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We discuss how θ13 6= 0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the
non-Abelian discrete symmetry T7 in the context of a supersymmetric extension of the Standard Model with gauged
U(1)B−L. We predict a correlation between θ13 and θ23, as well as the effective neutrino mass mee in neutrinoless
double beta decay.

In a recent paper [1], a supersymmetric B − L gauge
model with T7 lepton flavor symmetry is proposed with
the following desirable features. (1) Neutrino tribimaxi-
mal mixing is achieved in a renormalizable theory, with-
out the addition of auxiliary symmetries and particles.
(2) The resulting neutrino mass matrix depends on only
two complex parameters, and is of the same form already
considered some time ago [2], using the discrete sym-
metry A4 [3, 4]. (3) The charged-lepton Yukawa sector
exhibits a residual discrete Z3 symmetry, i.e. lepton fla-
vor triality [5, 6], under which e, µ, τ ∼ 1, ω2, ω, where

ω = exp(2πi/3) = −1/2+ i
√
3/2. (4) There are physical

scalar doublets transforming as ω, ω2 which will decay
exclusively into leptons such that lepton flavor triality is
conserved. (5) If the new gauge boson Z ′ corresponding
to the spontaneous symmetry breaking of B−L [7] has a
mass around 1 TeV, its production and decay into these
exotic scalars may be observable at the Large Hadron
Collider (LHC).

Recently, the T2K Collaboration has announced that
a new measurement [8] has yielded a nonzero θ13 for neu-

trino mixing, i.e.

0.03 (0.04) ≤ sin2 2θ13 ≤ 0.28 (0.34) (1)

for δCP = 0 and normal (inverted) hierarchy of neu-
trino masses. This indicates a possibly significant de-
viation from tribimaximal mixing [9] where θ13 = 0,
tan2 θ12 = 1/2, and sin2 2θ23 = 1 are predicted. Whereas
the tribimaximal pattern has an elegant theoretical in-
terpretation [4] in terms of the simplest application of
A4 [3], deviations from it are expected [4, 10]. In this
paper, we present a variation of our previous T7 pro-
posal [1] and show how a different choice of the residual
symmetry of the soft terms of this model will lead to a
four-parameter neutrino mass matrix with nonzero θ13
and predicts a strong correlation between θ13 and θ23 as
well as the effective neutrino mass mee in neutrinoless
double beta decay.

The tetrahedral group A4 (12 elements) is the smallest
group with a real 3 representation. The Frobenius group
T7 (21 elements) is the smallest group with a pair of
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complex 3 and 3∗ representations. It is generated by

a =

(

ρ 0 0
0 ρ2 0
0 0 ρ4

)

, b =

(

0 1 0
0 0 1
1 0 0

)

, (2)

where ρ = exp(2πi/7), so that a7 = 1, b3 = 1, and ab =

ba4. The character table of T7 (with ξ = −1/2 + i
√
7/2)

is given by

class n h χ1 χ1′ χ1′′ χ3 χ3∗

C1 1 1 1 1 1 3 3

C2 7 3 1 ω ω2 0 0

C3 7 3 1 ω2 ω 0 0

C4 3 7 1 1 1 ξ ξ∗

C5 3 7 1 1 1 ξ∗ ξ

TABLE I: Character table of T7.

The group multiplication rules of T7 include

3× 3 = 3∗(23, 31, 12) + 3∗(32, 13, 21)+ 3(33, 11, 22),

(3)

3× 3∗ = 3(21∗, 32∗, 13∗) + 3∗(12∗, 23∗, 31∗)

+ 1(11∗ + 22∗ + 33∗) + 1′(11∗ + ω22∗ + ω233∗)

+ 1′′(11∗ + ω222∗ + ω33∗). (4)

Note that 3× 3× 3 has two invariants and 3× 3× 3∗ has
one invariant. These serve to distinguish T7 from A4 and
∆(27). We note that T7 was first considered for quark
and lepton masses some time ago [11].

Under T7, let Li = (ν, l)i ∼ 3, lci ∼ 1, 1′, 1′′, i = 1, 2, 3,

Φi = (φ+, φ0)i ∼ 3, and Φ′

i = (φ′0,−φ′−)i ∼ 3∗. The
Yukawa couplings Lil

c
jΦ

′

k generate the charged-lepton
mass matrix

Ml =

(

f1v
′

1 f2v
′

1 f3v
′

1

f1v
′

2 ω2f2v
′

2 ωf3v
′

2

f1v
′

3 ωf2v
′

3 ω2f3v
′

3

)

=
1√
3

(

1 1 1
1 ω2 ω
1 ω ω2

)(

f1 0 0
0 f2 0
0 0 f3

)

v, (5)

if v′1 = v′2 = v′3 = v′/
√
3, as in the original A4 pro-

posal [3].

