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M. A. Clark,1 Bálint Joó,2 A. D. Kennedy,3 and P. J. Silva4, ∗

1Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, U.S.A.
2Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, U.S.A.

3Tait Institute and SUPA, School of Physics & Astronomy,

The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, U.K.
4Centro de F́ısica Computacional, Universidade de Coimbra, Portugal

We show how the integrators used for the molecular dynamics step of the Hybrid Monte Carlo
algorithm can be further improved. These integrators not only approximately conserve some Hamil-
tonian H but conserve exactly a nearby shadow Hamiltonian H̃ . This property allows for a new
tuning method of the molecular dynamics integrator and also allows for a new class of integrators
(force-gradient integrators) which is expected to reduce significantly the computational cost of future
large-scale gauge field ensemble generation.
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I. INTRODUCTION AND MOTIVATION

Hybrid Monte Carlo (HMC) [1] is the algorithm of
choice to generate lattice QCD configurations including
the effect of dynamical fermions. The most time consum-
ing ingredient of HMC is the molecular dynamics (MD)
step, which consists of a reversible volume-preserving ap-
proximate MD trajectory of τ/δτ steps (with τ being the
length of the trajectory and δτ the stepsize) followed by a
Metropolis accept/reject test with acceptance probability
min(1, e−δH) where δH is the change in the Hamiltonian
H = T + S whose kinetic and potential parts are T and
S.
A molecular dynamics trajectory is not only an ap-

proximate integral curve of the Hamiltonian vector field
Ĥ corresponding to H , but is also an exact integral

curve of the Hamiltonian vector field ̂̃H of an exactly
conserved shadow Hamiltonian H̃ . The asymptotic ex-
pansion of this shadow Hamiltonian in the stepsize δτ
may be computed using the Baker–Campbell–Hausdorff
(BCH) formula and expressed in terms of Poisson brack-
ets (PBs) [2, 3]. As a simple example consider the
PQPQP (also known as 2MN [4]) integrator

UPQPQP(τ) =
(
eλŜδτe

1
2
T̂ δτe(1−2λ)Ŝδτe

1
2
T̂ δτeλŜδτ

)τ/δτ

whose shadow Hamiltonian is

H̃PQPQP = H +

(
6λ2 − 6λ+ 1
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24
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)
δτ2 (1)

+

(
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720
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720
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+
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+
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720
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)
δτ4 +O(δτ6).

Note that we have one free parameter, λ, which is often
set to some value not taking PBs into account. In [5], the
authors chose λ by minimising δH empirically, requiring
a sequence of runs at different values of λ. Others used
λc ≈ 0.193183 [4], which minimizes the norm of the co-
efficients of the PBs in the second-order term. However,
this is not necessarily the best choice.

∗ Corresponding author: psilva@teor.fis.uc.pt

We have evaluated PBs and shadow Hamiltonians for
gauge theories (where gauge fields are constrained to live
on a Lie group manifold) for the first time [3, 6–8]. There-
fore, in this letter we propose to measure the volume-
averaged PBs and tune the free parameters of an MD
integrator taking PB measurements into account. As we
will see, our tuning procedure also allows us to find out
the best number of steps of a nested integrator scheme.
We also present a new integrator step and a new integra-
tor which will be able to reduce the cost of large volume
simulations.
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FIG. 1. Comparison of measured acceptance rates and their
predictions from Poisson bracket measurements. In the left
hand plot we fix δτ = 0.1 and leave λ as a free parameter,
whereas in the right we take λ = 0.18 and plot Pacc as a
function of δτ .

