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Abstract

We study the structure of SU(5) F-theory GUT models that engineer additional U(1) symmetries. These are
highly constrained by a set of relations observed by Dudas and Palti (DP) that originate from the physics of
4D anomaly cancellation. Using the DP relations, we describe a general tension between unification and the
suppression of dimension 5 proton decay when one or more U(1)’s are PQ symmetries and hypercharge flux is
used to break the SU(5) GUT group. We then specialize to spectral cover models, whose global completions
in F-theory we know how to construct. In that setting, we provide a technical derivation of the DP relations,
construct spectral covers that yield all possible solutions to them, and provide a complete survey of spectral
cover models for SU(5) GUTs that exhibit two U(1) symmetries.



1 Introduction and Summary

Throughout the past few years, F-theory has emerged as a promising framework for engineering supersymmetric
GUTs in string theory [1, 2, 3, 4]. The main focus has been on SU(5) GUTs, where internal fluxes make it
easy to break the GUT group and remove Higgs triplets [3, 4]. Proton decay and large R-parity violation can
in principle be controlled through the introduction of symmetries [5, 6, 7]. Most of the current literature makes
use of U(1) symmetries for this purpose because they seem plentiful from many points of view. There are some
subtle issues associated with them [8] but by now the task of realizing U(1)’s is fairly well-understood for a
large class of F-theory compactifications [9, 10].

Already in the early days of F-theory model building, though, it became clear that hypercharge flux and
U(1) symmetries are nontrivially linked. For model-building, we would like to distribute hypercharge flux freely
among the matter curves but our ability to do this is strongly restricted when U(1) symmetries are present
[6, 11]. The nature of these restrictions can be quantified using the Dudas-Palti relations, which were first
observed by Dudas and Palti in a set of spectral cover models [12]1. Letting qI/qa denote the common U(1)

charge of 10’s/5’s that localize on a matter curve Σ
(i)
10
/Σ

(a)

5
, the Dudas-Palti observation can be written as2

∑

10 matter curves, i

qi

∫

Σ
(i)
10

FY =
∑

5 matter curves, a

qa

∫

Σ
(a)

5

FY , (1.1)

where FY denotes the hypercharge flux. These relations have a physical origin in that they reflect the inability
of hypercharge flux to contribute to mixed U(1) anomalies in 4-dimensions [14]. As we shall review in section
2.1, this property of hypercharge flux seems to be a general one that applies to all SU(5) F-theory GUT models
regardless of how they are constructed so that (1.1) represents a general set of constraints. This is important
because (1.1) has strong implications for model-building. If we demand that the massless spectrum of our model
is precisely that of the MSSM, (1.1) implies that the only flavor-blind U(1) symmetry we can engineer is the
unique linear combination of U(1)Y and U(1)B−L that commutes with SU(5)GUT and preserves the MSSM
superpotential [12, 14]. This U(1), which we refer to as U(1)χ, has two related shortcomings: the operators
responsible for generating a µ term and dimension 5 proton decay are both U(1)χ-invariant

Wµ ∼ µHuHd , WDim 5 ∼
1

Λ
Q3L . (1.2)

As is well-known, the µ and dimension 5 proton decay problems are not completely unrelated. After all, Wµ

and WDim 5 carry opposite charges under any U(1) that commutes with SU(5)GUT and preserves the MSSM
superpotential. This means we can address both by insisting that our model exhibit a U(1) symmetry with
respect to which Hu and Hd do not carry exactly opposite charges. Such U(1)’s are typically referred to as PQ
symmetries and have played a prominent role in both local and global studies of F-theory GUTs in the past
[15, 16, 11]. Whenever a U(1)PQ symmetry is present, though, (1.1) forces the introduction of new charged
exotics into the spectrum that do not come in complete GUT multiplets. To make progress, one must find a
suitable mechanism to lift these exotics and deal with the consequences of their non-GUT nature.

1.1 F-theory GUTs with U(1)PQ: Generalities

In this paper, we begin by exploring the implications of (1.1) for generic F-theory GUT models beyond the
simple statement that U(1)PQ symmetries necessitate exotics. Of interest to us is the precise nature of the

1While this paper was in preparation, the work [13] appeared which studies constraints related to R-parity that arise in the
spectral cover models of [12]

2More generally, the anomaly cancellation argument of [14] leads to a generalization of (1.1) in which each integration over Σ
is multiplied by an integer MΣ that corresponds to the rank of a vector bundle associated to matter fields on Σ. We can always
absorb this factor by redefining the curve of integration as Σ → MΣΣ and this will be implicit in all of our formulae. This is
motivated in large part by the observation that MΣ’s different than 1 in spectral cover models arise when the matter curve in the
spectral cover is MΣ-fold degenerate.
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exotic spectrum and how (1.1) constrains it. While incomplete GUT multiplets will generically spoil unification,
certain combinations of them will not. If our exotic spectrum can be made to arise in such a combination, we
can reap the benefits of having one or more U(1)PQ symmetries without paying any of the penalties that cause
a muddling of the unification picture.

Along with giving us the set of constraints (1.1), general anomaly arguments guarantee that the charged
exotics in U(1)PQ models come in vector-like pairs with respect to SU(5)GUT. This means that they can all
participate in cubic couplings to SU(5)GUT singlets Xi that carry U(1)PQ-charge. If the singlets Xi manage to
pick up nonzero expectation values, these couplings can allow the exotics to be safely lifted from the spectrum.
The simplest possible scenario is one in which a single field X is sufficient to lift all of the exotics. When this
happens the exotic spectrum can be parametrized by four integers M , N , K, and L as

SU(5) origin Exotic Multiplet Degeneracy
(1,1)+1 ⊕ (1,1)−1 M +N

10⊕ 10 (3,2)+1/6 ⊕ (3,2)−1/6 M
(3,1)−2/3 ⊕ (3,1)+2/3 M −N

5⊕ 5 (3,1)+1/3 ⊕ (3,1)−1/3 K
(1,2)−1/2 ⊕ (1,2)+1/2 K − L

(1.3)

For this parametrization to make sense, we must have

M ≥ |N | K ≥ 0 K − L ≥ 0 (1.4)

As we will demonstrate, (1.1) gives rise to a nontrivial relation between the singlet charge qX and a particularly
important combination of these parameters

qHu + qHd
= qX∆ , ∆ ≡ N − L . (1.5)

What makes ∆ important is that it precisely measures the non-universal shifts of 1-loop MSSM β functions
that arise from letting the exotics run in the loop3

∆ = δb2 − δb3

=
1

6
(5δb1 + 3δb2 − 8δb3) .

