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Abstract

We investigate the potential to observe double parton scattering at the Large Hadron Collider

in pp → Wbb̄X → ℓνbb̄X at 7 TeV. Our analysis tests the efficacy of several kinematic variables

in isolating the double parton process of interest from the single parton process and relevant

backgrounds for the first 10 fb−1 of integrated luminosity. These variables are constructed to

expose the independent nature of the two subprocesses in double parton scattering, pp → ℓνX and

pp → bb̄X. We use next-to-leading order perturbative predictions for the double parton and single

parton scattering components ofWbb̄ and for the pertinent backgrounds. The next-to-leading order

contributions are important for a proper description of some of the observables we compute. We

find that the double parton process can be identified and measured with significance S/
√
B ∼ 10,

provided the double parton scattering effective cross section σeff ∼ 12 mb.
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I. INTRODUCTION

The successful operation of the Large Hadron Collider (LHC) and its detectors opens a

new era in particle physics. The higher energies and larger luminosities at the LHC make it

possible to explore new physics scenarios and to investigate unexplored aspects of established

theories such as quantum chromodynamics (QCD).

The standard picture of hadron-hadron collisions is shown on the left side of Fig. 1. One

parton from each proton partakes in the hard scattering to produce the final state. The

probability density for finding parton i in a proton with momentum fraction xi and at the

factorization scale µ is parameterized by the parton distribution function (PDF) f i
p(xi, µ).

In this single parton scattering (SPS) scenario, the differential hadronic cross section neatly

factors into:

dσSPS
pp =

∑

i,j

∫

f i
p(x1, µ)f

j
p(x

′
1, µ)dσ̂ij(x1, x

′
1, µ)dx1dx

′
1 . (1)

The “short-distance” partonic cross section dσ̂ij is computed in perturbation theory, whereas

the PDFs are non-perturbative objects and must be extracted from experiment.

This simple picture of proton-proton collisions is incomplete. The full description of

hadronic collisions involves other elements including initial- and final-state soft radiation,

underlying events, and multi-parton interactions. Double parton scattering (DPS) describes

the case in which two short-distance subprocesses occur in a given hadronic interaction,

with two initial partons being active from each of the incident protons. The general picture

of DPS is shown on the right side of Fig. 1. Given the small probability for single parton

scattering in hadronic collisions, it is often assumed that the effects of double (or multiple)

parton scattering may be ignored or subsumed into the parameterization of the underlying

event. Nevertheless, it is worth exploring theoretically and investigating experimentally

whether a second distinct hard component may be identified in events at the LHC. Some

evidence for DPS has been observed at the CERN Intersecting Storage Rings [1], the CERN

SPS [2], and more recently, at the Fermilab Tevatron [3, 4].

In an earlier study [5], we investigated the DPS and SPS contributions at the LHC

to the four-parton final state pp → bb̄jjX in which a bb̄ system is produced along with

two jets j. We showed that there are characteristic regions of phase space in which the

DPS events are expected to concentrate, and we developed a methodology to measure the

effective size of DPS. Precise measurements of DPS at the LHC will provide insight into
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FIG. 1: Schematic depiction of single parton scattering (left) and double parton scattering (right).

In single parton scattering, one parton from each hadron is active in the scattering and the partonic

process is A(ij → abcd). Double parton scattering assumes two partons from each hadron are active

in the hard scattering and the total partonic process consists of two independent subprocesses

A(ij → ab) and A(kℓ → cd).

parton correlations, non-perturbative dynamics in hadron-hadron collisions, the structure of

the proton, and parton distributions functions.

Theoretically, the study of DPS phenomenology has a long history [5–37]. Under the

assumption of weak dynamic and kinematic correlations between the two hard scattering

subprocesses, the general approach in these studies is to assume the differential hadronic

cross section takes a factored form in analogy to Eq. (1):

dσDPS
pp =

m

2σeff

∑

i,j,k,l

∫

H ik
p (x1, x2, µA, µB)H

jl
p (x

′
1, x

′
2, µA, µB)

×dσ̂ij(x1, x
′
1, µA)dσ̂kl(x2, x

′
2, µB)dx1dx2dx

′
1dx

′
2 , (2)

where m is a symmetry factor which is equal to 1 (2) if the two hard-scattering subprocesses

are identical (non-identical). The joint probabilitiesH i,k
p (x1, x2, µA, µB) can be approximated

as the product of two single PDFs:

H i,k
p (x1, x2, µA, µB) = f i

p(x1, µA)f
k
p (x2, µB) . (3)

Given that one hard-scattering has taken place, the parameter σeff measures the size of

the partonic core in which the flux of accompanying short-distance partons is confined.

