tional and vibrational levels of the H+

2 ion at z < 500
[60].
However, at the redshift of interest for this paper,

z ∼ 1000, there is another route for the formation of
hydrogen molecules: the inverse Solomon process [66].
At this era there are enough ultraviolet photons (both
blackbody photons and spectral distortion photons) to
facilitate the photo-attachment of two hydrogen atoms
into an excited H2 molecule in one of the rovibrational
levels of either the B1Σ+

u (Lyman band) or C1Πu (Werner
band) electronic states with energies ∼ 10 eV. The ex-
cited H2 molecule will re-emit the photon and decay to
either a bound H2(X

1Σ+
g ) molecule, or to the continuum

of the X level (i.e. to two H atoms). In equation form,

2H + γ ↔ H2(B
1Σ+

u ,C
1Πu) ↔ H2(X

1Σ+
g ) + γ. (1)

This mechanism and the charged-particle processes (H−,
H+

2 , and HeH+) control the H2 abundance at high red-
shift. The possible effect on hydrogen atom recombi-
nation is the main focus of this paper. We note that
Ref. [66] found only a small production of H2 via this
mechanism, but they did not include the spectral distor-
tion photons in their rate coefficient and hence the total

rate of H2 production could be many orders of magnitude
larger. Of course, the same spectral distortion also drives
H2 photodissociation – the left arrows in Eq. (1) – so the
net effect on the H2 abundance requires a detailed calcu-
lation. Deviations from thermal equilibrium abundances
arise not from the amplitude of the ultraviolet photon
spectrum, but the way in which its peculiar shape beats
against the forest of H2 lines and dissociation continua.
Since we work at z > 800 we will not distinguish the
matter versus radiation temperature in this paper.
This paper is organized as follows: in Sec. II we write

down the rate equations for the bound-bound and bound-
free transitions. These equations are then solved in the
steady state approximation and the results are presented
in Sec. III. We discuss the size of the H2 abundances
found in the previous chapter on the absorption of Ly-α
photons and conclude in Sec. IV.

II. ABUNDANCE CALCULATION

In the standard hydrogen recombination calculation
[41] one follows the evolution of several hundred energy
levels of the H i, He i, and He ii atoms by including all
bound-bound and bound-free transitions and treating the
radiative transfer of line photons in the expanding uni-
verse using the Sobolev approximation [33, 67]. A similar
treatment can be used for the H2 molecule.
This section is organized as follows: we begin with a

description of the reactions included (Sec. II A) and then
turn to the rate equations (Sec. II B) and the steady-state
approximation (Sec. II C). Finally, we describe our model
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for the molecular data (Sec. II D) and the radiation field
(Sec. II E), which is required in order to evaluate the
transition rates among H2 levels. The inclusion of the
charged-particle reactions is described in Sec. II F.

A. Basic reactions

Here, we consider the ground X and the excited B and
C electronic states of the hydrogen molecule. The latter
are technically not bound since they can undergo spon-
taneous radiative dissociation, but they are long-lived.
We designate them with their rotational (J) and vibra-
tional (ν) quantum numbers; in the case of the C levels,
which are Λ-doubled, it is necessary to describe the par-
ity as either vector-like [C+, P = (−1)J ] or axial [C−,
P = −(−1)J ]. We consider only the bound energy lev-
els of these states up to rotational quantum number of
J = 20.
The bound-free radiative reactions involving these lev-

els (we do not consider the collisional reactions in this
paper) are the dipole-allowed transitions,

H2(B
1Σ+

u ) ↔ H(1s) + H(1s) + γ, (2)

and

H2(C
± 1Πu) ↔ H(1s) + H(1s) + γ. (3)

The bound-bound reactions are the dipole-allowed tran-
sitions

H2(B
1Σ+

u ) ↔ H2(X
1Σ+

g ) + γ (4)

and

H2(C
± 1Πu) ↔ H2(X

1Σ+
g ) + γ, (5)

and the quadrupole-allowed transition,

H2(X
1Σ+

g , νJ) ↔ H2(X
1Σ+

g , ν
′J ′) + γ. (6)

There are in principle other quadrupole-allowed transi-
tions; however those involving the B and C electronic
states will be small compared to the dipole-allowed tran-
sitions (B,C→X). We consider quadrupole transitions
among the levels of the X electronic state with differ-
ent rovibrational quantum numbers νJ because there are
no allowed dipole decays from these levels, and hence
quadrupole decay might be significant in comparison
with excitation by (rare) ultraviolet photons.
We will denote the “thermal abundance” of an H2 level

by its abundance if the reaction 2H↔H2 were in equilib-
rium, i.e.

xi,th=
(2Ji + 1)gegnuc

g2H

(

2π~2

kBT

m[H2]

m2
H

)3/2

×e−[Ei−2EH(1s)]/kTnHx
2
H(1s), (7)

where gnuc is the nuclear degeneracy, ge = 1 is the elec-
tronic degeneracy, and gH = 4 is the degeneracy of an

H atom. Note that since the early Universe is not in
ionization (Saha) equilibrium, the choice of 2H↔H2 as
a reference reaction to define the thermal abundance is
merely for convenience, and that achieving the thermal
abundance does not imply full thermodynamic equilib-
rium.

B. Rate equations

The rate equations for the above reactions can be writ-
ten as:

ẋi = ẋi|bb + ẋi|bf , (8)

where i denotes the level under consideration (we always
resolve rotational and vibrational quantum numbers of
H2), the overdot ˙ denotes a derivative with respect to
proper time, and xi ≡ ni/nH where nH is the proper
density of hydrogen nuclei (in any form – H ii, H i, or
H2).
The bound-bound term is given by:

ẋi|bb=−
∑

j<i

Pij

{

xiAij [1 + f(νij+)]− xjAij
gi
gj

f(νij+)
}

+
∑

j>i

Pji

{

xjAji[1 + f(νji+)]− xiAji
gj
gi
f(νji+)

}

.