(1.6)

From this, we see that whenever qHu +qHd
6= 0, the net exotic spectrum is guaranteed to come in a combination

that splits unification. Note that this is stronger than simply saying that the exotics come in incomplete GUT
multiplets. It could have been that the net spectrum obtained by combining exotics from all matter curves
satisfied N = L. Interestingly, (1.5) tells us that this nice situation is not compatible with the presence of a PQ
symmetry.

Because it determines the U(1)PQ charge of X , the relation (1.5) also has implications for dimension 5
proton decay. In general, when X picks up an expectation value we expect U(1)PQ to be broken and WDim 5 to
be regenerated with a suppression that goes like (〈X〉/Λ)n for some n. In general we must take 〈X〉 fairly close
to Λ ∼ MGUT in order to deal with unification issues. If the charge of X is chosen correctly, though, we can
hope to recover some suppression of dimension 5 proton decay by making n large. Unfortunately, the relation
(1.5) between the U(1) charge of X , qX , and the combination ∆ implies that the following operator is always
U(1)-invariant

1

Λ

∫

d2θ

(

X

Λ

)∆

Q3L . (1.7)

In other words, the degree n of the X/Λ suppression is the same quantity ∆ that measures the distortion of
unification caused by the exotics. Because of this, any manipulation that we introduce to raise this degree will

3Equality of the first and second lines is just the statement that 5δb1 − 3δb2 − 2δb3 = 0 for exotics of the type (1.3). This was
previously noted in [11].
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necessarily change the exotic spectrum in a way that increases the non-universality of the 1-loop β function
shifts (1.6). In this way, (1.5) codifies a general tension between unification and dimension 5 proton decay for
which no obvious solution is apparent4. It is a simple matter to generalize this analysis to situations in which
multiple singlet fields Xi are needed to lift all of the exotics. As we demonstrate, the result is again a strong
tension between unification and proton decay.

To summarize, (1.1) introduces a tension between proton decay and unification by forcing incomplete GUT-
multiplets into the spectrum. The mass of these multiplets is set by the scale at which U(1)PQ is broken and
hence by the scale at which WDim 5 is regenerated. These statements have been known for some time. What
we have seen from a more detailed analysis of (1.1), however, is that it obstructs the most obvious ways to
reduce this tension by tying the effective U(1) charges of the exotic masses to the distortion of unification that
they induce. This reasoning is quite general in that it describes a tension but not necessarily the severity of
that tension. To see whether some combination of clever model building or tuning can alleviate it will require
a closer look at unification, which is already known to be somewhat spoiled in F-theory GUT models by effects
due to hypercharge flux [4, 17]. As has been suggested elsewhere [11], this may give us some room to maneuver
by allowing the effects of hypercharge flux and exotics to counterbalance one another. We hope to say more
about this issue in the future [18].

1.2 F-theory GUTs with U(1)PQ: Survey

Before we can make a detailed study of how these problems may be dealt with, though, we first need to ask
a more important question. We expect the most desirable models to be those with the smallest ∆ = N − L
allowed by proton decay considerations but do we even know which ∆’s can actually be realized? Beyond general
restrictions obtained from (1.1), exactly what exotic spectra can be achieved in explicit models? To address
this, we specialize to so-called spectral cover models where the rules for model-building are well-established.

After reviewing the basic structure and context of spectral cover models, we begin with a technical derivation
of (1.1) in that setting. We then establish that (1.1) represents essentially the only constraint on the distribution
of hypercharge flux by constructing spectral covers for all solutions to (1.1) that engineer 1 or 2 U(1) symmetries5
6. These build upon ideas used in the multiple U(1) model of [19] and represent significant generalizations of
the models in [12]. Each construction is specified up to a choice of holomorphic sections that must satisfy a
number of assumptions in order to avoid the development of isolated singularities of non-Kodaira type. We
clearly state these assumptions and a sample choice of sections that satisfies them for each model. We also note
that these sample choices are consistent with the local topological data required to embed the models into full
F-theory compactifications based on the geometry of [20]. Sample choices aside, though, the constructions of
Appendix C are general enough to serve as a starting point for building explicit examples of any spectral cover
model with a distribution of hypercharge flux that is consistent with (1.1).

Once we have established that there are no constraints on hypercharge flux beyond (1.1), we turn to a
survey of the possible exotic spectra that can arise in spectral cover models with both a U(1)χ and a U(1)PQ

symmetry. We always insist on having an unbroken U(1)χ in order to protect against dimension 4 proton decay.
The U(1)PQ is allowed to be broken by the expectation value of precisely one singlet field, which we require to
give mass to all exotic fields. We perform the survey by looking at the spectrum induced by the most generic
distribution of hypercharge flux allowed by (1.1)7 combined with a completely general distribution of bulk flux.

4If ∆ < −1 then the operator (1.7) cannot be generated because Λ appears in the numerator. In that case, however, the operator
Λ∆+1

∫
d2θ X−∆HuHd arises and generates a µ term that is far too large.

5Actually, there are two other well-known constraints that supplement (1.1). These are
∑

10 matter curves, i

∫
Σ

(i)
10

FY = 0 and
∑

5 matter curves ,a

∫
Σ

(a)

5

FY = 0 and they reflect the cancellation of the U(1)3Y and SU(2)2U(1)Y anomalies.

