This is the accepted manuscript made available via CHORUS. The article has been published as:

Search for first generation leptoquark pair production in the electron + missing energy + jets final state
V. M. Abazov et al. (D0 Collaboration)

Phys. Rev. D 84, 071104 - Published 11 October 2011
DOI: 10.1103/PhysRevD.84.071104

Search for first generation leptoquark pair production in the electron + missing energy + jets final state

V.M. Abazov, ${ }^{35}$ B. Abbott, ${ }^{73}$ B.S. Acharya, ${ }^{29}$ M. Adams, ${ }^{49}$ T. Adams, ${ }^{47}$ G.D. Alexeev, ${ }^{35}$ G. Alkhazov, ${ }^{39}$ A. Alton ${ }^{a},{ }^{61}$ G. Alverson, ${ }^{60}$ G.A. Alves, ${ }^{2}$ M. Aoki, ${ }^{48}$ M. Arov, ${ }^{58}$ A. Askew, ${ }^{47}$ B. Åsman, ${ }^{41}$ O. Atramentov, ${ }^{65}$ C. Avila, ${ }^{8}$ J. BackusMayes, ${ }^{80}$ F. Badaud, ${ }^{13}$ L. Bagby, ${ }^{48}$ B. Baldin, ${ }^{48}$ D.V. Bandurin, ${ }^{47}$ S. Banerjee, ${ }^{29}$ E. Barberis, ${ }^{60}$ P. Baringer, ${ }^{56}$ J. Barreto, ${ }^{3}$ J.F. Bartlett, ${ }^{48}$ U. Bassler, ${ }^{18}$ V. Bazterra, ${ }^{49}$ S. Beale, ${ }^{6}$ A. Bean, ${ }^{56}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{71}$ C. Belanger-Champagne, ${ }^{41}$ L. Bellantoni, ${ }^{48}$ S.B. Beri, ${ }^{27}$ G. Bernardi, ${ }^{17}$ R. Bernhard, ${ }^{22}$ I. Bertram, ${ }^{42}$ M. Besançon, ${ }^{18}$ R. Beuselinck, ${ }^{43}$ V.A. Bezzubov, ${ }^{38}$ P.C. Bhat, ${ }^{48}$ V. Bhatnagar, ${ }^{27}$ G. Blazey, ${ }^{50}$ S. Blessing, ${ }^{47}$ K. Bloom, ${ }^{64}$ A. Boehnlein, ${ }^{48}$ D. Boline, ${ }^{70}$ E.E. Boos, ${ }^{37}$ G. Borissov, ${ }^{42}$ T. Bose, ${ }^{59}$ A. Brandt, ${ }^{76}$ O. Brandt, ${ }^{23}$ R. Brock, ${ }^{62}$ G. Brooijmans, ${ }^{68}$ A. Bross, ${ }^{48}$ D. Brown, ${ }^{17}$ J. Brown, ${ }^{17}$ X.B. Bu, ${ }^{48}$ M. Buehler, ${ }^{79}$ V. Buescher, ${ }^{24}$ V. Bunichev, ${ }^{37}$ S. Burdin ${ }^{b},{ }^{42}$ T.H. Burnett, ${ }^{80}$ C.P. Buszello, ${ }^{41}$ B. Calpas, ${ }^{15}$ E. Camacho-Pérez, ${ }^{32}$ M.A. Carrasco-Lizarraga, ${ }^{56}$ B.C.K. Casey, ${ }^{48}$ H. Castilla-Valdez, ${ }^{32}$ S. Chakrabarti, ${ }^{70}$ D. Chakraborty, ${ }^{50}$ K.M. Chan, ${ }^{54}$ A. Chandra, ${ }^{78}$ G. Chen, ${ }^{56}$ S. Chevalier-Théry, ${ }^{18}$ D.K. Cho, ${ }^{75}$ S.W. Cho, ${ }^{31}$ S. Choi, ${ }^{31}$ B. Choudhary, ${ }^{28}$ S. Cihangir, ${ }^{48}$ D. Claes,,${ }^{64}$ J. Clutter, ${ }^{56}$ M. Cooke, ${ }^{48}$ W.E. Cooper, ${ }^{48}$ M. Corcoran, ${ }^{78}$ F. Couderc, ${ }^{18}$ M.-C. Cousinou, ${ }^{15}$ A. Croc, ${ }^{18}$ D. Cutts, ${ }^{75}$ A. Das, ${ }^{45}$ G. Davies, ${ }^{43}$ K. De, ${ }^{76}$ S.J. de Jong, ${ }^{34}$ E. De La Cruz-Burelo, ${ }^{32}$ F. Déliot, ${ }^{18}$ M. Demarteau, ${ }^{48}$ R. Demina, ${ }^{69}$ D. Denisov, ${ }^{48}$ S.P. Denisov, ${ }^{38}$ S. Desai, ${ }^{48}$ C. Deterre, ${ }^{18}$ K. DeVaughan, ${ }^{64}$ H.T. Diehl, ${ }^{48}$ M. Diesburg, ${ }^{48}$ P.F. Ding, ${ }^{44}$ A. Dominguez, ${ }^{64}$ T. Dorland, ${ }^{80}$ A. Dubey, ${ }^{28}$ L.V. Dudko, ${ }^{37}$ D. Duggan, ${ }^{65}$ A. Duperrin, ${ }^{15}$ S. Dutt, ${ }^{27}$ A. Dyshkant, ${ }^{50}$ M. Eads, ${ }^{64}$ D. Edmunds, ${ }^{62}$ J. Ellison, ${ }^{46}$ V.D. Elvira, ${ }^{48}$ Y. Enari, ${ }^{17}$ H. Evans, ${ }^{52}$ A. Evdokimov, ${ }^{71}$ V.N. Evdokimov, ${ }^{38}$ G. Facini, ${ }^{60}$ T. Ferbel, ${ }^{69}$ F. Fiedler, ${ }^{24}$ F. Filthaut, ${ }^{34}$ W. Fisher, ${ }^{62}$ H.E. Fisk, ${ }^{48}$ M. Fortner, ${ }^{50}$ H. Fox, ${ }^{42}$ S. Fuess, ${ }^{48}$ A. Garcia-Bellido, ${ }^{69}$ V. Gavrilov, ${ }^{36}$ P. Gay, ${ }^{13}$ W. Geng, ${ }^{15,} 62$ D. Gerbaudo, ${ }^{66}$ C.E. Gerber, ${ }^{49}$ Y. Gershtein, ${ }^{65}$ G. Ginther, ${ }^{48,}{ }^{69}$ G. Golovanov, ${ }^{35}$ A. Goussiou, ${ }^{80}$ P.D. Grannis, ${ }^{70}$ S. Greder, ${ }^{19}$ H. Greenlee, ${ }^{48}$ Z.D. Greenwood, ${ }^{58}$ E.M. Gregores, ${ }^{4}$ G. Grenier, ${ }^{20}$ Ph. Gris, ${ }^{13}$ J.