Let νci ∼ 3∗, then the Yukawa couplings Liν
c
jΦk are

allowed, with

MD = fD

(

0 v1 0
0 0 v2
v3 0 0

)

=
fDv√

3

(

0 1 0
0 0 1
1 0 0

)

, (6)

for v1 = v2 = v3 = v/
√
3 which is necessary for con-

sistency since v′1 = v′2 = v′3 = v′/
√
3 has already been

assumed for Ml. Note that Φ and Φ′ have B − L = 0,
and both are necessary because of supersymmetry.

Now add the neutral Higgs singlets χi ∼ 3 and ηi ∼ 3∗,
both with B − L = −2. Then there are two Yukawa in-
variants: νci ν

c
jχk and νci ν

c
jηk (which has to be symmetric

in i, j). Note that χ∗

i ∼ 3∗ is not the same as ηi ∼ 3∗

because they have different B−L. This means that both
B−L and the complexity of the 3 and 3∗ representations
in T7 are required for this scenario. The heavy Majorana
mass matrix for νc is then

Mνc = h

(

u2 0 0
0 u3 0
0 0 u1

)

+ h′

(

0 u′

3 u′

2

u′

3 0 u′

1

u′

2 u′

1 0

)

=

(

A C B
C D C
B C D

)

, (7)

where A = hu2, B = h′u′

2, C = h′u′

1 = h′u′

3, and
D = hu1 = hu3 have been assumed. This means that
the residual symmetry in the singlet Higgs sector is Z2,
whereas that in the doublet Higgs sector is Z3. This mis-
alignment is different from that assumed previously [1],
but is nevertheless achievable with suitably chosen soft
terms, i.e. χ∗

2χ2, χ
′

2
∗

χ′

2, χ2χ
′

2 + H.c., η∗2η2, η
′

2
∗

η′2, η2η
′

2

+ H.c., χ∗

1χ1+χ∗

3χ3, χ
′

1
∗

χ′

1+χ′

3
∗

χ′

3, χ1χ
′

1+χ3χ
′

3 + H.c.,
η∗1η1 + η∗3η3, η

′

1
∗

η′1 + η′3
∗

η′3, η1η
′

1 + η3η
′

3 + H.c., χ2η
′

2 +
H.c., χ′

2η2 + H.c., χ2(η
′

1+η′3) + H.c., χ′

2(η1+η3) + H.c.,
(χ1+χ3)η

′

2 + H.c., (χ′

1+χ′

3)η2 + H.c., (χ1+χ3)(η
′

1+η′3)
+ H.c., (χ′

1 + χ′

3)(η1 + η3) + H.c.

The seesaw neutrino mass matrix is now

Mν = −MDM
−1
νc MT

D (8)

=
−f2

Dv
2

3 det(Mνc)

(

AD −B2 C(B −A) C(B −D)
C(B −A) AD − C2 C2 −BD
C(B −D) C2 −BD D2 − C2

)

,

where det(Mνc) = A(D2−C2)+2BC2−D(B2+C2). Re-
defining the parameters A,B,C,D to absorb the overall
constant, we obtain the following neutrino mass matrix
in the tribimaximal basis:

M(1,2,3)
ν

=





D(A+D−2B)
2

C(2B−A−D)√
2

D(A−D)
2

C(2B−A−D)√
2

AD − B2 C(D−A)√
2

D(A−D)
2

C(D−A)√
2

AD+D2+2BD−4C2

2



 . (9)

This is achieved by first rotating with the 3× 3 unitary
matrix of Eq. (5), which converts it to the (e, µ, τ) basis,
then by Eq. (10) below. Note that for D = A and C = 0,
this matrix becomes diagonal: m1 = A(A − B),m2 =
A2 − B2,m3 = A(A + B), which is the tribimaximal
limit. Normal hierarchy of neutrino masses is obtained if
B ≃ A and inverted hierarchy is obtained if B ≃ −2A.