Typical values in phenomenological studies focus on the 10-12 mb region, consistent with

measurements from the Tevatron collider [3, 4]. In writing Eqs. (2) and (3), we ignore

possible strong correlations in longitudinal momentum. However, for the small values of x

expected at the LHC, this should be a good approximation [5].

3



In order to observe a DPS signal, it is advantageous if: 1) the cross sections for the two

individual processes which make up the DPS process are large (in the mb - pb range), and 2)

the final state contains objects which can be easily tagged (or identified). The bb̄jj channel

possesses both of these qualities. By focusing on distributions which contain kinematic

information about the entire final state, we were able to show [5] that the DPS component

of the final state can be observed despite the presence of a dominant SPS component over

a wide kinematic range.

In this paper, we examine another final state which may be a good candidate to observe

DPS, namely the production of a W boson in association with a pair of bottom quark jets.

In the DPS contribution to this final state, one hard scattering produces the W via the

Drell-Yan mechanism, while the other hard scattering produces a bb̄ pair. The cross sections

for these two processes are individually large, and the charged lepton from the W decay

(along with the bottom quarks in the final state) provides a relatively clean signal to tag

on. Our purpose is to establish whether double parton scattering can be observed as a

discernible physics process in Wbb̄ production at LHC energies. We remark, however, that

the Wbb̄ final state is a significant background for the production of a Higgs boson H in the

HW± mode, where the Higgs boson decays into a pair of bottom quarks [21], and that it

can be a background in channels where new physics may arise such as in single top quark

production [38]. Once DPS production of Wbb̄ is observed, it would be interesting to assess

its potential significance as a background in such searches. A realistic study would require

knowledge of the effective cross section for double parton scattering in the Wbb̄ channel and

a set of optimized physics cuts pertinent for the search in question. We leave this topic for

possible future work.

The rest of the paper is structured as follows. In Section II, we outline our procedure

for computing the DPS and SPS contributions to Wbb̄ at the LHC, and we discuss and

evaluate backgrounds to the same final state. Our SPS and DPS event rates are computed

at next-to-leading order with the aid of the POWHEG BOX code [39]. This section includes

a specification of the basic acceptance cuts we use in defining the event sample. Section III

is devoted to the role of the large tt̄ background. We find that a cut to eliminate events

with large missing transverse energy is effective in suppressing this background. In Section

IV, we focus on discrimination between the DPS and SPS contributions to Wbb̄. We study

various single variable and two-dimensional kinematic distributions to bring out the DPS

4



contribution more cleanly. By utilizing cuts that enhance the DPS Wbb̄ sample, we find that

the DPS signal can be observed with a statistical significance in the range S/
√
B ∼ 12−15.

Section V contains our summary.

II. DPS AND SPS CONTRIBUTIONS TO Wbb̄ PRODUCTION AT THE LHC

We begin with the premise that there are DPS and SPS components of the same Wbb̄

final state. Our aim is to try to pick out the DPS component and to study its distinct

properties. In this section, we outline our method for computing event rates for Wbb̄ from

DPS and SPS as well as the backgrounds for the same final state at the LHC. We perform all

calculations at a center-of-mass energy of
√
s = 7 TeV. Event rates are quoted for 10 fb−1 of

integrated luminosity. For the DPS case, Wbb̄ production is computed using Eq. (2) where

it is assumed that one hard scattering produces the W boson via the Drell-Yan mechanism

(qq̄ → W± at leading order), while the other scattering produces the bb̄ system (with either

gg → bb̄ or qq̄ → bb̄). Schematically, we can represent the partonic DPS process as:

(

ij → W±
)

⊗
(

kl → bb̄
)

. (4)

The individual SPS processes which make up the DPS process in Eq. (4) are generated using

the POWHEG BOX event generator [39–41] which includes next-to-leading order (NLO)

QCD corrections for both, plus shower emission. The ⊗ symbol denotes the combination

of one event from each of the W± and bb̄ final states. All events are produced using the

two-loop evaluation of αs(µ) (where µ = MW for the W process and µ =
√

m2
b + p2T for the

bb̄ production) and CT10 NLO PDFs [42].

