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The chiral condensate and dressed Polyakov loop at finite temperature and density have been
investigated in the framework of Nf = 2+1 Nambu–Jona-Lasinio (NJL) model with two degenerate
u, d quarks and one strange quark. In the case of explicit chiral symmetry breaking with physical
quark masses, it is found that the phase transitions for light u, d quarks and s quark are sequentially
happened, and the separation between the transition lines for different flavors becomes wider and
wider with the increase of baryon density. For each flavor, the pseudo-critical temperatures for
chiral condensate and dressed Polyakov loop differ in a narrow transition range in the lower baryon
density region, and the two transitions coincide in the higher baryon density region.

PACS numbers: 12.38.Aw, 12.38.Mh, 11.30.Rd

I. INTRODUCTION

QCD vacuum is characterized by spontaneous chiral
symmetry breaking and color confinement. The dynam-
ical chiral symmetry breaking is due to a non-vanishing
quark anti-quark condensate, 〈q̄q〉 ≃ (250MeV)3 in the
vacuum, which induces the presence of the light Nambu-
Goldstone particles, the pions and kaons in the hadron
spectrum. The confinement represents that only colorless
states are observed in the spectrum, which is commonly
described by the linearly rising potential between two
heavy quarks at large distances, VQ̄Q(R) = σsR, where

σs ≃ (425MeV)2 is the string tension.

It is expected that chiral symmetry can be restored
and color degrees of freedom can be freed at high tem-
perature and/or density. The interplay between chiral
and deconfinement phase transitions at finite tempera-
ture and density are of continuous interests for studying
the QCD phase diagram [1–9]. The chiral restoration
is characterized by the restoration of chiral symmetry
and the deconfinement phase transition is characterized
by the breaking of center symmetry, which are only well
defined in two extreme quark mass limits, respectively.
In the chiral limit when the current quark mass is zero
m = 0, the chiral condensate 〈q̄q〉 is the order parameter
for the chiral phase transition. When the current quark
mass goes to infinity m→ ∞, QCD becomes pure gauge
SU(3) theory, which is center symmetric in the vacuum,
and the usually used order parameter is the Polyakov
loop expectation value 〈P 〉 [1], which is related to the
heavy quark free energy. At zero density and chiral limit,
lattice QCD results show that the chiral and deconfine-
ment phase transitions occur at the same critical tem-
perature, e.g, see Ref. [15–19], and also review papers
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[20, 21]. This result is highly nontrivial because these two
distinct phase transitions involve different mechanisms at
different energy scales. It has been largely believed for a
long time that chiral symmetry restoration always coin-
cides with deconfinement phase transition in the whole
(T, µ) plane.
However, for the case of finite physical quark mass,

neither the chiral condensate nor the Polyakov loop is
a good order parameter. For heavy quark, there is no
dynamical chiral symmetry breaking (e.g, see [12]) thus
no chiral restoration. On the other hand, the linear po-
tential description for confinement property is not suit-
able for light quark system. In recent years, several lat-
tice groups have made much effort on investigating the
chiral and deconfinement phase transition temperatures
with almost physical quark masses, e.g, RBC-Bielefeld
group [23], which later merged with part of the MILC
group [22] and formed the hotQCD group [25, 26], and
Wuppertal-Budapest group [29–33]. The result from the
RBC-Bielefeld group in 2006 [23] found that the two
pseudo-critical temperatures for Nf = 2 + 1 coincide
at Tc = 192(7)(4)MeV. The Wuppetal-Budapest group
found that for the case ofNf = 2+1, there are three pseu-
docritical temperatures, the transition temperature for

chiral restoration of u, d quarks T
χ(ud)
c = 151(3)(3) MeV,

the transition temperature for s quark number suscepti-
bility T s

c = 175(2)(4)MeV and the deconfinement transi-
tion temperature T d

c = 176(3)(4)MeV from the Polyakov
loop. Recently, it is shown in [27, 28], by using an im-
proved HISQ action, hotQCD collaboration results are
close to the Wuppetal-Budapest collaboration results.
The relation between the chiral and deconfinement

phase transitions has also attracted more interest re-
cently in studying the phase diagram at high baryon den-
sity region [10]. It is conjectured in Ref. [11] that in large
Nc limit, a confined but chiral symmetric phase, which is
called quarkyonic phase can exist in the high baryon den-
sity region. The quarkyonic phase or chiral density wave
state is due to the quark-hole pairing near the Fermi sur-
face. Nevertheless, it attracts a lot of interests to study
whether such a chiral symmetric but confined phase can
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survive in real QCD phase diagram, and how it competes
with nuclear matter and the color superconducting phase
[13].