-F. Grivaz, ${ }^{16}$ A. Grohsjean, ${ }^{18}$ S. Grünendahl, ${ }^{48}$ M.W. Grünewald, ${ }^{30}$ T. Guillemin, ${ }^{16}$ F. Guo, ${ }^{70}$ G. Gutierrez, ${ }^{48}$ P. Gutierrez, ${ }^{73}$ A. Haas ${ }^{c},{ }^{68}$ S. Hagopian, ${ }^{47}$ J. Haley, ${ }^{60}$ L. Han, ${ }^{7}$ K. Harder, ${ }^{44}$ A. Harel, ${ }^{69}$ J.M. Hauptman, ${ }^{55}$ J. Hays, ${ }^{43}$ T. Head, ${ }^{44}$ T. Hebbeker, ${ }^{21}$ D. Hedin, ${ }^{50}$ H. Hegab, ${ }^{74}$ A.P. Heinson, ${ }^{46}$ U. Heintz, ${ }^{75}$ C. Hensel, ${ }^{23}$ I. Heredia-De La Cruz, ${ }^{32}$ K. Herner, ${ }^{61}$ G. Hesketh ${ }^{d},{ }^{44}$ M.D. Hildreth, ${ }^{54}$ R. Hirosky, ${ }^{79}$ T. Hoang, ${ }^{47}$ J.D. Hobbs, ${ }^{70}$ B. Hoeneisen, ${ }^{12}$ M. Hohlfeld, ${ }^{24}$ X. Huang, ${ }^{68}$ Z. Hubacek, ${ }^{10,18}$ N. Huske, ${ }^{17}$ V. Hynek, ${ }^{10}$ I. Iashvili, ${ }^{67}$ Y. Ilchenko, ${ }^{77}$ R. Illingworth, ${ }^{48}$ A.S. Ito, ${ }^{48}$ S. Jabeen, ${ }^{75}$ M. Jaffré, ${ }^{16}$ D. Jamin, ${ }^{15}$ A. Jayasinghe, ${ }^{73}$ R. Jesik, ${ }^{43}$ K. Johns, ${ }^{45}$ M. Johnson, ${ }^{48}$ D. Johnston, ${ }^{64}$ A. Jonckheere, ${ }^{48}$ P. Jonsson, ${ }^{43}$ J. Joshi, ${ }^{27}$ A.W. Jung, ${ }^{48}$ A. Juste, ${ }^{40}$ K. Kaadze, ${ }^{57}$ E. Kajfasz, ${ }^{15}$ D. Karmanov, ${ }^{37}$ P.A. Kasper, ${ }^{48}$ I. Katsanos, ${ }^{64}$ R. Kehoe, ${ }^{77}$ S. Kermiche, ${ }^{15}$ N. Khalatyan, ${ }^{48}$ A. Khanov, ${ }^{74}$ A. Kharchilava, ${ }^{67}$ Y.N. Kharzheev, ${ }^{35}$ M.H. Kirby, ${ }^{51}$ J.M. Kohli, ${ }^{27}$ A.V. Kozelov, ${ }^{38}$ J. Kraus, ${ }^{62}$ S. Kulikov, ${ }^{38}$ A. Kumar, ${ }^{67}$ A. Kupco, ${ }^{11}$ T. Kurča, ${ }^{20}$ V.A. Kuzmin, ${ }^{37}$ J. Kvita, ${ }^{9}$ S. Lammers, ${ }^{52}$ G. Landsberg, ${ }^{75}$ P. Lebrun, ${ }^{20}$ H.S. Lee, ${ }^{31}$ S.W. Lee, ${ }^{55}$ W.M. Lee, ${ }^{48}$ J. Lellouch, ${ }^{17}$ L. Li, ${ }^{46}$ Q.Z. Li, ${ }^{48}$ S.M. Lietti, ${ }^{5}$ J.K. Lim, ${ }^{31}$ D. Lincoln, ${ }^{48}$ J. Linnemann, ${ }^{62}$ V.V. Lipaev, ${ }^{38}$ R. Lipton, ${ }^{48}$ Y. Liu, ${ }^{7}$ Z. Liu, ${ }^{6}$ A. Lobodenko, ${ }^{39}$ M. Lokajicek, ${ }^{11}$ R. Lopes de Sa, ${ }^{70}$ H.J. Lubatti, ${ }^{80}$ R. Luna-Garcia ${ }^{e},{ }^{32}$ A.L. Lyon, ${ }^{48}$ A.K.A. Maciel, ${ }^{2}$ D. Mackin, ${ }^{78}$ R. Madar, ${ }^{18}$ R. Magaña-Villalba, ${ }^{32}$ S. Malik, ${ }^{64}$ V.L. Malyshev, ${ }^{35}$ Y. Maravin, ${ }^{57}$ J. Martínez-Ortega, ${ }^{32}$ R. McCarthy, ${ }^{70}$ C.L. McGivern, ${ }^{56}$ M.M. Meijer, ${ }^{34}$ A. Melnitchouk, ${ }^{63}$ D. Menezes,,${ }^{50}$ P.G. Mercadante, ${ }^{4}$ M. Merkin, ${ }^{37}$ A. Meyer, ${ }^{21}$ J. Meyer, ${ }^{23}$ F. Miconi, ${ }^{19}$ N.K. Mondal, ${ }^{29}$ G.S. Muanza, ${ }^{15}$ M. Mulhearn, ${ }^{79}$ E. Nagy, ${ }^{15}$ M. Naimuddin, ${ }^{28}$ M. Narain, ${ }^{75}$ R. Nayyar, ${ }^{28}$ H.A. Neal, ${ }^{61}$ J.P. Negret, ${ }^{8}$ P. Neustroev, ${ }^{39}$ S.F. Novaes, ${ }^{5}{ }^{7}$ T. Nunnemann, ${ }^{25}$ G. Obrant ${ }^{\ddagger},{ }^{39}$ J. Orduna, ${ }^{78}$ N. Osman, ${ }^{15}$ J. Osta, ${ }^{54}$ G.J. Otero y Garzón, ${ }^{1}$ M. Padilla, ${ }^{46}$ A. Pal, ${ }^{76}$ N. Parashar, ${ }^{53}$ V. Parihar, ${ }^{75}$ S.K. Park, ${ }^{31}$ J. Parsons, ${ }^{68}$ R. Partridge ${ }^{c},{ }^{75}$ N. Parua, ${ }^{52}$ A. Patwa, ${ }^{71}$ B. Penning, ${ }^{48}$ M. Perfilov, ${ }^{37}$ K. Peters, ${ }^{44}$ Y. Peters, ${ }^{44}$ K. Petridis, ${ }^{44}$ G. Petrillo, ${ }^{69}$ P. Pétroff, ${ }^{16}$ R. Piegaia, ${ }^{1}$ M.-A. Pleier, ${ }^{71}$ P.L.M. Podesta-Lerma ${ }^{f},{ }^{32}$ V.M. Podstavkov, ${ }^{48}$ P. Polozov, ${ }^{36}$ A.V. Popov, ${ }^{38}$ M. Prewitt, ${ }^{78}$ D. Price, ${ }^{52}$ N. Prokopenko, ${ }^{38}$ S. Protopopescu, ${ }^{71}$ J. Qian, ${ }^{61}$ A. Quadt, ${ }^{23}$ B. Quinn, ${ }^{63}$ M.S. Rangel, ${ }^{2}$ K. Ranjan, ${ }^{28}$ P.N. Ratoff, ${ }^{42}$ I. Razumov, ${ }^{38}$ P. Renkel, ${ }^{77}$ M. Rijssenbeek, ${ }^{70}$ I. Ripp-Baudot, ${ }^{19}$ F. Rizatdinova, ${ }^{74}$ M. Rominsky, ${ }^{48}$ A. Ross, ${ }^{42}$ C. Royon, ${ }^{18}$ P. Rubinov, ${ }^{48}$ R. Ruchti, ${ }^{54}$ G. Safronov, ${ }^{36}$ G. Sajot, ${ }^{14}$ P. Salcido, ${ }^{50}$ A. Sánchez-Hernández, ${ }^{32}$ M.P. Sanders, ${ }^{25}$ B. Sanghi, ${ }^{48}$ A.S. Santos, ${ }^{5}$ G. Savage, ${ }^{48}$ L. Sawyer, ${ }^{58}$ T. Scanlon, ${ }^{43}$ R.D. Schamberger, ${ }^{70}$ Y. Scheglov, ${ }^{39}$ H. Schellman, ${ }^{51}$ T. Schliephake, ${ }^{26}$ S. Schlobohm, ${ }^{80}$ C. Schwanenberger, ${ }^{44}$ R. Schwienhorst, ${ }^{62}$ J. Sekaric, ${ }^{56}$ H. Severini, ${ }^{73}$ E. Shabalina, ${ }^{23}$ V. Shary, ${ }^{18}$ A.A. Shchukin, ${ }^{38}$ R.K. Shivpuri, ${ }^{28}$ V. Simak, ${ }^{10}$ V. Sirotenko, ${ }^{48}$ P. Skubic, ${ }^{73}$ P. Slattery, ${ }^{69}$ D. Smirnov, ${ }^{54}$ K.J. Smith, ${ }^{67}$ G.R. Snow, ${ }^{64}$ J. Snow, ${ }^{72}$ S. Snyder, ${ }^{71}$ S. Söldner-Rembold, ${ }^{44}$ L. Sonnenschein, ${ }^{21}$ K. Soustruznik, ${ }^{9}$ J. Stark, ${ }^{14}$ V. Stolin, ${ }^{36}$

