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The most general phenomenological model involving a lepton triplet with hypercharge

±1 is constructed. A distinctive feature of this model is the prediction of a doubly charged

lepton, and a new heavy Dirac neutrino. We study the phenomenology of these exotic leptons

in both low-energy experiments and at the LHC. The model predicts FCNC processes such

as muon and tau rare decays, which are studied in detail in order to constrain the model

parameters. All the decay channels of the exotic leptons are described for a wide range of

parameters. It is found that, if the mixing parameters between the exotic and light leptons

are not too small (> 10−6), then they can be observable to a 3−5σ statistical significance at

the 7 TeV LHC with 10−50 fb−1 luminosity for a 400 GeV mass, and 14 TeV with 100−300

fb−1 luminosity for a 800 GeV mass.

PACS numbers: 14.60.Pq, 14.60.Hi, 14.60.St
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I. INTRODUCTION

Although the success of the Standard Model (SM) as a way to correctly describe the interac-

tions among particles is beyond any doubt, there are good reasons to believe that the SM is not

the ultimate theory to describe Nature. Particle dark matter, neutrino masses, and the actual

mechanism of electroweak breaking are among the pressing issues. Especially the nature of the

sector which breaks the EW symmetry and gives masses to gauge bosons and fermions has been

one of the leading motivations for many theoretical considerations beyond the standard model.

Supersymmetry tries to explain the hierarchy problem while having a weakly coupled Higgs sector,

warped extra dimensions [1] on the other hand provide with an alternative explanation which,

through the AdS/CFT correspondence [2], can be understood as being dual to a strongly coupled

origin for the Higgs [3]. In particular one can accommodate the old idea of having the Higgs as a

pseudo-Goldstone boson of a global symmetry [4] in this framework by having a model where the

Higgs comes from a gauge multiplet, the so-called gauge-Higgs unification [5].

Some model building is required in order to construct a complete model of gauge-Higgs unifica-

tion that passes all the electroweak precision tests [6], like gauging SU(2)R in order to protect the

ρ-parameter or including special representations for fermions to cancel dangerous contributions to

Z → bb. One of the consequences of that is the appearance of extra fermionic states with exotic

hypercharges. This paper deals with the phenomenology of some of those exotic states following

previous studies [7]. Specifically we will study the phenomenology of a vector-like triplet of leptons

with Y = 1 that mixes with the usual leptons of the SM via a Yukawa coupling with the Higgs.

Perhaps the most interesting consequence of this model is the existence of a doubly charged

lepton, which we will refer to an exotic heavy lepton. Similar new leptonic states have been

considered [8], most notably in the context of a possible mechanism to generate neutrino masses,

the so-called Type III see-saw [9], although in that particular model the lepton introduced had

Y = 0. Doubly charged fermions have been also studied as doubly charged Higgsinos [10] in the

context of an extended SUSY theory or flavor models in warped dimensions [11] or in more general

models [12]. Here we will follow a model-independent approach. We will introduce the most general

Lagrangian including this triplet. The mass will be treated as a free parameter. We will introduce

general mixing matrices among these new states and the SM particles. Upon diagonalization of

the mass matrices the couplings of these extra leptons to the SM particles will be bounded by

experiments on FCNC and neutrino physics. We will find that the absence of exotic decays of

the muon will put the stringiest bounds on those couplings. Under those constraints, we will then
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study the decay widths and channels for these new particles. We will then perform an analysis of

the possible signatures and SM backgrounds for discovery of these exotic states at the LHC.

The paper is organized as follows, in section II we present the model with particular emphasis

to the spectrum and interactions of these new fields. Section III is devoted to the constraints that

different experimental facts put in the model. We study the decay patterns on Section IV that

leads to the different signatures in Section V. Our conclusions are presented in Section VI whereas

we have relegated some technical details to the Appendix.

II. DESCRIPTION OF THE MODEL

A. The model for one generation

In this model, there is a vector-like SU(2) triplet of exotic leptons with hypercharge Y = ±1. A

singlet right handed neutrino is also included to give mass to the neutrino. As a result the particle

content, according to the (SU(2), U(1)Y ) quantum numbers, is

H =





φ+

φ0



 ∈ (2, 1/2), eR ∈ (1,−1), νR ∈ (1, 0), LL =





ν

e





L

∈ (2,−1/2) (1)

XL =











X0

X−

X−−











L

, XR =











X0

X−

X−−











R

∈ (3,−1),

where L,R refer to the chirality of the fermions.

The most general lagrangian that gives rise to the lepton masses without breaking gauge invari-

ance or lepton number is

−LY = λ1LLHeR + λ2LLH
cνR + λ3XRH

cLL +M1XX + h.c. (2)

We are focusing on Dirac Leptons and therefore majorana mass terms are not allowed. For sake of

simplicity, we work in the unitary gauge here and leave the general case for Appendix C. We thus

have H =





0

v+h(x)√
2



 and

−LY = λ1
v + h(x)√

2
eLeR + λ2

v + h(x)√
2

νLνR + λ3
v + h(x)

2
X−

R eL + λ3
v + h(x)

2
X0

RνL

+M1(X−−LX−−
R +X−

LX
−
R +X0

LX
0
R) + h.c. (3)
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Setting mi =
1√
2
vλi, we can rewrite the lagrangian as

−LY = NLMNNR + ELMEER +
1

v
h(x)ELME|M1=0ER

+
1

v
h(x)NLMN |M1=0NR +M1X

−−
L X−−

R + h.c., (4)

where the neutral and charged leptons as well as their mass matrices are

N =





ν

X0



 , E =





e

X−



 (5)

MN =





m2 m3∗
0 M1



 , ME =





m1
m3∗√

2

0 M1



 , (6)

and MN |M1=0 means setting M1 = 0 in the matrix defined above for MN . Similar remarks apply

for ME .

B. Generalization to three generations

It is straightforward to generalize equations (4), (5) and (6) to include three generations of

SU(2) doublets. The mass matrices can then be diagonalized by biunitary transformations

S†
EMETE =MEd = diag(me,mµ,mτ ,M2), S†

NMNTN =MNd = diag(mν1 ,mν2 ,mν3 ,M3), (7)

where, as usual, the matrices SE, TE , SN and TN are unitary and the diagonal elements are the

tree level masses. On dimensional grounds we expectM2−M1 ∝ m2
ei/M1 andM3−M1 ∝ m2

νi/M1.

Hence, the masses of the leptons are nearly degenerate at tree-level. We will see later that quantum

corrections lift this degeneracy.