In the framework of QCD effective models, there is still
no dynamical model which can describe the chiral sym-
metry breaking and confinement simultaneously. The
main difficulty of effective QCD model to include con-
finement mechanism lies in that it is difficult to calcu-
late the Polyakov loop analytically. Currently, the pop-
ular models used to investigate the chiral and deconfine-
ment phase transitions are the Polyakov Nambu-Jona-
Lasinio model (PNJL) [34–41] and Polyakov linear sigma
model (PLSM) [42, 43]. However, the shortcoming of
these models is that the temperature dependence of the
Polyakov-loop potential is put in by hand from lattice
result, which cannot be self-consistently extended to fi-
nite baryon density. Recently, efforts have been made
in Ref.[44, 45] to derive a low-energy effective theory for
confinement-deconfinement and chiral-symmetry break-
ing/restoration.

Recent investigation revealed that quark propagator,
heat kernels can also act as an order parameter as they
transform non trivially under the center transformation
related to deconfinement transition [46–48]. The excit-
ing result is the behavior of spectral sum of the Dirac
operator under center transformation [47, 49–51]. A new
order parameter, called dressed Polyakov loop has been
defined which can be represented as a spectral sum of
the Dirac operator [51]. It has been found the infrared
part of the spectrum particularly plays a leading role
in confinement [47]. This result is encouraging since it
gives a hope to relate the chiral phase transition with the
confinement-deconfinement phase transition. The order
parameter for chiral phase transition is related to the
spectral density of the Dirac operator through Banks-
Casher relation [4]. Therefore, both the dressed Polyakov
loop and the chiral condensate are related to the spec-
tral sum of the Dirac operator. Behavior of the dressed
Polyakov loop is mainly studied in the framework of Lat-
tice gauge theory [52–54]. Apart from that, studies based
on Dyson-Schwinger equations [55–57] and PNJL model
[58, 59] have been carried out. In those studies the role of
dressed Polyakov loop as an order parameter is discussed
at zero chemical potential. The dressed Polyakov loop
at finite temperature and density has been investigated
in the two-flavor NJL model in Ref.[60]. In this paper,
we show the phase diagram in the framework of three-
flavor NJL model by using the dressed Polyakov loop as
an equivalent order parameter.

This paper is organized as follows: We introduce the
dressed Polyakov loop as an equivalent order parameter
of confinement deconfinement phase transition and the
NJL model in Sec. II. Then in Sec.III, we show the re-
sults of three-flavor QCD phase diagram in T − µ plane
in the chiral limit and in the case of explicit chiral sym-
metry breaking, respectively. At the end, we give the
conclusion and discussion.

II. DRESSED POLYAKOV LOOP AND THE

THREE-FLAVOR NJL MODEL

We firstly introduce the dressed Polyakov loop. To do
this we have to consider a U(1) valued boundary con-
dition for the fermionic fields in the temporal direction
instead of the canonical choice of anti-periodic boundary
condition,

ψ(x, β) = e−iφψ(x, 0), (1)

where 0 ≤ φ < 2π is the phase angle and β is the inverse
temperature.
Dual quark condensate Σn is then defined by the

Fourier transform (w.r.t the phase φ) of the general
boundary condition dependent quark condensate [51–53],

Σn = −

∫

0

2π dφ

2π
e−inφ〈ψ̄ψ〉φ, (2)

where n is the winding number.
Particular case of n = 1 is called the dressed Polyakov

loop which transforms in the same way as the conven-
tional thin Polyakov loop under the center symmetry and
hence is an order parameter for the deconfinement tran-
sition [51–53]. It reduces to the thin Polyakov loop and
to the dual of the conventional chiral condensate in infi-
nite and zero quark mass limits respectively, i.e., in the
chiral limit m → 0 we get the dual of the conventional
chiral condensate and in the m → ∞ limit we have thin
Polyakov loop [51–53].
The Lagrangian of three-flavor NJL model [61] is given

as

L = ψ̄(iγµ∂µ −m)ψ +Gs

∑

a

{

(ψ̄τaψ)
2 + (ψ̄iγ5τaψ)

