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Can the Standard Model CP violation near the W -bags

explain the cosmological baryonic asymmetry?

Yannis Burnier∗ and Edward Shuryak†

Department of Physics, State University of New York,

Stony Brook, NY 11794, USA

In the scenario of cold electroweak baryogenesis, oscillations of the Higgs field lead to metastable
domains of unbroken phase where the Higgs field nearly vanishes. Those domains have also been
identified with the W−t− t̄ bags, a non-topological solitons made of large number (∼ 1000) of gauge
quanta and heavy (top and anti-top) quarks. As real-time numerical studies had shown, sphalerons
(topological transition events violating the baryon number) occur only inside those bags. In this
work we estimate the amount of CP violation in this scenario coming from the Standard Model,
via the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, resulting in top-minus-antitop
difference of the population in the bags. Since these tops/anti-tops are “recycled” by sphalerons,
this population difference leads directly to the baryonic asymmetry of the Universe. We look at the
effect appearing in the 4th order in weak W diagrams describing interference of different quark flavor
contributions. We found that there are multiple cancellations of diagrams and clearly sign-definite
effect appears only in the 6th order expansion over flavor-dependent phases. We then estimate
contributions to these diagrams in which weak interaction occurs (i) inside, (ii) near and (iii) far
from the the W − t− t̄ b-bags, optimizing the contributions in each of them. We conclude that the
second (“near”) scenario is the dominant one, producing CP violation of the order of 10−10, in our
crude estimates. Together with the baryon violation rate of about 10−2, previously demonstrated
for this scenario, it puts the resulting asymmetry close to what is needed to explain the observed
baryonic asymmetry in the Universe. Our answer also has a definite sign, which apparently seems
to be the correct one.

I. INTRODUCTION

The question how the observed baryonic asymmetry
of the Universe was produced is among the most dif-
ficult open questions of physics and cosmology. The
observed effect is usually expressed as the ratio of the
baryon density to that of the photons nB/nγ ∼ 10−10.
Sakharov [1] had formulated three famous necessary con-
ditions: the (i) baryon number and (ii) the CP violation,
with (iii) obligatory deviations from the thermal equi-
librium. Although all of them are present in the Stan-
dard Model (SM) and standard Big Bang cosmology, the
baryon asymmetry which is produced by the known CKM
matrix is completely insufficient to solve this puzzle.

Significant efforts have been made to solve it using hy-
pothetical “beyond the standard model” scenarios, for in-
stance related with possible large CP violating processes
in the neutrino mass matrix or in the supersymmetric sec-
tor. Another alternative is the modification of the stan-
dard cosmology. While the standard Big Bang scenario
predicts adiabatically slow crossing of the electroweak
phase transition, leading to extremely small deviations
from equilibrium, the so called “hybrid” or “cold” sce-
nario [2–5] leads to large deviations from equilibrium.
This scenario combines the end of the inflation era with
the establishment of the electroweak broken phase, avoid-
ing some pitfalls of the standard cosmology, such as
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an “erasure” of asymmetries generated before the elec-
troweak scale by large sphaleron rates in the symmetric
(electroweak plasma) phase.

Studies of this scenario in the last decades have been
rather intense. Coherent oscillations of the gauge/scalar
fields have been studied in detail in real-time lattice
simulations [6–9]. They have revealed relatively long
lived “hot spots” with depleted vacuum expectation value
(VEV) of the Higgs field. They have further found that
all sphaleron transitions take place only inside these
spots. The rate of transitions in the symmetric (no Higgs
VEV) phase was found to be many orders of magnitude
larger [10, 11] than via standard electroweak sphalerons,
even including modifications near the phase transition
[12–14]. Qualitative explanation of the metastability of
these hot spots has been provided by finding metastable
bags filled with gauge bosons and top quarks [16]. The
enhanced sphaleron were explained analytically using by
the so called COS sphalerons [15], which have signifi-
cantly larger sizes and thus smaller masses than the stan-
dard sphalerons in the broken phase, see details in [17].
The amount of the baryon number violation in this sce-
nario can reach 10−3, or even 10−2 with the top quark
“recycling” mechanism [17].

