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Abstract

Quasielastic neutrino-nucleon scattering is a basic signal process for neutrino oscillation
studies. At accelerator energies, the corresponding cross section is subject to significant
uncertainty due to the poorly constrained axial-vector form factor of the nucleon. A
model-independent description of the axial-vector form factor is presented. Data from the
MiniBooNE experiment for quasielastic neutrino scattering on 12C are analyzed under
the assumption of a definite nuclear model. The value of the axial mass parameter,
mA = 0.85+0.22

−0.07 ± 0.09GeV, is found to differ significantly from extractions based on
traditional form factor models. Implications for future neutrino scattering and pion
electroproduction measurements are discussed.



1 Introduction

High statistics neutrino experiments are probing the hadronic structure of nuclear targets at
accelerator energies with ever greater precision. Extracting the underlying weak-interaction
parameters, or new physics signals, requires similar precision in the theoretical description of
the strong interactions.

A basic cross section describes the charged-current quasielastic scattering process on the
neutron,

νµ + n → µ− + p . (1)

Recent evidence indicates a tension between measurements of this process in neutrino scat-
tering at low [1, 2, 3, 4] and high [5] neutrino energies, and between results from neutrino
scattering and results inferred from pion electroproduction [6]. In particular, with a com-
monly used dipole ansatz for the axial-vector form factor of the nucleon,

F dipole
A (q2) =

FA(0)
[

1− q2/(mdipole
A )2

]2 . (2)

different experiments have reported values for the so-called axial mass parameter mdipole
A .

World averages reported by Bernard et al. [6] find comparable values obtained from neutrino
scattering results prior to 1990, mdipole

A = 1.026±0.021GeV, and from pion electroproduction,
mdipole

A = (1.069 − 0.055) ± 0.016GeV.1 The NOMAD collaboration reports [5] mdipole
A =

1.05 ± 0.02 ± 0.06GeV. In contrast, MiniBooNE reports [3] mdipole
A = 1.35 ± 0.17 GeV, and

other recent results from the K2K SciFi [1], K2K SciBar [7] and MINOS [8] collaborations
similarly find central values higher than the above-mentioned world average. Quasielastic
neutrino-nucleon scattering (1) is a basic signal process in neutrino oscillation studies. It
is essential to obtain consistency between experiments utilizing different beam energies, and
different nuclear targets.

While a number of effects could be causing this tension, we here investigate perhaps the
simplest possibility: that the parameterizations of the axial-vector form factor in common use
are overly constrained. Such a possibility seems natural, considering that the dipole ansatz
has been found to conflict with electron scattering data for the vector form factors. We do
not offer new insight on whether other effects, such as nuclear modeling, could also be biasing
measurements. However, we point out that by gaining firm control over the nucleon-level
amplitude, such nuclear physics effects can be robustly isolated.

The axial mass parameter as introduced in (2) is not well-defined, since the true form factor
of the proton does not have a pure dipole behavior. Sufficiently precise measurements forced to
fit this functional form will necessarily find different values for mdipole

A resulting from sensitivity
to different ranges of q2. Let us define the axial mass parameter in terms of the form factor
slope at q2 = 0: mA = [F ′

A(0)/2FA(0)]
−1/2. This definition is model-independent, and allows

us to sensibly address tensions between different measurements. To avoid confusion, whenever
(2) is used we refer to the extracted parameter as mdipole

A . We will show that the slope at

1The difference 0.055 is a correction to the conventional representation of the pion electroproduction am-
plitude, as predicted by heavy baryon chiral perturbation theory [6].
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q2 = 0 is essentially the only relevant shape parameter for current data at Q2 . 1GeV2, and
introduce the formalism to systematically account for the impact of other poorly constrained
shape parameters on the determination of mA. A related study of the vector form factors of
the nucleon was presented in [9].

The paper is structured as follows. In Section 2 we discuss the application of analyticity and
dispersion relations to the axial-vector form factor of the nucleon. Section 3 presents results
for the extraction of the axial-vector form factor slope from MiniBooNE data. We illustrate
constraints imposed by our analysis on nuclear models, by determining the binding energy
parameter in the Relativistic Fermi Gas (RFG) model of Smith and Moniz [16]. Section 4 gives
an illustrative analysis of constraints on the axial mass parameter from pion electroproduction
data. Section 5 discusses the implications of our results. For completeness, Appendix A collects
formulas for the RFG nuclear model.

2 Analyticity constraints

This section provides form factor definitions and details of the model-independent parameter-
ization based on analyticity.

