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Abstract

We give the lens equation for light deflections caused by point mass condensations in an otherwise

spatially homogeneous and flat universe. We assume the signal from a distant source is deflected

by a single condensation before it reaches the observer. We call this deflector an embedded lens

because the deflecting mass is part of the mean density. The embedded lens equation differs

from the conventional lens equation because the deflector mass is not simply an addition to the

cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to

compare our results with standard linear lensing theory. We also compute analytic expressions for

the lowest order corrections to image amplifications and distortions caused by incorporating the

lensing mass into the mean. We use these results to estimate the effect of embedding on strong

lensing magnifications and ellipticities and find only small effects, < 1%, contrary to what we have

found for time delays and for weak lensing, ∼ 5%.

PACS numbers: 98.62.Sb

Keywords: General Relativity; Cosmology; Gravitational Lensing;

I. INTRODUCTION

Conventional extragalactic gravitational lensing assumes that the Universe is homoge-

neous and isotropic on scales significantly smaller than observer/source/deflector distances,

i.e., that the cosmological principal applies at these distances. It also assumes that a lens-

ing inhomogeneity such as a galaxy or cluster of galaxies is an addition to the homogeneous

mean. What we investigate here is the extent to which errors are made because of this latter

assumption. To assume a single galaxy is an addition to the mean might not seem irrational

but to assume giant super clusters are is more suspect. In fact they are both contributing

to the mean and hence do not act as infinite range deflectors. To understand why, one only

has to surround a typical deflector by an imaginary sphere of radius r and note that the

average mass density inside the sphere decreases as r increases until the density reaches the

cosmological mean at some r=rb. If this were not correct the cosmological principle would
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be in error. Beyond the gravitational boundary rb, the gravitational field has returned to

the homogeneous mean and the lens ceases to produce any additional deflection of a passing

light ray. In this paper we compute modifications to the lens equation caused by this finite

range. To make sure we properly account for the lensing gravity we use an exact solution to

Einstein’s equations. We assume the deflector is a simple point mass lens embedded in a flat

Friedman-Lemâıtre-Robertson-Walker (FLRW) universe, see Eq. (1), whose energy content

includes pressureless dust (cold dark matter) and a cosmological constant Λ (Ωm+ΩΛ = 1).

The mathematics of the embedding process is the same as embedding in the Swiss cheese

cosmological models [1–4]. These models are the only known exact general relativistic (GR)

solutions which embed spherical inhomogeneities into homogeneous background universes.

The range rb above is given by the comoving radial boundary of the homogeneous sphere

that has been replaced by the condensation. Beyond that boundary the gravity caused by

a condensation and a homogeneous sphere are exactly the same. Schücker [5] refers to this

radius as the Schücking radius. For a point mass lens the removed dust sphere of comoving

radius χb is replace by a Kottler condensation [6], i.e., Schwarzschild with a cosmological

constant, see Eq. (2). This complete condensation of mass is often criticized on aesthetic

grounds. The jump in mass density at the boundary of the void is obviously nonphysical;

however, the model’s optical properties appropriately correct for embedded inhomogeneities

(see [7, 8] for more details about optics in, references for, and history of this model). The

discontinuities do not cause refraction and just as in conventional linear lensing the mean

density of the mass in the light beam is the important quantity, not its actual discontinuous

distribution along the beam. In [7, 9] we derived analytical expressions for the bending angle

α and the time delay ∆T of a photon that encounters such a condensation. Related work

appeared in [10–15]. In this paper we derive the embedded lens equation and prescribe a

scheme to iteratively solve it.