Similar to a general fermionic sector with arbitrary Yukawa couplings, there are more theory

parameters (9 elements of λ1, 9 elements of λ2, 3 elements of λ3 and M1) than those that can

be experimentally determined (masses of the leptons and their mixings such as the PMNS ma-

trix elements). Thus it is necessary to parameterize the fermionic sector by a few more physical

parameters. We find convenient to introduce

V = S†
NSE vE = S†

E





0

1



 vN = V vE . (8)

The 4×1 matrices vE , vN characterize the mixing among the SM leptons and the new heavy triplet

in the gauge interactions. In appendix A, we derive the following relations:

|vE4| =M1/M2 |vN4| =M1/M3

Vi4 =

(

1√
2

M2
3

M2
1

δi4 + 1− 1√
2

)

v∗E4vNi V ∗
4i =

√
2

(

M2
2

M2
1

δi4 − 1 +
1√
2

)

v∗N4vEi. (9)
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Several remarks are in order:

• First, according to relations (9), our physical parameters are the masses of the leptons

me,mµ,mτ , mν1 ,mν2 ,mν3 ,M1,M2 andM3 plus the mixings vEi and Vij with i, j = 1, 3 (which will

be related to the PMNS matrix in section II.D). Because of the way we constructed them, they are

independent of each other. As a result, there are no relations among the neutrino masses in our

model. This is consistent with the fact that all of our neutrinos are of Dirac type.

• Second, because the near degeneracy ofM1,M2,M3, equations (9) imply vTE ≈ vTN ≈ (0, 0, 0, 1).

Consequently, the mixing elements V ∗
4i and Vi4 for i = 1, 2, 3 are very small. Thus, the matrix V

decomposes into two blocks: a 3x3 unitary matrix and a number 1. This limit corresponds to the

situation in which the Standard Model leptons do not interact with the exotic triplet directly.

• Third, these relations imply that M1 should be smaller than M2 and M3. In other words,

the doubly charged lepton should be lighter than the singly charged lepton and the neutral lepton

at tree level. This situation changes once quantum corrections are taken into account, as will be

discussed in the next section.

• The peculiar factor 1− 1√
2
on equations (9), which comes from equation (A11), can be traced

back to the particular form of the mass matrices (6). This in turn can be associated to the triplet

nature of the exotic leptons. If they constituted a doublet representation instead, there would not

be a 1/
√
2 on (6) and the factor 1− 1√

2
would be absent. As we will see later in section II.D (or in

appendix B), this fact will be crucial to show that coupling among the neutral exotic lepton, the

SM charged leptons and W+ (or to φ+ as shown in appendix C) is highly suppressed.

C. Mass Splitting

Although the masses of the triplet leptons are degenerate at the tree-level, electroweak quantum

corrections lift the degeneracy. The mass difference induced by one-loop of SM gauge bosons are

calculated to be [13]

MX−− −MX− =
α2M

4π

(

(3 sin2 θW − 1)f

(

MZ

M

)

+ f

(

MW

M

))

(10)

MX− −MX0 =
α2M

4π

(

(sin2 θW + 1) f

(

MZ

M

)

− f

(

MW

M

))

, (11)

where M is the mass scale of the lepton triplet and

f(r) = r

[

2r3 log r − 2r + (r2 − 4)1/2(r2 + 2) log

(

r2 − 2− r
√
r2 − 4

2

)]

, (12)
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which gives

MX−− −MX− ≈ 848 MeV, MX− −MX0 ≈ 492 MeV, (13)

with 3% and 7% of accuracy respectively in the whole range 200 GeV < M < 1000 GeV. Although

these mass differences are crucial for determining the allowed decay modes of the model as to be

discussed in detail, they are still very small compared to the mass scale itself. Thus for most

practical purposes of the LHC analyses, we have

M =M1 ≈M2 ≈M3. (14)

The relations for the mixing elements are approximated by

Vi4 ≈
(

1 +
1√
2
(δi4 − 1)

)

v∗E4vNi, V ∗
4i ≈

(

1 +
√
2(δi4 − 1)

)

v∗N4vEi. (15)

Thus, the only dimensionful parameter is M and it is taken in the range of 200 GeV < M < 1000

GeV henceforth 1. Moreover, since vNi and vEi are related to each other by Eq. (8), we can take

vEi as the only independent couplings of the heavy leptons to the SM particles.

D. Lepton Interactions and PMNS matrix

We now specify the lepton interactions with the SM gauge bosons. In the basis of mass eigen-

states, we parameterize the coupling by a Lagrangian2

L = g̃ψ1γµ(gV − gAγ5)ψ2V
µ. (16)

The results are compiled in table I. The details of the construction are in appendix B. It is

noted that the coupling among X0, the standard model charged leptons and W+ is not zero but

proportional to mei/M , and hence highly suppressed.

It is easy to see that by setting vE = vN = (0, 0, 0, 1), the SM couplings of the gauge fields to

the leptons are recovered. Therefore, all the new physics involving the exotic leptons and the SM

particles is encoded in vE and vN , as introduced before. The V −A structure of the charged weak

interactions among the SM leptons is not modified by the presence of the exotic leptons.

The corresponding 3⊗ 3 PMNS matrix within this model, according to table I, is given by

Uαi = V ∗
iα + (

√
2− 1)vEαv

∗
Ni α = e, µ, τ ; i = 1, 2, 3, (17)

1 The current lower bound on a generic charged lepton is 100.8 GeV [14]. Our choice of the lower mass value is

motivated by LHC sensitivity with an intregated luminosity of 1 fb−1 as seen in section V.C.
2 To fix our normalization, g̃ is g/

√
2 (g/cos θW ) for V = W± (Z0) in the SM.
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ψ1 ψ2 Boson gV gA

νi νj Z0 1

4
(δij + vNiv

∗
Nj) The same

νi X0 Z0 1

4
vNiv

∗
N4 The same

X0 X0 Z0 1 0

ei ej Z0 (sin2 θW − 1

4
)δij +

1

4
vEiv

∗
Ej − 1

4
δij +

1

4
vEiv

∗
Ej

ei X− Z0 1

4
vEiv

∗
E4 The same

X− X− Z0 sin2 θW 0

X−− X−− Z0 −1 + 2 sin2 θW 0

νi ej W+ 1

2

(

Vij + (
√
2− 1)vNiv

∗
Ej

)

The same

νi X− W+ 1

2
√
2
vNiv

∗
E4 The same

X0 ej W+ 0 0

X0 X− W+
√
2vN4

vE4
0

ei X−− W+ 1√
2
vEi The same

X− X−− W+
√
2vE4 0

TABLE I. Couplings of the gauge bosons to the leptons in the mass eigenstates basis, as parameterized in a

Lagrangian in Eq. (16).

or using (8)

Uαi =
[(

1 + (
√
2− 1)vEv

†
E

)

V †
]

αi
=
[

V †
(

1 + (
√
2− 1)vNv

†
N

)]

αi
, (18)

This clearly shows that this matrix is not unitary. In fact equations (15) show that

∑

α=e,µ,τ

U∗
αiUαj = δij +

1

2
vNiv

∗
Nj

3
∑

i=1

UαiU
∗
βi = δαβ + vEαv

∗
Eβ. (19)

Furthermore, using the relations (17) and (19) , it can be shown that

vNi =
√
2
∑

α=e,µ,τ

U∗
αivEα. (20)

Finally, according to (4), the interaction of the mass eigenstate leptons in the model with the Higgs

is given in the unitary gauge by

−LH =
1

v
h(x)ELMEd

(

1− vEv
†
E

)

ER +
1

v
h(x)NLMNd

(

1− vNv
†
N

)

NR + h.c. (21)

Notice that there are non-diagonal terms that allow the Higgs boson to decay in SM leptons of

different flavor, which is forbidden in the standard model at tree level. The couplings for an

arbitrary gauge are given in appendix C.
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Process Br <

µ− → e−γ 1.2× 10−11

µ− → e−e−e+ 1.0× 10−12

τ− → e−γ 3.3× 10−8

τ− → µ−γ 4.4× 10−8

τ− → e−µ+µ− 2.7× 10−8

τ− → µ−µ+µ− 2.1× 10−8

τ− → e−e+e− 2.7× 10−8

τ− → µ−e+e− 1.8× 10−8

TABLE II. Branching fraction current upper limit for FCNC processes induced by exotic leptons.