(9)

The first sum in the right hand side shows the rate of
decrease of xi by radiative decays to lower levels (spon-
taneous + stimulated) and increase of xi by radiative
absorption. The second sum is for radiative decays from
the higher levels to the level i and their inverse processes.
Here f(νji+) = f(νij + ǫ) is the photon phase space den-
sity on the blue side of the line. Also, Pij is the Sobolev
escape probability [68] (see Ref. [41] for a short deriva-
tion) which is the probability that a photon emitted in
the line to escape out of it via redshifting before being
reabsorbed by a molecule in a lower j level. It is given
by:

Pij =
1− e−τij

τij
, (10)

where the optical depth is

τij =
c3nH

8πHν3ij
Aij

(

gi
gj

xj − xi

)

. (11)

As a first step, we assume the H2 lines are optically thin,
that is |τij | ≪ 1, and therefore all the emitted photons
will escape out of the resonance (Pij ≈ 1). This as-
sumption must be checked at the end of the calculation
for self-consistency; later we will find it to be extremely
good for all lines.
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Similarly, the bound-free term can be written as

ẋi|bf =−xi

∫ Ei

Efree

αi(Ef )[1 + f(Ei − Ef )] dEf

+nHx
2
H(1s)

∫ Ei

Efree

βi(Ef )f(Ei − Ef ) dEf . (12)

The first term on the right hand side is for the disso-
ciation of the hydrogen molecule into two H(1s) atoms
via radiative decay to an unbound vibrational state,
and the second term is for the inverse process. Here
Efree = −1 Hartree is the energy of two separated H(1s)
atoms with no relative kinetic energy. The functions
αi(E)dE = Ai→free(E)dE are the Einstein coefficients
for the decay from a bound state i to the continuum
with energy E. The radiative absorption coefficients βi

can then be calculated using the principle of detailed bal-
ance:

βi(E) =

(

xi

nHx2
H

)

th

1 + fth(Ei − E)

fth(Ei − E)
αi(E). (13)

Using equilibrium thermodynamics to find the thermal
abundance ratio (Eq. 7) and plugging in the blackbody
spectrum fth(E) = 1/(eE/kBT − 1) we finally find

βi(E) =
(2Ji + 1)gegnuc

g2H

(

2π~2

kBT

m[H2]

m2
H

)3/2

×e−(Ei−Efree)/kBTαi(E). (14)

Here, gH = 4 is the degeneracy of the ground energy
level of the hydrogen atom, ge is the electron spin degen-
eracy of the bound state i and is equal to 1 for all the
states considered in this paper as they are all in singlet
electronic spin states. Finally, gnuc is the nuclear spin
degeneracy of the bound state i. It can be calculated by
demanding that the total wavefunction change the sign
under exchange of the two protons; this implies gnuc = 1
for the even-J energy levels of the X, B and C+ electronic
states and for the odd-J states of C−. For the rest of the
bound states the protons are in their triplet spin state,
i.e gnuc = 3.

C. Steady state approximation

We can rewrite the rate equations above in matrix
form. To do that it is convenient to define the bound-
bound transition matrix:

Rij =







Aij [1 + f(νij)] j < i
(gj/gi)Ajif(νij) i < j
0 i = j.

(15)

In addition, we define the dissociation term

γi =

∫ Ei

Efree

αi(Ef )[1 + f(Ei − Ef )] dEf , (16)

and the source term

si =

∫ Ei

Efree

nHx
2
H(1s)βi(Ef )f(Ei − Ef ) dEf . (17)

Then it is straightforward to show that the Eqs. (8), (9)
and (12) can be written in the compact form

ẋi = −
∑

j

Tijxj + si (18)

where the transition matrix T is defined by:

Tij = δij

(

∑

k

Rik + γi

)

−Rji. (19)

If the transition times are much smaller than the age of
the Universe, i.e. if the smallest eigenvalue λmin of T is
≫ H , we can take ẋi = 0. Then the abundances can be
found by the solution to the linear system:

x = T−1s. (20)

In fact, since the steady-state H2 abundance is expo-
nentially increasing at the end of recombination, we
would like λmin to be larger than ζH , where ζ =
d lnxss[H2]/d lna. The steady-state approximation is
found to be valid until z ≈ 810, i.e. during the por-
tion of the recombination epoch most relevant to CMB
anisotropies. We will find the smallest eigenvalue of T to
become ≈ H at z = 750.

D. Molecular data

We require the bound-bound and bound-free Einstein
coefficients Aij and αi. These must be calculated since
no tabulations of the full radiative dissociation spectrum
from the B and C states is available (Ref. [69] gives in-
tegrated radiative dissociation rates and mean photon
energies, but not a spectrum as required here).
For the energy levels and dipole transitions, we use the

Born-Oppenheimer approximation. This may not be ac-
curate for nearly degenerate vibrational levels of the B
and C+ states: these can mix if they have the same rota-
tional quantum number J (C− states cannot mix with B
by parity conservation). In these cases, if e.g. the decay
rate to a particular X rovibrational level is much greater
for the pure B than the pure C+ state, then the mixing
can enhance the decay rate from the energy eigenstate
that is “mostly” C+ [69, 70]. However, in these cases we
expect that the rates involving the B state would have a
greater impact on the H2 abundance than the C+ state.
Therefore, the Born-Oppenheimer approximation is suf-
ficient for the purpose of order-of-magnitude estimation
of the H2 abundance.
We have acquired the electronic energy level surfaces

from the literature for the X [71], B [72] and C [73]
states, and used them to construct Born-Oppenheimer
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FIG. 1: The P -branch contribution to the spontaneous disso-
ciation of H2(B