The flat FLRW metric for the background cosmology can be written as

ds2 = −c2dT 2 +R(T )2
[

dχ2 + χ2(dθ2 + sin2 θdφ2)
]

, (1)

and the embedded condensation is described by the Kottler or Schwarzschild-de Sitter metric

[6] which can be written as

ds2 = −γ(r)−2c2dt2 + γ(r)2dr2 + r2(dθ2 + sin2 θ dφ2), (2)
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where γ−1(r) ≡

√

1− β2(r) and β2(r) ≡ rs/r + Λr2/3. The constants rs and Λ are the

Schwarzschild radius (2Gm/c2) of the condensed mass and the cosmological constant re-

spectively. By matching the first fundamental forms at the Kottler-FLRW boundary, angles

(θ, φ) of Eqs. (2) and (1) are identified and the expanding Kottler radius rb of the void is

related to the comoving FLRW radius χb by

rb = R(T )χb. (3)

By matching the second fundamental forms the Schwarzschild radius rs of the Kottler con-

densation is related to FLRW by

rs = Ωm
H2

0

c2
(R0χb)

3, (4)

where H0 is the Hubble constant and the cosmological constant Λ is constrained to be the

same inside and outside of the Kottler hole.

In Section II we give the lens equation valid for deflections caused by Kottler condensa-

tions in the flat FLRW universe and numerically compare its predictions with conventional

lensing theory for a source at redshift one and a deflector at redshift one half. In Section

III we give analytic expressions for image magnifications and distortions for the embedded

point mass lens (to lowest order only) and compare them with conventional lensing results.

II. THE LENS EQUATION

The Swiss cheese lensing geometry is shown in Fig. 1. The deflected photon leaves a

source S, enters a Kottler hole at point 1, exits at point 2 with a deflection angle α < 0, and

then proceeds to the observer at O. Point B is the intersection of the forward and backward

extensions of respective FLRW rays S1 and 2O drawn as if the Kottler hole were absent and

the original ray was simply reflected at point B. Angles θI and θS are respectively the image

and source positions relative to the observer-deflector optical axis OD. The rotation angle

ρ measures the difference between the horizontal axis [with respect to which we measure the

spherical polar angle φ, see Eqs. (2) and (14) and Fig. 1] and the optical axis. A negative

ρ is a clockwise rotation of the observer. The lens equation for a given deflector mass and

background cosmology is simply the equation that gives θI as a function of θS for fixed

comoving source-observer distance χs and deflector-observer distance χd, and fixed photon
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FIG. 1. The comoving embedded lensing geometry. Points S,D and O represent respectively the

source, deflector, and observer positions. The point B is a fictitious reflection point. Points 1 and 2

denote the photon’s entrance and exit from the Kottler void. The bending angle is α, θI and θS are

respectively the image and source position angles at the observer measured relative to the optical

axis OD, and ∆θ ≡ θI − θS. A similar geometry appears in Fig. 1 of [7]. The figure represents the

θ = π/2 plane (the plane containing the photon’s orbit) of the spherical polar coordinates used in

Eqs. (1) and (2). The φ orientation is fixed by requiring the photon’s point of closest approach to

the Schwarzschild mass, r0, occur at φ = π/2.

arrival time TO. For non-embedded lenses, i.e., for conventional linear lensing theory, this

relation is straightforward to obtain even for complicated lensing mass profiles, because the

deflector is completely unrelated to the cosmology. For an embedded lens this is no longer

the case. However, because of the azimuthal symmetry of the lensing geometry all photon

orbit variables can be thought of as depending on a single independent variable. Choosing

θS or the photon’s minimum Kottler coordinate r0 would be logical but not convenient. In

what follows we have chosen to give all quantities as functions of φ̃1 where π − φ̃1 is the

azimuthal angle of the photon at entry into the Kottler void (see Fig. 1, or Fig. 1 of [7]).

Because r0(φ̃1) is a complicated function, r0 is retained in all expressions and only evaluated

when needed.