D.A. Stoyanova, ${ }^{38}$ M. Strauss, ${ }^{73}$ D. Strom, ${ }^{49}$ L. Stutte, ${ }^{48}$ L. Suter, ${ }^{44}$ P. Svoisky, ${ }^{73}$ M. Takahashi, ${ }^{44}$ A. Tanasijczuk, ${ }^{1}$ W. Taylor, ${ }^{6}$ M. Titov, ${ }^{18}$ V.V. Tokmenin, ${ }^{35}$ Y.-T. Tsai, ${ }^{69}$ D. Tsybychev, ${ }^{70}$ B. Tuchming, ${ }^{18}$ C. Tully, ${ }^{66}$ L. Uvarov, ${ }^{39}$ S. Uvarov, ${ }^{39}$ S. Uzunyan, ${ }^{50}$ R. Van Kooten, ${ }^{52}$ W.M. van Leeuwen, ${ }^{33}$ N. Varelas, ${ }^{49}$ E.W. Varnes, ${ }^{45}$ I.A. Vasilyev, ${ }^{38}$ P. Verdier, ${ }^{20}$ L.S. Vertogradov, ${ }^{35}$ M. Verzocchi, ${ }^{48}$ M. Vesterinen, ${ }^{44}$ D. Vilanova, ${ }^{18}$ P. Vokac, ${ }^{10}$ H.D. Wahl, ${ }^{47}$ M.H.L.S. Wang, ${ }^{48}$ J. Warchol, ${ }^{54}$ G. Watts, ${ }^{80}$ M. Wayne, ${ }^{54}$ M. Weber ${ }^{g},{ }^{48}$ L. Welty-Rieger, ${ }^{51}$ A. White, ${ }^{76}$ D. Wicke, ${ }^{26}$ M.R.J. Williams, ${ }^{42}$ G.W. Wilson, ${ }^{56}$ M. Wobisch, ${ }^{58}$ D.R. Wood, ${ }^{60}$ T.R. Wyatt, ${ }^{44}$ Y. Xie, ${ }^{48}$ C. Xu, ${ }^{61}$ S. Yacoob, ${ }^{51}$ R. Yamada, ${ }^{48}$ W.-C. Yang, ${ }^{44}$ T. Yasuda, ${ }^{48}$ Y.A. Yatsunenko, ${ }^{35}$ Z. Ye, ${ }^{48}$ H. Yin, ${ }^{48}$ K. Yip, ${ }^{71}$ S.W. Youn, ${ }^{48}$ J. Yu, ${ }^{76}$ S. Zelitch, ${ }^{79}$ T. Zhao, ${ }^{80}$ B. Zhou, ${ }^{61}$ J. Zhu, ${ }^{61}$ M. Zielinski, ${ }^{69}$ D. Zieminska, ${ }^{52}$ and L. Zivkovic ${ }^{75}$ (The D0 Collaboration*) ${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina ${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ${ }^{4}$ Universidade Federal do ABC, Santo André, Brazil ${ }^{5}$ Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil ${ }^{6}$ Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada ${ }^{7}$ University of Science and Technology of China, Hefei, People's Republic of China ${ }^{8}$ Universidad de los Andes, Bogotá, Colombia ${ }^{9}$ Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic ${ }^{10}$ Czech Technical University in Prague, Prague, Czech Republic ${ }^{11}$ Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ${ }^{12}$ Universidad San Francisco de Quito, Quito, Ecuador ${ }^{13}$ LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France ${ }^{14}$ LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France ${ }^{15}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France ${ }^{16}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France ${ }^{17}$ LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France ${ }^{18}$ CEA, Irfu, SPP, Saclay, France ${ }^{19}$ IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France ${ }^{20}$ IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France ${ }^{21}$ III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany ${ }^{22}$ Physikalisches Institut, Universität Freiburg, Freiburg, Germany ${ }^{23}$ II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany ${ }^{24}$ Institut für Physik, Universität Mainz, Mainz, Germany ${ }^{25}$ Ludwig-Maximilians-Universität München, München, Germany ${ }^{26}$ Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany ${ }^{27}$ Panjab University, Chandigarh, India ${ }^{28}$ Delhi University, Delhi, India ${ }^{29}$ Tata Institute of Fundamental Research, Mumbai, India ${ }^{30}$ University College Dublin, Dublin, Ireland ${ }^{31}$ Korea Detector Laboratory, Korea University, Seoul, Korea ${ }^{32}$ CINVESTAV, Mexico City, Mexico ${ }^{33}$ Nikhef, Science Park, Amsterdam, the Netherlands ${ }^{34}$ Radboud University Nijmegen, Nijmegen, the Netherlands and Nikhef, Science Park, Amsterdam, the Netherlands ${ }^{35}$ Joint Institute for Nuclear Research, Dubna, Russia ${ }^{36}$ Institute for Theoretical and Experimental Physics, Moscow, Russia ${ }^{37}$ Moscow State University, Moscow, Russia ${ }^{38}$ Institute for High Energy Physics, Protvino, Russia ${ }^{39}$ Petersburg Nuclear Physics Institute, St. Petersburg, Russia ${ }^{40}$ Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain ${ }^{41}$ Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden ${ }^{42}$ Lancaster University, Lancaster LA1 4 YB, United Kingdom ${ }^{43}$ Imperial College London, London SW7 2AZ, United Kingdom ${ }^{44}$ The University of Manchester, Manchester M13 9PL, United Kingdom ${ }^{45}$ University of Arizona, Tucson, Arizona 85721, USA ${ }^{46}$ University of California Riverside, Riverside, California 92521, USA ${ }^{47}$ Florida State University, Tallahassee, Florida 32306, USA ${ }^{48}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ${ }^{49}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA ${ }^{50}$ Northern Illinois University, DeKalb, Illinois 60115, USA	