2.1 Form factor definitions

The nucleon matrix element of the Standard Model weak charged current is

〈p(p′)|J+µ
W |n(p)〉 ∝ ū(p)(p′)

{

γµF1(q
2) +

i

2mN
σµνqνF2(q

2)

+ γµγ5FA(q
2) +

1

mN
qµγ5FP (q

2)

}

u(n)(p) , (3)

where qµ = p′µ − pµ, and we have enforced time-reversal invariance and neglected isospin-
violating effects as discussed in Appendix A. The vector form factors F1(q

2) and F2(q
2) can be

related via isospin symmetry to the electromagnetic form factors measured in electron-nucleon
scattering. At low energy, the form factors are normalized as F1(0) = 1, F2(0) = µp − µn − 1.
For definiteness we take a common nucleon mass, mN ≡ (mp + mn)/2. Parameter values
used in the numerical analysis are listed in Table 2. In applications to quasielastic electron- or
muon-neutrino scattering, the impact of FP is suppressed by powers of the small lepton-nucleon
mass ratio. For our purposes, the pion pole approximation is sufficient,2

FP (q
2) ≈ 2m2

N

m2
π − q2

FA(q
2) . (4)

The axial-vector form factor is normalized at q2 = 0 by neutron beta decay (see Table 2).
Our main focus is on determining the q2 dependence of FA(q

2) in the physical region of

2Here and throughout, mπ = 140MeV denotes the pion mass.
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quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡
√

2FA(0)

F ′
A(0)

. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
2) = FA(0)

[

1 +
r2A
6
q2 + . . .

]

=⇒ rA ≡
√

6F ′
A(0)

FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 . 1GeV2 is far from asymptotic, and the functional
dependence of FA(q

2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity

Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t

′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
tcut − t−√

tcut − t0√
tcut − t+

√
tcut − t0

, (8)
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t0 = 0 t0 = topt0 (1.0GeV2)

||FA||2/|FA(t0)| 1.5-1.7 1.9-2.3

||FA||∞/|FA(t0)| 1.0-1.4 1.4-1.8

Table 1: Typical bounds on the coefficient ratios
√

∑

k a
2
k/a

2
0 (first line of table) and |ak/a0|

(second line) in an axial-vector dominance ansatz. The range corresponds to the range 250−
600MeV for the a1 width and the range 1190− 1270MeV for the a1 mass.

where t0 is a free parameter representing the point mapping onto z = 0. Analyticity implies
that the form factor can be expressed as a power series in the new variable,

FA(q
2) =

∞
∑

k=0

akz(q
2)k . (9)

The coefficients ak are bounded in size, guaranteeing convergence of the series. Knowledge of
ImFA over the cut translates into information about the coefficients in the z expansion [9]. In
particular we have

a0 =
1

π

∫ π

0

dθReFA[t(θ) + i0] = FA(t0) ,

ak≥1 = −2

π

∫ π

0

dθ ImFA[t(θ) + i0] sin(kθ) =
2

π

∫ ∞

tcut

dt

t− t0

√

tcut − t0
t− tcut

ImFA(t) sin[kθ(t)] , (10)

where

t = t0 +
2(tcut − t0)

1− cos θ
≡ t(θ) . (11)

2.3 Coefficient bounds

For a given kinematic range 0 ≤ −t ≤ Q2
max, we can choose the free parameter t0 in

(8) to minimize the resulting maximum size of |z|. It is straightforward to see that the

“optimal” value of t0 is topt0 = tcut

(

1−
√

1 +Q2
max/tcut

)

, and for this value of t0, |z| ≤
[(1 + Q2

max/tcut)
1/4 − 1]/[(1 + Q2

max/tcut)
1/4 + 1]. For example, if the kinematic range is

Q2
max . 1GeV2, then our expansion parameter is constrained to be |z| . 0.2. Terms be-

yond linear order in the expansion are suppressed by |z|2 . 0.04, etc., and are not tightly
constrained by current experimental data. This is the sense in which the slope of the form
factor (conventionally taken at q2 = 0) is essentially the only relevant shape parameter. The
effects of the higher order terms must of course be accounted for in assessing the uncertainty
on extracted observables. We now turn to this question.