II. INTEGRATOR TUNING

Let us define the difference between the shadow (H̃)

and actual (H) Hamiltonians as ∆H = H̃ −H . Noting
that Var(∆H) means the variance of the distribution of
values of ∆H over phase space, one can show that the
acceptance rate Pacc can be given by [8]

Pacc = erfc

(√
1

4
Var(∆H)

)
. (2)

To estimate Pacc from eq. 2, one only needs to measure
the PB from equilibrated configurations. This allow us
to express Pacc as a function of the integrator parameters
and find their optimal values that maximize Pacc.
As a simple test, we consider an HMC simulation of

two flavors of Wilson fermions at κ = 0.158 and Wil-
son gauge action at β = 5.6 on an 84 lattice. We use
a single level PQPQP integrator and a unit trajectory
length, therefore we have two tunable parameters: the
integrator parameter λ and the step size δτ . We measure
∆H up to fourth order in δτ . In Figure 1 we compare
the acceptance rates predicted by the formula above with
numerical data taken from simulations at various values
of λ and δτ . The PB values used for the predictions were
measured at λ = 0.18 and δτ = 0.1 – but one should
note that our predictions are independent of the integra-
tor parameters used to get the Poisson bracket values.
The plots show good agreement between predicted

and measured acceptance rates, provided the stepsize is
not too big, otherwise the BCH expansion breaks down.
Moreover, the maximum of the acceptance rate in the
left hand plot is achieved at λmax ≈ 0.1836 (to be com-
pared with λc). We now use eq. (2) to tune the MD
integrator on a larger volume. Ultimately, we are inter-
ested in reducing the computational cost, which depends
on the wall-clock time spent computing the force terms

on a unit of MD time as well as the acceptance rate, and
the autocorrelation time τcorr for the observables. We
neglect τcorr in this discussion as it is not sensitive to the
choice of integrator parameters as long as the acceptance
rate is reasonable, and define our cost metric as

cost =
trajectory CPU time

Pacc τ
. (3)

For our purposes, the numerator of eq. (3) is estimated
by considering the time spent in force computation along
the trajectory. In particular, for a nested integrator, the
numerator of this cost function is a function of the num-
ber of steps at each level times the CPU time required to
compute the forces at that level. Therefore, minimizing
eq. (3) will allow us to both find out the optimal integra-
tor parameters, as well as find out the optimal stepsize,
or the number of steps at each level of a nested integrator
scheme. This is a more direct approach than the popular
“balancing forces” method [9].

III. TUNING A REAL SIMULATION

Level i Force F time FG time

0 Hasenbusch (µ = 0 / µ = 0.057) 21.21 s 26.61 s

1 Hasenbusch (µ = 0.057 / µ = 0.25) 3.98 s 7.55 s

2 Wilson (µ = 0.25) 1.05 s 1.98 s

3 Gauge 0.075 s 0.142 s

TABLE I. Set-up used in the HMC simulation described in
this section, together with typical times spent on force compu-
tation. µ is the twisted mass parameter [9]. For convenience,
times for the force-gradient computation are also shown here.

As an application of our tuning technology, we consider
a HMC simulation of a 243×32 lattice, with two flavours
of Wilson fermions with κ = 0.1580 and β = 5.6. As
in [9], we use a nested PQPQP integrator scheme, with
the inclusion of two Hasenbusch fields with twisted mass
fermions as “preconditioners”. In [9], each nested level of
the integrator has one force term, and the free parameter
of the PQPQP integrator has been set to λ = 1/6 at
all levels. In Table I, for each level i (note that 0 is
the outermost level), we show the type of force and its
parameters, and mean values of the time spent on force
and force-gradient computation.
In order to improve the integrator scheme used in [9],

we considered two different nested schemes:

PQ4. the original scheme, but with tuned values of λ;

PQ3. the two Hasenbusch fields appear now at the same
level (so we have only 3 different levels).