This paper is devoted to evaluation of the CP-odd
asymmetry resulting in the SM from the well known
CKMmatrix. Its manifestations has been first discovered
in Kaon decays and lately studied extensively in decays
of the B mesons, providing all elements of the CKM ma-
trix, with accuracy described in the current Particle Data
Tables. The first attempts to estimate magnitude of CP
violation in cold electroweak cosmology has been made
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by Smit, Tranberg and collaborators [8, 18]. Their strat-
egy has been to derive some local effective CP-odd La-
grangian by integrating out quarks, such as that found in
[18], and than include this Lagrangian in their real-time
bosonic numerical simulations. The estimated magnitude
of the CP-odd effects ranges from nB/nγ ∼ 10−6..10−10

[9], which reignites hopes that this scenario can provide
the observed magnitude of the baryon asymmetry in Uni-
verse.
However, as we will detail below, there are many unan-

swered questions about the accuracy of these estimates.
One of them, already pointed out e.g. in [17], is that
the particular effective Lagrangian has been derived with
specific assumptions about the scale of the loop momenta
and field strength, which are only valid in some restricted
regions in the configurations used for averaging. The ef-
fective theory used, valid e.g. for energy scales below 5
GeV [18] cannot be applied in and near the bags of elec-
troweak size 1/mw: and yet their large CP effect came
precisely from these regions. But even more important is
the following unanswered generic question: why should
a very complicated operator (containing 4-epsilon sym-
bol convoluted with 4 gauge field potentials and one field
strength) averaged over very complicated field configu-
rations (obtained only numerically) have a nonzero av-
erage? Since the calculation is numerical, it would be
desirable to have some parametric estimate of the effect,
in particular to know what sign the effect should have
and why.
In this work we will try to elucidate these issues by

evaluating CP-odd effects induced at the one quark loop
level in the W-bag background. We will find which
quarks and which scales interact with the fields of the
W -bags, and estimate the value of the CP asymmetry
produced. We will find many cancellations in the con-
tributions of various quark flavors in the loops, with our
definite sign answer only coming in the 6th order ex-
pansion over the propagator phases. Instead of a com-
mon scale for all propagators, as is used in the effective
Lagrangians, the positions of the interaction points are
individually optimized to maximize the effect. In sec-
tion II we review the properties of the cold electroweak
phase transition and the formation and properties of the
bags. We then explain how fermions can built CP asym-
metry. In section III we write down the CP asymmetry
and decide, which quark interference can create the CP
asymmetry by working out the flavor algebra. Working
out the propagators and Dirac algebra allow us finally to
estimate the size of the different effects in section IV. In
section V we discuss and summarize our results.

II. THE SETTING

The cold electroweak phase transition is completely out
of thermal equilibrium. The first SM fields created by vi-
olent fluctuations are those of the W,Z and Higgs bosons,
the latter promptly producing top and anti-top quarks

(due to their large Yukawa coupling). Numerical simu-
lations [8, 9] of the gauge and Higgs fields have shown
that W -bags of size of order 1/mw are formed, contain-
ing large number of gauge quanta. Top quarks and an-
tiquarks are migrating into these bags, where their large
mass is nearly canceled by a large binding of O(100GeV ),
as shown in [17]. The bag lifetime is of order 6/mw and
the system finally thermalize, to some equilibrium tem-
perature well below the electroweak critical temperature.