The expansion coefficients appearing in (9) can be used to define norms,

||FA||p =
(

∑

k

|ak|p
)1/p

. (12)
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In particular, ||FA||∞ = supk|ak| = limp→∞ ||FA||p provides a bound on the maximum coeffi-
cient size. The finiteness of the integral appearing in the relation

||FA||2 =
(

1

π

∫ ∞

tcut

dt

t− t0

√

tcut − t0
t− tcut

|FA(t)|2
)1/2

, (13)

together with ||FA||∞ ≤ ||FA||2, establishes that a finite upper bound exists for the coef-
ficients. As a first approach to estimating the actual bound ||FA||∞, consider an “axial-
vector dominance” ansatz, FA ∼ m2

a1
/(m2

a1
− t − iΓa1ma1), where ma1 = 1230(40)MeV and

Γa1 = 250 − 600MeV are the mass and width of the lowest lying axial-vector, iso-vector
meson [12]. More precisely, let us define the form factor via its dispersion relation with [13]

ImFA(t + i0) =
Nm3

a1Γa1

(t−m2
a1)

2 + Γ2
a1m

2
a1

θ(t− tcut) , (14)

where N is a normalization constant determined below. Using the dispersion relation (7) with
(14) we find,

FA(t+ i0) =
N
π

m3
a1
Γa1

|b(t)|2

[

1

2
log

( |b(tcut)|2
|tcut − t|2

)

+
m2

a1
− t

ma1Γa1

arg[b(tcut)] + iπθ(t− tcut)

]

, (15)

where b(t) = t−m2
a1
+ iΓa1ma1 , and N is determined by the value of FA(0). Table 1 displays

the values for ||FA||2 and ||FA||∞ computed in this ansatz. For the latter quantity one can
show that

∣

∣

∣

∣

ak
a0

∣

∣

∣

∣

≤ 2|N |
|FA(t0)|

Im

(

−m2
a1

b(tcut) +
√

(tcut − t0)b(tcut)

)

. (16)

While this model is not a rigorous description of the true spectral function in (7), it indicates
an order unity bound on the coefficients appearing in (9). Additional support for an order
unity bound is provided by a related detailed study of nucleon vector form factors [9], and by
form factor studies in a wide range of meson transitions [14, 15].

In the following numerical analysis, we follow [9], and investigate fits with various bounds
on coefficients, e.g. |ak| ≤ 5 and |ak| ≤ 10.

3 Extraction of the axial mass parameter

The MiniBooNE collaboration has presented binned results representing the double differential
cross section, dσ/dEµd cos θµ, for the quasielastic scattering process (1) on a neutron bound
inside 12C. We apply our description of FA(q

2) to extract mA (equivalently, rA) from the
neutrino scattering data, under the assumption of a definite nuclear model, the Relativistic
Fermi Gas model [16] as described in Appendix A.

Our theory prediction is obtained using (54), integrating over the energy-dependent νµ flux
from Table V of [3]; this result is divided by 6 to obtain the per-neutron event rate, and divided
by the total flux to obtain the flux-averaged cross section. Corresponding experimental values
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Parameter Value Reference

|Vud| 0.9742 [12]

µp 2.793 [12]

µn -1.913 [12]

mµ 0.1057 GeV [12]

GF 1.166× 10−5 GeV−2 [12]

mN 0.9389 GeV [12]

FA(0) −1.269 [12]

ǫb 0.025 GeV [17]

pF 0.220 GeV [3]

Table 2: Numerical values for input parameters.

for the double differential cross section are taken from Table VI of [3]. We form an error
matrix,

Eij = (δσi)
2δij + (δN)2σiσj , (17)

where σi = (dσ/dEµd cos θµ)∆Eµ∆cos θµ denotes a partial cross section, δσi denotes the shape
uncertainty from Table VII of [3], and δN = 0.107 is the normalization error from [3]. We
form the chi-squared function

χ2 =
∑

ij

(σexpt.
i − σtheory

i )E−1
ij (σexpt.

j − σtheory
j ) , (18)

and minimize χ2 to find best fit values for mA. Error intervals are defined by ∆χ2 = 1.
The nucleon form factors and the nuclear model employ parameter values listed in Table 2.
Following the analysis of [3], the vector form factors F1 and F2 are given by the BBA2003
parameterization [18]. We use a default value ǫb = 0.025 GeV, as extracted from electron
scattering data on nuclei in [17]. This value is different from the central value adopted in the
MiniBooNE analysis [3], where ǫb = 0.034± 0.09 GeV. We show below that such a high value
of ǫb is not favored by the MiniBooNE data, but investigate fit results for different values of
ǫb.