III. CURRENT CONSTRAINTS ON THE MODEL PARAMETERS

A. FCNC decays

The new leptons contribute to flavor-changing processes. The absence of such decays put

stringent bounds on the new particle and interactions. The particle data group [14] has compiled

the constraints on these rare processes, which we report on table II. We now derive the bounds on

the couplings.

1. l2 → l1γ

We evaluate the one-loop contribution from the new leptons to this process, which is presented

in detail in Appendix D. In contrast to models with only heavy electron-like leptons or heavy

neutrinos, in our model we must also consider the contribution of the doubly-charged leptons.

However, our results are consistent with previous studies [8, 15, 16]. As it is shown in appendix

D, due to the relations as in Eq. (15), the diagrams with the exotic neutral lepton are highly

suppressed, and therefore the leading contributions come from diagrams with charged leptons.

Also previous work [17, 18] includes contributions from doubly charged leptons. However those

do not include heavy neutral or electron-like leptons along with the doubly charged lepton in the

loops. As a result, their calculation is qualitatively different from the corresponding one for a

triplet with hypercharge Y = 1. After a careful calculation, we find the branching fraction to be
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FIG. 1. (a) Branching fraction of l2 → l1γ and l2 → l1l
−l+ as function of the triplet mass. (b) Upper bound

on |vl1 ||vl2 | according to the experimental constraint in table II.

given by

Br(l2 → l1γ) =

(

−8 + 12 sin2 θW + 8g(rW ) +

(

2 +
1

rZ

)

f(rZ) + 8

(

2 +
1

rW

)

f(rW ) +
f(rH)

rH

)2

×
(

G2
Fm

5
l2

192π3Γl2

)

(

3α

32π

)

|vl1 |2|vl2 |2, (22)

where ra = M2
a/M

2, Γl2 is the total width of the lepton l2 and the functions f and g are defined

in appendix D.

We present the branching fraction for this process as function of the triplet mass in Fig. 1(a)

after removing the mixing parameters |vl1 |2|vl2 |2. Here and henceforth, we take MH = 120 GeV,

but our results are not very sensitive to the particular value of the Higgs mass. We can see that

the branching fraction increases with the triplet mass logarithmically according to the asymptotic

behavior of the functions f and g. This is due to the enhanced coupling of the Higgs to the

lepton triplet. We note that with a fully model consideration, the mixing parameters go like

|vl1vl2 | ∼ 1/M2, and thus the physical branching fraction asymptotically approaches zero at large

mass, reflecting the decoupling behavior. We translate the current bound of table II to the mixing

parameters as shown in Fig. 1(b). As a result, setting M = 1000 GeV gives us the upper bound of

the couplings as

|ve||vµ| < 5.9 × 10−6, |ve||vτ | < 9.6× 10−4, |vτ ||vµ| < 8.3 × 10−4. (23)
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2. l2 → l1l
−l+

Due to the lepton-flavor changing interactions in this model, there are only two diagrams at

tree-level, one involving a Z boson, and the other one a Higgs boson. The one with the Higgs boson

is however highly suppressed because it is proportional to the light fermion masses like GFml1ml2 .

The corresponding branching fraction is found to be

Br(l2 → l1l
−l+) =

Γ (l2 → l1l
−l+)

Γl2

=

(

G2
Fm

5
l2

192π3Γl2

)

[

(sin2 θW )2 + 2(sin2 θW − 1

2
)2
]

|vl2 |2|vl1 |2,(24)

Thus, table II implies

|ve||vµ| < 2.2 × 10−6, |ve||vτ | < 8.6× 10−4, |vτ ||vµ| < 7.0 × 10−4. (25)

The branching fraction and the bound are both indicated by the straight lines in Fig. 1. It turns

out that the numerical bound on the couplings are slightly stronger for the l2 → l1l
−l+ process.

3. FCNC decays of Z0

Since the coupling of the Z0 boson to SM leptons is not diagonal, they lead to Flavor Changing

Neutral currents (FCNC) at tree level, and thus to the Z0 boson might decay to SM leptons of

different flavor. The decay rates for these processes are

Γ(Z0 → ℓ−i ℓ
+
j ) =

GFM
3
Z

12
√
2π

|vEi|2|vEj|2, Γ(Z0 → νiνj) =
GFM

3
Z

12
√
2π

|vNi|2|vNj |2 ( i 6= j). (26)

All these processes lead to constraints on the quantities vEi and vNi, but not nearly as strong as

those obtained from the µ rare decays above.

Finally, the exotic leptons generate contributions to the oblique corrections of the gauge boson

masses, the S and T parameters [19]. It turns out that the constraints coming from FCNC con-

straints are more severe than any one coming from the EW precision parameters, so we will not

pursue this study.

B. non-unitarity of PMNS matrix

It has been shown [20] that if the PMNS matrix is not unitary and if it is written as U = (1+η)U0

where η is a hermitian matrix and U0 a unitary matrix (which is always possible for an arbitrary
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matrix), then:

|η| =











|ηee| |ηeµ| |ηeτ |
. |ηµµ| |ηµτ |
. . |ηττ |











.











2.0× 10−3 5.9× 10−5 1.6 × 10−3

. 8.2× 10−3 1.0 × 10−3

. . 2.6 × 10−3











(27)

For our model, it is easy to show from equation (19) that to leading order

ηαβ =
1

2
|vEα||vEβ| (28)

which implies that:

|ve||vµ| < 1.2× 10−4, |ve||vτ | < 3.2 × 10−3, |vτ ||vµ| < 2.0× 10−3,

|ve| < 6.3× 10−2, |vµ| < 1.3 × 10−1, |vτ | < 7.2 × 10−2. (29)

We can see that these constraints are not as strigent as those found in the previous section.

However, now we have constraints on individual vi.

C. µ→ e conversion in heavy nuclei

It is also possible to obtain a bound from µ→ e conversion in heavy nuclei. We will study this

process for 48
22T i for which the current limit [14] is

R =
σ(µ−T i→ e−T i)

σ(µ−T i→ capture)
< 4.3 × 10−12. (30)

Due to a Z boson exchange, such process may take place in our model by means of the effective

lagrangian:

Leff = −
GF vev

∗
µ√

2
eγλ(1−γ5)µ

(

dγλ

(

−1

4
+

1

3
sin2 θW +

1

4
γ5
)

d+ uγλ

(

1

4
− 2

3
sin2 θW − 1

4
γ5
)

u

)

.