Table II shows parameters which minimize the cost met-
ric (3). In our simulations, we have fixed τ = 1, un-
less stated otherwise. For each scheme (which is also
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Tuning Prediction Measurement

Scheme mi λi F time Time

0 1 2 3 0 1 2 3 Pacc / traj. Pacc / traj. Cost

Original 3 1 2 3 1/6 1/6 1/6 1/6 0.85(1)(3) 308 s 0.88(4) 405 s 463

PQ4 / 4th 3 1 2 1 0.1903(36) 0.1696(66) 0.1885(69) 0.1670(80) 0.89(1)(0) 294 s 0.85(3) 399 s 471

PQ4 / 4th 3 1 1 2 0.1966(64) 0.1660(131) 0.1885(35) 0.1524(168) 0.80(2)(0) 267 s 0.82(5) 360 s 438

PQ3 / 4th 3 3 2 − 0.1803(22) 0.1902(53) 0.1281(220) — 0.83(3)(0) 234 s 0.83(4) 345 s 417

PQ3 / 2nd 3 3 2 − 0.1735(25) 0.1924(53) 0.1415(216) — 0.81(2)(3) 234 s 0.72(4) 354 s 491

PQ3 3 3 2 − λc λc λc — 0.76(3)(3) 234 s 0.80(3) 339 s 425

PQ3 3 3 2 − 1/6 1/6 1/6 — 0.73(3)(5) 234 s 0.74(5) 349 s 473

PQ3 / 4th 3 3 1 − 0.1793(24) 0.1890(65) 0.1636(66) — 0.81(2)(0) 228 s 0.78(5) 342 s 442

TABLE II. Tuning of the PQPQP integrator scheme. All errors shown are statistical, with the exception of the second set of
errors in the predicted acceptance rates, which are some sort of systematic error, estimated from the difference of predicting
acceptance rates using a shadow Hamiltonian up to δτ 2 or δτ 4. All times refer to runs utilizing 128 cores of the Iridis cluster.

described by the highest power of δτ used to compute
∆H), we show the optimal number of steps at each level,
the optimal λ parameters, our predictions for the accep-
tance rate, the estimated time spent in force computation
in one trajectory, and measurements of acceptance rates
and trajectory times. For comparison we also show data
for the original scheme [9].
We see that all predicted acceptance rates agree, within

errors, with the measured ones. Furthermore, the tuning
of λ’s in the PQ4 scheme allows a reduction of the number
of steps on the inner levels, so the CPU time per trajec-
tory decreases. Moreover, the PQ3 scheme allows further
improvement in cost measures. For this scheme, we also
show the performance obtained using other λ values. We
conclude that, for an optimal choice of integrator param-
eters, one is encouraged to tune the integrator using the
best available approximation to ∆H .

IV. FORCE-GRADIENT INTEGRATOR

Since the Poisson bracket {S, {S, T }} does not depend
on momentum [3], we can evaluate the integrator step

e ̂{S,{S,T}}δτ3

explicitly. If one uses λ = 1/6 for the
PQPQP integrator together with this integrator step, we
eliminate all O(δτ2) terms in ∆H . We therefore define
a PQPQP force-gradient integrator as

UFG(τ) =

(
e

1
6
Ŝδτe

1
2
T̂ δτe

48Ŝδτ− ̂{S,{S,T}}δτ3

72 e
1
2
T̂ δτe

1
6
Ŝδτ

)τ/δτ

.

Note that the performance of this integrator has been
shown to be much better than Campostrini integrator
[7]. This is not surprising since the coefficients of the
O(δτ4) term in the shadow Hamiltonian are about two
orders of magnitude smaller [3].
In order to test the performance of this integrator, we

considered the two integrator schemes defined in the last
section, replacing the PQPQP integrator, at all levels, by
this new one. We will denote these new schemes as FG4

and FG3 which have 4 and 3 different levels, respectively.
As in this case there are no tuneable parameters, we could
only vary the number of steps at each level. In Table III
we show the best parameters we found as well as the
measured values of acceptance rates and trajectory times.

Prediction Measurement

Scheme τ mi F + FG Time

0 1 2 3 Pacc time / traj. Pacc / traj. cost

FG4 1.0 3 1 1 1 0.97(1) 415 s 0.92(2) 523 s 569

FG4 1.1 3 1 1 1 0.96(1) 415 s 0.85(4) 526 s 560

FG4 1.2 3 1 1 1 0.94(1) 415 s 0.71(6) 500 s 585

FG3 1.0 3 1 1 − 0.91(1) 314 s 0.80(3) 393 s 492

TABLE III. Tuning of FG4 and FG3 integrator schemes. Note
that Pacc predictions are not compatible with measurements.
We expect this to be due to higher order corrections to ∆H .