The slope at q2 = 0, and hence mA from (5) is most sensitive to low-Q2 data. We analyze
this sensitivity by considering the effect of a cut on Q2. The value of Q2 for a given value of
the observed muon energy and angle can be reconstructed assuming quasielastic scattering on
a free neutron, but is not determined unambiguously once nuclear effects are included. As a
proxy for Q2, we define an approximate “reconstructed” Q2,

Q2
rec = 2Erec

ν Eµ − 2Erec
ν

√

E2
µ −m2

µ cos θµ −m2
µ , (19)

where Erec
ν approximates the neutrino energy in the nucleon rest frame,

Erec
ν =

mNEµ −m2
µ/2

mN −Eµ +
√

E2
µ −m2

µ cos θµ
. (20)
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We note that Q2
rec coincides with Q2

rec used by K2K in the limit ǫb → 0 [1], and with Q2
QE used

by MiniBooNE in the limit ǫb → 0 and equal proton and neutron masses [3]. For simplicity
we have chosen to make the cut independent of the binding energy used in the nuclear model.
We emphasize that this choice is used simply to define the subset of data to be analyzed, and
does introduce theoretical uncertainty in the numerical results.

Figure 2: Extracted value of mA versus Q2
max. Dipole model results for mdipole

A are shown by
the red circles; z expansion results with |ak| ≤ 5 are shown by the blue squares, z expansion
results with |ak| ≤ 10 are shown by the green diamonds.

Our results are displayed in Fig. 2, where we compare extractions of mdipole
A in the dipole

ansatz (2) with extractions of mA employing the z expansion (9). We present results for data
with Q2

rec ≤ Q2
max, where Q2

rec is defined in (19) and Q2
max = 0.1, 0.2, . . . , 1.0GeV2. We study

two different coefficient bounds, |ak| ≤ 5 and |ak| ≤ 10. For definiteness we have truncated
the sum in (9) at kmax = 7, but have checked that the results to not change significantly if
higher orders are included. As the figure illustrates, the z expansion results lie systematically
below results assuming the dipole ansatz. In contrast to results from the one-parameter dipole
ansatz, high-Q2 data have relatively small impact on the model-independent determination of
mA. Taking for definiteness Q2

max = 1.0GeV2, we find

mA = 0.85+0.22
−0.07 ± 0.09GeV (neutrino scattering), (21)

where the first error is experimental, using the fit with |ak| ≤ 5, and the second error represents
residual form factor shape uncertainty, taken as the maximum change of the 1σ interval when
the bound is increased to |ak| ≤ 10. As a comparison, a fit assuming the dipole form factor,
and the same Q2

max yields mdipole
A = 1.29± 0.05 GeV.3

It is not our purpose in this paper to investigate in detail the additional uncertainty that
should be assigned to (21) due to nuclear effects. We note that a fit of the MiniBooNE data to
the RFG model with free parameter ǫb yields the value, without an assumption on the value

3A dipole fit including the entire dataset without a cut on Q2
rec yields mdipole

A
= 1.28+0.03

−0.04.
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of mA, (for Q
2
max = 1.0GeV2, kmax = 7)

ǫb = 28± 3MeV , (22)

where the result is insensitive to the choice of bound, |ak| ≤ 5 or |ak| ≤ 10.4 While the data
do not appear to favor significantly higher values of ǫb, we note that for ǫb = 34MeV [3], the
result (21) becomes mA(ǫb = 34MeV) = 1.05+0.45

−0.18± 0.12, compared to mdipole
A (ǫb = 34MeV) =

1.44± 0.05.
We have performed fits at different values of the parameter t0, finding no significant devia-

tion in the results. The results do not depend strongly on the precise value of the bound (e.g.
|ak| ≤ 5 versus |ak| ≤ 10). Similar to [9], we conclude that the estimation of shape uncer-
tainty in (21) should be conservative. The fit (21) yields coefficients5 a0 ≡ FA(0) = −1.269,
a1 = 2.9+1.1

−1.0, a2 = −8+6
−3. These values are in accordance with our assumption of order-unity

coefficient bounds. As discussed in the Introduction, current experiments do not significantly
constrain shape parameters beyond the linear term, a1.

4 Comparison to charged pion electroproduction

Figure 3: Extraction of mA using charged pion electroproduction measurements, in the dipole
ansatz and in the z expansion. Datasets are as described in the text. Dipole results are shown
as the red circles, and z expansion results with |ak| ≤ 5 are shown as the blue squares.

