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Abstract
We use gauge-gravity duality to model the crossover from a conformal critical point to a confin-

ing Fermi liquid, driven by a change in fermion density. The short-distance conformal physics is

represented by an anti-de Sitter geometry, which terminates into a confining state along the emer-

gent spatial direction. The Luttinger relation, relating the area enclosed by the Fermi surfaces

to the fermion density, is shown to follow from Gauss’s Law for the bulk electric field. We argue

that all low energy modes are consistent with Landau’s Fermi liquid theory. An explicit solution

is obtained for the Fermi liquid for the case of hard-wall boundary conditions in the infrared.
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I. INTRODUCTION

Much recent work [1–32] has described the compressible, non-superfluid states of quantum

matter by the methods of gauge-gravity duality. A variety of “non-Fermi liquid” and claimed

“Fermi liquid” phases appear to have been obtained, but their correspondence with the

known strongly-correlated phases of condensed matter models with short-range interactions

remains uncertain [25]. The recent models of Refs. 15, 29 are perhaps the closest to realizing

a conventional Fermi liquid state, in that they have N Fermi surfaces (with N → ∞)

enclosing areas which add up to the total fermion density, as required by the Luttinger

relation. However, there are low energy excitations associated with infrared “Lifshitz” or

related geometries, and these do not correspond to known low energy modes of a Fermi

liquid. Moreover, there are also low energy excitations at small momenta associated with

Fermi surfaces with vanishing Fermi momenta, and the extra low energy modes are possibly

linked to each other.

We will begin with conformally-invariant quantum critical point in 2+1 spacetime di-

mensions (possible recent examples are in Ref. 33, 34). This has a familiar gravitational

representation in a AdS4 geometry. Then we apply a chemical potential µ, and assume the

system ultimately crosses over to a confining and gapless Fermi liquid state with a small

number of Fermi surfaces (including the case with just a single Fermi surface). A Fermi

liquid is a confining state because its only low energy excitations are Fermi surface quasi-

particles which do not carry charges of the gauge-field of the boundary conformal field theory

[27]. Field-theoretic models which can exhibit such a crossover were discussed in Ref. 27.

This crossover to confinement will be manifested in a deviation from the AdS4 geometry in

the infrared.

As an aside, we note that at non-zero density, it is possible for a state to be both confining

and gapless even without the Goldstone bosons of a broken continuous symmetry, as in a

Fermi liquid. On the other hand, at zero density, the usual assumptions of particle physicists

apply, and the only possible gapless excitations in a confining state are Goldstone bosons.

Initial works [1, 2, 4–8, 11] accounted for the chemical potential only via a Maxwell term

for the bulk gauge field, and this led to a Reissner-Nordström black brane, with a AdS2×R2

near-horizon infrared geometry at zero temperature. Subsequent works [9, 13–19, 24, 28–30]

included back-reaction on the metric from the matter in a Thomas-Fermi approximation,

leading to a Lifshitz geometry in the infrared. However, it is clear that neither of these

geometries can represent a true confining state (such as a Fermi liquid [27, 29]), given the

many emergent collective excitations in the infrared.

At zero chemical potential, the crossover from conformality to confinement has previously

been understood via a termination of the anti-de Sitter geometry [35, 36] into a “AdS

soliton” geometry. Such a geometry has also been used more recently [37, 38], for confining

states at non-zero chemical potential in the presence of scalar fields. Here we will examine

a terminated AdS4 geometry in the presence of a non-zero fermion density. For numerical
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simplicity, we will use a simple ‘hard-wall’ termination [39, 40], but we expect similar results

to apply to other confining boundary conditions in the infrared [41–44]. It is important

to note that while all excitations are gapped in a terminated geometry at zero chemical

potential, this is no longer true once the chemical potential is taken large enough to obtain

a non-zero density. Then there are gapless excitations across the Fermi surface. Indeed,

these are the only gapless excitations, and this is the key to realizing a Fermi liquid.