The embedded lens equation can be obtained by applying the law of sines to the triangle

SBO of Fig. 1

sin(θS − θI − α) =
χBO

χs
sin(−α). (5)
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The embedded lens equation can be compared to the standard linear lensing equation [16, 17]

for flat FLRW

θS − θI = −
Dds

Ds
(−α) = −

χs − χd

χs
(−α), (6)

where small angle approximations are made and the differences between distances from the

observer to the deflector and to the reflection point B (χd and χBO) are neglected. Since we

are now computing the linear and non-linear corrections to the standard lensing theory, we

cannot make such simplifications as is done in [18] and [19]. To find the relation between

these two distances we apply the law of sines to the comoving triangle D2O,

χ2O =
sin(φ2 − ξ2 − θI)

sin(φ2 − ξ2)
χd

=

[

cos θI − cos(φ2 − ξ2)
sin θI

sin(φ2 − ξ2)

]

χd. (7)

Applying the law of sines to the comoving triangle D2O again and noting that φ2 = φ̃1+∆φ,

ξ2 = ξ1 + α by definition, we obtain

χ2O =

[

cos θI − cos(φ̃1 − ξ1 +∆φ− α)
χb

χd

]

χd, (8)

where χb, the Kottler void radius [see Eq. (4)], is assumed known. The angles ξ1, ξ2 = ξ1+α,

φ̃1, and ∆φ are exhibited in Fig. 1 and are the same as those used in [7, 9] where analytic

expansions for them as explicit functions of r0 and φ̃1 can be found. The angles ξ1 and ξ2

are negative and give the respective slopes of the photon as it enters the Kottler hole at

azimuthal angle π − φ̃1 and exits at angle φ2 = ∆φ + φ̃1 (see Fig. 1 of [7]). The comoving

distance χB2 can be obtained from trig identities applied to triangles 1B2 and 1D2 of Fig. 1

χB2 = −2
sin(−∆φ/2 + ξ1)

sinα
cos

(

φ̃1 +
∆φ

2

)

χb. (9)

Combining this with Eq. (8) we obtain the relation of χBO to χd,

χBO ≡ χ2O + χB2

=

{

cos θI −

[

cos(φ̃1 − ξ1 +∆φ− α)

+
2 sin(−∆φ/2 + ξ1)

sinα
cos

(

φ̃1 +
∆φ

2

)]

χb

χd

}

χd

≡ g(θI , ξ1,∆φ, α)χd. (10)

The new lens equation (5) becomes

θS = θI + α + sin−1

[

χd

χs
g(θI , ξ1,∆φ, α) sin(−α)

]

, (11)
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The task at hand is to evaluate all variables on the right hand side of Eq. (11) as functions

of a common variable e.g., φ̃1. Once accomplished, θS(φ̃1) and θI(φ̃1) can be tabulated to

give the desired image position as a function of the source position, θI(θS). The image angle

θI can be determined from knowledge of ξ1, ∆φ, and α by applying the law of sines to the

triangle D2O

sin θI = sin(φ̃1 − ξ1 +∆φ− α)
χb

χd

. (12)

The bending angle α is given by Eq. (32) of [7], ∆φ ≡ φ2 − φ̃1 is given by Eq. (13) of [9],

and the photon’s slope angle ξ1 results from evaluating Eqs. (16)-(19) of [7] at the photon’s

entry point into the Kottler void (to fourth order)

ξ1 = −β1 sin φ̃1 +
m

r0
cos φ̃1(2 + sin2 φ̃1)−

1

3
β1

m

r0
(6− 3 sin2 φ̃1 − 2 sin4 φ̃1)

−
1

18
β1Λr

2
0 sin φ̃1 −

1

4

m2

r20

[

15(φ̃1 −
π

2
) + cos φ̃1(8− 15 sin φ̃1 + 4 sin2 φ̃1

+14 sin3 φ̃1 + 4 sin5 φ̃1)
]

+O(5). (13)

The rotation angle ρ can be computed from the photon’s exiting slope ξ1+α and the image

position θI using

ρ = ξ1 + α + θI < 0. (14)

The expansion speed β = v/c of the void boundary relative to stationary Kottler observers

is defined in Eq. (2) and when evaluated at the photon’s entry point is called β1 (see Fig. 1

of [7]). Keeping terms to 4th order is necessary in order to correct point mass time delays

for embedding.