1Σ+
u ) from the J = 14, ν = 9 level, as a func-

tion of the center-of-mass frame kinetic energy of the final H
atoms. Note the quasibound resonance peak at Ek = 0.0009
Hartree, which contains ∼ 4% of the integrated rate.

wave functions. The electronic dipole matrix elements
have also been obtained from the literature for X–B [74]
and X–C [73] transitions. (The expressions for Einstein
coefficients can be found in Appendix B.) Note that for
the radiative dissociation of the B and C electronic states,
we consider decays to the vibrational continuum of the
X electronic state.
The dissociation coefficient αi(Ef ) is a complicated

function of the final energy Ef due to the existence of
quasibound resonances of the H2 X1Σ+

g electronic state
that ultimately dissociate via tunneling through the cen-
trifugal barrier. This behavior can still be captured by
the Born-Oppenheimer approximation as long as one uses
sufficiently small steps in Ef ; see Fig. 1. (In principle,
there is an additional requirement that the resonances
not be radiatively broadened, but since they have no
allowed decays this is not a problem for us.) In prac-
tice, when computing the integrals in Eq. (12) we use
the adaptive step size integrator odeint of Ref. [75].
We also consider the effect of adding the electric

quadrupole transitions among different X1Σ+
g states on

the H2 abundances by using the results of Ref. [76] for
the corresponding Einstein coefficients.

E. Radiation field

The above equations require knowledge of the radia-
tion field as a function of the photon energy, f(E). The
relevant range of energies extends up to 0.54 Hartree

(14.7 eV). This includes the range in which the spec-
tral distortion is significant. It also extends to ener-
gies greater than the ionization energy of H i, EI =
13.6 eV=0.5 Hartree.
The CMB blackbody component is specified by the ra-

diation temperature. This is T (z) = 2.728(1+ z) Kelvin,
and we have not distinguished between the matter tem-
perature and the radiation temperature (in our redshift
range z > 800 these differ by < 0.1%). The number
density of hydrogen nuclei is

nH(z) =
(1− Y )ρcrΩb,0

mp
(1 + z)3, (21)

where Y = 0.24 is the mass weighted primordial helium
abundance, ρcr = 1.8788× 10−29h2 g cm−3 is the critical
density of the universe at the present time, mp is the
proton mass and Ωb,0h

2 = 0.022 is the baryon density
parameter at the present time.
The radiation field at E < EI is obtained using the

code of Ref. [28], which includes both CMB blackbody
and spectral distortions. This code self-consistently fol-
lows the absorption and emission of Lyman-series pho-
tons in the H i lines. In the case of two-photon transi-
tions, it follows only the harder rather than the softer of
the two photons. This leads to small errors at E < 3

8EI,
because the lower-energy photon in the decay

H(2s) ↔ H(1s) + γ + γ (22)

is ignored. However, at the redshifts of interest here
(z > 800) this is not a significant oversight because
the CMB blackbody is dominant at these low energies,
and even at later times the distortion from redshifting of
higher-energy photons (Lyman-α or the hard 2γ photons)
is more important than the soft 2γ photons. The code
also includes the spectral distortion due to two-photon
decays from higher levels H(3s,3d), and due to the Ra-
man process

H(2s) + γ ↔ H(1s) + γ, (23)

which results in a significant addition to the photons at
E > ELyα.
The code of Ref. [28] does not track the extreme ultra-

violet (EUV), defined here as photons energetic enough
to ionize hydrogen, E ≥ EI. The reason is that the Uni-
verse is optically thick to such photons: in< 10−7 Hubble
times these photons will be absorbed. There is, however,
a constant stream of EUV photons being produced via
direct recombinations to the ground state,

H+ + e− ↔ H(1s) + γEUV. (24)

The abundance of these photons will thus rapidly reach
its equilibrium value [38]; in the limit of f(E) ≪ 1 so
that we can neglect stimulated recombinations, we have

f(E) = e−E/kBT n[H+]ne/n[H(1s)]

{n[H+]ne/n[H(1s)]}Saha
. (25)
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FIG. 2: The radiation spectrum at z = 1142, showing both
the CMB blackbody spectrum (straight line) as well as the
full calculation including H spectral distortions.

[The “temperature” in this equation (both in the expo-
nential and the Saha abundance ratio) is technically the
matter temperature Tm since the photons are being pro-
duced and destroyed by interaction with matter, but at
high redshift we do not make this distinction.]
The overall radiation spectrum is shown in Fig. 2 at

z = 1142.
In our analysis, we take the output of the standard

calculation, namely the abundance of hydrogen atoms
and the phase space density of photons as a function of
redshift and energy, as the input in our calculation of
the abundance of hydrogen molecule levels. Of course,
if H2 abundances turn out to be high enough to make a
considerable change in the recombination history or radi-
ation spectrum, one must perform a more self-consistent
calculation in which the feedback of H2 molecules on hy-
drogen recombination is taken into account properly by
solving the rate equation for all of the species simultane-
ously. But for the standard cosmology, we will see that
this situation does not arise.