In the SPS production ofWbb̄, one hard-scattering produces the complete final state. The

events from this process are also generated using the POWHEG BOX [43] which implements

the NLO calculation of Ref. [44].

Extracting evidence for DPS Wbb̄ production is complicated by the fact that many stan-

dard model processes imitate the Wbb̄ → bb̄ℓν final state. In particular, we consider contri-

butions from the following final sates:

• Top quark pair production tt̄ where either (i) both t’s decay semi-leptonically (denoted

by tℓtℓ), and one of the charged leptons is missed or (ii) where one t decays semi-

leptonically while the other decays hadronically (denoted by tℓth) and two jets are
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either missing or do not pass the threshold and isolation cuts.

• Single top quark production (tb̄, t̄b, tj and t̄j modes) where t → W+b (t̄ → W−b̄)

• Wjj, where both light jets are mistagged as a b jets

• Wbj where the light jet is mistagged as a b jet

We also considered the following processes, which have a negligible contribution after cuts:

• bb̄j where one b quark gives an isolated lepton and the light jet is tagged as a b jet

• Zbb̄ where one lepton from the Z decay goes missing

• bb̄bb̄ (bb̄cc̄) production where at least one heavy quark gives an isolated lepton and the

other does not pass the threshold cuts

The Wjj background (where both jets fake bottom quark jets) can be produced in both SPS

and DPS processes. We compute the DPS contribution using the same method discussed

above for Wbb̄, using the additional POWHEG code [45], and we include it in our analysis.

The top pair [41] and single top [46] SPS processes are also generated using the POWHEG

BOX. Other SPS processes are generated using MadEvent [47] or ALPGEN [48]; Wjj is

reweighted using a K-factor obtained with MCFM [49].

In order to avoid soft and collinear divergences in the processes that we compute at LO,

we apply a minimal set of generator-level cuts:

pT,j > 15GeV , |ηj| < 4.8 , |ηℓ| < 2.5 , (5)

pT,b > 15GeV , |ηb| < 2.5 (6)

∆Rj(b)j(b) > 0.4 , ∆Rj(b)ℓ > 0.4 , (7)

where η is the pseudorapidity and ∆Rlk is the separation in the azimuthal-pseudorapidity

plane between the two objects l and k:

∆Rlk =

√

(ηl − ηk)
2 + (φl − φk)

2 . (8)

Some of these generator level cuts cannot be applied for processes computed with POWHEG,

but they are applied subsequently to ensure equal treatment of all event samples.
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A. Simulation

We concentrate on the final state in which there are two b jets, a hard lepton, and missing

transverse energy 6 ET . To identify the Wbb̄ final state and reduce backgrounds, we begin

with simple identification cuts on the generated event samples. First, we consider only

leptonic decays of the W boson (W → ℓν). We focus on the case ℓ = µ, since electrons with

low transverse momentum can be easily faked by light jets. We limit the hadronic activity

in our events to include exactly two hard jets, both of which must be identified as bottom

quark jets. Finally, all events (DPS and SPS Wbb̄ as well as backgrounds) are required to

pass the following acceptance cuts:

pT,b ≥ 20GeV , |ηb| ≤ 2.5 , (9)

20GeV ≤ pT,µ ≤ 50GeV , |ηµ| < 2.1 , (10)

6ET ≥ 20GeV (11)

∆Rbb̄ ≥ 0.4 , ∆Rbµ ≥ 0.4 . (12)

The cut on the missing transverse energy 6 ET ≥ 20GeV is motivated by the fact that

the neutrino momentum in W decay is not observed. The 20 GeV cut on the b-jets and the

lepton is invoked to eliminate contributions from the underlying event. The upper lepton

pT cut is used to reject boosted W -bosons, as in the case where a W -boson originates from

a t-quark decay, or when the W recoils against the bb̄ pair in SPS.