Note that during this time, mostly weak bosons, Higgs
and top quarks are present in the system, with light
quarks and gluons are not yet produced. This comment
is important for the following reasons. Below we will
evaluate certain 4-th order electroweak diagrams, whose
small CP-odd phases are interfering. In order to preserve
those phases it is important that the quarks diffuse freely
and don’t get scattered by the thermal bath. (Note that
it was one of the criticism to the mechanism proposed
some time ago by Farrar and Shaposhnikov [20].) In our
scenario, the mean free path is of order λ ∼ 1/α2

WT .
It is actually longer than all distances considered below,
so that we do not need to consider thermal rescattering.
The scattering by gluons is also negligible, due to their
small density at early time.

Given the particle content, it is natural to search for
CP violation starting form the early created top quarks.
In the bags, they can absorb W− and turn into the down
b, s, d quarks. The light quarks have too small Yukawa
coupling to be bound to the bag, and can escape the bag
and move into the bulk plasma. CP violation produces
a difference between the rates of top and anti-top quark
escape. For definiteness, let us consider two interactions
with the W bosons (returning the quark back to “up”
flavors). For a top quark starting at the position r1, the
escaping amplitude has the form

At(r1) = g2
∫

γνW−
ν V †PtS

L
d (r1, r2)

×γµW+
µ V SL

u (r2, rc)d
4r2,

whereas the antitop has

At̄(r1) = g2
∫

γνW+
ν V̄ †Pt̄S

L
d (r1, r2)

×γµW−
µ V̄ SL

u (r2, rc)d
4r2.

In the formulas above, g is the weak coupling, V is the
CKM matrix, S the quark propagators, their index u, d
etc denotes the up and down quark flavors and Pt denote
the flavor projection matrix on the top quark.

The probability of a top quark escaping from r1 is then
given by the integral over all positions and sum over all
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intermediate and final states f of the squared amplitude

Probt(r1) =

∫

f

A†
tAt = Tr

∫

d4rc
∑

u

A†
tAt

= g4
∫

d4rcd
4r2d

4r3Tr
[

Ptγ
νW−

ν V †

SL
d (r1, r2)γ

µW+
µ V SL

u (r2, rc) (1)

SL†
u (rc, r3) γ

αW−
α V †SL†

d (r3, r1)γ
βW+

β V
]

.

Note that the interference terms between different paths
are of the fourth order in the weak interactions and thus
contain 4 CKM matrices. The total number difference of
top quarks escaping is then

Nt−t̄ =

∫

d4x1nt(r1)(Probt − Probt̄), (2)

where nt(r1) the number density of top quark in the bag
(that we consider equal to the density of anti-top quarks
in the first approximation)
The setting in coordinate space is schematically shown

in Fig.1. Four positions of the points at which the in-
teractions take place, as well as particular quark flavor
in the intermediate line, are summed over. Writing the
amplitude squared of the process, one includes the uni-
tarity cut (the vertical line in Fig.1) to the right of which
one, as usual, finds the conjugated image of the process
in opposite direction. Thus the interference terms have
four W interactions, with four CKM matrices, which is
the minimal number needed for the CP-violating effects
to manifest themselves. The general expression for the
amplitude will be discussed in the next section.
In between these four points the flavor of the quark

remains unchanged. Quark wave functions (we keep in
mind l = 0 or s-wave ones only, thus points are only
indicated by their radial distance from the bag) are dif-
ferent for each flavor, because each has a different Higgs-
induced potential. Semiclassically the phase is approxi-
mated by

S12 = exp[i

∫ r2

r1

p(x)dx] ≈ exp[i

∫ r2

r1

(E −
m2

i (x)

2E
)dx],

where E is the quark energy, and the approximation im-
plies that all lower quark flavors are light with respect
to E. If the flavor-dependent phase (stemming from the
second term in the bracket) is small

δi12 =
m2

i

2E
r12 < 1, (3)

we can further expand the exponent to get a series in
the phases δi. As we will see shortly, only this (small
but flavor-dependent) part of this phase is contributing,
because when two flavors produce the same answer (one
gets the unit flavor matrix) two subsequent CKM matri-
ces cancel out and effectively wipe out the CP-odd part
of the amplitude.