${ }^{51}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{52}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{53}$ Purdue University Calumet, Hammond, Indiana 46323, USA
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Iowa State University, Ames, Iowa 50011, USA
${ }^{56}$ University of Kansas, Lawrence, Kansas 66045, USA
${ }^{57}$ Kansas State University, Manhattan, Kansas 66506, USA
${ }^{58}$ Louisiana Tech University, Ruston, Louisiana 71272, USA
${ }^{59}$ Boston University, Boston, Massachusetts 02215, USA
${ }^{60}$ Northeastern University, Boston, Massachusetts 02115, USA
${ }^{61}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{62}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{63}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{64}$ University of Nebraska, Lincoln, Nebraska 68588, USA
${ }^{65}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{66}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{67}$ State University of New York, Buffalo, New York 14260, USA
${ }^{68}$ Columbia University, New York, New York 10027, USA
${ }^{69}$ University of Rochester, Rochester, New York 14627, USA
${ }^{70}$ State University of New York, Stony Brook, New York 11794, USA
${ }^{71}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{72}$ Langston University, Langston, Oklahoma 73050, USA
${ }^{73}$ University of Oklahoma, Norman, Oklahoma 73019, USA
${ }^{74}$ Oklahoma State University, Stillwater, Oklahoma 74078, USA
${ }^{75}$ Brown University, Providence, Rhode Island 02912, USA ${ }^{76}$ University of Texas, Arlington, Texas 76019, USA
${ }^{77}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{78}$ Rice University, Houston, Texas 77005, USA
${ }^{79}$ University of Virginia, Charlottesville, Virginia 22901, USA
${ }^{80}$ University of Washington, Seattle, Washington 98195, USA