To account for b jet tagging efficiencies, we assume a b-tagging rate of 60% for b-quarks

with pT,b > 20 GeV and |ηb| < 2.5. We apply the muon identification efficiencies found in

the ATLAS Technical Design Report [50]. Detector resolution effects are accounted for by

smearing the final-state energy according to:

δE

E
=

a
√

E/GeV
⊕ b , (13)

where a = 50% and b = 3% for jets and a = 10% and b = 0.7% for leptons. Light jets (jets

from u, d, s and c quarks as well as gluons) can “fake” bottom quark jets and we account

for this by applying a mistagging rate for the gluon and u, d and s quarks of:

ǫu,d,s,g→b = 0.67% (14)
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for pT,j < 100 GeV and:

ǫu,d,s,g→b = 2% (15)

for pT,j > 250 GeV. For pT values between 100 and 250 GeV, we linearly interpolate the

fake rates. Finally, for c quarks, we assume a fake rate of:

ǫc→b = 10% (16)

for pT,c > 50 GeV and we linearly interpolate fake rates for pT < 50 GeV.

Table I shows the number of events from theWbb̄ final state (DPS and SPS) and the back-

grounds both before (column labeled “Generator-level Cuts”) and after the acceptance cuts,

detector effects, and mistagging effects are applied (column labeled “Acceptance Cuts”).

In these results and those that follow, we sum the W+ and W− events. In evaluating the

DPS processes, we assume a value σeff ≃ 12 mb for the effective cross section. However, we

stress that the goal is to motivate an empirical determination of its value at LHC energies.

The acceptance cuts are very effective against the Wjj final states, both for DPS and SPS.

The results in Table I make it apparent that Wbb̄ production from SPS and the top quark

pair background are the most formidable obstacles in extracting a DPS signal. We address

background rejection in the next two sections.

III. tt̄ BACKGROUND REJECTION

We examine three possibilities to reduce the tt̄ background: a cut to restrict 6 ET from

above, rejection of events in which a top quark mass can be reconstructed, and a cut to

restrict the transverse momentum of the leading jet. In the end, an upper cut on 6ET in the

event appears to offer the best advantage. Indeed, one would expect that 6ET in Wbb̄ events

would be smaller than 6ET in tt̄ events. Top quark decays give rise to boosted W±’s which,

after decay, should result in larger values of missing ET compared to the Wbb̄ process. The

6ET distribution is shown in Fig. 2 for the DPS component of Wbb̄, the SPS component of

Wbb̄, and all backgrounds (left). On the right, we show the DPS component of Wbb̄ and

the tt̄ background alone. The plot on the right shows that the DPS signal is produced in

the region of relatively small 6ET and the tt̄ background has a harder spectrum in 6ET . One

way to suppress the tt̄ background while leaving the DPS signal unaffected is to impose
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Process Generator-level Cuts Acceptance Cuts 6ET ≤ 45 GeV S′
pT

≤ 0.2

W±bb̄ (DPS) 10000 247 231 173

W±bb̄ (SPS) 44000 1142 569 114

tt̄ 225000 1428 290 13

W±jj (DPS) 476000 43.5 37.7 27.3

W±jj (SPS) 20300000 101 55.7 19.6

Single top 20000 492 168 15

W±bj 153000 152 53.1 8.2

TABLE I: Numbers of events before and after the various cuts are applied for 10 fb−1 of data. After

acceptance cuts, SPS Wbb̄ production and tt̄ production dominate the event rate. A maximum 6ET

cut reduces the background from tt̄ significantly. A maximum cut on S′
pT

improves the DPS/SPS

ratio in Wbb̄ production.

a maximum 6 ET cut in the 40-60 GeV range. In the analysis that follows, we include a

maximum 6ET cut of 45 GeV in addition to the acceptance cuts outlined above.

The effects of the maximum 6ET cut are shown in the fourth column of Table I. This cut

eliminates about 80% of the tt̄ background that remained after the initial acceptance cuts.

The cut is also effective at reducing the single top quark and Wbj backgrounds, eliminating

about 67% in both cases. On the other hand, 93% of the DPS Wbb̄ events and 46% of the

SPS Wbb̄ events are retained.