w
u,cu,ct t

r1 r
w

r2 r3

b,sb,s

1rc

FIG. 1: (Color online) Schematic shape of the fourth order
process involving only quarks of the 2nd and 3rd generations.
The shaded objects on the left and right represent the Higgs
bag with strong gauge fields (indicated by W in the figure)
inside. The vertical line is the unitarity cut. The four black
dots indicate the four points ri, i = 1..4 where the W quanta
are interacting with the quark, changing it from up to down
component.

w
u,cu,ct t

r1 r

b,s b,s w
r2 r3

1rc

FIG. 2: Process where two of the W boson interactions are
form the bag and two W are thermal but correlated.

Note that we have two possibilities, shown in Fig.1 and
2. In the first case (Fig.1), the four interactions with the
W can occur in two pairs, in each one W is inside the
bag and the second near it. Thus in each pair one point
is in the region of strong field and one in the region of the
weak fields: yet they are still correlated in their spatial
and SU(2) directions. In the second case two interactions
are in the bag and two occur far from it, due to presence
of the thermal fields outside the bags (Fig.2). We will
evaluate below these two possibilities subsequently. The
calculation of the escape probability Pt is a formidable
task in general, we will only estimate it here. We will
consider that the bag and the top quark density inside
is spherically symmetric and that the quark will escape
radially only.

III. CP ASYMMETRY OF THE PROBABILITY
FOR THE QUARK TRAVEL TO/FROM THE

BAG

A. The flavor algebra of the asymmetry

Let us first follow the flavor part of the amplitude
that distinguishes between quarks and anti-quarks. The
fourth order process we outlined in the previous section
corresponds to the trace of the following matrix product

Mt = Tr(Pt ∗V ∗Sdown
12 ∗V † ∗Sup

23 ∗V ∗Sdown
31 ∗V †), (4)
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where S are quark propagators, the lower indices specify
their initial and final points as shown in Fig.1, the upper
subscript remind us that those are for up or down quark
components. Pt = diag(0, 0, 1) is the projector requir-
ing that we start (and end the loop) in the bag, with a
top quark. We also define the amplitude for the antitop
quarks

Mt̄ = Tr(Pt∗V
∗∗Sdown

12 ∗V T ∗Sup
23 ∗V

∗∗Sdown
31 ∗V T ) (5)

which we subtract from Mt, as the effect we evaluate is
the difference in the top-antitop population inside the
bag. The difference gets CP-odd as seen from its depen-
dence on the CP-odd phase δ

Mt −Mt̄ = 2iJ(Su
23 − Sc

23)

(−Ss
31 ∗ S

b
12 − Sd

31 ∗ S
s
12 + Sd

31 ∗ S
b
12

+Sd
12 ∗ S

s
31 − Sd

12 ∗ S
b
31 + Ss

12 ∗ S
b
31) (6)

where J is the so called Jarlskog factor, containing all
CKM angles in the following combination

J = sin(δ) sin(θ12) sin(θ13) sin(θ23) cos(θ23)

× cos(θ12) cos
2(θ13) cos(θ23) ≈ 3 ∗ 10−5 (7)

(note that one cos is squared: this is not a misprint).
The remaining combination of propagators, organized

in two brackets, needs to be studied further. Note first
that the propagators between points 2 and 3 (through the
unitarity cut) factor out and that one may ignore the top
quarks there. Note further, that if the u, c quarks would
have the same mass, the first bracket would vanish: this is
in agreement with general arguments that any degenerate
quarks should always nullify the CP-odd effects, as the
CP odd phase can be rotated away already in the CKM
matrix itself.
The last bracket in (6) contains interferences of differ-

ent down quark species: note that there are 6 terms,
3 with plus and 3 with minus. Each propagator has
only small corrections (3) coming from the quark masses.
Large terms which are flavor-independent always cancel
out, in both brackets of expression (6). Let us look at
only the terms which contain the heaviest b quark in the
last bracket, using the propagators in the form