F. The charged-particle processes

We have investigated the processes that produce H2

from neutral hydrogen atoms and radiation. However,
there are other mechanisms that contribute to their for-
mation and destruction, namely the H−, H+

2 , and HeH+

pathways (these have been found to be dominant at low
z in previous works, e.g. Refs. [46, 60]).
All of the reactions that we consider in this paper,

including these pathways, are shown in Fig. 3. They

γ

γ

γ

He H
+

H
+

2 H
−

He + H
+

(H
e,

H
)

(e−,H)(H,H+)
γ

H + e−

H2(C
±)

H2(B) γ

HI + HI

H2(X)

γ

HI + HI

γ

H + H
+

FIG. 3: The network of routes for the formation and destruc-
tion of an H2 molecule that we consider in this paper.

include the radiative attachment/detachment for H−

H+ e− ↔ H− + γ, (26)

the radiative association/dissociation of H+
2

H+H+ ↔ H+
2 + γ, (27)

and that for HeH+

He + H+ ↔ HeH+ + γ. (28)

There are subsequent nonradiative reactions that gen-
erate H2 (and at sufficient temperature can destroy it by
operating in reverse): the H− channel

H− +H ↔ H2 + e− (29)

and the H+
2 channel

H+
2 +H ↔ H2 +H+. (30)

The latter can be aided by proton exchange from HeH+:

HeH+ +H ↔ He + H+
2 . (31)

1. Positive channel: H+

2 and HeH+

The positive ion channel (H+
2 ) must be treated via

level-resolved chemistry [46, 59, 60]. Our solution to
this is to extend the T-matrix to include the additional
species. That is, we write

T =







TH2,H2 TH2,H
+
2

TH2,HeH+

TH+
2 ,H2

TH+
2 ,H+

2
TH+

2 ,HeH+

THeH+,H2
THeH+,H+

2
THeH+,HeH+






, (32)

and similarly the source vector s and abundance vec-
tor x are extended. The model H2 molecule includes
1435 levels (X, B, C+, C−) with J ≤ 20. We follow all
423 rovibrational levels of H+

2 (X
2Σ+

g ). However, we treat

the HeH+(X1Σ+) ion assuming Boltzmann distribution
of the rovibrational levels at the radiation temperature,
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which is a good approximation since electric dipole tran-
sitions are allowed and rapidly thermalize the level pop-
ulations. The full T-matrix is thus 1859×1859.

The sub-block of the T-matrix and s-vector involving
H+

2 and HeH+ was computed in Ref. [60]: it contains
Eqs. (27), (28), and (31), as well as contributions associ-
ated with the electric quadrupole transitions among the
rovibrational states of H+

2 (X
2Σ+

g ). We used the code and
rate coefficients of Ref. [60] to generate the corresponding
matrices and source vectors. Since none of our reactions
directly connect HeH+ to H2 (they can only intercon-
vert via H+

2 ), we set TH2,HeH+ = 0 and THeH+,H2
= 0.

It therefore remains only to determine the sub-blocks
TH2,H

+
2

and TH+
2 ,H2

, which arise from Eq. (30). These

are related by the usual detailed balance relation,

Rji

Rij
=

xi,th

xj,th
=

x[H(1s)]

x[H+]

gi
2gj

e(Ej+EH(1s)−Ei−EH+ )/kBT ,

(33)
where i represents any state of H2, j any state of H+

2 ,
EH(1s)−EH+ = −13.6 eV, and the factor of 2 comes from

the degeneracy ratio of H versus H+. The corresponding
contributions to T can then be determined from Eq. (19).

The rovibrational level-resolved forward reaction rates
Rij for Eq. (30) are unfortunately not available in the
literature. Vibrationally resolved quantum-mechanical
rates have been calculated [77], however their calcula-
tion did not resolve the rotational levels and did not
well-sample the lowest energies required here. There is
also the experimentally measured low-temperature rate
of 6.4 × 10−10 cm3 s−1 [78], which once again did not
resolve rovibrational levels (see also the recent measure-
ments of the reaction of D+

2 +H [79]). The experiment of
Ref. [78] did however show by isotopic substitution that
the reaction mechanism is charge transfer, i.e. the two
nuclei in the initial H+

2 ion remain in the H2 molecule that
is produced. Therefore the ortho- or para- nuclear spin
character should be preserved in the reaction of Eq. (30).

Since the calculations of Ref. [77] suggest that at en-
ergies of several tenths of an eV the reaction H+

2 (ν =
0)+H→H2+H+ is most likely to leave the final molecule
in the ν = 4 vibrational state, a simple prescription is
to assume that (i) the rate coefficient for this reaction
is 6.4 × 10−10 cm3 s−1; (ii) the final vibrational state is
ν = 4; and (iii) the rotational quantum number (N for
H+

2 and J for H2) is unchanged in the collision.

2. Negative channel: H−

Previous work [46, 59, 60] has established that at
z > 200, reaction Eq. (26) forces the H− abundance to
its thermal equilibrium value because (i) the matter and
radiation temperatures are equal, and (ii) photodetach-
ment by blackbody photons is the main sink for H− on
account of the strong CMB field and the low binding en-
ergy of H−, B[H−] = 0.754 eV. The thermal abundance

is then given by

x[H−] =
nHxexH(1s)

4

(

2π~2

mekBT

)3/2

eB[H−]/kBT . (34)

The associative detachment reaction, Eq. (29), can be
incorporated by adding appropriate sources and sinks.
For the sources, we add

si+ = kinHx[H
−]x[H(1s)], (35)

where “+ =” means that the quantity is added to si.
Here ki is the rate coefficient to level i of H2, which
we obtain from the calculations of Ref. [80]; we use the
T = 3000K column of their table as it is most appro-
priate for the recombination epoch and the temperature
dependences are weak. Detailed balance implies a corre-
sponding sink for H2 molecules:

Tii+ =
kinHx[H

−]x[H(1s)]

xi,th
. (36)

(We may use xi,th here since the negative species are
catalysts and hence have no effect if H2 is at the ther-
mal abundance; one may check explicitly that Tii in fact
is proportional to nH(1s) with a coefficient that depends
only on temperature.)