Backgrounds from events that contain a real top quark, such as the tt̄ and single top

events, might be reduced if one could reconstruct a top quark mass distribution Mbℓν from

the final state objects (bottom quarks, charged leptons and neutrinos), and then eliminate

events in which the reconstructed mass falls in a narrow window centered on the known top

quark mass. To accomplish this, we must know the value of the longitudinal momentum for

the neutrino. We compute this momentum via the on-shell mass relations of the W boson

decay. The quadratic nature of the mass relations produces a two-fold ambiguity. In our

analysis, we include both solutions for the neutrino momentum. After reconstruction, events

that result in a value of Mbℓν within a window (of 10, 15 or 20 GeV) around the measured

top quark mass (we assume mt = 175 GeV) are rejected. For all three values of the window,
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FIG. 2: The event rate as a function of 6 ET for DPS and SPS. On the left, all backgrounds are

included while the plot on the right compares the DPS events to those from tt̄ alone. While the

DPS signal is concentrated in the 6ET < 45 GeV range, the majority of the tt̄ background lies above

this range. Therefore, imposing an maximum 6ET cut of 45 GeV can greatly reduce the background

coming from tt̄ production.

we find a slight improvement of signal-to-background ratio but accompanied by a decrease

in the significance (S/
√
B) of the signal associated with the overall decrease in event rate.

The poor discriminating power of this mass reconstruction method results from two is-

sues. First, the two-fold ambiguity for the longitudinal component of the neutrino momen-

tum provides a combinatorial background. In addition, while the tt̄ events which pass the

acceptance cuts are predominantly from the tℓth decay mode, about 30% are from the tℓtℓ

mode. With two neutrinos in the final state, the on-shell mass relations are not applica-

ble and do not provide a unique set of neutrino momenta. For these reasons, the mass

reconstruction observable is not considered a good discriminator.

Jets from final states that contain top quarks tend to have a hard spectrum, associated

with the large top quark mass. A possible observable for tt̄ background rejection is therefore

the transverse momentum of the leading object (either a jet or a charged lepton). The pT

spectrum of the leading object tends to be soft in DPS events [5]. However, SPS production

of Wbb̄ yields a rather hard pT spectrum since the bottom quarks recoil against the W±

boson. In Fig. 3, we show the pT distributions for the leading object in Wbb̄ DPS production
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and for the remainder (which includes SPS Wbb̄ production). We see that the DPS events

indeed populate the lower bins of the allowed pT spectrum, while the SPS and background

events result in a harder spectrum. When we compare the usefulness of placing a cut on the

upper value of pT with the improvement we find with the cut on the maximum value of 6ET ,

we conclude that the maximum 6ET cut provides better significance. If we use both cuts, we

find that the DPS signal significance is degraded.

Wbb DPS
SPS + bkgs

Total

Σeff = 12 mb
L dt = 10 fb-1
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FIG. 3: The event rate as a function of the transverse momentum of the leading object (either a

jet or lepton). The SPS contribution has a harder pT spectrum.

We conclude this subsection with the statement that of the three possibilities to reduce

the tt̄ background we considered, a cut to restrict 6ET from above appears to offer the best

advantage, and it is the only cut we impose in addition to the acceptance cuts specified

above.

IV. DISCRIMINATION BETWEEN DPS AND SPS CONTRIBUTIONS TO Wbb̄

To separate the DPS events from those of SPS origin, we find it convenient to employ

quantities which take into account information from the entire final state. One useful ob-

servable is S ′
pT
, defined as [4]:

S ′
pT

=
1√
2

√

( |pT (b1, b2)|
|pT (b1)|+ |pT (b2)|

)2

+

( |pT (ℓ, 6ET )|
|pT (ℓ)|+ | 6ET |

)2

. (17)
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In our case pT (b1, b2) is the vector sum of the transverse momenta of the two b jets, and

pT (ℓ, 6ET ) is the vector sum of 6ET and the transverse momentum of the charged lepton in

the final state.
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FIG. 4: The event rate for Wbb̄ production from DPS (left) and SPS (right) as a function of S′
pT
.