6We restrict to these cases because spectral covers with 3 U(1) symmetries are significantly more complicated and require a
substantial amount of ’topological tuning’ to avoid non-Kodaira singularities at isolated points, to say nothing for non-Kodaira
singularities along holomorphic curves. We expect that no new constraints beyond (1.1) control the hypercharge flux there as well
but we do not prove it. Spectral cover models with more than 3 U(1) symmetries cannot have a large top Yukawa coupling so
should not be considered.

7We do not say anything about the condition
∫
SGUT

FY ∧FY = −2 that is needed to avoid exotic (3, 2)
−5/6’s or their conjugates
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We do not impose any constraint on the bulk or ’γ’-flux. This is motivated by past experience with γ-fluxes
in which no obvious global obstructions on their distribution emerged. Despite our confidence to the contrary,
one should keep in mind that obstructions might arise when realizing some of these models in practice.

Once we have parametrized the hypercharge and bulk fluxes, we proceed to enumerate all cases in which
the expectation value of one singlet field, X , can lift everything except the matter content of the MSSM. In the
end, we find exactly 10 ‘models’. By ’model’ here we mean a specific identification of MSSM and exotic matter
curves. Within any such ’model’ there is a parameter space of possible flux values that leads to some variance
in the net spectrum of exotics. It is an empirical fact, however, that the combination ∆ = N −L is fixed within
each of the 10 ’models’ that we find. We can summarize key properties of the ‘models’ as follows

Model Number Exotic Spectra Dim 5
1, 2, 9 N − L = 1 XQ3L/Λ2

3, 4 N − L = 2 K ≥ M X2Q3L/Λ3

5, 6, 7, 8 L = 2 M = N = 0 X† 2Q3L/Λ4

10 N − L = 1 K − L = M XQ3L/Λ2

(1.8)

The model number refers to the detailed list in appendix A. Note that the power of X responsible for generating
WDim 5 is exactly N−L in each case as we expected from general reasoning. Quite interestingly, only low values
of N − L seem possible. The maximal value ∆ = 2 may not be enough to adequately suppress proton decay
but, as we have said, the additional spoilage of unification by hypercharge flux may give us enough wiggle
room to allow for smaller 〈X〉. The models we construct realise ∆ = −2, 1, 2 and it is curious to note that
N − L = −1 does not seem to appear (as we have explained earlier ∆ = 0 is ruled out by eq. (1.5)). We have
no good explanation for this fact. The possibility of achieving ∆ = −1 is rendered more interesting by the fact
that this choice appears to be the most promising from the point of view achieving unification [18], though it is
plagued by other phenomenological issues. Let us stress that any patterns observed in (1.8) are intrinsic to the
spectral cover formalism. It may be possible that models constructed beyond this framework [21] can realize
more general N − L values.

Extending the survey to models with multiple singlet fields Xi and possibly also multiple U(1)PQ symmetries
could lead to interesting new possibilities. From a local model-building perspective, each singlet vev 〈Xi〉 gives
us an extra parameter to tune. It can increase the likelihood of finding reasonable ranges of parameters but, on
the flip side, will probably require the resulting model to be even more finely tuned.

1.3 Outline

The rest of this paper is organized as follows. In section 2, we review the anomaly argument of [14] for the
Dudas-Palti relations (1.1) and discuss its general implications for the spectrum of exotics in F-theory GUTs
with U(1)PQ symmetries. We then turn to spectral cover models in section 3. There, we review the spectral
cover framework, provide a technical derivation of (1.1) in that setting, and present in more detail the results
of the survey of spectral cover models with 2 U(1) symmetries. The details of the survey, along with the
construction of spectral covers that realize generic solutions to (1.1), are contained in the Appendices along
with other supplemental calculations.

2 Dudas-Palti Relations and General Implications

In this section, we describe some general features of F-theory GUT models that engineer U(1) symmetries as a
means of controlling the structure of 4-dimensional physics. We focus in particular on models that exhibit two
key features

• Internal “hypercharge flux” for breaking SU(5)GUT → SU(3)× SU(2)× U(1)Y

from propagating along SGUT. It will be necessary to impose this as an additional constraint on any explicit model.
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• One or more U(1) symmetries that commute with SU(5)GUT and do not distinguish particles from different
generations8

At the heart of our considerations is a set of relations first noted by Dudas and Palti [12] in the context of
so-called ’spectral cover models’. The applicability of these relations to F-theory GUTs in general relies on the
observation of [14] that they reflect the inability of “hypercharge flux” to influence 4-dimensional mixed gauge
anomalies. After reviewing this argument, we describe the general implications of the Dudas-Palti relations
in models with U(1)PQ symmetries. These include the existence of charged exotics that introduce a generic
tension between unification and proton longevity. We stress that the results of this section are quite general in
that they rely only on the anomaly cancellation argument of [14]. Because of this, the structure and constraints
that we derive should arise in any F-theory GUT model with U(1) symmetries regardless of how it might be
constructed9. In the next section, we will see explicit realizations of this structure in our survey of spectral
cover models with multiple U(1) symmetries.

2.1 Anomaly Cancellation

It has been known for some time that our ability to distribute “hypercharge flux” along the matter curves
of an F-theory GUT is limited in models that engineer extra U(1) symmetries. This structure can be nicely
described by a set of relations first observed by Dudas and Palti [12] in the context of spectral cover models,
whose structure we shall review in the next section. Letting qi/qa denote the common U(1) charge of 10/5

fields on a matter curve Σ
(i)
10
/Σ

(a)

5
, the Dudas-Palti observation can be written as [12]

∑

10 matter curves, i

qi

∫

Σ
(i)
10

FY =
∑

5 matter curves, a

qa

∫

Σ
(a)

5

FY . (2.1)

It was demonstrated in [14] that this simple set of relations is related to the physics of 4-dimensional anomaly
cancellation. Because of this, we expect (2.1) to have general applicability to F-theory GUT models beyond the
spectral cover examples that initially motivated it.