(31)

By using a standard formula, for example Eq. (2.16) of Ref. [21], we obtain R = 0.992|ve|2|vµ|2,
which implies:

|ve||vµ| < 2.1× 10−6.

This constraint, although of the same order of magnitude, is more stringent than the one we got

from µ → eee. However, it is subject to the theoretical and experimental uncertainties of nuclear

physics.
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Channel Partial Width Γ/GFM3

16
√
2π

X → ℓ

X−− → e−i W
− 4F1(rW )|vEi|2

X− → e−i H F0(rH)|vEi|2

X− → e−i Z
0 F1(rZ)|vEi|2

X− → νiW
− F1(rW )|vNi|2

X0 → νiH F0(rH)|vNi|2

X0 → νiZ
0 F1(rZ )|vNi|2

X0 → e−i W
+ 0

Xp → Xk

Xp → XkW
−∗ → Xk + e−i + νj Eq. (33)

Xp → XkW
−∗ → XkΠ

− 32
√
2kGF f

2
Π|V |2

(

∆M
M

)3
√

1−
(

mΠ

∆M

)2

TABLE III. Decay channels and partial widths for the exotic leptons, with ra = m2
a/M

2 < 1. Π is a generic

light meson (π, K) and fΠ its decay constant, V is the corresponding CKM matrix element. Xp generically

denotes X−− or X− and Xk for X− or X0, respectively. k = 6(1− 4m2

π

m2
ρ
)−1 for the ρ meson, otherwise k = 1

[22].

IV. DECAYS OF THE EXOTIC LEPTONS

To further study the phenomenology for the exotic leptons, we now calculate the decays of the

exotic leptons. Depending on the masses, all the decay channels and the decay rate formulas have

been listed in Table III.

A. Partial Decay Width

For an exotic lepton above the scale of MW , the important decay modes will be X → ℓ+W,Z

or H. The decay width formulas are given in Table III as X → ℓ, with the functions

Fn(x) = (1− x)2(1 + 2nx)2. (32)

As seen from those results, the partial widths are all proportional to the mixing angle squared

between the heavy-light transition. We plot the partial decay widths for those transitions versus

the exotic lepton mass in Fig. 2(a). Once again we take MH =120 GeV. The mixing angle squared

has been factored out for comparison. It is interesting to note that the decay width for X±± is

about a factor of four larger than those of X± or X0 , due to the gauge couplings in Table I.

The similarity among the other channels is in accordance with the Goldstone boson equivalence
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FIG. 2. Decay rates (a) for X → ℓ processes, with the mixing parameter |vℓ|2 factored out, where ℓ is the

lepton in the final state; and (b) X → X processes, in the cases where the final state has neutrinos, we have

summed over the three light states.

theorem.

The transition between two heavy states will have no mixing angle suppression (|vE4| ≈ |vN4| ≈
1). However, it will suffer from the three-body phase space suppression due to the near mass

degeneracy. For the leptonic final state Xp → XkW
−∗ → Xk + e−i + νj , we have the expression,

similar to the muon decay

dΓ(Xp → Xke
−
i νj)

dxkdxi
=
G2

FM
5
p |Uij|2

8π3
×

(xi(1− µk + ri − xi)(−1 + xi + xk − ri − µk)(2− xi − xk)− 2
√
µk(1 + µk − ri − xk)) , (33)

where µk = M2
k/M

2
p , ri = m2

i /M
2 and xa = 2Ea/M . The integration ranges for the energy

variables are

2
√
µk ≤ xk ≤ 1 + µk − ri, xi ≶

1

2

[

(2− xk)

(

1 + µk + ri − xk
1 + µk − xk

)

±
√

x2k − 4µk

(

1 + µk − ri − xk
1 + µk − xk

)]

.

Notice that the mass difference between the exotic leptons, as given in Eq. (11), crucially controls

the decay rates. Furthermore, since this difference is of the order of few hundred MeV, we have

kept the charged lepton mass mi explicit in the calculation.

We plot the decay widths of Xp → Xk in Fig. 2(b) for each exotic lepton versus M . We see that

these rates vary very slowly with the exotic lepton mass. Furthermore it is important to realize

that among these, the leading mode is the two-body decay into a pion for the singly-charged lepton

or the two-body decay into a ρ for a doubly-charged lepton when kinematically accessible. Using

the formula given in Table III, in the mass range 200 < M < 1000 we have therefore, that

Γ(X−− → X−) ≈ 3.7 × 10−12 GeV, Γ(X− → X0) ≈ 2.3× 10−13 GeV. (34)
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B. Total Decay Widths And Branching Fractions

When considering a total decay width summing over the contributing channels, we find it useful

to introduce the notation

λ =
∑

i=e,µ,τ

|vi|2, (35)

that controls the heavy-light (X → ℓ) transition. Since deviations of the PMNS matrix from

unitarity are of second order in vEi, and because of Eq. (20), for the neutrino couplings we have

3
∑

i=1

|vNi|2 = 2λ+O(λ2). (36)

Using this parameter, we express the total widths as

ΓX−− =
GFM

3

4
√
2π

F1(rW )λ+ Γ(X−− → X−) ≈
(

M

115 GeV

)3

λ+ Γ(X−− → X−) (37)

ΓX− =
GFM

3

16
√
2π

(2F1(rW ) + F1(rZ) + F0(rH))λ+ Γ(X− → X0) ≈
(

M

115 GeV

)3

λ+ Γ(X− → X0)

ΓX0 =
GFM

3

8
√
2π

(F1(rZ) + F0(rH))λ ≈
(

M

115 GeV

)3

λ,

where Fn was defined on Eq. (32) and the rates are in units of GeV.

The squared sum of the mixing angles λ is of fundamental importance for the decay life time and

branchings. We recall that from the previous discussions, the experimental constraints discussed

before put limits on the possible values of λ . 10−6. We now categorize the phenomenology roughly

according to the following two regions.

1. 10−12 < λ < 10−6 : X → ℓ Transition Dominance

In this case the coupling of the exotic leptons to the standard model leptons is strong enough so

that their leading decay modes are to the SM leptons (X → ℓ), along with gauge bosons or Higgs

bosons. The total widths are proportional to λ. These are plotted in Fig. 3, along with the the

lifetime of each of the exotic leptons on the right-hand side axis. The mixing angles squared are

again factored out. Taking into account these small mixings, the life time in this parameter region

is still rather short, leading to prompt decays in collider experiments, although it may result in

secondary vertices when λ ∼ 10−12.

Figure 4 corresponds to the branching fractions. The SM lepton flavors are summed over as

earlier. The branching fractions to W,Z,H are again in accordance with the Goldstone boson
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λ < 10−6.

equivalence theorem at the high mass region. X−− decays to a charged lepton and a W with a

100% branching fraction, The relative fraction to a specific charged lepton depends on the ratio

of the mixing angles squared |ve|2 : |vµ|2 : |vτ |2. Determination of the leptonic branching fractions

would lead to the most interesting phenomenology.