The axial-vector component of the weak current defining FA(q
2) in (3) can also be probed

in pion electroproduction measurements. The electric dipole amplitude for threshold charged-
pion electroproduction obeys a low-energy theorem in the chiral limit relating this amplitude

4Using a dipole ansatz for Q2
max = 1.0GeV2 without fixing m

dipole
A

yields ǫb = 22± 7MeV.
5For this purpose we take kmax = 7 in (9) and enforce |ak| ≤ 10 for k ≥ 3.
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to the axial-vector form factor of the nucleon [19]. After applying chiral corrections, such
measurements can thus in principle be used to determine mA. Data for this process have
been interpreted in the context of the dipole ansatz (2). We found that the dipole assumption
can strongly bias extractions of mA in neutrino scattering measurements. In order to gauge
whether the same statement is true for the electroproduction data, let us apply the z expansion
to extract mA from the inferred FA(q

2) values for an illustrative dataset, taken from Refs. [20,
21, 22, 23, 24]. We have selected datasets that appear in the compilation [6] (cf. Figure 1 of that
reference), and that also explicitly list inferred values of FA(q

2) (see also [25, 26, 27, 28, 29]).
Figure 3 displays extractions of mA in both the z expansion and the dipole ansatz (2) for each
of the five datasets.6 For the larger bound |ak| ≤ 10, the slope of FA(q

2) is not constrained to
be positive by each individual dataset, and we display only the result for |ak| ≤ 5. Applying
the z expansion to the entire (17 point) dataset, we find

mA = 0.92+0.12
−0.13 ± 0.08GeV (electroproduction) , (23)

where the errors are experimental, and from residual shape uncertainty, as in (21). In contrast,
a fit of the same data to the dipole ansatz yields mdipole

A = 1.00 ± 0.02GeV. These averages
are also displayed in the figure. We emphasize that our chosen dataset is not exhaustive We
have not attempted to address questions such as correlations between different datasets, or
uncertainties from model-dependent hard-pion corrections. We leave a more detailed treatment
to future work.

5 Summary

We have presented a model independent description of the axial-vector form factor of the
nucleon. This form factor plays a crucial role in neutrino quasielastic scattering at accelerator
energies, which is a basic signal process for neutrino oscillation studies, and is an important
ingredient in normalizing the neutrino flux at detector locations. Recent tensions between
measurements in neutrino scattering at different energies, and between neutrino scattering
and pion electroproduction measurements indicate a problem in our understanding of this
elementary process.

Several studies have tried to address these discrepancies. Modified nuclear models [31, 32,
33] have been used to find an axial mass close to the MiniBooNE result. Other nuclear models
include effects of multi-nucleon emission [34, 35, 36, 37, 38, 39], and have been reported
to obtain better agreement with the differential MiniBooNE data from [3]. One of these
studies [39] reports a dipole axial mass extracted from MiniBooNE data in agreement with
world averages from [6, 5]. Another group [40], modifies the magnetic form factor GM for
nucleons bound in carbon but does not change the form factors GE or FA. The assumption of
the dipole ansatz (2) is a crucial element in many of these studies.7 Our analysis shows that

6For definiteness, where necessary we have chosen one amongst different models for applied hard-pion cor-
rections: the BNR prescription [30] in [22, 23, 24], and the BNR prescription with first form factor assumption
in [20] (“Fπ = FV

1 ” in Table 2 of [20] ). We have combined the low-Q2 and high-Q2 data from [22] and [23] to
obtain the Daresbury(1975/1976) data point in Fig. 3.

7A parameterization that modifies the dipole behavior at large Q2 is presented in [41].
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this ansatz introduces a strong bias in measurements, which must be addressed in order to
disentangle nucleon-level interactions from nuclear effects.

Under the assumption of a definite nuclear model (the RFG model, summarized in Ap-
pendix A, with parameter values as in Table 2), we extract mA as defined model-independently
in (5) from the differential MiniBooNE data [3]. The result is displayed in (21), mA =
0.85+0.22

−0.07 ± 0.09GeV. This result may be contrasted with a fit to an illustrative dataset for
pion electroproduction displayed in (23), mA = 0.92+0.12

−0.13 ± 0.08GeV. These values may be

compared to fits using the dipole ansatz (2): mdipole
A = 1.29 ± 0.05GeV (neutrino scattering)

and mdipole
A = 1.00 ± 0.02GeV (electroproduction). A discrepancy is apparent in the dipole

ansatz (2), but can be ascribed to the unjustified and restrictive assumption on the form fac-
tor shape. After gaining firm control over the nucleon-level amplitude, nuclear effects can be
robustly isolated. For example, in the context of the RFG model, we extract the result (22)
for the binding energy parameter ǫb.