Sb
ij = exp

(

±iδbij
)

= exp

(

±i
m2

b

2E
rij

)

, (8)

where ± refers to different signs in the amplitude and
conjugated amplitude and rij = rj − ri. Note that the
sign of the phase between points r2 and r3 can be positive
or negative as it results from a subtraction of the positive
phase from r3 to the cut rc with the negative phase form
the cut rc to r2. Terms containing odd powers in r23
should therefore vanish in the integral and the lowest
term we have is quadratic. Considering all phases to be
small due to 1/E and using the mass hierarchy mb ≫
ms ≫ md we pick up the leading contribution of the last

bracket in (6) which has r223 and the 4th power in the last
bracket, the 6th order in the phase shift in total:

Mt −Mt̄ ∝ J
m4

bm
4
cm

2
sr

2
23r12r31(r12 + r31)

64E5
. (9)

Note that all distances in this expression are defined to be
real and positive and the sign in the last bracket is plus,
so unlike all the previous orders in the phase expansion,
at this order we have sign definite answer with no more
cancellations possible. This point is the central one in
this work.
We further see that this expression grows for large r’s,

which are to be integrated over. Of course as we ex-
panded the exponent in the phases, they have to be such
that these phases are smaller than 1. This means the dis-
tances are limited by r < E/m2

q and as we have a closed

loop they are all smaller than E/m2
c. At larger distances

powers of the phases δi becomes oscillating ∼ sin δi and
may average out to zero: we would not include these
regions in our estimates below.

B. Dirac algebra

Considering the magnetic bag of [16], with radial pro-
file f(r) and considering that the quark move radially,
i.e. its propagation is described by

S =
γµrµ
r4

eipr. (10)

Note that the phase has already been taken into account
in the flavor algebra. Only the left part of the propa-
gators contributes in the loop since the right part does
not couple to the weak fields, so that the γ-matrices can
be replaced by Pauli-matrices. We also do not include
factors from the solid angles, as they cancel between our
four integrations and propagators.
We consider first the case where all interactions are

with the weak field of the bag. With such propagators
we get the Dirac algebra contribution to the amplitudes:

Γt = Γt̄ =
1

2

(rc − r2)(rc − r3)(r2 − r1)(r3 − r1)

(rc − r2)4(rc − r3)4(r2 − r1)4(r3 − r1)4

×f(r1)
2f(r2)f(r3). (11)

In the case of two interactions with thermal fields (see
Fig. 2), we have

Γt = Γt̄ =
(rc − r2)(rc − r3)(r2 − r1)(r3 − r1)

(rc − r2)4(rc − r3)4(r2 − r1)4(r3 − r1)4

×f(r1)
2W−

i (r3)W
+

i (r2). (12)

We still have here to average over the thermal fluctua-
tions of W± and we approximate

〈W−
i (r3)W

+

i (r2)〉 ∼ T
e−mw|r3−r2|

|r3 − r2|
. (13)
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IV. ESTIMATE OF THE EFFECT

A. Naive estimates

Let us start with a “naive” estimate, which assumes
that E in the formula is given by the top quark mass

E ∼ mt = 173GeV (14)

(as all the processes of quark propagation start from tops
in the bags). As for the field strength, naively one may
take all four interaction points inside the bags, where the
amplitude of the W is the strongest. If so, all distances
rij are of the order of the bag size Rbag ∼ 1/mw.
However, if this is the case, all the phases are so small

that the resulting CP asymmetry is about 10 orders of
magnitude smaller than needed. (In fact the reader fa-
miliar with the history of the CP literature will imme-
diately recognize the old Jarlskog argument [19], stated
that if the scale of the process is higher than all masses,
one must always find the product of the differences of all
masses in the numerator. This is exactly what is hap-
pening in the current estimate.)