2. λ < 10−13 : Xp → Xk Transition Dominance

In this case, the leading decay mode of the charged exotic leptons is X±± → X±π±π0 or

X± → X0π±. The lifetime is approximately constant, about the order 10−12 s. However, the

nearly degenerate masses for X make observable SM final state very soft, typically with an energy

less than a GeV, and thus essentially escape from the detection in the collider environment. The

lightest exotic lepton, X0, will only undergo a X0 → ν transition, and thus difficult to detect as

well in collider experiments. We will not consider this parameter range due to the lack of relevance

for LHC phenomenology.
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X++ → ℓ+W+ X+ → νW+ X+ → ℓ+Z X+ → ℓ+H X0 → νZ X0 → νH

X−− → ℓ−W− ℓ−ℓ+W−W+ ℓ−νW−W+ ℓ−ℓ+W−Z ℓ−ℓ+W−H - -

X− → νW− νℓ+W−W+ ννW−W+ νℓ+W−Z νℓ+W−H ννW−Z ννW−H

X− → ℓ−Z ℓ−ℓ+ZW+ ℓ−νZW+ ℓ−ℓ+ZZ ℓ−ℓ+ZH ℓ−νZZ ℓ−νZH

X− → ℓ−H ℓ−ℓ+HW+ ℓ−νHW+ ℓ−ℓ+HZ ℓ−ℓ+HH ℓ−νHZ ℓ−νHH

X0 → νZ - ννZW+ νℓ+ZZ νℓ+ZH ννZZ ννZH

X0 → νH - ννHW+ νℓ+HZ νℓ+HH ννHZ ννHH

TABLE IV. Exotic lepton decay channels to SM particles.

V. SEARCHES FOR THE LEPTON TRIPLET AT THE LHC

A. Total cross sections

We first present the total cross sections for all the possible processes for the exotic lepton

production in Fig. 5 at the LHC for 7 TeV and 14 TeV. Once again, we factor out the overall

couplings. The associated production of an exotic lepton and a SM lepton is shown in Fig. 5(a)

and Fig. 5(c). The production rates are suppressed by the mixing angle squared. Since they are

at least of the order of 10−6, their corresponding cross sections are negligible. We will thus only

consider the pair production of the exotic leptons via the SM gauge interactions for their search

at the LHC, as shown in Fig. 5(b) and Fig. 5(d). Similar results are obtained in LHC searches of

doubly charged Higgsinos [10].
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FIG. 5. Cross sections for the LHC (a) associated production at 7 TeV; (b) pair production at 7 TeV; (c)

associated production at 14 TeV; (d) pair production at 14 TeV.

B. Characteristic Final states for the Exotic Leptons

We have seen that the pair production of the exotic leptons via the SM gauge interaction may

lead to sizable rate. In Table IV, we list all the decay channels with a SM lepton in the final state.

In order to test this model, it is necessary to identify the most characteristic feature of the model.

First, we would like to reconstruct the exotic lepton mass to claim a signal observation. Second,

we wish to establish the nature of the doubly charged lepton to be conclusive for the model. Third,

we hope to choose a channel that keeps a large signal rate while that stands out above the SM

backgrounds. With these considerations, we focus out study in the following to the production and

decay modes

pp→ X−−X++ → ℓ−W− ℓ+W+. (38)

For simplicity from the observational point of view, we assume that |ve| ≈ |vµ| ≈ |vτ |, and thus

BR(X±± → e±W±) ≈ BR(X±± → µ±W±) ≈ 1

3

∑

i

BR(X±± → ℓ±i W
±) ≈ 1

3
. (39)
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We will consider only e and µ final states for the sake of experimental identification. Furthermore,

one of the W ’s in the final state is required to decay leptonically for the charge identification and

the other W to decay hadronically for the mass reconstruction. As a result, the final state for the

channel in Eq. (38) is

X−−X++ → ℓ−W− ℓ+W+ → ℓ−ℓ−ν ℓ+jj + h.c., (40)

with a total branching fraction

BR ≈ 2

3
· 2
3
· (0.676) · (2 · 0.107) · 2 ≈ 13%. (41)

C. Observability of Exotic Leptons at the LHC

1. Signal event selection

We first define the signal identification. For definiteness, in this section we will specify the

channel: one positively charged lepton, two negatively charged leptons and two jets, plus missing

energy. Following the detector coverage for the LHC experiments, we apply the following basic

kinematical acceptance on the transverse momentum, rapidity, missing transverse energy, and the

particle separation

pT (ℓ) > 15 GeV, |ηℓ| < 2.5, 6ET > 25 GeV (42)

pT (j) > 15 GeV, |ηj | < 2.5 (43)

∆R(jj) > 0.4, ∆R(jℓ) > 0.4, ∆R(ℓℓ) > 0.3, (44)

where the particle separation is ∆R(αβ) ≡
√

(∆φαβ)2 + (∆ηαβ)2 with ∆φ and ∆η being the

azimuthal angular separation and rapidity difference between two particles. To further simulate

the detector effects, we assume that the lepton and jet energies are smeared with a Gaussian

distribution according to

δE

E
=

a
√

E/GeV
⊕ b, (45)

where aℓ = 5%, aj = 100%, bℓ = 0.55% and bj = 5% [23]. We further require the hadronic W

reconstruction, taking the invariant mass of the jets in the range

MW − 20 GeV < Mjj < MW + 20 GeV. (46)

We then calculate the invariant mass of the jets and the positively-charged lepton Mjjℓ+, which we

expect to yield the mass of X++ for a signal. With the remaining two negatively-charged leptons,
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FIG. 6. Differential cross sections after reconstruction for the LHC at 7 TeV (lower curves) and 14 TeV

(upper curves).

using the transverse momenta, we solve for all the possible neutrino momenta that would come

from a W boson decay. This gives four possible solutions. Since we are expecting Mℓ−ℓ−ν to also

yield the mass of X−−, we choose the solution that gives Mℓ−ℓ−ν closest to Mjjl+. We find that

our reconstruction scheme quite efficient, with only about 3% of events not leading to a solution.

For the sake of illustration, we take the triplet mass to be 200 GeV, and perform the simulation

for the LHC at 7 TeV and 14 TeV. The differential cross sections are shown for the reconstructed

MW in Fig. 6(a), the missing transverse energy in Fig. 6(b), the reconstructed exotic lepton mass

in the hadronic W mode in Fig. 6(c), and the reconstructed exotic lepton mass in the leptonic W

mode in Fig. 6(d). Finally, to strengthen the signal observation, it is possible to device a mass cut

Mjjℓ+ − 30 GeV < Mℓ−ℓ−ν < Mjjl+ + 30 GeV, (47)

which does not affect our signal construction appreciably.