In the expressions for ξ1,∆φ, and α, approximation orders have been counted as follows:

β1 is 1st order, rs/r0 and Λr20 are both 2nd. All terms are made of sums and/or products of

these. The expansion speed β1 depends on φ̃1 and r0 through its dependence on r1 (which

is given by the symmetric null geodesics of the Kottler metric Eq. (2))

r1 =
r0

sin φ̃1

{

1 +
rs
2r0

(

1 + sin φ̃1 −
2

sin φ̃1

)

−

(

rs
2r0

)2
[

17

4
−

1

4
sin2 φ̃1 −

4

sin2 φ̃1

+
15

8

(

π − 2φ̃1

)

cot φ̃1

]

+O(6)

}

. (15)

The above expansion is valid only when sin φ̃1 ≫ rs/r0. All quantities on the RHS of the

embedded lens equation (11) can now be evaluated as functions of φ̃1 and r0. These two

variables fix the photon’s symmetric orbit (symmetric about φ = π/2) while in the Kottler
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hole. They are independent unless the photon is additionally constrained by originating at

a specific cosmic source or arriving at a specific observer. To eliminate one of these two

variables an additional relation between them such as a cosmic timing constraint must be

used. For the photon which started at a fixed χs to have reached the observer at time

TO after entering the Kottler void at φ̃1 and passing with minimum impact r0, it must

have impacted the Kottler void at a specific time T1 or equivalently at a specific redshift z1

(1 + z1 = R0/R(T1)). Knowledge of z1 allows us to independently determine r1 from the

embedding equations (3) and (4) i.e., by using

r1 =
1

1 + z1

(

rs
Ωm

c2

H2
0

)1/3

. (16)

Because z1 is not assumed known we compute z1 − zd, the difference in entry redshift and

the (assumed known) deflector redshift, using techniques similar to those developed in [7, 9].

The result up to fourth order is

zd − z1 = (1 + z1)
[

∆z1st(z1, φ̃1) + ∆z2nd(z1, r0, φ̃1) + ∆z3rd(z1, r0, φ̃1)

+∆z4th(z1, r0, φ̃1)
]

, (17)

where

∆z1st = −β1 cos φ̃1, (18)

∆z2nd = −
Λr20
3

+
1

2
β1

χb

χd
sin2 φ̃1 +

1

2

m

r0
sin φ̃1

(

3− 7 sin2 φ̃1

)

, (19)

∆z3rd =
1

6
β1Λr

2
0 cos φ̃1 −

Λr20
3

χb

χd

cos φ̃1 +
1

3
β1

m

r0

[

cos φ̃1

(

7 + 26 sin φ̃2
1

)

+ 12 log tan
φ̃1

2

]

sin φ̃1

−
7

2

m

r0

χb

χd
cos φ̃1 sin

3 φ̃1, (20)

and

∆z4th =
1

6
β1Λr

2
0

χb

χd
(1− 2 sin φ̃2

1) +
1

2
β1

χb

χd

m

r0

(

4 + 9 sin φ̃2
1 − 18 sin φ̃4

1

)

sin φ̃1 +
1

8
β1

(

χb

χd

)3

sin4 φ̃1

+
3

8

m

r0

(

χb

χd

)2

sin5 φ̃1 −
1

36

m

r0
Λr20 csc φ̃1

(

61 + 24 sin φ̃1 + 124 sin φ̃2
1 − 227 sin φ̃4

1

+ 48 cos φ̃1 log tan
φ̃1

2

)

+
1

12

m2

r20

(

36− 18 sin φ̃1 − 431 sin φ̃2
1 + 42 sin φ̃3

1

− 188 sin φ̃4
1 + 595 sin φ̃6

1 − 240 cos φ̃1 sin
2 φ̃1 log tan

φ̃1

2

)

. (21)
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In the above
χb

χd

=
1

1 + zd

(

rs
Ωm

c2

H2
0

)1/3
1

Dd

, (22)

is taken as an additional small parameter no larger than 1st order.

