
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Critical point of N_{f}=3 QCD from lattice simulations in
the canonical ensemble

Anyi Li (李安意), Andrei Alexandru, and Keh-Fei Liu (刘克非)
Phys. Rev. D 84, 071503 — Published 21 October 2011

DOI: 10.1103/PhysRevD.84.071503

http://dx.doi.org/10.1103/PhysRevD.84.071503


UK/11-02

Critical point of Nf = 3 QCD from lattice simulations in the canonical ensemble

Anyi Li(李安意),1, ∗ Andrei Alexandru,2, † and Keh-Fei Liu(刘克非)3, ‡

(χQCD Collaboration)
1Department of Physics, Duke University, Durham, North Carolina 27708, USA

2Physics Department, The George Washington University, Washington DC 20052, USA
3Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

A canonical ensemble algorithm is employed to study the phase diagram of Nf = 3 QCD using
lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of
the fermion determinant. We scan the phase space below Tc and look for an S-shape structure in
the chemical potential, which signals the coexistence phase of a first order phase transition in finite
volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at
three temperatures and extrapolate them to locate the critical point. Using an improved gauge
action and improved Wilson fermions on lattices with a spatial extent of 1.8 fm and quark masses
close to that of the strange, we find the critical point at TE = 0.925(5) Tc and baryon chemical
potential µE

B = 2.60(8) Tc.

PACS numbers: 11.15.Ha, 11.30.Rd

QCD is expected to have a rich phase diagram at finite
temperature and finite density. Current lattice calcula-
tions have shown that the transition from the hadronic
phase to QGP phase is a rapid crossover [1, 2]. For large
baryon chemical potential and very low temperature, a
number of models suggest that the transition is a first
order. If this is the case, when the chemical potential
is lowered and temperature raised, this first order phase
transition is expected to end as a second order phase tran-
sition point — the critical point. However, lattice QCD
simulations with chemical potential are difficult due to
the notorious “sign problem”. The majority of current
simulations are focusing on small chemical potential re-
gion µq/T � 1 where the “sign problem” appears to be
under control. Up to now, all the Nf = 3 or 2+1 sim-
ulations are based on the grand canonical ensemble (T ,
µB as parameters) with staggered fermions. The results
from the multi-parameter reweighting [3], Taylor expan-
sion with small µ [4, 5] and the curvature of the critical
surface [6] are not settled and need to be cross-checked.

crossover

vaccum

hadron gas

QGP

μB

T first order

critical point

color
superconductor 

FIG. 1. Conjectured QCD phase diagram
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Even the existence of the critical point is in question [6].
We employ an algorithm, which is not restricted to small
chemical potential because of the mitigation of the sign
problem under the current parameter settings, to study
this problem.

In this letter, we adopt an exact Monte Carlo algo-
rithm [7–9] based on the canonical partition function [10–
15] which is designed to alleviate the determinant fluctu-
ation problems. As it turns out, the sign fluctuations are
not serious on the lattices used in the present study, as we
shall see later. In the canonical ensemble simulations in
finite volume, the coexistence phase of a first order phase
transition has a characteristic S-shape as a function of
density due to the surface tension. This finite-volume
property has been exploited successfully to identify the
phase boundaries via the Maxwell construction in studies
of phase transition with the staggered fermions [14, 15]
and clover fermions [16] for the Nf = 4 case which is
known to have a first order phase transition at µ = 0. In
these benchmark studies the boundaries were identified
at three temperatures below Tc, and they were extrap-
olated in density and temperature to show that the in-
tersecting point indeed coincides with the independently
identified first order transition point at Tc and µ = 0 [16].
In view of the success of the Nf = 4 study, we extend this
method to the more realistic Nf = 3 case [17, 18]. Al-
though the real world contains two light quarks and one
heavier strange quark, the three degenerate flavor case
has a similar phase structure. Our primary goal in this
study is to determine whether a first order phase tran-
sition exists for Nf = 3 and where the critical point is
located.

With the aid of recently developed matrix reduction
technique [19–21], we scan the chemical potential as a
function of baryon number for four temperatures below
Tc which is determined at zero chemical potential, and we
observe clear signals for a first order phase transition for
temperatures below 0.93 Tc. The phase boundaries of the
coexistence phase are determined and then extrapolated
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in temperature and density to locate the critical point
at TE = 0.927(5) Tc and µEB = 2.60(8) Tc. Our results
are based on simulations on 63 × 4 lattices with clover
fermion action with quark masses which correspond to
the pion mass from 750 MeV for the lowest temperature
to 775 MeV for the highest temperature.

The canonical partition function in lattice QCD can be
derived from the fugacity expansion of the grand canon-
ical partition function,

Z(V, T, µ) =
∑
k

ZC(V, T, k)eµk/T , (1)

where k is the net number of quarks (number of quarks
minus the number of anti-quarks) and ZC is the canonical
partition function. Using the fugacity expansion, it can
be shown that the canonical partition function can be
written as a Fourier transform of the grand canonical
partition function,

ZC(V, T, k) =
1

2π

∫ 2π

0

dφ e−ikφZ(V, T, µ)|µ=iφT , (2)

upon introducing an imaginary chemical potential µ =
iφT . After integrating out the fermionic part in Eq. (2),
we get an expression

ZC(V, T, k) =

∫
DU e−Sg(U)detkM

Nf (U), (3)

where

detkM
Nf (U) ≡ 1

2π

∫ 2π

0

dφ e−ikφ detM(m,φ;U)Nf ,

(4)
is the projected determinant for the fixed net quark num-
ber k. Nf is the number of flavors. We shall use the re-
cently developed matrix reduction technique to compute
the projected determinant exactly [19].