Abstract

We present a search for the pair production of first generation scalar leptoquarks $(L Q)$ in data corresponding to an integrated luminosity of $5.4 \mathrm{fb}^{-1}$ collected with the D0 detector at the Fermilab Tevatron Collider in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. In the channel $L Q L Q \rightarrow e q \nu_{e} q^{\prime}$, where q, q^{\prime} are u or d quarks, no significant excess of data over background is observed, and we set a 95% C.L. lower limit of 326 GeV on the $L Q$ mass, assuming equal probabilities of $L Q$ decays to $e q$ and $\nu_{e} q^{\prime}$.

PACS numbers: $13.85 . \mathrm{Rm}, 14.80 . \mathrm{Sv}$

Because of the limitations of the standard model (SM), several extensions have been proposed, among them supersymmetry (SUSY) [1], grand unified theories [2], and string theory [3]. Many of these extensions predict the existence of particles that directly connect the lepton and quark sectors. By combining leptons and quarks in multiplets of a larger symmetry group, they are expected to interact with each other through new mediating bosons called leptoquarks $(L Q)[4,5]$. $L Q \mathrm{~s}$ can be either scalar or vector fields. This Letter will focus on the search for scalar $L Q \mathrm{~s}$, and in the following we will not distinguish particles from antiparticles. This search is performed within effective models [6, 7], and thus is independent of specific extensions of the SM.

[^0]In $p \bar{p}$ collisions such as those that occur at the Tevatron Collider, $L Q \mathrm{~s}$ can be produced in leptoquarkantileptoquark pairs. $L Q$ pair production can occur via both quark-antiquark annihilation and gluon-gluon fusion, although quark-antiquark annihilation is expected to be dominant. The production cross section for scalar $L Q \mathrm{~s}$ depends only on the strong coupling constant and on the $L Q$ mass, and is known at next-to-leading order (NLO) [8].

Once produced, $L Q \mathrm{~s}$ can decay to two final states: $l q$ and νq^{\prime} (where $l=e, \mu$, or τ). It is assumed that in the low energy limit there is no intergenerational mixing. For first generation $L Q$ pairs, the final state will contain a pair of leptons (e or ν_{e}) and a pair of quarks (u or d) of the first generation. In this Letter, the case in which one $L Q$ decays to $e q$ and the other to $\nu_{e} q^{\prime}$ is considered (charge conjugate states are assumed in the Letter).

We define β to be the branching ratio of a first generation $L Q$ to decay to eq. Then the probability for a $L Q$ to decay to $\nu_{e} q^{\prime}$ is $(1-\beta)$, and the probability for a $L Q$ pair to decay to the final state $e q \nu_{e} q^{\prime}$ is $B R\left(L Q L Q \rightarrow e q \nu_{e} q^{\prime}\right)=2 \beta(1-\beta)$. Thus, the probabil-
ity for the final state $e q \nu_{e} q^{\prime}$ is maximized when $\beta=0.5$.
Limits on the production of first generation $L Q$ s have been reported by the DELPHI [9], OPAL [10, 11], H1 [12, 13], ZEUS [14], CDF [15], and D0 [16] Collaborations. Recently, CMS [17, 18], and ATLAS [19] published the first searches for scalar $L Q$ pair production at the CERN LHC. Both LHC experiments have a similar sensitivity with expected limits of 345 GeV (CMS) and 350 GeV (ATLAS), respectively, for $\beta=0.5$.