2
}

− K
{

Detf [ψ̄(1 + γ5)ψ] + Detf [ψ̄(1 − γ5)ψ]
}

. (3)

Where ψ = (u, d, s)T denotes the transpose of the quark
field, and m = Diag(mu,md,ms) is the corresponding
mass matrix in the flavor space. τa with a = 1, · · · , N2

f−1
are the eight Gell-Mann matrices, and Detf means de-
terminant in flavor space. The last term is the standard
form of the ’t Hooft interaction, which is invariant under
SU(3)L × SU(3)R × U(1)B symmetry, but breaks down
the UA(1) symmetry.
The φ dependent thermodynamic potential in the

mean field level is given as following:

Ωφ =
∑

f

Ωφ,Mf
+ 2Gs

∑

f

〈σ〉2φ,f

− 4K〈σ〉φ,u〈σ〉φ,d〈σ〉φ,s , (4)

with

Ωφ,Mf
= −2Nc

∫

Λ

d3p

(2π)3

[

Ep,f +
1

β
ln(1 + e−βE−

p,f )

+
1

β
ln(1 + e−βE

+

p,f )
]

. (5)
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Where the sum is in the flavor space, Ep,f =
√

p2 +M2
φ,f

and E±
p,f = Ep,f ± [µ+ i(φ− π)T ], with the constituent

quark mass

Mφ,i = mi − 4Gs〈σ〉φ,i + 2K〈σ〉φ,j〈σ〉φ,k, (6)

where (i, j, k) is the quark flavor indices (u, d, s), and
〈σ〉φ,f = 〈ψ̄fψf 〉φ. We will only consider isospin symmet-
ric quark matter and define a uniform chemical potential
µ for u, d and s.
It is known that the NJL model lacks of confinement

and the gluon dynamics is encoded in a static coupling
constant for four point contact interaction. However, as-
suming that we can read the information of confinement
from the dual chiral condensate, it would be interesting
to see the behavior of the dressed Polyakov loop in a sce-
nario without any explicit mechanism for confinement.
The thermodynamic potential contains imaginary

part. We take only the real part of the potential and
the imaginary phase factor is not considered in this work.
The mean field 〈σ〉φ is obtained by minimizing the po-
tential for each value of φ ∈ [0, 2π) for fixed T and µ.
The conventional chiral condensate is 〈σ〉π = 〈ψ̄ψ〉π. For
brevity from here onwards we will represent the conven-
tional chiral condensate as < σ >. The dressed Polyakov
loop Σ1 is obtained by integrating over the angle.

III. PHASE DIAGRAM FOR THREE FLAVORS

We investigate phase transitions for two cases, i.e., in
the chiral limit and in the case of explicit chiral symmetry
breaking with physical quark mass, and the correspond-
ing parameters are taken from Ref.[62] and [63, 64]:

mq[MeV] ms[MeV] GsΛ
2 KΛ5

chiral-limit 0 0 1.926 12.36

physical mass 5.5 140.7 1.835 12.36

TABLE I: Two sets of parameters in 3-flavor NJL model: the
current quark mass mq for up and down quark and ms for
strange quark, coupling constants G and K, with a spatial
momentum cutoff Λ = 602.3 MeV.

A. Phase diagram in the chiral limit

We firstly consider the case of chiral limit, i.e. mu =
md = ms = 0. In Fig. 1, we show the behavior of
the conventional chiral condensate −〈σ〉 and the corre-
sponding dressed Polyakov loop Σ1 for u, d and s quarks
at different chemical potentials as functions of tempera-
ture. For both order parameters, it is observed there are
three temperature regions for −〈σ〉 and Σ1. For −〈σ〉,
at smaller temperatures it remains constant at a value
corresponding to the value of the conventional chiral con-
densate in the vacuum, then it drops to zero at the criti-
cal temperature Tc, and eventually keeps zero above the
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FIG. 1: The conventional chiral condensate −〈σ〉u,d,s and the

dressed Polyakov loop Σu,d,s
1

of u, d, s quarks as functions of
temperature for different values of the chemical potentials.
Here, −〈σ〉 and Σ1 both are measured in [GeV3].
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FIG. 2: Three-flavor phase diagram in the T −µ plane for the
case of chiral limit. The solid line is the critical line for Σ1,
and the dashed line is the critical line for conventional chiral
phase transition.

critical temperature. The critical temperature decreases
with the increase of the chemical potential. It is noticed
that, in order to guide eyes, we have connected the two
end-points of the order parameter at the jump.