Using charge conjugation symmetry, one can show that
detkM

Nf (U) is real, but not necessarily positive. Due
to the sign fluctuation, there can potentially be a sign
problem at large quark number and low temperature.
For more detailed discussion about the properties of the
canonical ensemble, we refer the reader to Ref. [16]. To
simulate Eq. (3) dynamically, we rewrite canonical par-
tition function as

ZC(V, T, k) =

∫
DU e−Sg(U)detMNf (U)W (U)α(U),(5)

where

W (U) =
|Re detkM

Nf (U)|
detMNf (U)

,

α(U) = Sign(Re detkM
Nf (U)). (6)

Our strategy to generate an ensemble is to employ
Metropolis accept/reject method based on the weight
W (U) and fold the phase factor α(U) into the mea-
surements. In short, during the simulation, the candi-
date configuration is “proposed” by the standard Hybrid
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FIG. 2. Average sign as a function of nB for highest and
lowest temperatures (0.93 Tc and 0.85 Tc) used in this study.
Dashed lines represent the phase boundaries of the coexis-
tence phase.

Monte Carol algorithm and then an accept/reject step is
used for the correct probability. Note the two-step sim-
ulation with HMC and accept/reject based on W (U) re-
duces the fluctuation problem [8] and accept/reject step
based on the exact projected determinant detkM

Nf (U)
ensures that the simulation remains in the specific canon-
ical sector with quark number k 6= 0.

The lattice spacing and the pion mass are determined
by using dynamically generated ensembles on 123 lattices
for each β. To locate the pseudo critical temperature Tc,
we varied β to look for the peak of the Polyakov loop
susceptibility. We run simulations for five different vol-
umes (63, 83, 103, 123, 163×4) and found that the peak of
the susceptibility hardly depends on the volume. This is
consistent with the finding on large volumes and physical
quark masses that the finite temperature transition for
the Nf = 3 case is a crossover at zero chemical poten-
tial [1, 2].

To determine the location of the phase transition at
non-zero baryon density, we pick four temperatures be-
low Tc (0.85 Tc, 0.87 Tc, 0.90 Tc, 0.93 Tc) and vary the
net quark number from 3 to 54 in steps of 3 (for frac-
tional baryon number the partition function vanishes).
This corresponds to the baryon number nB from 1 to 18
and a density between that of the nuclear matter and 18
times of that. The chemical potential is calculated and
plotted as a function of the net baryon number nB . In
the canonical ensemble, the baryon chemical potential is
calculated by taking the difference of the free energy after
adding one baryon, i.e.

〈µ〉nB
=
F (nB + 1)− F (nB)

(nB + 1)− nB
= − 1

β
ln
〈γ(U)〉o
〈α(U)〉o

(7)

where

γ(U) =
Re det3nB+3M

nf (U)

|Re det3nB
Mnf (U)|

. (8)

is measured in the ensemble with nB baryon number and
〈〉o in Eq. (7) stands for the average over the ensemble
generated with the measure |Re det3nB

Mnf (U)|.
As a first check, we examine the magnitude of the sign

fluctuations. The average sign in Eq. (6) appears in the
denominator of Eq. (7) and can lead to a sign problem
when its error bars overlap with zero. This quantity is



3

æ

æ

æ

æ

ò ò

6 7 8 9

3.0

3.1

3.2

3.3

nB

Μ
B

�T

T�Tc=0.90H1L

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò ò

6 8 10 12
3.0

3.2

3.4

3.6

3.8

4.0

nB

Μ
B

�T

T�Tc=0.87H1L

æ

æ

æ

æ

æ æ

æ

æ æ

æ

æ

æ

ò ò

6 8 10 12 14
3.2
3.4
3.6
3.8
4.0
4.2
4.4

nB

Μ
B

�T

T�Tc=0.85H1L

FIG. 3. Maxwell constructions for T = 0.90 Tc, T = 0.87 Tc and T = 0.85 Tc with the horizontal dashed line indicating the
constant µ̃B/T and red triangles indicating the mixed phase boundaries at nB1 and nB2 .

plotted in Fig. 2 for the highest and lowest temperatures.
We see that all of them are more than 3σ above zero.
This result is better than the previous ones based on the
winding number expansion method [16, 18], presumably
due to the adoption of the exact projection of the deter-
minant [19]. Thus, we believe that the sign fluctuations
are not a problem for this study.