Although the final state under consideration is very clean and unique, there are still some

SM backgrounds that lead to similar final states to our signal events. The leading irreducible
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σ(fb)
√
s Process Basic Cuts Cut on Masses

7 TeV

X−−X++ 5.0 4.9

ℓ−ℓ+W−+ 2 QCD jets 7.4 1.4

W−W+W−+ 2 QCD jets 0.022 0.0035

14 TeV

X−−X++ 13 13

ℓ−ℓ+W−+ 2 QCD jets 30 5.5

W−W+W−+ 2 QCD jets 0.12 0.018

TABLE V. Effects of the kinematical cuts on the production cross section at the LHC for the signal X−−X++ →

ℓ+ℓ−ℓ−ν+ 2 jets. M = 200 GeV is assumed.

backgrounds include

• W−Z(γ∗)+ QCD jets,

• W−W+W−+ QCD jets,

when the W,Z bosons decay leptonically. We have ignored the faked leptons from heavy quarks

like b, c assuming that our stringent separation requirement for the charged leptons will effectively

remove those. We have calculated the background processes using Madgraph [24]. In Table V, we

have listed the total cross sections for the signal as well as the leading backgrounds, after the basic

cuts and after mass cuts for 7 and 14 TeV. The reconstruction procedure outlined above effectively

select out the signal kinematics, and substantially suppress the SM backgrounds.
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FIG. 7. Luminosity versus triplet mass for significances of 3σ and 5σ for the LHC (a) at 7 TeV and (b) 14

TeV.

2. Significance versus Luminosity

To quantify the signal observability, the statistical significance s is conservatively defined as

s =
Ns√

Ns +Nb
, (48)

where N refers to the number of events, and the subscripts s and b refers to the signal and the

background respectively. If L is the integrated luminosity and σ the cross section, we can solve for

the luminosity as a function of the significance

L = s2
(

σs + σb
σ2s

)

. (49)

This allows us to calculate the luminosity needed to reach a given statistical significance. We

extend the analysis in the last section including both ℓ−ℓ−ℓ+ and ℓ+ℓ+ℓ− signal events, and use

the events produced by Madgraph for the backgrounds discussed earlier. After the kinematical and

mass cuts are applied assuming a 60 GeV mass window around the triplet mass. We present our

results in Fig. 7 for the 3σ and 5σ statistical significance at the energies of 7 TeV and 14 TeV.

VI. CONCLUSIONS

The impressive experiments at the LHC have taken us to the energy and luminosity frontier

for discovery of new particles. Among many exciting new physics scenarios, the extension of

the leptonic sector remains to be a well-motivated possibility due to the need for neutrino mass.

Similarly, models of gauge-Higgs unification also suggest the existence of exotic leptons.
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The most general phenomenological model involving a lepton triplet with hypercharge ±1 was

constructed. A distinctive feature of this model is the prediction of a doubly charged lepton, and

a heavy Dirac neutrino. We have carefully studied the coupling of these exotic leptons to gauge

bosons, the Higgs and the SM leptons. We then studied the phenomenology of these exotic leptons

in low-energy experiments such as muon rare decays, tau rare decays or Z boson FCNC decays.

Using current experimental constraints, we obtained upper bounds on the mixing angles of the

order of 10−3. We also consider constraints from the non-unitarity of the PMNS matrix, but we

found that they are not as strong as the ones from FCNC decays. After this, we studied all the

possible decay channels for the exotic leptons and the corresponding partial widths and branching

fractions.

We found that the exotic leptons can be pair-produced at the LHC with a cross section of 1

pb−10−3 pb for a mass around 1 TeV. We propose to identify the doubly charged lepton via the

channel ℓ−ℓ−νℓ+jj. After the selective acceptance cuts and kinematical reconstruction, we found

that, if the mixing parameters between the exotic and light leptons are at the order of 10−6 or

larger, then their signal can be observable to a 3−5σ statistical significance for a 400 GeV mass at

the 7 TeV LHC with 10− 50 fb−1 luminosity, and for 800 GeV at the 14 TeV LHC with 100− 300

fb−1 luminosity.

We would like to comment that the analysis done here is rather conservative and does not

take into account many combinations of other channels for production and decays. Therefore the

prospects of discovery of these exotic particles may be improved with further analysis.
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Appendix A: Change from weak to mass eigenstates

The weak eigenstates and mass matrices can be written as

N =





νi

X0



 ,E =





ei

X−



 (A1)

MN =





m2 m†
3

0 M1



 ,ME =





m1
m†

3√
2

0 M1



 . (A2)

Here, m1 and m2 are arbitrary 3x3 matrices, and m3 is a row vector.

The mass matrices (6) can be diagonalized by biunitary transformations

S†
EMETE =MEd = diag(me,mµ,mτ ,M2), S†

NMNTN =MNd = diag(mν1 ,mν2 ,mν3 ,M3), (A3)

where, as usual, the matrices SE, TE , SN and TN are unitary and the diagonal elements are the

tree level masses.

Similar to a general fermionic sector with arbitrary Yukawa couplings, there are more theory

parameters than those that can be experimentally determined. Thus it is necessary to parameterize

the fermionic sector by a few more physical parameters. Furthermore, we find convenient to

introduce

vE = S†
E





0

1



 vN = S†
N





0

1



 V = S†
NSE. (A4)

Here, 0 is a column vector with three vanishing components. Clearly, V is a unitary matrix, and

vE and vN are vectors of norm 1. Due to the particular form of Eq. (A2), these parameters are not

independent. There are some relations among them, in fact vN = V vE . The first relation comes

from the fact that

M †
E





0

1



 =





m†
1 0

m3√
2

M1









0

1



 =M1





0

1



 , M †
N





0

1



 =





m†
1 0

m3 M1









0

1



 =M1





0

1



 ,(A5)

which due to Eqs. (A3) and (A4) implies

T †
E





0

1



 =
1

M1
MEdvE , T †

N





0

1



 =
1

M1
MNdvN , (A6)

which simplifies further to

|vE4| =M1/M2, |vN4| =M1/M3, (A7)

because the exotic leptons are very heavy compared to the leptons of the Standard Model.
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The latter quantities correspond to the components of unitary vectors, therefore M1 should be

smaller than M2 and M3. In other words, the doubly charged lepton is lighter than the singly

charged and neutral ones at tree level. This fact is not true once quantum corrections are taken

into account.

The second set of relation comes from the fact that

ME





0

1



 =





1√
2
m†

3

M1



 =





1√
2

0

0 1









m†
3

M1



 =





1√
2

0

0 1



MN





0

1



 . (A8)

Using Eqs. (A3), (A6) this can be rewritten as

SEM
2
EdvE =





1√
2

0

0 1



SNM
2
NdvN . (A9)

Since

S†
N





0 0

0 1



SN = vNv
†
N , (A10)

the relation can be written as

VM2
EdvE =

(

1√
2
+ (1− 1√

2
)vNv

†
N

)

M2
NdvN . (A11)

After breaking this equation into components, neglecting the mass of the SM leptons with respect

to M1, M2 and M3, and using the Eqs. (A7), this simplifies to

Vi4 =

(

1√
2

M2
3

M2
1

δi4 + 1− 1√
2

)

v∗E4vNi. (A12)

This equation implicitly expresses the vector vN in terms of Vi4. After multiplying this expression

by V † and using again Eqs. (A7) we get

V ∗
4i =

√
2

(

M2
2

M2
1

δi4 − 1 +
1√
2

)

v∗N4vEi. (A13)

Similarly, this equation implicitly expresses the vector vE in terms of V4i.