For completeness, let us review how (2.1) arises from considerations of 4-dimensional anomaly cancellation.
The situation is particularly simple if we study F-theory compactifications on Calabi-Yau 4-folds that do not
require the introduction of G-flux to satisfy the quantization condition of [25]. In that case, we can consider
adding “hypercharge flux” into the game and no additional bulk G-flux. By construction, the “hypercharge”
flux does not induce a mass for U(1)Y or, in fact, any other U(1) symmetries that we might engineer. As
a result, it cannot induce any gauge anomalies. Of particular interest to us are mixed gauge anomalies with
insertions of both MSSM and U(1) currents as these anomalies only receive contributions from the charged
fields that localize along matter curves. A simple calculation reveals that (2.1) is just the condition that one
needs to ensure that these mixed anomalies cancel [14].

Things are slightly more tricky if we are forced to introduce a background G-flux to satisfy the quantization
condition of [25] because that flux on its own will induce mixed anomalies while lifting our U(1)’s through the
Stückelberg mechanism. We can argue as before, however, by noting that when we add “hypercharge flux” to
the game it will not change any of these anomalies. The reason for this has its origin in the 4-dimensional
Green-Schwarz mechanism, which cancels any gauge anomalies involving our extra U(1)’s that might be present
before we integrate them out. The basic ingredient of this mechanism is a 2-form axion c2 that participates in

8That our U(1)’s are not ‘family’ symmetries is a necessary condition for realizing the flavor scenarios of [22, 23, 24].
9We are aware of only two loopholes to this. The first is the possibility that some new mechanism can be found to allow

“hypercharge flux” to influence 4-dimensional anomalies without also generating a U(1)Y mass. No known set of couplings in
F-theory are capable of doing this and the absence of any spectral cover models that violate (2.1) strongly suggests, to us anyway,
that this possibility is not realized. The second is the possibility that our description of the spectrum of 10’s and 5’s is too limited.
We assume the structure obtained from smooth 10 and 5 matter curves but it may be possible to engineer more exotic combinations
of matter if, for instance, matter curves and/or SGUT itself exhibit exotic singular behaviors that go beyond the types that have
been considered so far.
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4-dimensional couplings of the form
∫

c0 F ∧ F + c2 ∧ F (2.2)

where F here can denote either a U(1) field strength or any of the MSSM field strengths and dc0 = ∗dc2.
Because c2 couples both linearly and quadratically to flux, it can propagate within tree level diagrams that can
cancel nontrivial contributions to gauge anomalies that arise from triangle diagrams. The c2 ∧ F term is also
important for a related reason; if it is present for a given field strength, the corresponding U(1) will become
massive via the Stückelberg mechanism. Among our most important requirements, then, is the absence of any
coupling like c2 ∧ FY that could lift the U(1)Y gauge boson.

In F-theory, the only way to get a 2-form axion in 4-dimensions of the type in (2.2) is from the reduction of
the RR 4-form C4 which, as the potential associated to D3-branes, is nicely SL(2,Z)-invariant. This 4-form is
an honest bulk field whose coupling to flux is well-known

∫

Y4

C4 ∧G ∧G (2.3)

where the integration is over our entire Calabi-Yau 4-fold, Y4. In the presence of a stack of 7-branes, like the one
that gives us SU(5)GUT, we can rewrite the specific contribution to (2.3) that involves localized worldvolume
fluxes as the familiar coupling

∫

7-brane worldvolume

C4 ∧ F ∧ F (2.4)

When we have an internal “hypercharge flux”, we always generate the dangerous c2∧FY coupling by reducing C4

along 2-forms in Y4 unless FY happens to be orthogonal to all such 2-forms. We can ensure this orthogonality by
choosing FY to be a (1, 1)-form that is dual to a holomorphic curve [FY ] in SGUT that is trivial in the homology
of Y4 [3, 4]. When FY is of this type, though, any insertion of FY into (2.4) gives a vanishing result so that C4

has no direct coupling at all to this flux. This means that the coefficients of (2.2) in the 4-dimensional theory
are the same whether we introduce the “hypercharge flux” or not. It follows that the mixed 4-dimensional gauge
anomalies also cannot change when we turn on “hypercharge flux” and a simple calculation demonstrates that
(2.1) is nothing other than a mathematical statement of this condition [14].

2.2 ‘Uniqueness’ of U(1)B−L

To see why (2.1) is so constraining, let us recall how “hypercharge flux” impacts the 4-dimensional spectrum.
Charged fields in the 10 or 5 localize along curves Σ in the internal space and the number of chiral zero modes
in the SU(3)× SU(2)× U(1)Y representation R is determined by an index theorem

nR − nR =

∫

Σ

c1(VΣ ⊗ LYR

Y ) =

∫

Σ

[

c1(VΣ) +MΣ c1(L
YR

Y )
]

(2.5)

where VΣ is a bundle of rank MΣ that encodes the “bulk” G-flux, c1(LY ) is roughly the “hypercharge flux”,
and YR is the U(1)Y charge of fields in the representation R. Because VΣ and MΣ are intrinsic properties of the
matter curve Σ, the only way to distinguish different SU(3)× SU(2)×U(1)Y representations within an SU(5)
multiplet is through the “hypercharge flux”. To get a model with exactly 2 Higgs doublets, Hu and Hd, and a
set of matter fields that comprise complete SU(5) multiplets with common U(1) charges we need a distribution
of “hypercharge flux” in which

∫

ΣHu

FY = +1 ,

∫

ΣHd

FY = −1 ,

∫

any other matter curve Σ′

FY = 0 (2.6)

and MΣHu
= MΣHd

= 1. The DP relations (2.1) now tell us that any U(1) symmetry consistent with this
distribution of “hypercharge flux” must satisfy qΣHu

− qΣHd
= 0. Because qΣi denotes the common charge of

fields from the 5 on Σi, we see that the charge of Hu is qHu = −qΣHu
and hence that

qHu + qHd
= 0 . (2.7)