We would like to point out the difference between the
phase diagram in the grand canonical ensemble and the
one in the canonical ensemble. We plot the expected
canonical ensemble phase diagram in Fig. 4 in contrast
to that in the grand canonical ensemble in Fig. 1. The
first order phase transition line in the grand canonical
T −µ diagram becomes a phase coexistence region in the
T - ρ diagram of the canonical ensemble, which has two
boundaries that separate it from the pure phases. The
two boundaries will eventually meet at one point. This
point is the critical point at nonzero baryon chemical
potential.

Once one enters the coexistence region in a finite vol-
ume, the contribution from the surface tension causes the
appearance of a “double-well” in the effective free energy
whose derivative with respect to density leads to an S-
shaped behavior in the chemical potential versus baryon
number plot [22]. However, in the thermodynamic limit,
the surface tension contribution goes away since it is a
surface term while the free energy scales with the vol-
ume; the chemical potential will then stay constant in

ρ
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hadron

critical point

ρ
1

ρ2

ρ
ρ1 ρ2

µ
B

FIG. 4. Schematic plot illustrating the scanning we use to lo-
cate the boundaries of the mixed phase for QCD with Nf = 3.
The infinite volume expectation for chemical potential as a
function of density is shown in the inset.

the coexistence phase region. The behavior of the baryon
chemical potential in the thermodynamic limit is shown
as an inset in Fig. 4. ρ1 and ρ2 mark the lower and upper
boundaries of the coexistence phase at a given tempera-
ture below Tc.

Our results for the baryon chemical potential are pre-
sented in Fig. 5 for four different temperatures below
Tc. Statistical errors are estimated from the jackknife
method. It is clear that the chemical potential exhibits
an “S-shaped” wiggle for nB between 6 and 14. To iden-
tify the boundaries of the mixed-phase region and the
coexistence baryon chemical potential, we rely on the
Maxwell construction: the coexistence chemical poten-
tial µ̃B is the one that produces equal areas between the
curve of the chemical potential µB as a function of nB
and the constant µ̃B line which intersects with µB at nB1

and nB2 . This procedure was used in studies with stag-
gered fermions [14, 15] and Wilson-clover fermions [16]
in this context for the Nf = 4 case.

We carried out the Maxwell constructions for the three
temperatures at 0.85 Tc, 0.87 Tc and 0.90 Tc. We could
not do it for the 0.93 Tc case, as the wiggle there, if
present, is not statistically significant. The results are
presented in Fig. 3. Having determined nB1

and nB2
for

three temperatures, we plot the boundaries of the coex-
istence region and perform an extrapolation in nB and T
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FIG. 5. Phase scan for temperatures 0.85 Tc, 0.87 Tc, 0.90 Tc

and 0.93 Tc.
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FIG. 7. Phase transition line in the T , µ plane.

to locate the intersection of the two boundaries. To de-
termine the crossing point, we perform a simultaneous fit
of the boundary lines using a even polynomial in baryon
density. We use an even polynomial since ZC is an even
function of k. The phase boundaries and their extrap-
olations are plotted in Fig. 6. We find the intersection
point at TE(nEB)/Tc = 0.927(5) and nEB = 5.7(3).

Using the coexistence chemical potential, one can map
out the phase diagram in the grand canonical ensemble
as shown in Fig. 7. Note that, the region of coexistence
phase becomes a curved transition line separating two the
phases as we expected. In this way, we locate the critical
point in the grand canonical ensemble at critical temper-
ature TE/Tc = 0.927(5) and baryon chemical potential
µEB/Tc = 2.60(8). Using the lattice spacing a ≈ 0.3 fm in

our simulation, we convert its location in physical units
to be TE ≈ 157 MeV and µEB ≈ 441 MeV.

In conclusion, we have applied a canonical ensem-
ble algorithm previously tested on the Nf = 4 to the
more relevant Nf = 3 case and located the first order
phase transition as signaled by the S-shape structure
in the µ − nB plane for several temperatures below Tc.
The Maxwell construction was employed to identify the
boundaries of the coexistence phase and we extrapolated
them to locate the critical point at TE = 0.925(5) Tc
and µEB = 2.60(8) Tc. We should point out that the
present work is carried out on a relatively small volume
with spatial extent of ∼ 1.8 fm and for three degener-
ate quark flavors with their masses similar to that of the
strange quark. Quark mass for this system acts like the
magnetic field for spin systems which weakens the phase
transition. Since the µ = 0 finite temperature transition
is first order for massless quarks [23] and the present
critical point is at a relatively large µEB for quark masses
around the strange, one expects that the critical point for
the more realistic 2 + 1 flavor case with light u/d quarks
to be somewhere in between. This expectation is based
on the assumption that there is a critical surface which
grows continuously from the critical line at µ = 0 into fi-
nite µ. The critical line is the one that separates the first
order phase transition region at some finite temperature
with small quark masses and the crossover region with
intermediate masses (including the physical ones) on the
µ = 0 plane of the Columbia plot. This assumption is
challenged by recent studies of the critical surface near
the critical line (See Fig.1 in references [6, 24]) which
suggest that the first order region shrinks with increas-
ing chemical potential and, therefore, there might not be
a critical point for physical quark masses. To address
this issue, future simulations will study the quark mass
dependence of the critical point and the existence of the
critical point needs to be checked on lattices with higher
cutoffs and larger volumes.
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