The axial mass parameter, or equivalently, the axial radius (6), is a fundamental parameter
of nucleon structure. The results (21),(23) can be expressed as

rA =

{

0.80+0.07
−0.17 ± 0.12 fm (neutrino scattering)

0.74+0.12
−0.09 ± 0.05 fm (electroproduction)

. (24)

More precise measurements in both neutrino scattering and pion electroproduction are nec-
essary to substantially reduce the errors on mA, or equivalently rA. This would be necessary
to provide a model-independent confirmation of the convergence of chiral perturbation theory
corrections based on comparison of electroproduction and neutrino scattering data.

A related study of the nucleon vector form factors was presented in [9]. As described
there, different expansion “schemes” are possible. For example, we may replace (9) with
φ(t)FA(t) =

∑

k akz(t)
k where φ is analytic below tcut. A choice such as φ ∼ (1 − t/m′2)n

with m′ ∼ GeV could be used to enforce a 1/Q2n falloff for asymptotic Q2, while retaining the
known analytic structure of the form factor. Such modifications do not significantly impact
the extraction of mA, and we have focused on the simplest choice (t0 = 0 and φ = 1).

Our study indicates that the error on the axial mass parameter extracted using the dipole
ansatz is underestimated. While the errors from a model-independent analysis may be larger,
it is essential to study model-independent numbers in order to draw firm conclusions. The
simulation of more complicated neutrino scattering processes (e.g. pion and photon produc-
tion), is indirectly affected by enforcing agreement with the quasielastic data. It is important
for current and future neutrino experiments [42, 43, 44, 45, 5, 46, 3, 47, 48, 49] to converge on
consistent values for fundamental neutrino cross sections.

The analysis presented here can be applied to other neutrino scattering datasets, involving
different nuclear targets, and including neutral current scattering and antineutrino scattering.
It is interesting to extend the analysis of electroproduction data; more precise low-energy
electroproduction measurements have potential to impact the interpretation of future neutrino
measurements. It is also of interest to incorporate model-independent constraints into more
sophisticated nuclear models.
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A Appendix: RFG model for quasielastic neutrino scat-

tering

A number of notations and conventions for the form factors and RFG nuclear model [16] exist
in the literature. For completeness we collect here the relevant formulas used in our analysis.

A.1 Nucleon matrix element of the weak current

The relevant part of the weak-interaction Lagrangian is

L =
GF√
2
Vud ℓ̄γ

α(1− γ5)ν ūγα(1− γ5)d+H.c. . (25)

The cross section for ν(k) + n(p) → ℓ−(k′) + p(p′) on a free neutron is

σfree =
1

4|k · p|

∫

d3k′

(2π)32Ek′

∫

d3p′

(2π)32Ep′

|M2|(2π)4δ4(k + p− k′ − p′), (26)

where the spin-averaged, squared amplitude is

|M2| = G2
F |Vud|2
4

Lµν
∑

spins

〈p(p′)|ūγµ(1− γ5)d|n(p)〉〈p(p′)|ūγν(1− γ5)d|n(p)〉∗. (27)

The leptonic tensor neglecting the neutrino mass is (ǫ0123 = −1)

Lµν = 8(kµk′ν + kνk′µ − gµνk · k′ − iǫµνρσkρk
′
σ) . (28)

The hadronic matrix element appearing in (27) is parameterized by

〈p(p′)|ūγµ(1− γ5)d|n(p)〉 = ū(p)(p′)Γµ(q)u
(n)(p) , (29)

where q = k − k′ = p′ − p and we have defined the vertex function

Γµ(q) = γµF1(q
2) +

i

2mN
σµνq

νF2(q
2) +

qµ
mN

FS(q
2) + γµγ5FA(q

2) +
pµ + p′µ
mN

γ5FT (q
2)

+
qµ
mN

γ5FP (q
2) . (30)
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We may write the cross section of (26) as

σfree =
G2

F |Vud|2
16|k · p|

∫

d3k′

(2π)32Ek′

LµνŴµν , (31)

where the nucleon structure function is

Ŵµν =

∫

d3p′

(2π)32Ep′

(2π)4δ4(p− p′ + q)Hµν . (32)

The hadronic tensor is

Hµν = Tr[(p/ ′ +mp)Γµ(q)(p/ +mn)Γ̄ν(q)] , (33)

where as usual, Γ̄ = γ0Γ†γ0. We may similarly analyze antineutrino scattering, ν̄(k) + p(p) →
ℓ+(k′)+n(p′), using (31), taking Lµν → Lνµ, and making the replacements mn ↔ mp, Γµ(q) →
Γ̄µ(−q) in Hµν .