Appendix B: Electroweak couplings

The weak interactions are described by the lagrangian

LWeak =
g

cos θW
ZµJN

µ +
g√
2
(W+µJµ + h.c),

JN
µ = Ψ′

iγµ(T
3 − sin2 θWQ)Ψ′

i J+
µ = Ψ′

iγµT
+Ψ′

i, (B1)
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where i runs through all the leptonic particle content. The prime on the fields indicate that they

are weak eigenstates. Since

For singlets T+ = 0 T 3 = 0

For doublets T+ =





0 1

0 0



 T 3 =





1
2 0

0 −1
2





For Triplets T+ =











0
√
2 1

0 0
√
2

0 0 0











T 3 =











1 0 0

0 0 0

0 0 −1











, (B2)

we get

JN
µ =

1

2
ν ′Liγµν

′
Li + (−1

2
+ sin2 θW )e′Liγµe

′
Li + sin2 θW e′Riγµe

′
Ri +X ′0

L γµX
′0
L +X ′0

RγµX
′0
R

+sin2 θWX
′−
L γµX

′−
L + sin2 θWX

′−
R γµX

′−
R + (−1 + 2 sin2 θW )X ′−−

R γµX
′−−
R

+(−1 + 2 sin2 θW )X ′−−
L γµX

′−−
L

J+
µ = ν ′Liγµe

′
Li +

√
2X ′0

L γµX
′−
L +

√
2X ′0

RγµX
′−
R +

√
2X ′−

L γµX
′−−L +

√
2X ′−

R γµX
′−−R . (B3)

In terms of definitions (5), we have that

JN
µ = N ′

Lγµ





1
2 0

0 1



N ′
L +N ′

Rγµ





0 0

0 1



N ′
R + E′

Lγµ





−1
2 + sin2 θW 0

0 sin2 θW



E′
L

+sin2 θWE
′
RγµE

′
R + (−1 + 2 sin2 θW )X ′−−γµX ′−−

J+
µ = N ′

Lγµ





1 0

0
√
2



E′
L +N ′

Rγµ





0 0

0
√
2



E′
R

+E′
Lγµ





0
√
2



X ′−−
L + E′

Rγµ





0
√
2



X ′−−
R . (B4)

The first entry of the these matrices is a 3x3 matrix, corresponding to the three generations of the

SM; and the last entry is a c-number. The task now is to express these currents as a function of

the mass eigenstates. The mass eigenstates (the fields with no prime), according to Eq. (7), are

given by

EL = S†
EE

′
L ER = T †

EE
′
R NR = T †

EN
′
R NL = S†

NN
′
L.

Using this, and the fact that ΨL = 1
2(1 − γ5)Ψ and ΨR = 1

2 (1 + γ5)Ψ, the weak currents can be

expressed as

JN
µ = Nγµ(A−Bγ5)N +Eγµ(C −Dγ5)E − (−1 + 2 sin2 θW )X ′−−X−−γµX

−− (B5)

J+
µ = Nγµ(F −Gγ5)E + Eγµ(H − Jγ5)X

−−, (B6)
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where

A = S†
Ndiag

(

1

4
,
1

2

)

SN + T †
Ndiag

(

0,
1

2

)

TN , B = S†
Ndiag

(

1

4
,
1

2

)

SN − T †
Ndiag

(

0,
1

2

)

TN

C = S†
Ediag

(

−1

4
+

1

2
sin2 θW ,

1

2
sin2 θW

)

SE +
1

2
sin2 θW

D = S†
Ediag

(

−1

4
+

1

2
sin2 θW ,

1

2
sin2 θW

)

SE − 1

2
sin2 θW (B7)

F = S†
Ndiag

(

1

2
,
1√
2

)

SE + T †
Ndiag

(

0,
1√
2

)

TE, G = S†
Ndiag

(

1

2
,
1√
2

)

SE − T †
Ndiag

(

0,
1√
2

)

TE

H =
1

2
(SE + TE)

†





0
√
2



 , J =
1

2
(SE − TE)

†





0
√
2



 .

These matrices can be expressed in terms of the unitary matrix V and the vectors vE and vN

(which can also be expressed in terms of V). Using Eqs. (8) and (A6) , it is easy to show that

S†
Ndiag (a, b)SN = a+ (b− a)vNv

†
N S†

Ediag (a, b)SE = a+ (b− a)vEv
†
E

T †
Ndiag (0, 1) TN =

1

M2
MNdvNv

†
NMNd T †

Ediag (0, 1) TE =
1

M2
MEdvEv

†
EMEd. (B8)

As a result, the coupling matrices are

A =
1

4

(

1 + vNv
†
N

)

+
1

M2
MNdvNv

†
NMNd B =

1

4

(

1 + vNv
†
N

)

− 1

M2
MNdvNv

†
NMNd

C = −1

4
+ sin2 θW +

1

4
vEv

†
E D = −1

4
+

1

4
vEv

†
E

F =
1

2

(

V + (
√
2− 1)vNv

†
E

)

+
1√
2M2

MNdvNv
†
EMEd (B9)

G =
1

2

(

V + (
√
2− 1)vNv

†
E

)

− 1√
2M2

MNdvNv
†
EMEd

H =
1√
2

(

vE +
1

M
MEdvE

)

J =
1√
2

(

vE − 1

M
MEdvE

)

.

To get the actual couplings of the gauge fields to the leptons it is necessary to break the latter

matrices in components and if necessary apply equations (15) in order to simplify. The results are

in the Table I.

The couplings that describe the interaction among W−, X0 and the SM model charged leptons

are very interesting. These are F4α and G4α, where α = e, µ, τ . Notice that equations (15) imply

that V4α = (−
√
2 + 1)vN4v

∗
α. As a result we have that:

F4α = −G4α =
1√
2M2

(MNdvNv
†
EMEd)4α =

1√
2

mα

M
vN4v

∗
α (B10)

Hence they are highly suppressed. As a result the interaction among W−, X0 and the SM model

charged leptons is neglectable.
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Appendix C: Generalization to an arbitrary gauge

In an arbitrary gauge, Yukawa’s interactions are described by the lagrangian

−LY = λ1L′
LHe

′
R + λ2L′

LH
cν ′R + λ3X ′

RH
cL′

L +M1X ′X ′ + h.c. (C1)

The prime on the fields indicate they are weak eigenstates. We also follow the notation

H =





φ+

1√
2
(v + h(x) + iη(x))



 ,Hc =





1√
2
(v + h(x) − iη(x))

−φ+∗



 (C2)

N =





ν

X0



 , E =





e

X−



 ,MN =





m2 m∗
3

0 M1



 ,ME =





m1
m∗

3√
2

0 M1



 . (C3)