7



Up to normalization, there is only one U(1) symmetry that satisfies (2.7), commutes with SU(5), and preserves
the MSSM superpotential. That symmetry is the unique linear combination of U(1)Y and U(1)B−L that
commutes with SU(5), which we denote by U(1)χ

10M 5M Hu Hd

U(1)χ 1 −3 −2 2
(2.8)

This argument is essentially the same one used in [12] to explain why none of their models had an unbroken
U(1)PQ. As [12] further emphasize, we will face two important phenomenological problems in general if U(1)χ
represents the only control that we have over the theory. These are, respectively, the µ problem and dimension
5 proton decay, which are associated with the operators

µ

∫

d2θHuHd and
1

Λ

∫

d2θ Q3L . (2.9)

These operators carry opposite charges under any U(1) symmetry that preserves the MSSM superpotential so
their fates are related. In the absence of a symmetry to indicate otherwise, we expect µ to be large and Λ−1Q3L
to be generated with Λ ∼ MGUT by massive Kaluza-Klein modes at the GUT scale without further suppression.

2.3 U(1)PQ Symmetries and Exotics

Because HuHd and Q3L carry opposite charges under any U(1) symmetry that preserves the MSSM superpo-
tential, we can try to take care of both problems simultaneously by introducing one or more new U(1)’s that
satisfy

qHu + qHd
6= 0 (2.10)

Symmetries of this type, which we refer to as PQ symmetries, have played a prominent role in past studies of F-
theory models [15, 16, 11]. From the DP relations (2.1), though, we know that the presence of such a symmetry
will not allow a distribution of “hypercharge flux” whose spectrum of non-GUT fields consists of exactly one
pair of Higgs doublets. If we insist on engineering all MSSM matter fields as complete GUT multiplets with
common U(1) charges, we will be forced to introduce new non-GUT multiplets in addition to the Higgs doublets.
These new fields represent charged exotics that must be dealt with in some way.

Anomaly considerations allow us to make an important observation about the structure of the new non-GUT
fields. In particular, the cancellation of U(1)3Y anomalies in the presence of “hypercharge flux” leads to the
standard relations

∑

10 matter curves, i

∫

Σ
(i)
10

FY = 0 ,
∑

5 matter curves, a

∫

Σ
(a)

5

FY = 0 (2.11)

which forces the non-GUT exotics to come in vector-like pairs with respect to SU(3)×SU(2)×U(1)Y . Though
they will not be vector-like with respect to our additional U(1) symmetries, in general, this fact allows them to
participate in cubic couplings with MSSM singlets that carry appropriate U(1) charges

W ⊃ XifExotic,ifExotic,i (2.12)

If enough singlets Xi pick up nonzero expectation values then the exotics can be safely lifted from the spectrum.
Even though we can remove the exotics in this way, we must be aware of two potential phenomenological

problems that can arise [12]. The first is that the expectation values required to lift them may lead to a
stronger breaking of U(1) symmetries than we can allow. These U(1)’s are expected to become massive from
the Stückelberg mechanism, which always allows for the possibility that U(1)-violating couplings are generated
by nonperturbative effects. One typically assumes that these violations are acceptably small. Expectation
values of scalar fields, on the other hand, can lead to larger violations depending on the physics that drives
them.

The second problem is that our charged exotics, even when lifted from the zero mode spectrum, can still
make significant contributions to the 1-loop β functions for the MSSM gauge couplings that spoil unification
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depending on how massive they become. On general grounds, we expect a tension between proton decay, which
should favor depressed U(1)PQ-breaking with small exotic masses, and unification, which should favor large
exotic masses.

2.3.1 The Exotic Spectrum

We could in principle solve both of these problems if given enough control over the exotic spectrum. Even
though the exotics on each individual matter curve will give non-universal shifts of the 1-loop β functions, it
could be that the net shift of all exotics happens to be universal. To see that this is not obviously far-fetched,
consider the generic spectrum on a 10 or 5 matter curve. Using index theory, the zero mode chiralities are seen
to follow a simple pattern [1, 2]

10 matter curve Σ
(i)
10

↔

n(1,1)+1
− n(1,1)−1

= mi + ni

n(3,2)+1/6
− n(3,2)−1/6

= mi

n(3,1)−2/3
− n3,1)+2/3

= mi − ni

(2.13)

5 matter curve Σ
(a)

5
↔

n(3,1)+1/3
− n(3,1)−1/3

= ka
n(1,2)−1/2

− n(1,2)+1/2
= ka − ℓa

(2.14)

This parametrization is useful because the ni and ℓa correspond roughly to the net “hypercharge flux” threading

the matter curves Σ
(i)
10

and Σ
(a)

5
, which are directly constrained by (2.1). By a standard calculation, one can

see that the combined spectrum from one 10 matter curve and one 5 matter curve gives a universal shift to the
1-loop MSSM β functions provided ni = ℓa. When ni, ℓa 6= 0, the spectrum is comprised of incomplete GUT
multiplets but nevertheless the special choice ni = ℓa eliminates any (1-loop) distortion of unification that they
might have caused, provided of course that their masses are nearly degenerate.

It is therefore not obvious at all that the non-GUT exotics we get from introducing a U(1)PQ symmetry
have to cause a problem for unification. We might have to introduce a small tuning to make sure their masses
do not differ by very much but, even then, we could hope to make this automatic without excessive tuning by
ensuring that one singlet vev is sufficient to lift everything.