Imposing time-reversal invariance shows that Fi(q
2) are real. We will assume isospin sym-

metry in the following, in which case FS and FT vanish, mn = mp = mN , and Γ̄µ(−q) = Γµ(q).
The hadronic tensor has the time-reversal invariant decomposition

Hµν = −gµνH1 +
pµpν
m2

N

H2 − i
ǫµνρσ
2m2

N

pρqσH3 +
qµqν
m2

N

H4 +
(pµqν + qµpν)

2m2
N

H5 . (34)

The Hi’s are expressed in terms of the form factors Fi as

H1 = 8m2
NF

2
A − 2q2

[

(F1 + F2)
2 + F 2

A

]

,

H2 = H5 = 8m2
N

(

F 2
1 + F 2

A

)

− 2q2F 2
2 ,

H3 = −16m2
N FA(F1 + F2) ,

H4 = −q2

2

(

F 2
2 + 4F 2

P

)

− 2m2
NF

2
2 − 4m2

N (F1F2 + 2FAFP ) . (35)

Expressions for complex Fi and nonzero FS,FT can be found, for example, in [50].

A.2 Model for the nuclear matrix element

We employ a standard treatment of nuclear effects, the “Relativistic Fermi Gas” (RFG) model
as presented by Smith and Moniz in [16], based on the model presented in [51].

We assume that there are A nucleons inside the nucleus, with A/2 neutrons and A/2
protons. The incoming neutrino interacts with a neutron with 3-momentum p, determined by
some distribution ni(p). The final state proton phase space is limited by a factor of [1−nf (p

′)]
enforcing Fermi statistics. Symbolically,

σnuclear = ni(p)⊗ σfree(p → p
′)⊗ [1− nf(p

′)], (36)
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and more explicitly

σnuclear ≈ 2V

∫

d3p

(2π)3
ni(p)

{

G2
F

16|k · p|

∫

d3k′

(2π)32Ek′

∫

d3p′

(2π)32Ep′

(2π)4δ4(p− p′ + q)LµνHµν

}

[1− nf (p
′)] . (37)

To arrive at the final model, two modifications are made. First, we make the replacement
k · p → EkEp in the prefactor of (37). This replacement ignores a correction from the nonzero
velocity of the initial state nucleon. It corresponds to the model of [16], adopted by [3]; for
definiteness we have followed this convention. Second, we incorporate a “binding energy”, ǫb,
by expressing Hµν as a function of Lorentz 4-vectors pµ, qµ as in (34) and then making in (37)
the replacements

p0 → ǫp ≡ Ep − ǫb , p′0 → ǫ′p′ ≡ Ep′ , (38)

with Ep ≡
√

m2
N + |p|2. Again, there is some arbitrariness to the insertion of ǫb into the

formalism; for definiteness we have followed the conventions of [16]. The cross section is then

σnuclear =
G2

F

16|k · pT |

∫

d3k′

(2π)32Ek′

LµνWµν , (39)

where pµT is the 4-momentum of the target nucleus with mass mT ≡ AmN(1− ǫb). We work in
the target rest frame where pµT = mT δ

µ
0 . The model nuclear structure function Wµν is defined

as

Wµν ≡
∫

d3p f(p, q0, q)Hµν(ǫp,p; q
0, q) , (40)

with

f(p, q0, q) =
mTV

4π2
ni(p)[1− nf (p+ q)]

δ(ǫp − ǫ′p+q + q0)

ǫpǫ
′
p+q

. (41)

The distribution of neutrons and protons is

ni(p) = θ(pF − |p|) , nf(p
′) = θ(pF − |p′|) , (42)

where pF is a parameter of the model. The normalization V is fixed by requiring A/2 neutrons
below the Fermi surface (accounting for 2 fermionic spin states),

A

2
= 2V

∫

d3p

(2π)3
ni(p) =⇒ V =

3π2A

2p3F
. (43)

We can expand Wµν in a similar way to Hµν in (34):

Wµν = −gµνW1 +
pTµp

T
ν

m2
T

W2 − i
ǫµνρσ
2m2

T

pρT q
σW3 +

qµqν
m2

T

W4 +
(pTµqν + qµp

T
ν )

2m2
T

W5 . (44)
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The functions Wi are related to integrals over Hi. The relations can be expressed in terms of
the following integrals [16]:

a1 =

∫

d3p f(p, q) , a2 =

∫

d3p f(p, q)
|p|2
m2

N

,

a3 =

∫

d3p f(p, q)
(pz)2

m2
N

, a4 =

∫

d3p f(p, q)
ǫ2p
m2

N

,

a5 =

∫

d3p f(p, q)
ǫpp

z

m2
N

, a6 =

∫

d3p f(p, q)
pz

mN

,

a7 =

∫

d3p f(p, q)
ǫp
mN

, (45)

where |p|2 = (px)2+(py)2+(pz)2 and the z axis is parallel to q. A straightforward but tedious
comparison shows that