Another important feature of our analysis will be an exact treatment of the quantum

mechanics of the fermions, avoiding the Thomas-Fermi limit. Our initial mean field theory

in Section II will treat the bulk metric and gauge field classically, but we will discuss conse-

quences of their quantum fluctuations in Section III. We describe cases where the boundary

theory has a small number of Fermi surfaces, and focus on the case with a single Fermi

surface. The previous Thomas-Fermi analyses effectively had a continuum of an infinite

number of Fermi surfaces; equivalently, their fermion wavefunctions were delta-functions

along the emergent spatial direction. The necessity of moving away from this limit has been

previously noted [16, 24, 28].

The presence of quantum fermions implies that their contribution to the average local

currents and stresses are not local functions of the background fields: they depend on the

fermion eigenfunctions, which are controlled by the full spatial dependence of the back-

ground fields. Consequently, the problem of determination of the background fields cannot

be reduced to set of coupled ordinary differential equations. In this respect, we differ from

other recent work [24, 28] which approximates fermion bilinears with a zero frequency con-

tribution. Our formalism focuses on determining the bulk eigenstates of the fermions, in the

absence of external sources. Knowledge of these allows subsequent computation via spec-

tral representations of the bulk-to-bulk Green’s functions, and also of the boundary Green’s

functions, which represent the responses to sources.

II. MEAN FIELD EQUATIONS AND THEIR SOLUTION

We begin by setting up the framework for the simplest discussion of a Fermi liquid state.

We will model a Fermi liquid in 2+1 dimensions by a theory of ‘quantum electrodynamics’

in a 4-dimensional spacetime with metric g. The emergent spatial-coordinate is z, and the

metric is asymptotically AdS4 near the boundary z → 0. We will work in Euclidean time,

and assume the metric only has diagonal components non-zero. Apart from the terms which

depend only upon g, the action is

S =

∫

d4x
√
g

[

1

4e2
FabF

ab + i
(

ψΓMDMψ +mψψ
)

]

. (2.1)

Here Fab is the gauge flux of a U(1) gauge field Aµ, which is the bulk representation of the

globally conserved U(1) charge Q in the boundary theory. The bulk theory also has Dirac
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fermions with U(1) charge q and mass m > 0, and we will use the convention followed in

Refs. 6, 23 for the Dirac matrices.

In the present section we treat the gauge field Aµ classically, while the fermions ψ will be

treated exactly. In the absence of sources, the only non-zero component of the gauge field

is its time-component (the electrochemical potential) At = iΦ(z), and we can write the free

energy density as

F = − 1

2e2

∫

dz
√
ggzzgtt

(

dΦ

dz

)2

− T

V
Tr ln

[

Γ.D̂ +m
]

(2.2)

where T is the temperature, and V is the spatial volume of the boundary theory. The

determinant in Eq. (2.2) is to be evaluated as described in Ref. 7. Now our task is simply

to solve the equations
δF
δΦ(z)

= 0 , Φ(z → 0) = µ, (2.3)

for Φ(z), and describe the properties of the resulting state of matter. In particular, the

charge density of the boundary theory, 〈Q〉 is given by

〈Q〉 = −∂F
∂µ

. (2.4)

Eqns. (2.3) and (2.4) imply that 〈Q〉 can be determined from Eq. (2.2) by Hamilton-Jacobi

theory to be

〈Q〉 = − 1

e2
lim
z→0

d

dz

[√
ggzzgttΦ(z)

]

; (2.5)

The right-hand-side is just the electric field along the z direction at the boundary, and this

is Gauss’s law for the “surface” charge density.

We now show that the solution of Eq. (2.3) is a manageable problem, and that the

resulting solution obeys the Luttinger relation on the Fermi surface volume of a Fermi

liquid.

We make a simple choice of metric of a truncated AdS4 space with unit radius

ds2 =
1

z2
(

dz2 + dt2 + dx2 + dy2
)

(2.6)

which is terminated at a hard wall z = zm; the same choice is made in a popular model of

confinement in QCD [39, 40]. We will specify boundary conditions of the fields at z = zm

below.