III. RESULTS

A. H2 abundance

We now determine the H2 abundance by two methods:
first, with only the Lyman and Werner band reactions
as sources and sinks for H2; and second, including the
charged particle reactions as well. The latter, of course,
is our final result.

1. H2 dipole and quadrupole transitions only

The abundances of the H2 molecule in different rovi-
brational states xi can be found by using Eqs. (14–20).
The total abundance of all H2 molecules irrespective

of rovibrational state is shown in Fig. 4. This abundance
shows the expected rapid increase in the early stages of
recombination as the temperature drops. At z . 1400,
the photon phase space density f(E) begins to deviate
substantially from the Planck spectrum. One can see
that the sense of the resulting spectral distortion is a
temporary decline in the abundance of H2, followed by a
rapid recovery as the spectral distortion redshifts below
the Lyman-Werner bands.
We show in Fig. 5 the ratio xi/xi,th of the abundances

of the states in all vibrational levels within the X1Σ+
g

J = 0 sequence of the hydrogen molecule to their abun-
dances in thermal equilibrium at z = 1142. Here again
“equilibrium” refers to the abundance xi,th that would be
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FIG. 4: The abundance of H2 molecules, x[H2], as a function
of redshift. Short dashed blue and dotted magenta lines show
the cases where we do and do not include quadrupole transi-
tions between X levels, respectively, and only the Lyman and
Werner band reactions can create and destroy H2. The long
dashed red curve shows the case when all the relevant reac-
tions are included. The green solid curve shows the thermal
abundances of Eq. (7).

obtained if the reaction H2(X
1Σ+

g , ν, J) ↔ 2H(1s) were
in equilibrium at the actual H(1s) abundance (the defi-
nition is important since the ionization fraction deviates
from Saha). The first two vibrational levels have approx-
imately the same xi/xi,th; then there is a sudden drop
in this ratio going from the second to the third vibra-
tional level, after which xi/xi,th increases steadily and
approaches 1 for the weakly bound states. The physi-
cal reason for this situation is that a photon in or red-
ward of the H i Lyman-α line is capable of exciting an H2

molecule only from the ν ≥ 2 vibrational levels (starting
from ν = 0, 1 there is insufficient energy to reach the
B or C electronic states). Thus the ν ≥ 2 vibrational
levels are rapidly photodissociated. The inclusion of the
quadrupole transitions enables H2(X

1Σ+
g ) molecules to

switch among the various vibrational levels and leads to
a washing-out of the step in abundance versus ν.

2. Inclusion of charged particle reactions: H+

2 , HeH+, and
H−

We now turn on our full reaction network. We display
the abundances of the various levels of H2 by plotting
the logarithmic abundance log10(xi/gi) versus the level
energy. This is a straight line in the case of a thermal
distribution of levels. The actual result is shown in Fig. 6
for the X electronic states on the left and the B, C+ and

FIG. 5: The ratios of the abundances of the H2 X1Σ+
g levels

with J = 0 to their thermal values at z = 1142, plotted as a
function of the vibrational quantum number ν. Blue stars and
magenta squares show the cases with and without quadrupole
transitions between the X electronic levels, respectively. This
plot included only the Lyman and Werner band reactions as
sources and sinks for H2.

C− on the right. We can see that the highly excited rovi-
brational levels of the X electronic state are near thermal
equilibrium, but the lower levels are underpopulated by
∼ 2 orders of magnitude. On the other hand the B, C+

and C− states are overpopulated compared to the equi-
librium abundance and they become more overpopulated
relative to thermal for higher energy levels. This is a con-
sequence of the shape of the spectral distortion.

Thus far we have assumed the steady state approxima-
tion, i.e. that all of the eigenvalues of the T-matrix are
large compared to the Hubble expansion rate H . The
minimum eigenvalue of T is shown in Fig. 7 together
with the Hubble rate. We can see that for z > 800
the minimum eigenvalue λmin is much larger than the
Hubble rate. In fact, due to the rapid increase in the
H2 abundance, we should really be comparing λmin to
d lnx[H2]/dt; the crossing of these occurs at z ≈ 810,
which is roughly where we expect the steady state ap-
proximation to fail. As a consequence, we do not show
H2 abundances at lower redshifts.

In Fig. 4 we show the sum of the abundances of all
the X, B and C± levels of the H2 molecule as a function
of redshift (in practice, this sum is dominated by the X
electronic state). Short dashed blue and dotted magenta
lines show the cases where we do and do not include
quadrupole transitions between X levels, respectively,
and only the Lyman and Werner band reactions can cre-
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FIG. 6: The abundance of each H2 level plotted versus the level energy at z = 1142. In the left panel we show the abundances
of X levels and in the right panel the B, C+ and C− levels. The solid line shows the thermal equilibrium abundances.

FIG. 7: The minimum eigenvalue of the rate matrix T (solid
blue) as compared to the Hubble rate (dashed magenta).

ate and destroy H2. The long dashed red curve shows
the case when all the relevant reactions are included.
The green solid curve shows the thermal abundances of
Eq. (7). We can see that the addition of new transi-
tions consistently causes the non-thermal abundance of
H2 molecules to increase, while always staying below the
thermal abundance.