Equations (17), (15) and (16) are three equations relating four variables z1, r0, r1, and

φ̃1. They can be solve iteratively (four iterations) giving z1, r0, and r1 as functions of φ̃1.

For an example, to obtain z1 correct to the first order in β1, we use Eqs. (17) and (18)

z1 = zd − (1 + zd)∆z1st(zd, φ̃1) = zd + (1 + zd)β(zd) cos φ̃1, (23)

this can be inserted into Eq. (16) to obtain r1 correct to first order in β1. This r1 is then

inserted into Eq. (15) (only the lowest order is needed here, i.e., r0 = r1 sin φ̃1) to obtain

r0 correct to first order. For the next iteration, we include Eq. (19) and the rs/r0 term in

Eq. (15), and so on. With z1(zd, φ̃1), r0(zd, φ̃1) and r1(zd, φ̃1) in hand, we can compute θI ,

ξ1, ∆φ, and α in terms of φ̃1 and finally solve the embedded gravitational lensing equation

(11) for θS(φ̃1) which can be tabulated to give θS(θI) for a given image.

In Figs. 2 and 3 we have solved the embedded point mass Swiss cheese lens equation (11)

and compared the results with those of the conventional Schwarzschild point mass lensing

theory. We chose deflector/source redshift respectively zd = 0.5, zs = 1.0, cosmological

parameters Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 kms−1 Mpc−1. In Fig. 2, we chose a deflector

mass m = 1015 M⊙ (a rich cluster). For each source angle θS, we solved Eq. (11) using the

iteration scheme described above obtaining φ̃1, z1, r0, r1, θI , etc., for both the primary and

secondary images. The conventional Schwarzschild results are given by Eq. (6). The impact

parameter in conventional lensing is simply taken as r0(Sch) = θI(Sch)Dd. The dashed/dotted

curves are for primary/secondary images, and the solid curve is the fractional correction to

the angle between image pairs, i.e., θI1−θI2. The symbol δ is used for the difference between

the embedded lens value and the conventional Schwarzschild value. In the left panel, we

compute the relative correction in the image position, i.e., δθI/θI(Sch) (blue-upper bifurcating

pair of curves), and the relative correction of the impact parameter r0, i.e., δr0/r0(Sch), where

δr0 ≡ r0 − r0(Sch) (red-lower bifurcating pair of curves).

In the right panel, we compute the net correction of the bending angle α (central pair

of green curves), the effect of the linear correction alone, i.e., cos3 φ̃1 − 1 (lower pair of red

curves), and the contribution of the cosmological constant Λ (upper pair of blue curves).

Figure 3 is the same as Fig. 2 except that it is for m = 1012M⊙ (a typical large galaxy). For

9



0.0 0.5 1.0 1.5 2.0 2.5

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

ΘS�ΘE

Solid: ∆ HΘI1-ΘI2L�HΘI1-ΘI2L ´10-2

Dashed�Dotted: Primary�Secondary
Blue Htop pairL: ∆ΘI�ΘI ´10-2

Red Hbottom pairL: ∆r0�r0 ´10-2

IM = 1015 SolarM

0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

ΘS�ΘE

Dashed�Dotted: Primary�Secondary
Blue Htop pairL: ∆Α HLL�Α ´10-4

Green Hmiddle pairL: ∆Α�Α ´10-2

Red Hbottom pairL: Icos3 j
�

1-1M´10-2

IM = 1015 SolarM

FIG. 2. The embedded point mass lens versus the Schwarzschild lens. The deflector/source redshifts

are respectively zd = 0.5, zs = 1.0; the cosmological parameters are Ωm = 0.3, ΩΛ = 0.7, and