On the other hand the behavior for the dressed
Polyakov loop is just the opposite. It remains zero for
small temperatures and then jumps at the critical tem-
perature, and finally saturates to a high value which
varies very slowly with temperatures. The almost zero
value of Σ1 for small temperatures is due to the fact that
the U(1) boundary condition dependent general quark
condensate nearly does not vary with the angle φ for
small temperatures (see Eq. 2).
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It is seen that the phase transitions for chiral restora-
tion and dressed Polyakov loop are of 1st order in the
whole T − µ plane. For two-flavor case, it was found
these two phase transitions are of second order. The Nf

dependent result is in agreement with the results given by
Pisarski and Wilczek in Ref. [65]. The first order phase
transition in three-flavor case is due to the ’t Hooft in-
teraction in Eq. (3), which contributes a cubic term in
the thermodynamical potential in Eq. (4).
Fig. 2 shows the phase diagram of three-flavor in the

chiral limit. We find almost exact matching for the tran-
sition temperatures calculated from these two quantities
in the whole T − µ plane.

B. Phase diagram with physical quark mass

For the case of finite quark mass mu = md = 5.5MeV
and ms = 140.7MeV, we have chosen the model parame-
ters of GsΛ

2 = 1.835, KΛ5 = 12.36 with Λ = 602.3MeV
as in Ref. [62] to fit mπ = 135.0MeV, fπ = 92.4MeV,
mK = 497.7MeV and mη′ = 957.8MeV.
In Fig. 3 and 4, we show the behavior of the conven-

tional chiral condensate −〈σ〉 and the dressed Polyakov
loop Σ1 at different chemical potentials as functions of
temperature for u, d and s quarks, respectively.
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FIG. 3: The conventional chiral condensate −〈σ〉u,d and the

dressed Polyakov loop Σu,d
1

of u, d quarks as functions of tem-
perature for different values of the chemical potentials. Here,
−〈σ〉 and Σ1 both are measured in [GeV3].

For both cases, it is observed that there are three tem-
perature regions for −〈σ〉 and Σ1. For −〈σ〉, at smaller
temperatures it remains constant at a value correspond-
ing to the value of the conventional chiral condensate in
the vacuum, then it rapidly decreases in a small win-
dow of temperature and eventually almost saturates to
a lower value. The decreasing occurs at different tem-
peratures for different values of the chemical potentials.
On the other hand the behavior for the dressed Polyakov
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FIG. 4: The conventional chiral condensate −〈σ〉s and the
dressed Polyakov loop Σs

1 of s quark as functions of temper-
ature for different values of the chemical potentials. Here,
−〈σ〉 and Σ1 both are measured in [GeV3].

loop is just the opposite. It remains almost zero for small
temperatures and then rises rapidly, finally saturates to
a high value which varies very slowly with temperatures.
The almost zero value of Σ1 for small temperatures is due
to the fact that the U(1) boundary condition dependent
general quark condensate nearly does not vary with the
angle φ for small temperatures (see Eq. 2).

The critical temperature for a real phase transition
or the pseudo-critical temperature for a crossover is ex-
tracted from the susceptibility of the order parameter or
the temperature derivative of the order parameter. For
example, for chiral phase transition of strange quark, the
(pseudo)critical temperature is extracted from the tem-
perature derivative ∂(− < σs >)/(∂T ). This quantity
describes how fast the order parameter changes with tem-
perature. Normally the critical temperature corresponds
to the fastest change of the order parameter, and the tem-
perature derivative of the order parameter shows a peak
at the critical point. However, there are some subtleties
to determine the pseudo-critical temperature for the chi-
ral restoration of the strange quark. We show how we de-
termine the pseudo-critical temperature of the crossover
by using Fig.5, which is the temperature derivative of the
chiral condensate of the strange quark corresponding to
Fig.4.