B. Small quark energy and near-bag points

However, top quarks are bound in the bag, so one may
consider quark propagating at the energy much smaller
than the top mass E ≪ mt. As it has been argued in
[17], the magnitude of the weak interaction of quarks with
the electroweak plasma outside the bag, known as the
screening mass, is of the scale ∼ gwT , which is few GeV
and also comparable to mb. This effect is nothing but
the forward scattering of a quark on electroweak plasma.
This is the natural scale to take: thus we will from now
on consider E ∼ mb.
Another improvement one may try is to consider loca-

tions of some points outside the bag, selecting rij as large
as possible. The escape probability is the product of the
result for the flavor algebra (9) and the Dirac algebra
(11, 12). In the first case, putting together the formula
(9, 11), shifting the integration by r1, (ri → ri + r1) we
can integrate over rc. The result can be approximated
by noting that from the factor (r3 − r2)

2 in (9) the in-
tegral is dominated by configurations with r2 ≪ r3 or
symmetrically, so that the result can be simplified to

Probt−t̄(r1) ∼ Jg4
m4

bm
4
cm

2
s

64E5

∫

dr2dr32r2r
2
3

×f(r1)
2f(r2)f(r3).

Considering a radial bag of Nw weak bosons, we approx-
imate the bag shape by an exponential profile. Following
Ref. [17] we get

W (r) =

√

Nwm3
w

πEw

e−mwr, (15)

where Ew is the energy of a W Boson in the bag (Ew ∼
mw/2). The exponential fall-off limits the distance to
which the quarks can travel and we get that the proba-
bility of a top quark escaping is

δCP = τJ
g4N2

wmc

16E

m4
b

E4

m3
c

m3
w

m2
s

E2
w

∼ 10−11

(

Nw

1000

)2

. (16)

In the latter formula we made use of the lifetime of the
bag denoted τ/mw, with τ ∼ 6 to bound the time integral
over x1. We also considered that the energy of the initial
top quark bound to the bag was of order E ∼ mb. The
main reason for the result to be small is the small radius
of the bag ∼ 1/mw. Even in the time direction, the
lifetime of the bag is small.

C. Two weak interactions far from the bag

One can try to increase rij even further, since the tail
of the W fields of the bag would eventually dive into
the thermal sea of the electroweak plasma background,
nonzero at any distance. In this case the field strength is
defined by the “outside temperature” T far from all bags.
This temperature is expected to be below electroweak
critical temperature T < Tc, in numerical simulations it
was T ∼ 50GeV ∼ (1/2)Tc.

However, the fields in the plasma are chaotic, and the
correlator (13) of two gauge fields decreases fast with dis-
tance. Thus two points r2 and r3 in this case have to be
sufficiently close to each other. From (9, 12), shifting the
integration by r1, (ri → ri + r1) and expanding around
r23 = 0, we get:

Probt−t̄(r1) ∼ Jg4T
m4

bm
4
cm

2
s

64E5

∫

dr2dr3
1

20
(r2 + r3)

×(r2 − r3)
2e−mw|r3−r2|f(r1)

2. (17)

Changing again the integration variable r3 → r3 + r2 we
can perform the r3 integral and finally the r2 integral is
to be bounded by the life time of the bag that we denote
τ/mw (and the distance to which quarks can travel bound
to d < cτ/mw), leading to

Probt−t̄(r1) ∼ Jg4Tτ2
m4

bm
4
cm

2
s

64E5m2
w

f(r1)
2. (18)

The probability of a top-minus-antitop quark escaping
from the bag is then

Jg4
τ3TNw

640Ew

m4
bm

4
cm

2
s

E5m5
w

∼ 10−15

(

Nw

1000

)

,

which is smaller that in the previous case. Again, the
quarks, even if not bound to stay into the bag cannot
propagate very far, due to the short lifetime of the bags.
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V. TRANSLATING THE RESULTS INTO
BARYON ASYMMETRY