It is now useful to write down the explicit form of the Dirac equation, whose solution

determines the determinant in Eq. (2.2). We follow Refs. 6, 23 and reduce the 4-component

Dirac equation to a 2-component equation; the equation with spatial wavevector k along the
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x direction and energy Eℓ(k) is obtained from Eqs. (3.11-3.13) in Ref. 23 to be

(

iσy d

dz
− σxm

z
− kσz − qΦ(z)

)

χℓ,k(z) = Eℓ(k)χℓ,k(z), (2.7)

where χ is a two-component spinor, σ are Pauli matrices acting on the spinor space, and ℓ

is a discrete label for the energy eigenvalues. These eigenvalues are quantized by our choice

of boundary conditions. For z → 0, we choose the usual solution in the absence of sources

[7]:

χ(z → 0) ∼ zm. (2.8)

For the boundary at z = zm, we require that the Dirac operator on the left-hand-side of

Eq. (2.7) is self-adjoint [45–48]. We normalize our eigenstates so that

∫ zm

0

dzχ†
ℓ,k(z)χℓ,k(z) = 1, (2.9)

and then from the z derivative term in the Dirac operator, the self-adjoint condition is

χ†
1(zm)σ

yχ2(zm) = 0, (2.10)

for any two spinors χ1,2. We can achieve this by taking either their upper or lower compo-

nents to vanish at z = zm, and we will choose the lower component in our numerical solution

below. With the Dirac operator self-adjoint, the eigenvalues Eℓ(k) will all be real.

We can now write down simple explicit expressions for the free energy and its functional

derivatives. The fermionic contribution to Eq. (2.2) is obtained by filling up all the negative

energy states at T = 0, and so the ground state energy density is

F = − 1

2e2

∫ zm

0

dz

(

dΦ

dz

)2

+
∑

ℓ

∫

d2k

4π2
Eℓ(k) θ (−Eℓ(k)) . (2.11)

The functional derivatives of Eℓ(k) follow from the Hellman-Feynman theorem. Taking the

functional derivative with respect to Φ(z), we have from Eq. (2.3)

1

e2
d2Φ

dz2
− q

∑

ℓ

∫

d2k

4π2
θ (−Eℓ(k))χ

†
ℓ,k(z)χℓ,k(z) = 0. (2.12)

This is nothing but Gauss’s law for the bulk electric field, with the second-term equal to

the bulk charge density; note that the latter is not simply a local function of Φ(z), unlike

previous approaches [9, 13–15, 19, 29]. We can now integrate Eq. (2.12) over z from z = 0
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to z = zm, and obtain using Eqs. (2.5) and (2.9)

〈Q〉+ 1

e2
dΦ

dz

∣

∣

∣

∣

z=zm

= q
∑

ℓ

∫

d2k

4π2
θ (−Eℓ(k)) (2.13)

This equation is our Luttinger relation: the right-hand-side is the total area enclosed by the

Fermi surface, and this equals 〈Q〉modulo any electric flux leaking out from the IR boundary

at z = zm [16, 25, 27], as could happen in a non-Fermi liquid phase. We want a Fermi liquid

solution here, and so we have our final boundary condition for the electrochemical potential

dΦ

dz

∣

∣

∣

∣

z=zm

= 0. (2.14)

With this boundary condition, our solution obeys the conventional Luttinger theorem for a

Fermi liquid.

A. Numerical solution

This solution will describe the solution of Eqns. (2.7) and (2.12), subject to the boundary

conditions described above.

First, at µ = 0, the Dirac equation is solved by Bessel functions

χℓk(z) ∝
√
z





− Mℓ

(k + Eℓ(k))
Jm+1/2(Mℓz)

Jm−1/2(Mℓz)



 . (2.15)

Using the boundary condition of a vanishing lower component at z = zm, the parameter

Mℓ is determined by the ℓ’th zero of the Bessel function of order m − 1/2, jm−1/2,ℓ, with

Mℓ = jm−1/2,ℓ/zm. The energy eigenvalues are

Eℓ(k) = ±
√

k2 +M2
ℓ , (2.16)

representing Dirac fermions of mass Mℓ in the confined state. All the negative energy states

will be occupied in the Dirac sea, and we measure all charge densities and electrochemical

potentials relative to this Dirac sea. The completeness relation for the wavefunctions χℓ(k)

implies that the charge density of the filled Dirac sea is z-independent; we explicitly verified

the independence on z by a numerical sum over the normalized Eq. (2.15) to a large value

of ℓ. This z-independence is associated with the z-independent measure in Eq. (2.9), and

confirms our choice of boundary conditions as a consistent description of a gapped, confining

state with the spectrum in Eq. (2.16). This (infinite) constant charge density is implicitly

subtracted from all our expressions.