For µ = 0, from Fig.5 one can observe that the temper-
ature derivative of the strange quark condensate shows a
peak at T = 196MeV, correspondingly, from Fig.4, one
can see that the strange quark condensate changes fast
at T = 196MeV, which is the critical temperature for
chiral phase transition of the u, d quarks at zero chem-
ical potential. However, the value of the strange quark
condensate at T u,d

c,χ = 196MeV is still around its vac-
uum value, one cannot locate the pseudo-critical tem-
perature of the strange quark at T u,d

c,χ = 196MeV even
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though there is a peak for the temperature derivative of
the strange quark condensate. The reasonable explana-
tion of the fast change of the strange quark condensate
at T u,d

c,χ = 196MeV is that the strange quark feels the
chiral phase transition of u, d quarks due to the flavor
mixing effect. For µ = 0, from Fig.5 one can also ob-
serve a bump region of the temperature derivative of the
strange quark condensate around T = 250MeV, however,
there is no obvious peak shown up. Therefore, we cannot
extract an explicit pseudo-critical temperature from the
chiral phase transition of the strange quark. Correspond-
ingly, we find that the strange quark condensate at µ = 0
changes smoothly with temperature.
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0.00000
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0.00008

0.00012
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T[MeV]
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 200MeV
 320MeV
 460MeV
 490MeV

FIG. 5: The derivative of strange chiral condensate
∂(−〈σ〉s)/∂T as functions of T for different values of µ.

The temperature derivative of the strange quark con-
densate at µ = 200MeV is similar to the case at µ = 0.
The only difference is that the peak moves to a lower
temperature. The small jump at the large strange chi-
ral condensate region is induced by the u, d quark chiral
phase transition. It cannot be regarded as the phase tran-
sition for strange quark even though it corresponds to a
peak of the strange chiral susceptibility, because the or-
der parameter does not change so much comparing with
its vacuum value. It should still be regarded as in the chi-
ral symmetry breaking phase. At µ = 320MeV, it is seen
from Fig.5 that the left peak develops to a sharp peak at
T u,d
c,χ , and an obvious peak shows up in the right bump

region. Therefore, one can extract the pseudo-critical
temperature for the chiral phase transition of the strange
quark. For higher chemical potential, e.g, µ = 460MeV
or µ = 490MeV, because u, d quarks are already in chi-
ral symmetric phase, there is only one peak shows up for
the temperature derivative of the strange quark conden-
sate in Fig. 5, and the location of the peak gives the
pseudo-critical temperature of the phase transition.
As we have discussed in detail above, one has to com-

bine the information from the order parameter itself as
well as the temperature derivative of the order parameter

in order to determine the pseudo-critical temperature of
the crossover. This method is also used to determine the
dressed Polyakov loop of the strange quark. The critical
and pseudo-critical temperatures extracted from the tem-
perature derivative of the order parameters are shown in
Fig. 6. It is found that the the chiral and deconfinement
phase transitions are flavor dependent.
At low baryon chemical potential region when µ <

270MeV, for light flavors, i.e. for u, d quarks, we ob-
serve from Fig. 3 that the conventional chiral condensate
and the dressed Polyakov loop change rapidly with the
increase of temperature. From the temperature deriva-
tive of the order parameters of the chiral condensate
and dressed Polyakov loop, we can obtain two separate
pseudo-critical temperatures T χ