In the DPS case, the distribution is peaked toward S′
pT

≃ 0; SPS production of Wbb̄ produces

bottom quarks that are not back-to-back, resulting in broad distribution and a peak near S′
pT

≃ 1.

In DPS production, the bottom quarks are produced roughly back-to-back such that the

vector sum of their transverse momenta tends to vanish. Likewise, the vector sum of the

lepton and neutrino momenta tends to be small (with corrections from the boosted W±).

Thus, the S ′
pT

distribution for the DPS process exhibits an enhancement at low S ′
pT
, as

shown in Fig. 4. The peak does not occur at exactly S ′
pT

= 0 owing to NLO real radiation

that alters the back-to-back nature of the bb̄ and ℓν systems. On the other hand, SPS

production of Wbb̄ final states does not favor back-to-back configurations, and it exhibits a

peak near S ′
pT

= 1. This feature is linked to the fact that many bb̄ pairs are produced from

gluon splitting [5].

The clean separation in S ′
pT

between the DPS and SPS Wbb̄ processes exhibited in Fig. 4

is obscured once the tt̄ background is included (e.g., see the left side of Fig. 5). Figure 5

illustrates the effectiveness of the maximum 6 ET cut in reducing the tt̄ background in the

S ′
pT

distribution. After the cut, a sharp peak is evident in the region of small S ′
pT

where

DPS events are expected to reside.
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FIG. 5: The S′
pT

distribution for DPS and SPS production of Wbb̄ including all relevant back-

grounds. On the left, only the minimal acceptance cuts are imposed, while, on the right, an

additional maximum 6 ET cut is imposed (6 ET < 45 GeV). Imposing a maximum 6 ET cut greatly

reduces the background and produces a sharp peak in an S′
pT

region where DPS is expected to

dominate.

The plot on the right side of Fig. 5, shows that extraction of a relatively clean DPS sample

can be accomplished by imposing a maximum S ′
pT

cut. The last column of Table I shows that

a cut S ′
pT

< 0.2 reduces the SPS Wbb̄ rate while leaving the DPS signal relatively unaffected.

In the end, the major background arises from DPS Wjj, as is expected since this process

inhabits the same kinematic regions as the DPS Wbb̄ signal. Despite this background, we

find a statistical significance for the presence of DPS Wbb̄ of S/
√
B = 173/

√
197 = 12.3.

A. Further discrimination

Observables which take into account the angular distribution of events are also useful in

the search for DPS. Figure 6 depicts three such observables. In the top-left plot, we show

the event rates for DPS Wbb̄ and the backgrounds (SPS Wbb̄ included) as a function of the

angle between the normals to the two planes defined by the bb̄ and ℓν systems. These planes

are defined in the partonic center-of-mass frame and are specified by the three-momenta of

the outgoing jets or leptons. The angle between the two planes defined by the bb̄ and ℓν
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FIG. 6: The event rate as a function of the angle between the normals of the two planes defined

by the bb̄ and ℓν systems (top-left), the azimuthal angle between the charged lepton and the total

momentum vector of the bb̄ system (top-right) and the azimuthal angle between the transverse

momentum vectors of the bb̄ and ℓ 6ET systems (bottom). In SPS events, it is apparent that there

is a strong correlation in the angles. However, there is no such correlation present in the DPS

events.

systems is:

cos∆Θbb̄,ℓν = n̂3(b1, b2) · n̂3(ℓ, ν) (18)

where n̂3(i, j) is the unit three-vector normal to the plane defined by the i − j system and

b1(b2) is the leading (next-to-leading) b jet. In order to construct the normals n̂3(b1, b2)
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and n̂3(ℓ, ν), we require full event reconstruction using the on-shell W -boson mass relations.

We see that the distribution of the DPS events is rather flat, aside from the cut-induced

suppressions at Θbb̄,ℓν ∼ 0 and ∼ π, whereas the SPS events show a strong correlation, with

a distribution that peaks near ∆Θbb̄,ℓν ∼ π
2
.