Let us start the summary by reminding the reader why
evaluation of the CP-violating effects in the cosmological
setting is technically so difficult. One general reason for
it is that one cannot use standard “effective Lagrangian”
method, in which the loop momentum scale is large com-
pared to all masses: as shown by Jarlskog long ago, this
produces simple answer which however imply negligible
CP violation ∼ 10−20 . If one uses larger scale for the
loop momenta, like mc or mb the result increases, as
found e.g. in Refs [8, 9]. However such resulting La-
grangian is a very nonlocal object, and it is not clear
how one can get any reliable estimates based on them
for complicated fields obtained in numerical simulations.
In particularly, as we already commented before, it is
completely inadequate for the “bags” themselves.
The main lesson we got from this study is that the

scales of both the quark energy E and their traveling
distances rij in the loop amplitudes should be tuned in-
dividually, to maximize the effect. The main limitation
come from the conditions of quark rescattering in the
plasma (the screening masses) and the conditions that
all phases δi should not be large, as well as the limita-
tions coming from the W field strength and correlation
length. Another lesson is that in order to prevent can-
cellations between different flavors, one has to expand all
the results till sign definite answer is guaranteed.
Is the largest CP effect we found, given in (16), in the

right ball park for the cosmological baryogenesis? To
answer this question we have to reprocess the CP asym-
metry obtained into the baryon number. It was shown
in a toy model [21] that the presence of heavy quarks
accelerate the sphaleron rate such as to destroy them.
We will not attempt to calculate the sphaleron rate and
the influence of the CP asymmetry on it but rely on the
results of the gauge field simulations of Ref. [8], accord-
ing to which the efficiency of the CP asymmetry conver-
sion to baryonic asymmetry is found there to be of order
10−3. Presence of tops inside the bag makes their “re-
cycling” possible, and it was argued in [17] the baryon
number increased to about 10−2 due to using their mass
for barrier penetration. What it means is that instead of
standard SM sphaleron production of 0 → 12 fermions, 3
leptons and 9 quarks, one may use a process which uses
top quarks of all colors e.g. 3t̄ → 9, which is favored since

it require less energy. The probability to find 3 antitops
is actually proportional to (1+δCP )

3 ≈ 1+3δCP , while it
is (1− 3δCP ) for tops: it gives factor 3. Another factor 3
appears because of the fact that each sphaleron event cre-
ates 3 units of baryon number, not one. Together with
baryon asymmetry (time integrated) sphaleron rates of
10−2 and 3× 3× δCP we arrive to our final estimate

∆B

B + B̄
∼ 10−12±1 (19)

where B and B̄ are the density of baryons and anti-
baryons in the system, mostly the top quarks in the bags
and ∆B = B− B̄ the baryon asymmetry. The one order
of magnitude stands for our errors due to numerical fac-
tors ignored in the estimates. Note that the final baryon
asymmetry would still receive a small suppression due
to the entropy release at the late stage of the universe
expansion. We conclude that it is somewhat below the
observed baryonic asymmetry of the Universe, however
parameters of the cosmological model can be better tuned
to get closer the right value. For instance if it is possible
to obtain larger bags with Nw ∼ 10000 or with larger
radius, the scenario might rapidly become viable.
Last but not least is the issue of the sign of the asym-

metry. Our formula (9) has definite (positive) sign, that
is to say more top quark escape the bag (note that the
time direction is important, quarks are first created in
the bag, then have more probability to escape). More
antitops remain in the bags, with more likely to be “re-
cycled” by the sphalerons: this produces more baryons
than anti-baryons. Apparently we got the right sign for
the baryon asymmetry.
Finally, let us comment on lepton CP violation. We do

not know yet the corresponding CP-violating phase and
the mixing angles in this sector, so can lepton amplitudes
similar to what we did with quarks produce larger effect?
The factor J above may be larger: but the masses of
the lower-component quarks ms,mb would be changed to
very small neutrino masses, with extremely small phases
δi and much smaller overall CP violation.
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