c and TD
c for fixed µ, and

we find T χ
c is always smaller than TD

c .
However, in the chemical potential region when µ <

270MeV, for s quark, from Fig. 4 we can see that the
conventional chiral condensate and dressed Polyakov loop
change smoothly with the increase of temperature. From
the temperature derivative of the order parameters, one
cannot extract the values of the pseudo-critical temper-
atures as already discussed. Therefore, in Fig. 6 of the
three-flavor phase diagram, we can read that in the re-
gion around 0 < µ < 270MeV, the phase transitions for
u, d are crossover, and different order parameters have
different pseudo-critical temperatures. The s flavor expe-
riences a rapid crossover, and no pseudo-critical temper-
atures can be extracted from the order parameters. From
the lattice results in Ref.[31] at zero chemical potential,
there is also no pseudo-critical temperature for the order
parameter of strange quark’s chiral condensate.
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FIG. 6: Three-flavor phase diagram in the T −µ plane for the
case of mu = md = 5MeV and ms = 140.7MeV. The dash-
dotted lines are the critical line for Σ1, and the dashed lines
are the critical line for conventional chiral phase transition in
the region of crossover. The solid lines indicates the 1st order
phase transitions, and the solid circle indicates the critical
end points for chiral phase transitions of u, d quarks.

At higher baryon chemical potential region, it is ob-
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served from Fig.3 that the conventional chiral condensate
and the dressed Polyakov loop change sharply with the
increase of temperature. From the temperature deriva-
tive of the order parameters, we find that the phase tran-
sitions are of first order, and the critical temperatures for
chiral and dressed Polyakov loop coincide with each other
around CEP.
For s quark, from Fig. 4 we can see that when the

chemical potential becomes higher and higher, the con-
ventional chiral condensate and dressed Polyakov loop
change more rapidly with the increase of temperature.
The temperature derivative of the order parameters give
separate values of the pseudo-critical temperatures in the
region 270 < µ < 450MeV, and the two pseudo-critical
temperatures merge in the region of µ > 450MeV.
From Fig. 6 of the three-flavor phase diagram, we

can read the critical end point for u, d flavors lies at

(T u,d
CEP , µ

u,d
CEP ) = (68.4MeV, 317.8MeV), which is differ-

ent from the results in Ref.[60] for pure two-flavor NJL
model. The difference comes from: 1) different model
parameters have been used, 2) the coupling of s quark
to u, d quark contributes one extra term in the thermo-
dynamical potential comparing with the pure two-flavor
case. The location of CEP in this work is in good agree-
ment with that in Ref. [66].
In Fig.7 and Fig.8, we show the details of locating

the CEP. In the first order phase region, there are two
branches of number densities, i.e, for fixed chemical po-
tential, the number density nq = −∂Ω

∂µ
has a jump at

the transition temperature. The two branches of num-
ber densities merge at the CEP. This feature is shown in
Fig.7. At the CEP, the phase transition is of second or-
der and this is indicated by the divergent behavior of the
number susceptibility. We show the number susceptibil-

ity χq = −∂2Ω
∂µ2 as functions of the temperature in Fig.8.

It is clearly seen that χq develops a sharp peak at CEP.
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FIG. 7: The quark number density nq as functions of the
temperature for different chemical potentials, and nq is in
unit of [GeV3].
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FIG. 8: The number susceptibility χq/T
2 as functions of the

temperature for different chemical potentials.

IV. CONCLUSION AND DISCUSSION

FIG. 9: Conjectured 3D QCD phase diagram at finite tem-
perature T , quark chemical potential µq and isospin chemical
potential µI .

We investigate the chiral condensate and the dressed
Polyakov loop or dual chiral condensate at finite tempera-
ture and density in the three-flavor Nambu–Jona-Lasinio
model. It is found that in the chiral limit, the phase tran-
sitions are of 1st order and the critical temperature for
chiral phase transition coincides with that of the dressed
Polyakov loop. In the case of explicit chiral symmetry
breaking, it is found that the phase transitions are fla-
vor dependent, and there is a phase transition range for
each flavor. The transition range of s quark is located at
higher temperature and higher baryon density than that
of u, d quarks. At low baryon density region, it is found
that the transition range of u, d quarks are not separated
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too much from that of the s quark, however, the separa-
tion of the transition ranges for u, d quarks and s quark
become wider and wider with the increase of the chemical
potential.
For light u, d quarks, the pseudo-critical temperature

for chiral transition T χ
c is smaller than that of the dressed

Polyakov loop TD
c in the low baryon density region where

the transition is a crossover, and these two phase tran-
sitions coincide in the 1st order phase transition region
at high baryon density. For s quark, both transitions are
of smooth crossover at low baryon density, and becomes
rapid crossover at moderate baryon density region where
the pseudo-critical temperatures for the chiral conden-
sate and the dressed Polyakov loop are separated, then
at enough high baryon density, these two transitions co-
incide with each other.
Our results are based on the NJL model, where the