In the top-right plot of Fig. 6, we show the event rates as a function of the azimuthal

angle between the charged lepton and the total momentum vector of the bb̄ system. No

information from the neutrino is used. In the bottom plot, we show the event rates as a

function of the azimuthal angle between the transverse momentum vectors of the bb̄ and

ℓ 6ET systems. Since this azimuthal angle is defined in the transverse plane, it requires only

6ET . Full event reconstruction to determine the neutrino momentum is not needed. In both

cases, the shape of the DPS distribution is flat while the SPS distribution shows a strong

correlation, with a preference for values toward π.

In all three plots of Fig. 6, it is clear that DPS and SPS exhibit different behaviors as

a function of angular observables. However, the dominance of SPS Wbb̄ and backgrounds

over DPS Wbb̄ for the full range of these observables makes it impossible to extract a DPS

Wbb̄ signal from these distributions by themselves.

B. Two-dimensional distributions

Despite the dominance of the Wbb̄ SPS contribution and the backgrounds over the DPS

Wbb̄ contribution, the angular distributions can still be extremely useful when used in con-

junction with other observables. Two-dimensional distributions of one variable against an-

other show distinct regions of DPS dominance (or SPS and background dominance). In

Fig. 7, we construct two such scatter plots. On the left, we show S ′
pT

versus the angle

between the normals of the two planes defined by the bb̄ and ℓν systems (∆Θbb̄,ℓν), while,

on the right, we show S ′
pT

versus the azimuthal angle between the charged lepton and the

total momentum vector of the bb̄ system. In both plots, we see that the DPS events reside

predominantly in the lower half of the plane (small S ′
pT
) and are distributed evenly in the

angular variable. The separation between DPS Wbb̄ and the SPS component is not as pro-

nounced in the S ′
pT

− ∆Θbb̄,ℓν plane as we saw in our earlier study of bb̄jj [5]. In the Wbb̄

case, the background events are more evenly distributed over the full plane, to some extent

resulting from inclusion of both solutions for the neutrino’s longitudinal momentum in the

15
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FIG. 7: Two-dimensional distributions of events in the variables S′
pT

and ∆Θbb̄,ℓν (left) and S′
pT

and ∆φbb̄,ℓ (right). In both cases, theWbb̄ DPS events (denoted by red x) lie in the lower half of the

plane, while the Wbb̄ SPS and background events (denoted by blue dots) occupy the upper half.

The plot on the right, in which reconstruction of only the lepton direction is required, appears to

achieve a cleaner separation, with SPS and background events concentrated in the upper right-hand

corner of the plane.

W± decay. (The greater density of points in the left plot of Fig. 7 relative to the right plot

is explained by the fact that both solutions for the neutrino momentum are included in the

left plot).

As shown in the plot on the right of Fig. 7, the SPS Wbb̄ and background events in

the S ′
pT

− ∆φbb̄,ℓ show a strong preference for upper right-hand corner of the plane. This

two-dimensional distribution indicates that cuts on the S ′
pT

and ∆φbb̄,ℓ variables should

permit extraction of an enriched sample of DPS Wbb̄ events. Inclusion of 6 ET associated

with the missing neutrino allows even better separation. In left plot of Fig. 8, we show the

two dimensional distribution of S ′
pT

and ∆φbb,ℓ 6ET
. This distribution shows a high degree

of separation between the DPS Wbb̄ and the SPS plus background samples. To quantify

the degree of separation, we define a region in this plane that gives the highest statistical

significance. Its boundary is denoted by the black box in the left panel of Fig. 8. Restricting

S ′
pT

< 0.25 and ∆φbb,ℓ 6ET
< 3π/4, we find a a sample of 154 signal and 103 background

events, corresponding to a statistical significance of S/
√
B = 15.2.
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FIG. 8: The two-dimensional distribution of events in the variables S′
pT

and ∆φbb,ℓ 6ET
(left). The

Wbb̄ DPS events are denoted by red x, while the Wbb̄ SPS and background events are denoted by

blue dots. The box denotes the boundary which gives the highest statistical significance. On the

right, we show the dependence of the significance as a function of the corners of the box.