We also show the abundances of the intermediate

species in Fig. 8. The left panel shows the abundances of
the charged particles and the right panel the excited elec-
tronic states B and C± of the hydrogen molecule. Even
though the abundances of the excited states are much
smaller than those of the charged particles, they must be
included since the transition rates between these excited
states and the H2 ground state can be much higher than
the transition rates connecting the charged particles to
the ground state.

A related possible formation channel for H2 that is
mentioned in the literature is from the reaction of an
excited and a ground-state H atom [66]:

H(1s) + H(n = 2) ↔ H2(X
1Σ+

g ) + γ. (37)

This reaction proceeds if the reactants approach each
other in the vibrational continuum of a 1Σ+

u or 1Πu elec-
tronic state (usually B or C), and in order to produce
a bound H2 molecule the photon must have an energy
E > E(Lyα). Since the phase space density of photons is
a steeply decreasing function of energy (including a step
at Lyman-α), we would expect that the photodissociation
of the levels of H2 is dominated by transitions through
the discrete vibrational levels of B1Σ+

u and C1Πu rather
than the higher-energy continuum. One can also check
the formation of H2 by this mechanism directly: using
the rate coefficient 2.09× 10−14(T/300 K)0.24e−T/37800K

cm3 s−1 [57], we find a maximum production rate of H2

molecules per H nucleus per Hubble time of 7 × 10−12

at z = 1250. This channel is thus subdominant to the
HeH+/H+

2 channel. All of these are small compared to
the transitions through H2(B

1Σ+
u ,C

1Πu).
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FIG. 8: Here we show the abundances of the intermediate species, H−, H+

2 , and HeH+ in the left panel and H2(B,C
±) in the

right panel, as a function of redshift during the recombination epoch.

B. Effect on recombination

Since some of the X–B and X–C transitions have en-
ergy above the Lyman-α energy, the absorption or emis-
sion of a photon in this line by an H2 molecule adds or
removes a photon that would have otherwise excited a
hydrogen atom at a later time, and therefore it will al-
ter the process of recombination of hydrogen atoms. To
estimate this effect, we must estimate both the Sobolev
optical depth of the various lines using Eq. (11), and the
rate of production of photons in the X–B and X–C bands.

In Fig. 9 we show the net Sobolev optical depth for
all X–B and X–C lines. We can see that the optical
depth of the sum of all the lines is much smaller than
one, and therefore each individual line is also optically
thin. This then justifies using Pij = 1 for the Sobolev
escape probability throughout this paper.

The net rate of emission of photons in the X–B and X–
C bands at energies above the Lyman-α energy is shown
in Fig. 10. We see that there was no absorption or emis-
sion in this line at very early times when the universe was
in thermal equilibrium. However, at redshifts of ∼ 1500
the deviation of the hydrogen molecule abundances from
their thermal values, coupled with the CMB spectral dis-
tortion, lead to a net emission of super Lyα photons for
both the Lyman and Werner bands. The Lyman band,
however, started absorbing super Lyα radiation later on.
The net number of emitted photons turns out to be neg-
ligible (∼ 10−11) and so it can only cause a very small
change in the abundance of H atoms.

There is one final possibility for reactions involving H−

and H+
2 to affect recombination, namely through the neu-

FIG. 9: Total Sobolev optical depth of all of the Lyman and
Werner lines as a function of redshift.

tralization reactions

H− +H+ ↔ 2H (38)

and

H+
2 + e− ↔ 2H, (39)

which – in combination with Eqs. (26) and (27) – lead
to a net recombination. They are, however, negligible:
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FIG. 10: The net rate of emission (i.e. emission minus ab-
sorption) of photons at E > E(Lyα) in the H2 Lyman and
Werner bands, measured in photons per H nucleus per Hubble
time.

even for the “upper limit” rate coefficient for Eq. (38)
of 5 × 10−9 cm3 s−1 [63], we obtain a maximum recom-
bination rate per Hubble time (ẋ1s/H) of 1.1 × 10−11.
Even this is too large since Eq. (38) usually leaves one
of the hydrogen atoms in an excited level (principally
n = 3) [81] from which it has a large probability of being
photoionized. Similarly, for Eq. (39), the rate coefficient
at recombination-epoch temperatures is of order ∼ 10−8

cm3 s−1 [82], which implies recombination rates ẋ1s/H
of order 10−10.

IV. DISCUSSION AND CONCLUSION

Since the Lyman and Werner band transition energies
of H2 are near the H Lyα energy, it is expected that the
abundances of H2 energy levels deviate appreciably from
their thermal abundances. This is because the photon
phase space density has been distorted by the redshifted
Lyα photons as in the standard hydrogen atom recombi-
nation picture. However, it is not clear from the outset
whether this distortion to the photon phase space den-
sity increases or decreases the abundances of H2 levels
compared to their thermal abundances, since the spec-
tral distortion photons accelerate both the production
and destruction of H2. To answer this question and ulti-
mately to see to what extent the H2 molecules can affect
the recombination history we have in this paper carried
out a detailed calculation including all of the rovibra-
tional levels of the H2 X1Σ+

g , B
1Σ+

u , and C1Πu electronic
states up to rotational number J = 20, together with the

charged species relevant to the formation of hydrogen
molecules, that is H+

2 , HeH
+ and H−. We have calcu-

lated the bound-bound and bound-free dipole transition
rates for the Lyman and Werner bands of the hydro-
gen molecule using the Born-Oppenheimer approxima-
tion. Special care has been taken to find the resonances
of the bound-free transitions. The rate equations con-
necting the energy levels are then solved in the steady
state approximation and the level abundances are found
by a matrix inversion for each given redshift.
The main result of our paper is that the shape of

the CMB spectral distortion reduces the abundance of
H2 compared to the thermal abundance, resulting in
low H2 abundances throughout the recombination epoch;
see Fig. 4. The inclusion of the quadrupole transitions
among rovibrational levels of the X electronic state in-
creases the H2 abundance, and adding the charged par-
ticle processes increases the H2 abundances yet more,
while remaining below the thermal abundance. We find
x[H2] ∼ 10−16 during most of the recombination epoch,
rising to 10−13 at z = 800. We conclude that – despite
the high cross section for Lyman and Werner band ab-
sorption – H2 is not relevant for determination of the
primordial recombination history and CMB anisotropies.
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Appendix A: Molecular Term Symbols