The D0 detector consists of tracking, calorimeter, and muon systems [20-22]. The central-tracking system consists of a silicon microstrip tracker and a central fiber tracker, both located within a 2 T superconducting solenoid. A liquid-argon and uranium calorimeter consists of a central section (pseudorapidity $|\eta|<1.1$ [23]) and two end sections $(1.5<|\eta|<4.2)$. The calorimeters have fine transverse and longitudinal segmentation with three principal layers identified as electromagnetic, and fine and coarse hadronic. An outer muon system $(|\eta|<2)$ consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroids, followed by two similar layers after the toroids [24]. Data were collected with the D0 detector at the Fermilab Tevatron $p \bar{p}$ Collider operating at $\sqrt{s}=1.96 \mathrm{TeV}$ between August 2002 and June 2009, and correspond to an integrated luminosity of $5.4 \mathrm{fb}^{-1}$.

An electron is identified from energy deposits in the electromagnetic calorimeter that are consistent with the shower development expected for an electron and have a matching track extrapolated from the central tracker.

Jets are reconstructed using a midpoint cone algorithm, with a cone size of 0.5 [25]. The jet energy is corrected to the particle level using jet energy scale corrections determined from data [26]. The missing transverse energy $\left(\mathbb{E}_{T}\right)$ is reconstructed from all the cells of the electromagnetic and hadronic calorimeters, except for the coarse hadronic sector where a noise-reduction algorithm is applied. Additional corrections are then applied for all identified objects including jets, electrons, and muons.

Events must satisfy at least one trigger from the singleelectron and electron + jets suites of triggers. For all data samples, trigger objects are required to match the reconstructed objects. The trigger efficiencies are measured in data and parameterized for specific lepton and jet identification criteria.

Scalar $L Q$ pair Monte Carlo (MC) samples are generated using PYTHIA [27] with CTEQ6L1 [28] parton density functions. Signal samples are produced for different $L Q$ masses between 200 and 360 GeV . The corresponding cross sections at NLO are listed in Table I.

Diboson ($W W, W Z$ and $Z Z$) background samples are produced with PYTHIA making use of the parton distribution functions CTEQ6L1. The $t \bar{t}$ and $V(V=W$ or $Z)+$ jets events are simulated with the matrix-element generator ALPGEN [29], interfaced to PYTHIA for subsequent parton showering and hadronization. Single top quark production is simulated using COMPHEP [30]. The cross sections for background processes are calculated

TABLE I: Scalar $L Q$ pair production cross sections, calculated at NLO, for different $M_{L Q}$ [8].

$M_{L Q}(\mathrm{GeV})$	200	210	220	230	240	250	260	270
$\sigma(\mathrm{fb})$	268	193	141	103	76	56	42	31
$M_{L Q}(\mathrm{GeV})$	280	290	300	310	320	340	360	
$\sigma(\mathrm{fb})$	23	17	13	10	7.4	4.2	2.4	

at NLO (diboson [31]) and next-to-next-to-leading order (NNLO) $(V+$ jets [32] and $t \bar{t}[33])$. We correct the generated spectrum of the transverse momentum $\left(p_{T}\right)$ of the Z boson in MC to match a corresponding dedicated measurement [34]. The p_{T} spectrum of the W boson is corrected taking into account the differences between predicted Z and W boson p_{T} spectra at NNLO [35].

A full GEANT-based detector simulation program [36], followed by the same reconstruction program as utilized for data, is used to process signal and background events from MC. In order to model detector noise and contributions from the presence of additional $p \bar{p}$ interactions, events from randomly selected beam crossings with the same instantaneous luminosity profile as data are overlaid on the simulated events. Background from multijet production (MJ), where one of the jets mimics an electron, is evaluated from data using a data driven technique [37]. In MC simulations, electron energies are corrected so that they match the energy resolution in data. In addition, residual differences in jet energy scale and resolution between data and MC are reduced by applying dedicated corrections to MC events. All corrections are evaluated in independent samples. Electron related corrections are obtained from $Z \rightarrow e e$ samples, and jet related from either photon + jets or $Z+$ jets samples.

In the $e q \nu_{e} q^{\prime}$ final state, it is not known a priori how to assign the jets to the $L Q$ decaying to $e q$ or $\nu_{e} q^{\prime}$. Therefore, to reconstruct the properties such as mass and p_{T} of the $L Q$ s from the final products, an algorithm is needed to choose the best pairing. We do not impose a requirement on the number of jets, but we use only the two lead$\operatorname{ing} p_{T}$ jets for pairings. There are two possible combinations, corresponding to the leading jet pairing with either the electron or the neutrino. We found that it is most effective to choose the pairing that minimizes the difference between the transverse masses, $M_{T}=\sqrt{E_{T}^{2}-\vec{p}_{T}^{2}}$, where E_{T} and \vec{p}_{T} are the transverse energy and the transverse momentum vector of the two $L Q \mathrm{~s}$. This pairing algorithm is successful in making the correct assignment in about 75% of MC signal events.

Events are selected to be consistent with the $L Q L Q \rightarrow$ $e q \nu_{e} q^{\prime}$ process. We require one electron with $p_{T}>$ 15 GeV in the central calorimeter region $\left|\eta_{e}\right|<1.1$; $\mathbb{E}_{T}>15 \mathrm{GeV}$, to be consistent with the undetected neutrino; and at least two jets with $p_{T}>20 \mathrm{GeV}$ and $\left|\eta_{\text {jet }}\right|<2.5$. To suppress MJ background, events are required to satisfy $E_{T} / 50+M_{T}^{e \nu} / 70 \geq 1$, where $M_{T}^{e \nu}$ is the transverse mass of the (e, ν) combination, and \mathscr{E}_{T} and $M_{T}^{e \nu}$ are in GeV .