H0 = 70km s−1Mpc−1; and the deflector mass is m = 1015 M⊙. The abscissa θS is the source

angle measured in units of the classical Einstein ring angle θE and the dashed/dotted lines are for

primary/secondary images. Quantities being plotted are the fractional differences (represented by

a δ) between the conventional Schwarzschild results and the corresponding embedded lens results

divided by the conventional results. The bifurcating blue curves are above the corresponding

bifurcating red curves. The green bifurcating pair of curves in the right panel are between the

upper blue pair and lower red pair. The solid curve in the left panel measures the relative correction

of the angle between the primary and secondary images.

m = 1015 M⊙, corrections in the image angle θI can be as large as 0.2%, and corrections in

the bending angle α can be as large as −0.8%. For m = 1012 M⊙, corrections in the image

angle θI can be as large as 0.01%, and corrections in the bending angle α can be as large as

−0.18%. As can be seen from the right panel of Figs 2 and 3, the most important correction

is from the linear term, i.e., the cos φ̃1 correction, the contribution of the next order (Λ term)

is at least two orders smaller than the linear correction. We will concentrate on obtaining

analytic results for the linear term in the next section.
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FIG. 3. The embedded point mass lens versus the Schwarzschild lens. Same as Fig. 2, except that

the deflector mass m = 1012 M⊙.

III. IMAGE MAGNIFICATION AND ELLIPTICITY

In this section we include only the lowest order correction to the standard lensing equa-

tion caused by the finite range of the embedded point mass Swiss cheese lens. Sereno [20]

computes alterations in the magnification but only within the Kottler void. We assume

sin θI ≪ 1, sin θS ≪ 1, and that the Kottler hole is much smaller than the observer-deflector

distance, i.e., g(φ̃1)− 1 ≪ 1, see Eq. (10). From Eq. (5) we obtain

θS − θI = −
Dds

Ds
(−α), (24)

which is the same as the standard lens equation (6) except that the bending angle to the

lowest order now contains a cos3 φ̃1 factor caused by the finite range of the deflector

α = −2
rs
r0

cos3 φ̃1, (25)

see Eq. (32) of [7]. Equation (5) is the form assumed correct by [19] but with a different

expression for the deflection angle α.

To lowest order the minimum Kottler impact is

r0 = DdθI +O(β1), (26)

[see Eqs. (3), (12) and (15)] and the embedded lens equation to lowest order becomes

θS − θI = −
θ2E
θI

cos3 φ̃1. (27)
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The angle θE is the familiar Einstein ring radius

θE ≡

√

2
Ddsrs
DdDs

, (28)

and from Eq. (12) θI is related to φ̃1 by

sin φ̃1 =
θI

χb/χd
+O(β1). (29)

This gives us a modified Einstein ring radius (to lowest order)

θ′E =

√

2
Ddsrs
DdDs

(cos φ̃1)
3/2, (30)

(see [21] for modifications in the Einstein ring within the Kottler void). The two images for

the standard point mass lens are easily found at

θ±I =
1

2

{

θs ±
√

θ2s + 4θ2E

}

, (31)

however, to find the corresponding image positions for the embedded lens you must solve

Eq. (31) with θE replaced by θ′E.