Turning on a chemical potential, we see no change in the solution as long as |µ| < M1,
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the smallest Dirac mass. So the Dirac vacuum is gapped and incompressible. As µ crosses

M1, an additional band of previously positive energy states will be occupied, and we will

obtain a gapless compressible Fermi liquid. To describe this state, we write

χℓ,k(z) = Czm

(

f2(z)

f1(z)

)

(2.17)

where C is a constant set by the normalization in Eq. (2.9). The wavefunction components

obey the boundary conditions

f1(0) = 1

f1(zm) = 0

f2(z → 0) = −(Eℓ(k) + qΦ(z) − k)

(2m+ 1)
z, (2.18)

and the differential equations

df1
dz

= (Eℓ(k) + qΦ(z) + k) f2(z)

df2
dz

= −(Eℓ(k) + qΦ(z)− k)f1(z)−
2m

z
f2(z). (2.19)

We made an initial (arbitrary) choice of Φ(z), and numerically solved the eigenvalue problem

defined by Eqs. (2.18) and (2.19). After determining the eigenvalues and eigenfunctions, we

computed the electric field, E(z), by integration

E(z) = qe2
∑

ℓ

∫

d2k

4π2
θ (−Eℓ(k))

∫ zm

z

dz χ†
ℓ,k(z)χℓ,k(z). (2.20)

Determination of the electrochemical potential required one more integration

Φ(z) = µ−
∫ z

0

dz E(z) (2.21)

It can be verified that the boundary conditions in Eqs. (2.3) and (2.14) are satisfied. After

this determination of Φ(z), we returned to the solution of Eqs. (2.18) and (2.19), and iterated

the procedure until the solution converged. We found little difficulty in the iteration, and

the solution typically converged accurately after ∼ 30 iterations.

We show our results for the dispersion Eℓ(k) in Fig. 1, both with and without a chemical

potential. The electric field and electrochemical potential computed from Eq. (2.20,2.21)

are shown in Fig. 2, and the wavefunctions in Fig. 3. In computing the electric field, we only

included the single ℓ value associated with the shaded states in Fig. 1, in the summation

in Eq. (2.20). Strictly speaking, we should also account for the fact that the states in the
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FIG. 1: Dispersion spectrum of the fermions. The blue lines correspond to the spectrum Eq. (2.16,

at m = 1, zm = 3, and µ = 0. The red lines are at qµ = 1.7 and q2e2 = 3. The horizontal red line is

at qµ, and the shaded region shows the additional states filled by the chemical potential. Note that

the two sets of band dispersions are offset even at large momenta and energies: this arises from a

Hartree shift in the energies due to the added density of particles. The wavefunctions of the states

at large momenta are not modified by this shift. At smaller momenta, both the k dependence and

wavefunctions are different between the two sets.

negative Dirac sea have also had their wavefunctions modified by the change in fermion

density, and so will contribute to the electric field. However, we expect such contributions

to be suppressed by the Dirac mass gap, and neglected them for simplicity. The more

significant question is whether such corrections can be divergent after summing over the

infinite number of occupied negative energy states, but this is difficult to answer reliably

using numerics. From the perspective of the boundary theory, we expect that all ultraviolet

divergencies are associated with the conformal field theory, and introducing the IR scale

µ does not introduce new UV divergencies; consequently we do not expect divergencies

associated with the electric field.

III. BEYOND MEAN-FIELD THEORY

We now extend our results to include full quantum fluctuations of the quantum-

electrodynamic theory in Eq. (2.1). In principle, our arguments also allow for fluctuations

of other fields, including the metric (suitably regularized). We will show that the state

obtained in Section II is a Landau Fermi liquid.