The question now is whether we have enough control over the exotic spectrum to make a scenario like this
work. Because the Dudas-Palti relations (2.1) restrict our ability to distribute “hypercharge flux”, they will
have something to say about the feasibility of this approach. To study their effect, we must first specify a
convenient parametrization for the exotics and their masses. We assume at the outset that all exotics are lifted
so we can start by identifying a subset of all cubic terms of the form (2.12) in which each exotic field couples
to exactly one singlet. Let us call these the ‘initial masses’ and any remaining couplings the ‘mixings’:

Wmasses ∼ W‘initial’ mass +Wmixings (2.15)

This identification allows us to break the exotics into groups according to the singlet that provides their ‘initial’
mass. Such a separation is already useful but it will become more so if we can use the singlet vevs in W‘initial’ mass

as an order of magnitude estimate for the actual exotic masses. This would be fine if there were no mixing
terms but, in the presence of the additional couplings, Wmixings, this is not always possible. To illustrate this
simple point and how we deal with it, consider a collection of 2 vector-like pairs of exotics, f1/f̄1 and f2/f̄2
with couplings

W ∼ Xf1f̄2 + Y (f1f̄1 + f2f̄2) (2.16)

In this case, we would have

W‘initial’ mass ∼ Y (f1f̄1 + f2f̄2) Wmixings ∼ Xf1f̄2 . (2.17)

Based on W‘initial’ mass alone, we would like to say that 〈Y 〉 determines all exotic masses. Even in the presence
of Wmixings, this is a fine assumption in the absence of tuning provided 〈X〉 doesn’t get too large. If we have
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〈X〉 ≫ 〈Y 〉, however, we get a seesaw in the mass matrix and 〈Y 〉 alone doesn’t accurately capture any of the
exotic masses. We can nevertheless obtain an effective form for the exotic masses that involves no mixings by
diagonalizing the mass matrix to leading order in 〈Y 〉/〈X〉. The leading order mass eigenstates remain f1/f̄1
and f2/f̄2 but we find effective masses

Weff ∼ Xf1f̄2 +
Y 2

X
f2f̄1 + . . . . (2.18)

If we like, we can define a new quantity Z = Y 2

X and write a set of mass couplings of the form (2.15) that
includes only ‘initial’ masses and no mixing terms.

More generally, the identification of ‘initial’ masses with actual exotic masses is reasonable, at least as
an order of magnitude estimate, provided there are no large hierarchies between singlet vevs appearing in
W‘initial’ mass and Wmixing. In the presence of such hierarchies, though, we can always diagonalize the mass
matrix to leading order, in which case we obtain an effective set of mass couplings of the form (2.15) with no
mixings and such that all ‘masses’ are rational functions of our initial singlet fields10.

In what follows, we will therefore always assume a mass term structure of the form (2.15) with Wmixings = 0
where the singlets Xi may be rational functions of fundamental singlets rather than fundamental singlets
themselves. Once we have done this, we can associate to each Xi the collection of vector-like pairs of exotics
that it lifts. A convenient parametrization for the fields of that collection is the following

n(1,1)+1
+ n(1,1)−1

= Mi + Pi

n(3,2)−1/6
+ n(3,2)+1/6

= Mi

n(3,1)−2/3
+ n(3,1)+2/3

= Mi −Ni

n(3,1)+1/3
+ n(3,1)−1/3

= Ki

n(1,2)−1/2
+ n(1,2)+1/2

= Ki − Li .

(2.19)

In other words, we say that Xi gives an ‘initial’ mass to Ki triplet pairs of exotics, Ki − Li doublet pairs, and
so on. One might naively think that we should set Pi = Ni based on (2.13) but, as explained in Appendix B,
this need not be the case.

With this parametrization, we can study the implications of the DP relations (2.1) on the exotic spectrum
and the singlets that can remove them. As we show in Appendix B, the result actually takes a fairly simple
form

qHu + qHd
=

∑

Singlets Xi

qXi(Ni − Li) =
∑

Singlets Xi

qXi(Pi − Li) . (2.20)

Implicit in this equation is the identity
∑

Singlets Xi

qXi(Ni − Pi) = 0 , (2.21)

whose origin is the fact that the exotic spectrum on each 10 matter curve is controlled by two integers rather
than three (2.13).

2.3.2 Proton Decay and Unification

Using the parametrization (2.19) and the constraint (2.20), we can now make the general tension between
unification and proton decay quite precise. We start by computing the 1-loop β function shifts that are induced
by the collection of exotics whose mass is set by the singlet Xi

δb1,i = 3Mi +Ki +
1

5
(6Pi − 8Ni − 3Li)

δb2,i = 3Mi +Ki − Li

δb3,i = 3Mi −Ni +Ki .

(2.22)

10The hierarchical separation is needed to ensure that the masses are rational functions of the initial singlets.
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Because we have 3 β functions there is, in general, a 2-parameter family of distortions to unification. The above
results demonstrate that Ni−Li and Pi−Li correspond to one particularly simple choice of basis for this family

Ni − Li = δb2,i − δb3,i ≡ ∆
(N)
i Pi − Li =

1

6
(5δb1,i + 3δb2,i − 8δb3,i) ≡ ∆

(P )
i . (2.23)

Already from (2.20) and (2.23) we can see that models with a U(1)PQ can never realize our dream of engineering
a set of exotics that are lifted by just one singlet field, X , and induce a universal shift of the 1-loop β functions.
In the case of one singlet, (2.20) and (2.23) simplify to

qHu + qHd
= qX(N − L) , N = P (2.24)

∆ = N − L = P − L = δb2 − δb3 =
1

6
(5δb1 + 3δb2 − 8δb3) . (2.25)

Because qHu + qHd
6= 0 and qX 6= 0, we see that N 6= L and hence that a distortion of unification is always

introduced. Further, a second consequence of (2.24) is that the following operator is always gauge invariant

1

Λ

∫

d2θ

(

X

Λ

)∆

Q3L . (2.26)

While we might want to minimize the effect on unification by taking 〈X〉 to sit near the unification scale
Λ ∼ MKK ∼ MGUT, we see that this effectively eliminates any hope we might have for suppressing dimension
5 proton decay. What we have found is an intrinsic tension between unification and proton decay that seems
unavoidable.