The amplification and shear for the embedded lens can be found by a familiar [16] rescaling

(θS → θS/θE ≡ y, θI → θI/θE ≡ x). Equation (27) simplifies to

y = x−
cos3 φ̃1

x2
x, (32)

where

sin φ̃1 =
x

(χb/χd)/θE
. (33)

The 2-d Jacobian A ≡ ∂y/∂x is found to be [17]

A =

(

1−
cos3 φ̃1

x2

) [

1 0

0 1

]

+
cos φ̃1(2 + sin2 φ̃1)

x4

[

x2
1 x1x2

x1x2 x2
2

]

, (34)

which has two eigenvalues

a1 = 1 + cos φ̃1(1 + 2 sin2 φ̃1)
1

x2
,

a2 = 1− cos3 φ̃1
1

x2
. (35)

Writing

A =

(

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)

(36)
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as is commonly done in standard gravitational lensing theory, we immediately obtain a

negative surface mass density

κ = −
3

2
sin2 φ̃1 cos φ̃1

1

x2
, (37)

and two shear components

γ1 = − cos φ̃1(2 + sin2 φ̃1)
x2
1 − x2

2

2x4
,

γ2 = − cos φ̃1(2 + sin2 φ̃1)
x1x2

x4
, (38)

with total shear

γ ≡

√

γ2
1 + γ2

2 = cos φ̃1(2 + sin2 φ̃1)
1

2x2
. (39)

The amplification µ for an image is given by

µ−1(x) = detA = (1− κ)2 − γ2 = a1a2

= 1 + 3 cos φ̃1 sin
2 φ̃1

1

x2
− cos4 φ̃1(1 + 2 sin2 φ̃1)

1

x4
.

The image of a circular source (eccentricity ǫ = 0) will be an ellipse of eccentricity

ǫ =

√

√

√

√1−
a22
a21

=

√

(2x2 + 3 sin2 φ̃1 cos φ̃1)(2 + sin2 φ̃1) cos φ̃1

x2 + cos φ̃1(1 + 2 sin2 φ̃1)
. (40)

The standard lensing results are obtained by putting cos φ̃1 = 1 and sin φ̃1 = 0 in the

above. Deviations from standard image amplification µ and the image ellipticity ǫ caused by

embedding are shown in Fig. 4. The left panel is for a deflector mass m = 1015 M⊙ and the

right is for m = 1012 M⊙. In each plot, the red solid and the (identical to accuracy shown)

black dotted (upper) curves show the corrections in ellipticity, i.e., δǫ/ǫ for the primary and

secondary images. The solid blue (lower) curve is the relative correction in the magnification

ratio, i.e., δ(µ1/µ2)/(µ1/µ2). For the m = 1015M⊙ case, the correction in ellipticity can be as

large as 0.03%, and the correction in magnification ratio can be as large as −0.17%. For the

m = 1012M⊙ case, the correction in ellipticity can be as large as 0.004%, and the correction

in magnification ratio can be as large as −0.019%.

These lowest order shielding effects, i.e., no bending outside the Kottler void, are far

larger than approximation errors in the standard linear theory caused by assuming the

photon’s path is infinite. The classical Einstein bending angle 4M/r depends only on the

impact parameter r and not the comoving source/deflector distances χs or χd because it is
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FIG. 4. Linear corrections to Schwarzschild lensing caused by the finite range of embedding— the

magnification ratio µ1/µ2 and the ellipticity ǫ are plotted as a function of source position. The

cosmological parameters and redshifts are same as in Figs. 2 and 3.

obtained by integrating from −∞ to +∞ along an approximated photon trajectory. The

effect of finite integration along the line of sight in standard lensing does make the bending

angle smaller but only by terms of order [r/χd]
2 and [r/(χs−χd)]

2. Because bending occurs

only within the Kottler hole, our lowest order correction, i.e., the 1− (cosφ)3 term, is much

larger than the angle reduction caused by excluding bending in conventional theory beyond a

distant source and observer. Our cosφ correction is of order [r/χb]
2 where χb is the comoving

size of the Kottler hole and is significantly smaller than χd and (χs − χd). For an example,

assume M = 1012M⊙, zd = 0.5, and same cosmological parameters as used in the paper, we

found χb/χd = 9.54× 10−4. Therefore, the effect of finite line of sight integration is ∼ 10−7

order smaller than the lowest order corrections predicted in current paper, and ∼ 10−4 order

smaller than the Λ correction (refer to the right panel of Fig. 3).