The neutrino mixing matrix U has 4 parameters:
s12, s23, s13 and δCP [12]. We choose the convention
Uτ1, Uτ2, Ue3, Uµ3 → −Uτ1,−Uτ2,−Ue3,−Uµ3 to con-
form with that of the tribimaximal mixing matrix

UTB =





√

2/3 1/
√
3 0

−1/
√
6 1/

√
3 −1/

√
2

−1/
√
6 1/

√
3 1/

√
2



 . (10)
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then

M(1,2,3)
ν =

(

m1 m6 m4

m6 m2 m5

m4 m5 m3

)

= U−1
TBU

(

m′

1 0 0
0 m′

2 0
0 0 m′

3

)

U−1UTB, (11)

where m′

1,2,3 are the physical neutrino masses, with

m′

2 = ±

√

m′

1

2 +∆m2

21
, (12)

m′

3 = ±

√

m′

1

2 +∆m2

21
/2 + ∆m2

32
(normal hierarchy),

(13)

m′

3 = ±

√

m′

1

2 +∆m2

21
/2−∆m2

32
(inverted hierarchy).

(14)

If U is known, then all m1,2,3,4,5,6 are functions only of
m′

1.

In our model, the neutrino mass matrix has only
4 parameters A,B,C,D, so there are 2 conditions on
m1,2,3,4,5,6. They are given by

A = D +
2m4

D
, B = D +

m4 −m1

D
,

C

D
= − m6

m1

√
2
= − m5

m4

√
2
, (15)

D2 =
(m1 −m4)

2

2m1 −m2
=

m2
1(m3 +m1 − 2m4)

2m2
1 −m2

6

. (16)

We now input the allowed ranges of values for ∆m2
21,

∆m2
32, s12, s23, s13 assuming δCP = 0. In that case,

A,B,C,D can be chosen real. We then obtain m1,2,3,4,5,6

as a function of m′

1. We now solve for m′

1 using the con-
dition m1m5 = m4m6 from Eq.(15). Using this value
of m′

1, we check Eq.(16) to see if the input values are
allowed. In this way, we are able to find a strong corre-
lation between s13 and s23 as shown in Fig. 1. It is very
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FIG. 1: sin2 2θ23 versus sin2 2θ13 for sin2 2θ12=0.87.

well approximated by

sin2 2θ23 ≃ 1− 1

2
sin2 2θ13, (17)

for all solutions. Using [12] sin2 2θ13 < 0.135, this implies
sin2 2θ23 > 0.93.

The effective neutrino mass mee in neutrinoless double
beta decay is given by

mee =
1

3
|2m1 +m2 + 2

√
2m6| (18)

=
1

3
|2AD +D2 − 2BD −B2 + 2C(2B −A−D)|,

and the kinematic νe mass in nuclear beta decay is mνe =
∑

i |U2
eim

′

i|.
We find solutions for both normal and inverted hierar-

chies, using the central values of ∆m2
32 = 2.40×10−3 eV2

and ∆m2
21 = 7.65× 10−5 eV2. We take 3 representative

values of sin2 2θ12, i.e. 0.84, 0.87, 0.90. In Figures 2 to 4
we show the solutions for the physical neutrino masses as
well as mee and mνe as functions of sin2 2θ13 in the case
of normal hierarchy. In Figures 5 to 7 we show these in
the case of inverted hierarchy. For sin2 2θ12 = 0.87 (cor-
responding to tan2 θ12 = 0.47), we plot in Figures 8 and
9 the T7 parameters (A + 2D)/3, B, C, and (A −D)/2
in the case of normal and inverted hierarchies. It is clear
that C and (A −D)/2 are small, showing that these so-
lutions deviate only slightly from the tribimaximal limit.
In particular, C = 0 exactly works for normal hierarchy,
but it implies sin2 2θ12 > 8/9, i.e. tan2 θ12 > 1/2 [4].

In conclusion, we have shown that a previously pro-
posed [1] T7/B −L model of neutrino masses has a vari-
ation (supported by a Z2 residual symmetry) which al-
lows a nonzero θ13 and predicts the strong correlation
sin2 2θ23 ≃ 1 − sin2 2θ13/2 which is consistent with all
data, including the recent T2K measurement [8]. We
also predict the effective neutrino mass mee in neutrino-
less double beta decay.
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FIG. 2: Normal hierarchy solution in case of sin2 2θ12=0.84.
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FIG. 3: Normal hierarchy solution in case of sin2 2θ12=0.87.
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FIG. 4: Normal hierarchy solution in case of sin2 2θ12=0.90.
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FIG. 5: Inverted hierarchy solution in case of sin2 2θ12=0.84.
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FIG. 6: Inverted hierarchy solution in case of sin2 2θ12=0.87.
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FIG. 7: Inverted hierarchy solution in case of sin2 2θ12=0.90.
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FIG. 8: T7 parameters for normal hierarchy in case of
sin2 2θ12=0.87.
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FIG. 9: T7 parameters for inverted hierarchy in case of
sin2 2θ12=0.87.