Let us now return to the possibility that multiple singlets Xi play a role in lifting the exotics. For this, it is

useful to introduce separate notation for the the sum over ∆
(N)
i ’s or ∆

(P )
i ’s

∆(N) =
∑

i

∆
(N)
i

∆(P ) =
∑

i

∆
(P )
i

(2.27)

Just as (2.24) guaranteed the gauge invariance of (2.26) in the case of one singlet X , the more general condition
(2.20) implies that the following operators are always invariant under all U(1) symmetries

1

Λ∆(N)

∫

d4θ
∏

i

[

X
†∆

(N)
i

i

]

HuHd,
1

Λ∆(N)+1

∫

d2θ

[

∏

i

X
∆

(N)
i

i

]

Q3L (2.28)

and similar for N ↔ P . If we want to achieve an exotic spectrum that sits at a common mass and leads to
universal shifts of the 1-loop MSSM β functions, then we must have ∆(N) = ∆(P ) = 0. In this case, however,
any suppression of dimension 5 proton decay operators comes from ratios of the singlet vevs that determine
the exotic masses in the first place. Introducing hierarchies to achieve a suppression will necessarily split the

exotic masses into groups that each have ∆
(N)
i 6= 0. Unification will be spoiled here because each such collection

induces β function distortions that are individually non-universal and the energy ranges over which they run
are hierarchically separated.

In the end, then, we find a general tension between unification and proton decay. That is not to say that the
issue cannot be circumvented through a combination of clever model-building and tuning. The most obvious
solution, however, would have been to engineer non-GUT multiplets that combine to yield universal β function
shifts. Sadly, it seems that this cannot be done without allowing unsuppressed dimension 5 proton decay.
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3 Spectral Cover and Dudas-Palti Relations

So far, we have encountered a number of general constraints on the structure of F-theory GUTs with U(1)
symmetries. It remains to be seen, however, whether additional surprises might be waiting for us when we start
to look at concrete models. Several examples have been constructed in recent years and, in all cases, they can
be successfully studied with spectral cover techniques. In the remainder of this paper, we perform a systematic
study of such spectral cover models with a particular focus on the allowed spectrum of exotics. We start
by reviewing the conventional methods for building global F-theory GUTs in the current literature and then
provide a direct technical derivation of the Dudas-Palti relations (2.1) in that setting. We then turn to a general
survey of spectral cover models that exhibit one or two U(1) symmetries and the most generic distributions of
hypercharge flux that are consistent with Dudas-Palti. In Appendix C, we provide ‘in principle’ constructions
for all such models that can be promoted to complete local and global models by making a suitable choices of
sections and using the procedure outlined below to embed them into honest F-theory compactifications.

3.1 Calabi-Yau 4-folds and Higgs Bundles

A complete F-theory GUT model is specified by the geometry of an elliptically fibered Calabi-Yau 4-fold Y4

along with a set of fluxes that controls the chiral spectrum. Though several different constructions have been
achieved in the literature [26, 20, 27, 28, 29, 6, 7, 11, 30, 31, 32, 33, 34, 35, 36], all of them follow roughly the
same basic strategy. We can start with a 3-fold B3 that will serve as the IIB compactification geometry and
identify a holomorphic divisor SGUT inside B3 that will support the charged degrees of freedom of our SU(5)
GUT. Letting z denote the holomorphic section on B3 whose vanishing defines SGUT, we can then build our
Calabi-Yau 4-fold Y4 by specifying a ‘Tate model’ for the elliptic fibration

y2 = x3 + a0z
5 + a2xz

3 + a3yz
2 + a4x

2z + a5xy , (3.1)

where x and y are sections of O(−2KB3) and O(−3KB3), respectively, and the am are sections of O((m −
6)KB3 + (m − 5)SGUT). By construction, (3.1) exhibits the SU(5) singularity that we need along SGUT to
realize our SU(5)GUT gauge group. Charged matter in the 10 and 5 representations can then be found along
’matter curves’ of SGUT where the singularity type enhances to SO(10) or SU(6)

SO(10) : z = a5 = 0 SU(6) : z = a0a
2
5 − a2a3a5 + a23a4 = 0 . (3.2)

Using insight from Heterotic duality, a set of G-fluxes for engineering chiral matter was recently identified in
[10] and a formalism for determining the chiral spectrum that they generate was presented. With this toolbox,
we can determine the full matter content and symmetry structure of the model directly in F-theory from the
choice of sections am and the collection of G-fluxes that are present. When the am are generic, we find a single
10 matter curve, a single 5 matter curve, and no symmetry other than SU(5)GUT to control the physics.

Since the charged degrees of freedom localize near SGUT, it should not be necessary to talk about the
full compactification geometry to describe them. Rather, their low energy physics can be captured by an 8-
dimensional gauge theory that propagates along R

3,1 × SGUT and this, in turn, depends only on the geometry
(and fluxes) at small z. We can explicitly present the local geometry there by restricting each of the sections
am on B3 to corresponding sections bm on SGUT

am|SGUT = bm (3.3)

and writing
y2 = x3 + b0z

5 + b2xz
3 + b3yz

2 + b4x
2z + b5xy . (3.4)

The bm’s make their appearance in the local gauge theory description of the physics as parameters that control
a Higgs bundle [37, 38]. A heuristic way to see this is by noting that the geometry (3.4) appears to arise
from an E8 singularity at generic points that is unfolded by the bm’s to SU(5)GUT. This unfolding has a
natural worldvolume interpretation: we start with an E8 gauge theory on R

3,1 × SGUT and the bm’s (along
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with the fluxes) specify a nontrivial configuration for the adjoint scalar φ (and gauge connection A) that breaks
E8 → SU(5)GUT. The resulting Higgs bundle takes values in the SU(5)⊥ commutant of SU(5)GUT inside E8

and the bm’s are nothing more than the Casimirs of φ

bm ∼ b0trφ
m . (3.5)

In other words, the bm’s tell us about the spectral data, or eigenvalues, of φ as we move along SGUT. When the
spectral data is generic, it is actually sufficient to determine the entire φ configuration up to gauge equivalence
[21].