Like the atomic term symbols, the molecular term sym-
bols are a convenient and concise way of writing the
symmetries and the angular momentum properties of the
electronic part of the wavefunction of a molecule. In the
case of a linear molecule, and ignoring the spin-orbit cou-
plings, the electronic angular momentum operators that
commute with each other and with the electronic Hamil-
tonian are (Ŝ2, Ŝz, L̂z), where z-axis is along the inter-
nuclear axis of the molecule. For homonuclear diatomic
molecule, which is the case we are dealing with, the term
symbol is conventionally written as

2S+1Λ
(+/−)
g/u (A1)

where S is the quantum number for the total spin oper-
ator Ŝ2, Λ is the absolute value of the eigenvalue of the
projection of the orbital angular momentum along the in-
ternuclear axis, L̂z. Different values of Λ are commonly
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shown by Σ, Π, ∆, Φ,... for Λ = 1, 2, 3, 4 · · · , respectively.
If the electronic wavefunction is even (gerade in German)
under parity it is shown by the symbol g and if it is odd
(ungerade) it is shown by the symbol u. For the Σ states,
i.e. Λ = 0, there is another symmetry, which is the reflec-
tion along an arbitrary plane containing the internuclear
axis. If the wavefunction is symmetric upon reflection
it is shown by a + sign and if it is anti-symmetric it is
shown by a − sign.
The number of degenerate states (with spin-orbit cou-

pling ignored) are:

(2S + 1)× 2 ifΛ 6= 0

(2S + 1) ifΛ = 0 (A2)

The ground state is usually shown by the letter X, and
the excited states by A, B, C, ... .
In this paper we are mainly dealing with the ground

electronic state of the hydrogen molecule, X1Σ+
g , and the

first three (bound) excited electronic states, B1Σ+
u and

C± 1Πu. The C± states have different parities under the
exchange of the two nuclei, as will be explained in more
detail in the next appendix.

Appendix B: Formulae for H2 dipole transitions

This appendix summarizes the notation and formulae
we use for the H2 molecular wave function and the dipole
transition rates.
We use unprimed coordinates (x, y, z) to denote a

laboratory-fixed frame, and primed (x′, y′, z′) to denote
a coordinate system that rotates with the molecule: the
z′-axis is taken to be parallel to the internuclear separa-
tion vector R, and the x′ axis is then chosen to lie in the
zz′-plane.
We use the Born-Oppenheimer (BO) approximation

to solve the Schroedinger equation for the hydrogen
molecule. In this approximation instead of solving one
partial differential equation for a wavefunction depend-
ing on 12 variables (3 for each particle) it is separated into
two partial differential equations, one for protons and one
for electrons. The success of this separation is due to the
large mass of the protons compared to electron. One can
then assume that the protons are moving so slowly that
we can solve the wavefunction of the electrons assum-
ing the protons are at a fixed separation R. One also
finds the eigenvalues of this equation, Ee(R), which then
serve as the potential in the Schroedinger equation for
the protons. The criterion for this approximation to be
valid is that the energy difference between the electronic
energy levels is large enough so that the approximation
of the adiabaticity is valid, i.e. the electrons do not jump
from one quantum state to another as the protons move.
Since Σ states are non-degenerate the application of the
BO approximation for them is straightforward. In the
case of Π electronic states, however, we need to consider
the two degenerate states, with opposite angular momen-
tum along the internuclear axis, simultaneously. Here, we

present the outline of the calculation for the Π states af-
ter which it will be clear how to change the result for the
Σ states.
For the Π electronic states the total wavefunction can

be separated as:

Ψ(r,R) = Φ+(R)χ+(r|R) + Φ−(R)χ−(r|R) (B1)

where r = r1, r2 are the positions of the two electrons
and R the internuclear separation vector. Also, χ± are
the solutions of the electronic part of the Schroedinger
equation:

(

− 1
2me

∇2
r1

− 1
2me

∇2
r2

+ V (r1, r2,R)
)

χ±(r1, r2|R)

= Ee(R)χ±(r1, r2|R) (B2)

and with angular momentum along the internuclear axis
of

(

L.R̂
)

χ± = ±χ± (B3)

where V in equation (B2) is the sum of the potential
energy among all the particles:

V (r1, r2,R) = e2

R2 − e2

|r1−
R

2 |2
− e2

|r2−
R

2 |2

− e2

|r1+
R

2 |2
− e2

|r2+
R

2 |2
+ e2

|r1−r2|2
(B4)

The action of the internuclear momentum operator on
χ± can be written as:

∇Rχ+ = ~a++χ+ + ~a+−χ−

∇Rχ− = ~a−+χ+ + ~a−+χ− (B5)

They are found by evaluating the following integrals:

~a±± =

∫

drχ∗
±(r|R)∇Rχ±(r|R) (B6)

By going to the frame of reference rotating with the
whole molecule one can show that:

~a+− = ~a−+ = 0 ~a++ = −~a−− = − i

R
cot(θ)êφ (B7)