Setting mi =
λiv√
2
, we can rewrite the lagrangian as

−LY = E′
LMEE

′
R +N ′

LMNN
′
R +

h(x)

v
E′

LME |M1=0E
′
R +

h(x)

v
N ′

LMN |M1=0N
′
R

+ i
η(x)

v
E′

LME |M1=0E
′
R − i

η(x)

v
N ′

LMN |M1=0





1 0

0 −1



N ′
R +

φ+

u
N ′

LME |M1=0





1 0

0 −1



E′
R

−
√
2
φ+∗

v
E′

LMN





1 0

0 0



N ′
R − 2

φ+

v
E′

LME |M1=0





0

1



X ′−−
R + h.c. (C4)

Using Eq. (A3), (A4) and (B5), we can write this lagrangian in terms of the mass eigenstates

−LY = ELMEdER +NLMNdNR +
h(x)

v
EL

(

1− vEv
†
E

)

MEdER +
h(x)

v
NL

(

1− vNv
†
N

)

MNdNR

+ i
η(x)

v
EL

(

1− vEv
†
E

)

MEdER − i
η(x)

v
NL

(

1− vNv
†
N

)

MNd

(

1− 2
M2

Nd

M2
vNv

†
NMNd

)

NR

+
√
2
φ+

v
NLV

(

1− vEv
†
E

)

MEd

(

1− 2
MEd

v E
v†EMEd

)

ER

−
√
2
φ+∗

v
ELV

†
(

1− vNv
†
N

)

MNd

(

1− MNdvNv
†
NMNd

M2

)

NR

− 2
φ+

v
EL

(

M2
Nd

M
−M

)

vEX
−−
R + h.c. (C5)

Clearly, the couplings of the Goldstone bosons to the standard model leptons are negligible com-

pared to the couplings to the exotic leptons. In fact, using relations (9) and the fact thatMW = gv
2 ,

it is easy to show that the interaction lagrangian of the Goldstone bosons is

L =
gM

2MW

∑

i

(

(h+ iη)(vNiνiLX
0
R + vEieiLX

−
R )− φ+(vNiνiLX

−
R + 2vEieiLX

−−
R ) + h.c.

)

. (C6)

It is remarkable that the coupling of the Goldstone boson φ+ to exotic leptons is proportional to

their charge. In particular, the coupling of φ+ to X0 vanishes. The W+ boson, as table I shows,

does not couple to X0 either, in agreement with equivalence theorem.
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Appendix D: l2 → l1γ decays

1. µ→ eγ decay

µ− ν,X0 e−
W− W−

γ

(1)

µ− ν,X0 e−
W− φ−

γ

(2)

µ− ν,X0 e−
φ− W−

γ

(3)

µ− ν,X0 e−
φ− φ−

γ

(4)

µ− X−− e−
W+ W+

γ

(5)

µ− X−− e−
W+ φ+

γ

(6)

µ− X−− e−
φ+ W+

γ

(7)

µ− X−− e−
φ+ φ+

γ

(8)

µ− e,X− e−

γ

,

Z0

(9)

µ− e,X− e−

γ

,

h, η

(10)

µ− X−− e−

γ

,

W+

(11)

µ− X−− e−

γ

,

φ+

(12)

Using Lorentz invariance and Gordon decomposition, it is possible to show that the amplitude
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can always be written as

T (µ→ eγ) = Aue(p− q)(1 + γ5)(2p · ǫ−mµ 6ǫ)uµ(p), (D1)

where ǫ is the polarization of photon, q is its momentum, p is the momentum of the muon and A

is a constant. We can rewrite A in terms of a dimensionless quantity δ

A =
eg2mµ

256M2
Wπ

2
δ. (D2)

It can be shown [16] that the branching fraction is given then by

Br(µ→ eγ) =
3α

32π
|δ|2. (D3)

In order to obtain A, our strategy will be to isolate the p · ǫ term in our calculation. For simplicity,

we work in the Feynman gauge. We also find convenient to introduce the notation ra = M2
a

M2 .

Diagrams 1, 2, 3 and 4: If they have only SM particles and no neutral flavor changing vertices,

they are proportional to (
mνi

mW
)2 ∼ 10−22 (due to GIM mechanism [15, 16]). Furthermore, as we

will see, all the other contributions are proportional to v∗evµ to leading order . Since we hope to see

the exotic leptons at the LHC, we neglect these contributions, otherwise we would have to assume

that v∗evµ is very small.

Similarly, since the coupling among the light charged leptons, the neutral exotic lepton and

W+ or φ+ is highly suppressed (as shown in table I and in appendix C), diagrams 1-4 with exotic

leptons are proportional to mµme/M
2. As a result, for our purposes we can assume

4
∑

i=1

Ai = 0.

Diagrams 5, 6, 7 and 8: A careful inspection of the diagrams shows that the only difference among

these and diagrams 1,2 3 and 4 are the coupling of the leptons to φ+ or W+ and the electric charge

sign of the boson on the loop. Diagrams 1,2,3 and 4 would be the contribution of a exotic neutrino

to the process µ→ eγ. This has been studied many times (see [15, 16]). We follow the notation of

[16], thus according to the results on table I and appendix C, we just have to take the coupling Ui

of the exotic neutrino to the leptons as Ui →
√
2vEi and flip the sign of the electric charge. After

doing this, we get

8
∑

i=5

Ai = +
eg2mµ

32π2M2
W

g(rW )v∗evµ,
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where

g(x) =

∫ 1

0

1− α

(1− α)x+ α
[2(1− α)(2 − α)x+ α(1 + α)] dα

=
2

3
− 3x3

(1− x)3
− 15

2

(

x

1− x

)2

− 11

2

(

x

1− x

)

+
3x log x

(1− x)4
. (D4)

Diagrams 9, 10, 11 and 12: Similarly, after a careful calculation we have found that

12
∑

i=9

Ai =
eg2mµ

256π2M2
W

(

−8 + 12 sin2 θW + 2f(rZ) +
1

rH
f(rH) +

1

rZ
f(rZ) + 16f(rW ) +

8

rW
f(rW )

)

v∗evµ,

where

f(x) =

∫ 1

0

(1− α)x

(1− α)x+ α
dα = − x

1− x

(

1 +
log x

1− x

)

. (D5)

The M -independent part corresponds to the contribution of the diagrams with no exotic leptons

to leading order. Our final result is

δ =

[

−8 + 12 sin2 θW + 8g(rW ) +

(

2 +
1

rZ

)

f(rZ) + 8

(

2 +
1

rW

)

f(rW ) +
1

rH
f(rH)

]

v∗evµ.(D6)

2. τ → lγ decay

For this case it is a good approximation to assume that the final lepton is massless compared

to τ . We can also use the results of the previous section, with a slight modification to account for

the additional hadronic channels of the τ decay. Hence

δ =

[

−8 + 12 sin2 θW + 8g(rW ) +

(

2 +
1

rZ

)

f(rZ) + 8

(

2 +
1

rW

)

f(rW ) +
1

rH
f(rH)

]

v∗l vτ ,(D7)

and

Br(τ → lγ) =

(

G2
Fm

5
τ

192π3Γτ

)(

3α

32π
|δ|2
)

, (D8)

where Γτ = 2.27 × 10−12 GeV [14].
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