W1 = a1H1 +
1

2
(a2 − a3)H2 ,

W2 =

[

a4 +
ω2

|q|2a3 − 2
ω

|q|a5 +
1

2

(

1− ω2

|q|2
)

(a2 − a3)

]

H2 ,

W3 =
mT

mN

(

a7 −
ω

|q|a6
)

H3 ,

W4 =
m2

T

m2
N

[

a1H4 +
mN

|q| a6H5 +
m2

N

2|q|2 (3a3 − a2)H2

]

,

W5 =
mT

mN

(

a7 −
ω

|q|a6
)

H5 +
mT

|q|

[

2a5 +
ω

|q|(a2 − 3a3)

]

H2 , (46)

where we are using ω = q0. Recall that the Hi are functions of q
2 = ω2−|q|2. For the integrals

ai let us define ωeff = ω − ǫb, and observe that

δ(ǫp − ǫp+q + q0) = δ(Ep − Ep+q + ωeff) =
Ep+q

|p||q| δ
(

cos θpq −
ω2
eff − |q|2 + 2ωeffEp

2|p||q|

)

. (47)

The integrals ai can be expressed in terms of

bj =
mTV

2π|q|

∫

dEp

Ep

Ep − ǫb

(

Ep

mN

)j

, (48)

for j = 0, 1, 2. In particular,

b0 =
mTV

2π|q| (E + ǫb log(E − ǫb))

∣

∣

∣

∣

Ehi

Elo

,
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b1 =
mTV

2πmN |q|

[

1

2
E2 + ǫb (E + ǫb log(E − ǫb))

]
∣

∣

∣

∣

Ehi

Elo

,

b2 =
mTV

2πm2
N |q|

{

1

3
E3 + ǫb

[

1

2
E2 + ǫb (E + ǫb log(E − ǫb))

]}
∣

∣

∣

∣

Ehi

Elo

. (49)

Up to an overall constant these are the bi’s of [16]. Introducing c = −ωeff/|q|, d = −(ω2
eff −

|q|2)/(2|q|mN), we can express the ai’s as

a1 = b0 , a2 = b2 − b0 , a3 = c2b2 + 2cdb1 + d2b0 , a4 = b2 −
2ǫb
mN

b1 +
ǫ2b
m2

N

b0 ,

a5 = −cb2 +

(

ǫb
mN

c− d

)

b1 +
ǫb
mN

db0 , a6 = −cb1 − db0 , a7 = b1 −
ǫb
mN

b0 . (50)

The range of integration is restricted by the conditions,

Ep ≤ EF ≡
√

m2
N + p2F ≤ Ep+q = Ep + ωeff , −1 ≤ ω2

eff − |q|2 + 2ωeffEp

2|q|
√

E2
p −m2

N

≤ 1 . (51)

The latter condition can be expressed as

(

Ep

mN

− cd+
√
1− c2 + d2

1− c2

)(

Ep

mN

− cd−
√
1− c2 + d2

1− c2

)

≥ 0 . (52)

Define

Elo = max

(

EF − ωeff , mN
cd+

√
1− c2 + d2

1− c2

)

, Ehi = EF . (53)

Then if Elo ≥ Ehi, there is no contribution for the given kinematics.
In the rest frame of the nucleus, let Eℓ and |~Pℓ| =

√

E2
ℓ −m2

ℓ be the energy and 3-
momentum of the charged lepton, and let θℓ be the angle between the 3-momenta of the
leptons. From (39), the final expression for the differential cross section of neutrino-nucleus
scattering is

dσnuclear

dEℓd cos θℓ
=

G2
F |~Pℓ|

16π2mT

{

2(Eℓ − |~Pℓ| cos θℓ)W1 + (Eℓ + |~Pℓ| cos θℓ)W2

± 1

mT

[

(Eℓ − |~Pℓ| cos θℓ)(Eν + Eℓ)−m2
ℓ

]

W3 +
m2

ℓ

m2
T

(Eℓ − |~Pℓ| cos θℓ)W4 −
m2

ℓ

mT
W5

}

, (54)

where Wi are given in (46), and where the upper (lower) sign is for neutrino (anti-neutrino)
scattering.
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