A comparison between Tables II and III shows that the
use of a force-gradient integrator allows a smaller number
of steps in the inner levels. Furthermore, comparing the 4
nested level schemes, one sees that the force-gradient ac-
ceptance rates are higher. However, the trajectory CPU
times also increase (because we have to evaluate one more
step), so the cost measures are higher.

V. A LARGER VOLUME

Despite the comparison done in the last section does
not favour the use of a force-gradient integrator, it is
expected this integrator will be of use for larger lattice
volumes. Thus we now consider a thermalized 404 simu-
lation (using the same action parameters as used in the
previous sections) and proceeded with a similar tuning
analysis. We show the results in Table IV. Although we
were able to use a higher stepsize for the schemes which
use a force-gradient integrator, the trajectory CPU times
are still higher than PQPQP runs.
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Tuning Prediction Measurement

Scheme mi λi F time Time

0 1 2 3 0 1 2 3 Pacc / traj. Pacc / traj. Cost

PQ4 / 4th 5 1 2 1 0.1940(32) 0.1712(53) 0.1961(50) 0.1757(64) 0.90(1)(0) 1819 s 0.85(4) 2143 s 2513

FG4 4 1 1 1 — — — — 0.95(1) 2196 s 0.84(4) 2462 s 2931

PQ3 / 4th 5 3 1 − 0.1780(18) 0.1995(49) 0.1794(55) — 0.83(2)(1) 1513 s 0.82(4) 1934 s 2355

FG3 4 1 1 − — — — — 0.92(1) 1816 s 0.82(5) 2158 s 2641

TABLE IV. Tuning of a 404 simulation. CPU times refer to runs utilizing 256 cores of the Iridis cluster.

Using the data available, one can compute ratios be-
tween the cost of the FG schemes over PQPQP ones; we
see they decrease for larger volumes — see Table V. From
these results, we can see that at some increased volume
(assuming constant physics) the force-gradient integrator
will become more efficient than the PQPQP integrator.

Nested scheme FG4/PQ4 FG3/PQ3

243 × 32 1.30 1.18

404 1.17 1.12

TABLE V. Cost ratios (FG over PQPQP).

This cross-over point can be estimated from appeal-
ing to the requirement that the equilibrium distribution
must satisfy 〈eδH〉 = 1. Expanding to second order, we
have 〈δH〉 ∼ 1

2 〈δH
2〉, thus for second- and fourth-order

integrators 〈δH〉 ∼ δτ4 and 〈δH〉 ∼ δτ8, respectively.
The cost has a trivial linear volume factor and scales lin-
early with 1/δτ . Since δH is extensive in the volume we
can equate it with the volume stepsize scaling, thus we
have costPQPQP ∼ V 5/4 and costFG ∼ V 9/8, so the cost
ratio will behave as V −1/8. Using the data in table V to
estimate the multiplicative coefficient, we estimate that
the force-gradient integrator becomes more efficient at
V = 564 and V = 504 for the four-level and three-level
integrators, respectively. Given current leading-edge lat-
tice computations are presently at this volume, or slightly
larger, we therefore predict that the force-gradient inte-
grator will reduce significantly the computational cost for
future large-scale gauge field ensemble generation.

VI. CONCLUSIONS

We have presented a novel way of tuning a HMC in-
tegrator, together with practical examples. This tuning

procedure can be used for all lattice gauge and fermionic
actions, and allows a systematic study of the MD in-
tegrators currently used in large scale dynamical lattice
simulations. We have also presented a new fourth-order
integrator which is expected to reduce significantly the
computational cost of HMC simulations.

We are currently working towards a general implemen-
tation of the calculation of Poisson brackets and force-
gradient terms in Chroma [10]. Details about computing
Poisson Brackets will be presented elsewhere [11]. In the
near future we will also consider tuning simulations using
other lattice actions.
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