IV. CONCLUSIONS

We have given a lens equation (5) valid for use on highly concentrated lenses (point

masses) which are embedded into the otherwise spatially homogeneous and flat background

FLRW cosmology. We have also given the additional equations necessary to iteratively solve
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this embedded lens equation and have outlined a procedure for doing so. As an example

we have looked at differences in strong lensing predictions made by this new theory as

compared to the conventional theory. We used a large galaxy size lens (m = 1012 M⊙)

and a rich cluster size lens (m = 1015 M⊙) and found, as was suggested before in [7, 9],

that predictions for strong lensing effects made by embedded lens theory differs by less

than 1% from predictions made by the conventional theory. In Section II we looked at

image angle differences and in Section III we looked at lowest order analytic expressions for

image magnification and ellipticity differences. We expect more significant effects to occur

for weak lensing applications where impact distances are much larger and where shielding

effects (cos3 φ̃1) are more significant.

We have found that embedding affects time delays, image positions, magnifications and

ellipticities differently than does the presence of substructure. For example, substructure has

a large effect on magnification, but has almost no effect on the time-delay; our model predicts

corrections in magnifications and even larger corrections in the time delays. The small size

of the effect of embedding on magnification and ellipticity in strong lensing ∼ 0.1% that

we have found here is an order of magnitude smaller than we have found on time delays in

strong lensing ∼ 4% (Chen et. al. 2010). Knowing this is important to all standard lensing

calculations; you only make a small embedding error using the standard theory when you use

it for strong lensing magnification and ellipticity calculations; not so for time delays or for

weak lensing applications. However, because of the size of the effect, embedding differences

can only be tested when we have better knowledge of lens mass distributions. Some current

observations (such as Hubble observations of lens image positions) are accurate enough

to resolve the embedding corrections we predict; however, degeneracy in mass modeling

currently prohibits confirmation. As soon as the mass models are appropriately accurate,

embedding effects can be tested.

An additional special feature presented by this model is the analytic dependence of lensing

on the cosmological constant Lambda. This model absolutely settled the argument about

how the cosmological constant effects lensing. Prior to its use many from the astrophysics

community believed that the cosmological constant did not affect lensing at all, even though

the GR community argued that it must (see [10, 18–20]). The exact analytic nature of the

dependence was in dispute prior to the introduction of this model. For example the most

significant effect of the cosmological constant on the bending angle appears in square-root
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terms (see equations such as (32) of [7]) and is an order of magnitude larger effect than

previously estimated. All other work also missed the most significant effect of embedding

on lensing, the shielding effect. Because the range of a real lens is not finite, this model

becomes useful when 0.5% accuracy in strong lensing deflection angles is desired or when 5%

accuracy in time delays is required or when 5% accuracy in weak lensing deflection angles

is required.
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[12] T. Schücker, arXiv:1006.3234 (2010).

[13] K.-E. Boudjemaa, M. Guenouche & S. R. Zouzou, Gen. Relativ. Gravit., 43, 1707 (2011).

[14] M. Ishak, W. Rindler & J. Dossett, Mon. Not. R. Astron. Soc., 403, 21521 (2010).

[15] M. Ishak & W. Rindler, Gen. Relativ. Gravit., 42, 2247 (2010).

[16] P. Schneider, J Ehlers & E. E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1992).

[17] R. R. Bourassa & R. Kantowski, Astrophys. J., 195, 13 (1975).

[18] M. Ishak, Phys. Rev. D, 78, 103006 (2008).

[19] M. Sereno, Phys. Rev. Lett., 102, 021301 (2009).

[20] M. Sereno, Phys. Rev. D, 77, 043004 (2008).

16



[21] M. Ishak, W. Rindler, J. Dossett, J. Moldenhauer & C. Allison, Mon. Not. R. Astron. Soc.,

388, 1279 (2008).

17