The Gauss’s Law result in Eq. (2.12) has a generalization in the full quantum theory. We
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FIG. 2: Electric field and electrochemical potential for a non-zero fermion density. Parameters as

in Fig. 1.

write the Ward identity associated with the equation of motion of Φ as

1

e2
d2〈Φ〉
dz2

+ q

∫

dω

π

∫

d2k

4π2
ImGR(ω, k, z, z)nF (ω) = 0 (3.1)

where GR(ω, k, z, z′) is the exact bulk-to-bulk retarded Green’s function for the fermion field,

and nF (ω) = (eω/T + 1)−1 is the Fermi distribution function. In our mean-field theory, this

Green’s function has the spectral representation

GR
0 (ω, k, z, z

′) =
∑

ℓ

χ†
ℓ,k(z)χℓ,k(z

′)

ω −Eℓ(k) + i0+
, (3.2)

and inserting this into Eq. (3.1), we revert to Eq. (2.12) at T = 0. The expression in Eq. (3.2)

can be used to obtain response functions of the boundary theory by sending z, z′ → 0 [49, 50].

Now our central point is that we can treat the bulk GR as the Green’s function of an

inhomogenous 3-dimensional Fermi liquid with short-range interactions. This 3-dimensional

system is confined in a potential along with z direction, and translationally invariant under

the infinite x and y directions. The boundary conditions along the z direction ensure that

the transverse components of the gauge field are gapped [40], and so there is no long-range

interaction along the x and y directions. Thus, we can apply the conventional methods of
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FIG. 3: Wavefunctions at k = kF with parameters as in Fig. 1. The blue lines show the zero

density state in Eq. (2.15), plotted at the wavevector with eigenenergy 1.7. The red lines are the

state at the Fermi level in the finite density fermion system with µ = 1.7. The differences in the

two lines are the consequences of the self-consistent electric field generated by the fermion density.

many body theory to this inhomogenous system. These methods imply that the trace of the

Green’s function along the inhomogenous direction must obey a Luttinger theorem on the

volumes of the Fermi surfaces associated with motion along the x and y directions. In other

words, we can express the z motion in terms of a discrete set of “bands” with label ℓ, and

then the system looks very similar to a two-dimensional multiband solid state system. The

Luttinger theorem applies to the sum over all bands, or equivalents, to the trace along the

z co-ordinate. So we conclude that at T = 0

−
∫ zm

0

dz

∫

dω

π

∫

d2k

4π2
ImGR(ω, k, z, z)θ(−ω) = Areas enclosed by Fermi surfaces

4π2
. (3.3)

The Luttinger result for the boundary theory now follows from application of Eq. (2.5) to

the z integral of Eq. (3.1), just as in the mean-field theory.

Similar arguments, making the analogy to a multi-band two-dimensional Fermi liquid

with short-range interactions, imply that this system realizes all other properties of a Lan-

dau Fermi liquid. In particular, transverse gauge modes which are gapped and discrete

at Gaussian order in the holographic theory [40], will acquire Landau damping from the

Fermi surface excitations at higher orders, and so their spectrum will eventually become

continuous. Similar comments apply to the spectrum of gravitons and other bosonic modes.
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IV. CONCLUSIONS

We have presented a simple model for the holographic description of a Fermi liquid. We

begin with a conformal field theory in 2+1 dimensions [33, 34], which has a holographic

description by a theory on AdS4. Then we change its carrier density by applying a chemical

potential µ. Using arguments that the Fermi liquid must be a confining state [27], we

assumed that the AdS4 geometry was truncated by confinement at a distance zm along the

holographic direction. The resulting state is described by 2 energy scales, µ and 1/zm. We

presented a theory for the crossover across these energy scales, and showed that a Fermi

liquid is obtained at the lowest energy scales. The bulk gauge field was determined self-

consistently, and this was closely linked to consistency with Luttinger’s theorem.

The main shortcoming of our analysis was that the confinement was essentially put in

by hand, and not obtained by a self-consistent determination of the metric. In principle,

confinement can be a direct consequence of introducing a non-zero µ on the conformal

field theory, although this has not been demonstrated in any existing computation in the

holographic approach. Assuming confinement, we expect that the value of the confinement

scale, 1/zm, is determined by µ, and vanishes as µ→ 0; such a situation would be analogous

to ‘deconfined criticality’ [51, 52]. In particular, the scaling properties of the conformal field

theory imply that zm = C/µ, where C is a universal constant characteristic of the conformal

field theory. We leave the possible realization of such a scenario, and computation of C, as
important problems for future research.
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