By employing distributions in both S ′
pT

and ∆φbb,ℓ 6ET
, we achieve a better significance

than from S ′
pT

alone. By utilizing only S ′
pT

we obtain a lower significance of 12.7. In the

right plot of Fig. 8, we show the dependence of the significance on the placement of the

box. As long as the maximum value of ∆φbb,ℓ 6ET
is in the π/2 − 3π/4 range, a statistically

significant extraction of DPS Wbb̄ from the other events can be obtained, given our assumed

effective cross section σeff = 12 mb and luminosity.

We suggest experimental analyses of Wbb̄ at the LHC in terms of the two-dimensional

distributions presented in this section with the goal to establish whether a discernible DPS

signal is found. Assuming success, the pT dependence of the leading object and other

properties of these DPS events can be contrasted with those of the remainder to establish

whether the expected properties of DPS are seen. The enriched DPS event sample can be

used for a direct measurement of the effective cross section σeff .
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V. CONCLUSIONS AND FURTHER WORK

In this paper, we investigate the possibility to observe double parton scattering at the

early LHC in the pp → Wbb̄X → ℓνbb̄X process. Our analysis begins with the basic

assumption that Wbb̄ production consists of two components: the traditional single par-

ton scattering process and the double parton scattering process where two individual hard

scatterings produce the Wbb̄ final state, as depicted in the right panel of Fig. 1.

After identifying the most relevant background processes, we pinpoint a set of observables

and cuts which would allow for the best separation between the DPS Wbb̄ signal and the

backgrounds (including the SPS Wbb̄ process). To provide the most precise predictions

possible, we generate the DPS Wbb̄ signal event sample, the SPS Wbb̄ sample, and the

dominant background event samples at next-to-leading order in QCD. The main obstacles

in the extraction of the DPS signal are the backgrounds from tt̄ production and the SPS

Wbb̄ component. The most efficient way to suppress the tt̄ background is with an upper cut

on the missing transverse energy of the event, since top quark decays result in larger values

of 6ET .

To separate the DPS component of Wbb̄ from the SPS component, we find it useful to

employ observables which take into account information on the full final state rather than

observables which involve one or two particles. Examples are the S ′
pT

variable (defined in

Eq. (17)) and the angle (∆Θbb̄,ℓν) between the two planes defined by the bb̄ and ℓν systems,

respectively. By displaying the information from these two observables in two-dimensional

distributions, we show in Sec.IVB that it is possible to identify distinct regions in phase

space where the DPS events reside. Utilizing cuts on these observables that enhance the

DPS Wbb̄ sample, we find that the DPS signal can be observed with a statistical significance

in the range S/
√
B ∼ 12− 15.

A similar study of the DPS and SPS and background contributions to the Zbb̄ final state

would be a valuable contribution. We remark, however, that the NLO calculation of the

SPS component of this final state has not yet been implemented in a numerical code such

as POWHEG needed for a differential analysis like ours for Wbb̄.

The focus in the present paper is on establishing double parton scattering as a discernible

physics process at LHC energies and measuring the size of its contribution. Once DPS

production of Wbb̄ is observed, it will be interesting to assess its potential significance as
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a background in searches for other physics, such as Higgs boson production in association

with a W boson (where the Higgs boson decays as H → bb̄), and precise studies of single

top quark production where new physics could contribute to the Wtb vertex. A detailed

analysis of either of these channels would require a different set of optimized physics cuts and

is beyond the scope of this paper. We limit ourselves here to showing the bb̄ invariant mass

distribution for the ℓνbb̄ final state in Fig. 9. These results are for illustration only since they

are based on the cuts outlined in this study. We see that the DPS Wbb̄ component alters

the overall shape of the bb̄ mass spectrum, enhancing the small mass region. This feature is

consistent with our earlier observation that the pT spectrum of leading jets is softer in the

DPS component. In Fig. 9, we see that the DPS component contributes primarily in the

region below 120 GeV or so. At face value, it does not seem to pose a hindrance for searches

for Higgs bosons in the HW channel. However, Wbb̄ DPS could be a significant background

in the search for new particles, with masses in the 50 - 100 GeV range and appearing as

resonances in Mbb, and it should be accounted for in any analysis.

Wbb DPS
SPS + bkgs

Total
Σeff = 12 mb
L dt = 10 fb-1
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FIG. 9: The event rate as a function of the invariant mass of the bb̄ system using the cuts outlined

in the text.
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