gluon dynamics is encoded in a static coupling constant
for four point contact interaction, a quantitative com-
parison will not match with lattice results. However, we
believe the scenario of the sequential phase transitions is
physically correct.
Till now, there are six quark flavors observed in exper-

iment. These six flavors cover a very wide energy scale,
from several MeV to several hundred GeV. Only light
quarks experience dynamically chiral symmetry breaking
in the vacuum, and chiral phase transition in high tem-
perature and density. However, there is no good order
parameters to describe the deconfinement phase transi-
tion of light quarks. The conventional Polyakov loop is
a good order parameter for confinement deconfinement
phase transition in the limit of infinity heavy quark mass,
and has the interpretation of the free energy of an infin-
ity heavy quark. In analogy to that we can regard the
dressed Polyakov loop as an order parameter for confine-
ment deconfinement phase transition for a quark with
mass m, and interpret the dressed Polyakov loop as the
free energy of a quark with any mass m [54]. There-
fore, in principle, each flavor can have different critical
temperatures for deconfinement phase transition. Lattice
results already reflect such properties at zero chemical
potential, e.g. the pseudo-critical temperatures for order
parameters of u, d quarks, s quark and the Polyakov loop
are different, and the the pseudo-critical temperature is
higher for heavier quark mass.
It is natural to understand that the separation of

the phase transition range for different flavors becomes
wider and wider with the increase of the chemical po-
tential. Lattice result at zero chemical potential gives
that the pseudo-critical temperature for u, d quarks is
around 155MeV, and for s quark is around 175MeV.
The difference is around 20MeV. However, at zero tem-
perature, the u, d quarks restores chiral symmetry at
the chemical potential around their vacuum constituent
masses, i.e. µu,d

c ∼Mu,d ∼ 330MeV, and the s quark re-
stores chiral symmetry at the chemical potential around
µs
c ∼Ms ∼ 550MeV. The difference is around 200MeV.

Based on above analysis, in Fig. 9, we show our con-
jectured 3 dimension (3D) QCD phase diagram for finite
temperature T , quark chemical potential µq and isospin
chemical potential µI .

In the plane of (µ, T ), each flavor has its own transition
range. The transition range is wider in the low baryon
density, and becomes narrower and narrower with the in-
crease of the chemical potential, and eventually merge at
higher chemical potential. By using the lattice results
at zero density, we identify the phase transition range
around 155MeV for u, d quark, 175MeV for s quark, and
190MeV for heavy flavor. The upper solid line is for the
Polyakov loop, which does not change so much with the
increase of baryon density. This result agrees with that in
any Polyakov loop NJL model and Polyakov loop linear
sigma model. Due to the flavor dependent phase tran-
sitions, we naturally expect the color superconducting
phase for two-flavor quark system and three-flavor quark
system in different baryon density regions [13]. Due to
the finite mass of strange quark, the three-flavor color
superconducting phase can be in the color flavor lock-
ing (CFL) phase[67], CFL-kaon condensate phase (CFL-
K)[68], or uSC/dSC phase [69].

When isospin asymmetry is considered, the phase di-
agram becomes much more complicated. At low baryon
density region, there will be pion superfluidity and kaon
superfluidity phases [70]. In the color superconducting
phase, because isospin asymmetry induces mismatch be-
tween the pairing quarks, there will appear unstable gap-
less excitations [71, 72] when charge neutrality condition
is considered. It has been vastly discussed in many liter-
atures about the true ground state of the charge neutral
two-flavor and three-flavor cold quark matter, e.g, the
Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) sate or other
crystalline structure [73], the gluon condensate state [74],
the current generation state [75], and so on. The de-
tailed analysis given in Ref. [76] show that in the gapless
color superconducting phase, both the phase part and
magnitude part of the order parameter will develop in-
stabilities. The phase part develops into the chromomag-
netic instability, which induces the plane-wave state; The
magnitude part develops the Sarma instability and Higgs
instability, the Sarma instability can be competed with
charge neutrality condition. If the Higgs instability can-
not be cured by the electric or color Coulomb interaction,
it will induce the inhomogeneous state.
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