TABLE II: Event counts and the predicted number of signal events for $M_{L Q}=260 \mathrm{GeV}$ and $\beta=0.5$ after each selection requirement.

	Data	Total background	Signal	
Preselection	65992	$65703 \pm$	5958	$50 \pm$
7				
$M_{T}^{e \nu}>110 \mathrm{GeV}$	990	986 ± 82	$34 \pm$	5
$\sum M_{L Q}>350 \mathrm{GeV}$	64	$55 \pm$	4	$27 \pm$
$S_{T}>450 \mathrm{GeV}$	15	$15 \pm$	1	$24 \pm$

At this stage we observe 65992 data events, while we expect 65703 ± 61 (stat) ± 5958 (sys) from SM background and 50.4 ± 0.4 (stat) ± 6.8 (sys) events from scalar $L Q$ production for $M_{L Q}=260 \mathrm{GeV}$ and $\beta=0.5$. Figure 1(a) shows the $M_{T}^{e \nu}$ distribution for the data and SM processes. Data are consistent with the SM predictions. To reduce the dominant SM $V+$ jets background, we require $M_{T}^{e \nu} \geq 110 \mathrm{GeV}$. The pairing algorithm described previously allows us to reconstruct $M_{L Q}$. Since the longitudinal component of the neutrino momentum, p_{z}, is not measurable, we reconstruct only the visible mass of the decay $L Q \rightarrow \nu_{e} q^{\prime}$ as $M_{L Q}=M\left(\right.$ jet $\left.+\nu_{\text {vis }}\right)$, where the four vector of $\nu_{\text {vis }}$ is given as $\left(p_{x}, \not p_{y}, 0, \not \mathbb{E}_{T}\right)$. Figure 1 (b) shows the distribution of the sum $\sum M_{L Q}$ of the invariant mass of the decay $L Q \rightarrow e q$ and the visible mass of the decay $L Q \rightarrow \nu_{e} q^{\prime}$ after the requirement $M_{T}^{e \nu} \geq 110 \mathrm{GeV}$. We then use $\sum M_{L Q}$ to reduce SM backgrounds, further requiring that $\sum M_{L Q}>350 \mathrm{GeV}$. Finally, we require that the scalar sum of the p_{T} of the lepton, the \mathbb{E}_{T}, and the two jets, S_{T}, shown in Fig. 1(c) after all selections, be greater than 450 GeV . Selection criteria are optimized to achieve the best expected sensitivity for $M_{L Q}=260 \mathrm{GeV}$. This yields 15 observed events for an expected background of 14.8 ± 0.6 (stat) ± 1.1 (sys) events. The event counts after each requirement are shown in Table II.

Systematic uncertainties which affect only the normalization of the background and the signal efficiency include uncertainties on cross sections of signal (10\%) and background $(6 \%-10 \%)$ processes, normalization of the MJ background (20%), integrated luminosity (6.1%), and lepton trigger and identification (4\%). Uncertainties which also affect the differential distribution of S_{T} which is the quantity used to set the limits on $L Q$ are due to the jet energy resolution and scale, jet identification efficiency, parton distribution functions, and the modeling of the jet p_{T} distribution of the dominant $W+$ jets background. Their impacts are evaluated by repeating the analysis with values varied by ± 1 standard deviation (SD). For the uncertainty on the jet p_{T} modeling, the impact is estimated by comparing the jet p_{T} distributions between ALPGEN and data unfolded to particle level from the recent D0 measurement [38]. The ratio is applied as weight to the $W+$ jets jet p_{T} distribution, and the new distribution is taken as $\pm 1 \mathrm{SD}$ band.

The distribution of the S_{T} after all selection requirements, shown in Fig. 1(c), is used as a discriminant to

FIG. 1: (color online) (a) $M_{T}^{e \nu}$ distribution after preselection, (b) $\sum M_{L Q}$ for $M_{T}^{e \nu}>110 \mathrm{GeV}$, (c) the S_{T} for $M_{T}^{e \nu}>$ 110 GeV and $\sum M_{L Q}>350 \mathrm{GeV}$, which is used to set an upper limit on the $L Q$ pair production cross section after the final selection.
set an upper limit on the $L Q$ pair production cross section in the $e q \nu_{e} q^{\prime}$ channel. For each generated $M_{L Q}$, the limit is calculated at the 95% C.L. using the semifrequentist $C L_{s}$ method based on a Poisson log-likelihood test statistic [39]. Signal and background normalizations and shape variations due to systematic uncertainties are
incorporated assuming Gaussian priors. The best fit to the background distributions is evaluated by minimizing a profile likelihood function with respect to the observed data and various sources of uncertainty, maintaining all correlations among systematic uncertainties [40]. Limits on the cross section multiplied by the branching fraction and the theoretical $L Q$ cross section for $\beta=0.5$ are shown in Fig. 2. Considering β as a free parameter [41], the limit on the $L Q$ mass as a function of β is determined as shown in Fig. 3, and compared to the previous D0 [16], CMS [17, 18], and ATLAS [19] results.

FIG. 2: (color online) Expected and observed upper limits calculated at the 95% C.L. on the $L Q$ cross section as a function of $M_{L Q}$ for a scalar $L Q$ compared with the NLO prediction for $\beta=0.5$. The NLO cross section is shown for different choices of the renormalization and factorization scales, $\mu=M_{L Q}$, $\mu=0.5 \times M_{L Q}$, and $\mu=2 \times M_{L Q}$.