Plugging equation B1 into the Schroedinger equation

(

− 1
2µ∇2

R
− 1

2me
∇2

r1
− 1

2me
∇2

r2
+ V (r1, r2,R)

)

Ψ(r,R)

= EtotΨ(r,R) (B8)

and using equations (B5) and (B7) we find the
partial differential equation for the nuclear (vibra-
tional+rotational) part of the wavefunction as:
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[

− 1
2µ

(

∇2
R
∓ 2i

R2

cot(θ)
sin(θ)

∂
∂φ − 1

R2 cot
2(θ)

)

+ Ee(R)
]

Φ±(R)

= EtotΦ±(R) (B9)

For the Σ electronic states one finds a similar equation
but without the terms containing cot(θ). The usual trick
of separating the radial and angular parts of the wave
function results in

Φ±(R) =
φνJ (R)

R
Y ±1
JM (R̂) (B10)

where Y s
JM is a spin-s spherical harmonic [83, 84].

(Some references, e.g. Ref. [70], use rotation matrices in-
stead of spin-weighted spherical harmonics, but these are
equivalent.) . Also, ν is the nuclear vibrational quantum
number and J and M are the total and z direction (of
the fixed laboratory frame) angular momentum quantum
numbers of the nuclei. For any given J , different vibra-
tional levels can be found as the eigenfunctions of the
following equation:

[

− 1
2µ

d2

dR2 + Ee(R) + J(J+1)−1
2µR2

]

φJν(R) = EνJφνJ (R)

(B11)

The corresponding equation for the Σ electronic states
is the same except that the effective angular momentum
potential is J(J + 1)/2µR2 instead. We solve the above
equation, and the one for the Σ electronic states, nu-
merically to find all the vibrational and rotational wave-
functions and energy levels of H2 molecules in C, B and
X electronic states. We use the values of Ee(R) for the
X ,B and C electronic state calculated by [71], [72] and
[73] respectively.
Since the dipole transitions are allowed for transitions

with initial and final states of opposite parity it is appro-
priate to construct a linear combination of the nuclear
wavefunctions so they become the eigenstates of the par-
ity operator. They are called C+ and C− states and are
given as:

ΨC±,νJM (r,R)=
φνJ (R)√

2R

[

Y +1
JM (R̂)χ+(r|R)

±Y −1
JM (R̂)χ−(r|R)

]

, (B12)

which are degenerate (Λ-doubled) in our level of approx-
imation.
Normalization of the total wavefunction then re-

quires
∫∞

0 |φνJ (R)|2dR = 1. Since the C electronic
states have parity u, i.e. χ(−r|R) = −χ(r|R),
the total wavefunction satisfies: ΨC±,νJM (r,−R) =

±(−1)J+1ΨC±,νJM (r,R).
The Einstein coefficients for dipole transitions are dis-

cussed in general textbooks, e.g. Refs. [85, 86]. In our
case, the C→X transition rates are as follows: for the
electric dipole transition of a H2 molecule from an ex-
cited state a = (C, νa, Ja) to a lower level b = (X, νb, Jb),

we have

Aab =
4e2(Ea − Eb)

3

3~4c3(2Ja + 1)
|Mab|2 , (B13)

where the matrix element is

|Mab|2 =

Ja
∑

Ma=−Ja

Jb
∑

Mb=−Jb

|〈ΨXνbJbMb
|d|ΨCνaJaMa

〉|2 .

(B14)
Here d = −er1 − er2 is the electric dipole operator. The
matrix element expands as

〈ΨXνbJbMb
|d|ΨC±νaJaMa

〉

=

∫

d3R
φ∗
XνbJb

(R)

R

φCνaJa
(R)√

2R
Y ∗
JbMb

(R̂)

×
[

Y +1
JaMa

(R̂)DCX
+ (R)± Y −1

JaMa
(R̂)DCX

− (R)
]

,(B15)

where the fixed-R electric dipole moment for the C → X
transition is:

DCX
± (R)=−e

∫

dr31dr
3
2χ

∗
X(r|R)(r1 + r2)χC,±(r|R)

=DCX(R)
−x̂′ ± iŷ′

√
2

. (B16)

The values of DCX(R) are calculated in [73]. For the

B→X transition one finds DBX(R) = DBX(R)R̂. We
use the results of [74] for it.
By plugging Eq. (B16) into Eq. (B15), separating the

R integration from the R̂ integration, writing x̂′ and ŷ′ in
terms of the fixed coordinated unit vectors (x̂,ŷ,ẑ) with
coefficient written in the form of spin wighted spherical
harmonics with degree s = 0, calculating the integrals
of the three spin-weighted spherical harmonics in terms
of the Wigner 3j symbols and using the orthogonality
relations of the 3j symbols to do the sums over Ma and
Mb one finally finds:

|MP
ab|2 = JaK(C+νaJa, XνbJb),

|MR
ab|2 = (Ja + 1)K(C+νaJa, XνbJb), and

|MQ
ab|2 = (2Ja + 1)K(C−νaJa, XνbJb), (B17)

where the change in angular momentum is denoted by
the branch indices P (Jb −Ja = 1), Q (Jb −Ja = 0), and
R (Jb − Ja = −1), and

K(YaνaJa, YbνbJb)

=

∣

∣

∣

∣

∫ ∞

0

φ∗
YbνbJb

(R)DAB(R)φYaνaJa
(R)dR

∣

∣

∣

∣

2

.(B18)

Similarly, for the B→X transitions,

|MP
ab|2 = (Ja + 1)K(BνaJa, XνbJb) and

|MR
ab|2 = JaK(BνaJa, XνbJb). (B19)

These equations agree with Ref. [70], appropriately re-
stricted to the case of no B–C mixing.
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