In summary, we have searched for scalar $L Q$ pair production in the $e q \nu_{e} q^{\prime}$ final state in $5.4 \mathrm{fb}^{-1}$ of integrated luminosity of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. In the absence of a signal, we exclude the production of first generation $L Q \mathrm{~s}$ with $M_{L Q}<326 \mathrm{GeV}$ for $\beta=0.5$ at the 95% C.L. If the $L Q \rightarrow l q$ and $L Q \rightarrow \nu q^{\prime}$ couplings are not too large $(\beta \leq 0.3)$ [13], this result represents the most stringent limit to date.

FIG. 3: (color online) 95% C.L. observed limit for $\mu=M_{L Q}$ on the $L Q$ mass as a function of β compared with the previous D0 result [16], and CMS [17, 18] and ATLAS [19] results.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF
and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).
[1] S. P. Martin, hep-ph/9709356 (1997).
[2] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[3] J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
[4] D. E. Acosta and S. K. Blessing, Ann. Rev. Nucl. Part. Sci. 49, 389 (1999).
[5] K. Nakamura et al., Particle Data Group, J. Phys. G 37, 075021 (2010).
[6] M. Kuze and Y. Sirois, Prog. Part. Nucl. Phys. 50, 1 (2003).
[7] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B 191, 442 (1987), [Erratum-ibid. B 448, 320 (1999)].
[8] M. Krämer, T. Plehn, M. Spira, and P. M. Zerwas, Phys. Rev. Lett. 79, 341 (1997).
[9] P. Abreu et al., DELPHI Collaboration, Phys. Lett. B 446, 62 (1999).
[10] G. Abbiendi et al., OPAL Collaboration, Eur. Phys. J. C 31, 281 (2003).
[11] G. Abbiendi et al., OPAL Collaboration, Phys. Lett. B 526, 233 (2002).
[12] A. Aktas et al., H1 Collaboration, Phys. Lett. B 629, 9 (2005).
[13] F. D. Aaron et al., H1 Collaboration, arXiv: 1107.3716 (2011), submitted to Phys. Lett. B.
[14] S. Chekanov et al., ZEUS Collaboration, Phys. Rev. D 68, 052004 (2003).
[15] D. E. Acosta et al., CDF Collaboration, Phys. Rev. D 72, 051107 (2005).
[16] V. M. Abazov et al., D0 Collaboration, Phys. Lett. B 681, 224 (2009).
[17] V. Khachatryan et al., CMS Collaboration, Phys. Rev. Lett. 106, 201802 (2011).
[18] S. Chatrchyan et al., CMS Collaboration, arXiv: 1105.5237 (2011), submitted to Phys. Lett. B.
[19] G. Aad et al., ATLAS Collaboration, Phys. Rev. D 83, 112006 (2011).
[20] V. M. Abazov et al., D0 Collaboration, Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).
[21] M. Abolins et al., D0 Collaboration, Nucl. Instrum. Methods Phys. Res. A 584, 75 (2008).
[22] R. Angstadt et al., D0 Collaboration, Nucl. Instrum. Methods Phys. Res. A 622, 298 (2010).
[23] The pseudorapidity is defined as $\eta=-\ln [\tan (\theta / 2)]$, where θ is the polar angle with respect to the proton beam direction.
[24] V. M. Abazov et al., D0 Collaboration, Nucl. Instrum. Methods Phys. Res. A 552, 372 (2005).
[25] G. C. Blazey et al., in Proceedings of the Workshop: QCD and Weak Boson Physics in Run II, edited by U. Baur, R. K. Ellis, and D. Zeppenfeld, Fermilab-Pub00/297.
[26] V. M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 101, 062001 (2008).
[27] T. Sjöstrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05, 026 (2006).
[28] J. Pumplin et al., J. High Energy Phys. 07, 012 (2002).
[29] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07, 001 (2003).
[30] E. Boos et al., CompHEP Collaboration, Nucl. Instrum. Methods in Phys. Res. A 534, 250 (2004).
[31] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).
[32] J. M. Campbell and R. K. Ellis, Phys. Rev. D 65, 113007 (2002).
[33] S. Moch and P. Uwer, Phys. Rev. D 78, 034003 (2008).
[34] V. M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 100, 102002 (2008).
[35] K. Melnikov and F. Petriello, Phys. Rev. D 74, 114017 (2006).
[36] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, (1993).
[37] V. M. Abazov et al., D0 Collaboration, Phys. Rev. D 78, 012005 (2008).
[38] V. M. Abazov et al., D0 Collaboration, arXiv: 1106.1457 (2011), submitted to Phys. Lett. B.
[39] T. Junk, Nucl. Instrum. Methods Phys. Res. A 434, 435 (1999).
[40] W. Fisher, FERMILAB-TM-2386-E (2006).
[41] J. L. Hewett and T. G. Rizzo, Phys. Rev. D 58, 055005 (1998).

[^0]: ${ }^{*}$ with visitors from ${ }^{a}$ Augustana College, Sioux Falls, SD, USA, ${ }^{b}$ The University of Liverpool, Liverpool, UK, ${ }^{c}$ SLAC, Menlo Park, CA, USA, ${ }^{d}$ University College London, London, UK, ${ }^{e}$ Centro de Investigacion en Computacion - IPN, Mexico City, Mexico, ${ }^{f}$ ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico, and ${ }^{g}$ Universität Bern, Bern, Switzerland. ${ }^{\ddagger}$ Deceased.