An important check on this whole story is that the gauge theory description reproduces the matter curves,
symmetries, and chiral spectrum that we expect from a direct analysis of the F-theory compactification. To
see how φ influences the spectrum, we first recall that all matter descends from the adjoint of E8, whose
decomposition under E8 → SU(5)GUT can be succinctly written in terms of SU(5)GUT×SU(5)⊥ representations
as

248 → (24,1)⊕ (1,24)⊕ (10,5)⊕ (5,10) . (3.6)

The nontrivial configuration of φ generates masses for the bifundamental fields of this reduction that vary
as we move along SGUT. The wave functions of bifundamental fields localize where their ‘SGUT-dependent’
masses vanish and it is this behavior that leads to the structure of matter curves that one directly observes in
the F-theory picture. To understand this in detail, it is often helpful to think in terms of the eigenvalues of φ,
which can be diagonalized in a generic coordinate patch

φ ∼patch













t1 0 0 0 0
0 t2 0 0 0
0 0 t3 0 0
0 0 0 t4 0
0 0 0 0 t5













5
∑

i=1

ti = 0 (3.7)

If φ were diagonal everywhere, such an expectation value would induce a mass proportional to ti for each of the
five 10’s, 10ti , of SU(5)GUT that descend from the 248 in (3.6). The eigenvalues ti, as nontrivial holomorphic
sections, vanish along curves of SGUT in general, and it is along these curves that the 10ti wave functions
localize. One gets a similar story for the ten 5ti+tj fields in (3.6), which can be labeled by the combinations
ti + tj with i 6= j that correspond to the weights of a 10 of SU(5)⊥. In total, then, we get a naive picture that
includes five 10ti matter curves and ten 5ti+tj matter curves that house matter fields with the corresponding
SU(5)⊥ weights.

In general, the story is not this simple because nothing requires the eigenvalues themselves to be globally
defined along SGUT; only gauge invariant objects, like symmetric polynomials sn(ti), need have this property.
Individual eigenvalues can be interchanged with one another through monodromies as we move throughout
SGUT and this is precisely what happens when the bm are generic holomorphic sections. The effect of this
monodromy action is crucially important because it impacts the structure of localized bifundamental fields as
well as the presence or absence of U(1) symmetries that might otherwise survive the breaking E8 → SU(5)GUT.

When the bm’s are completely generic, the Higgs bundle exhibits a maximal monodromy group which, for
SU(5)⊥, is the symmetric group on 5 objects. This identifies all 10ti fields, all 5ti+tj fields, and removes all
U(1) factors from SU(5)⊥ that could have remained from the underlying E8. What we are left with is one 10

matter curve, one 5 matter curve, and nothing other than SU(5)GUT to constrain the physics in general. This
is exactly what we expected from the geometry (3.1) for a generic choice of sections and, indeed, the explicit
description of matter curves from the Higgs bundle picture

0 = b5 ∼
∏

i

ti 0 = b0b
2
5 − b2b3b5 + b23b4 ∼

∏

i<j

(ti + tj) (3.8)

matches the singularity enhancements of (3.2).
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In what follows, we will often be interested in Higgs bundles with a monodromy group that is nontrivial
so it will be helpful to have a way to directly visualize the monodromic structure. One useful object for
this is the spectral cover, which is a 5-sheeted cover of SGUT inside the total space of the canonical bundle11

(KSGUT → SGUT)
C : b0s

5 + b2s
3 + b3s

2 + b4s+ b5 = 0 . (3.9)

The five sheets of C roughly correspond to local eigenvalues ti and monodromies are manifested by the fact that
C is smooth and irreducible for generic bm, with branch cuts connecting all of its sheets. The spectral cover is
of course useful for much more than visualizing monodromies as we will review in a bit.

3.2 U(1) Symmetries and Spectral Cover Models

We now turn to the task of engineering geometries with extra U(1)’s that couple to the charged degrees of
freedom of our GUT. Actually obtaining U(1) symmetries of this type can be quite subtle in F-theory [8] but
recent progress [9, 10] has suggested one way to proceed when the geometry is built as a ‘Tate model’ (3.1). In
the language of [10], we consider an object in Y4 referred to as the ’spectral divisor’12

ĈSD : a0z
5 + a2xz

3 + a3yz
2 + a4x

2z + a5xy = 0 (3.10)

which reduces to the spectral cover of the Higgs bundle in a suitable local limit [10]. To see this, note that the
section

t =
y

x
(3.11)

is meromorphic on Y4 but restricts to a holomorphic section on ĈSD. In terms of t, we can write (3.10) as

a0z
5 + a2t

2z3 + a3t
3z2 + a4t

4z + a5t
5 = 0 . (3.12)

We recover (3.9) by sending z, t → 0 while holding s = z/t fixed. In the same way that (3.9) tells us something
about the monodromic structure of the Higgs bundle, the behavior of (3.10) near z = 0 captures the monodromic
structure of the local geometry (3.4) when viewed as an ALE fibration over SGUT. Unlike (3.9), however, (3.10)
is a global object that tells us, in a sense, how this local structure fits into the full geometry of Y4. To get
an extra U(1) symmetry, the prescription of [9] and [10] is to choose the am so that ĈSD splits into multiple
components13. When we do this, it is easy to verify that the matter curves (3.8) also split into factors and that
this splitting can be directly attributed to a reduction of the monodromy group of the local geometry (3.4).

When we choose the am in this way, the spectral cover of the gauge theory description (3.9) also splits into
multiple components. This immediately signals a reduction in the Higgs bundle monodromy group because the
eigenvalues associated to sheets of one component do not mix with those of the others. This also gives us some
intuition for the appearance of extra U(1) symmetries from the gauge theory perspective because a nongeneric
monodromy group will not project out all of the U(1) factors in SU(5)⊥ ⊂ E8. Unfortunately, this special
choice of am’s also introduces a slight ambiguity into the story that was recently emphasized by the authors of
[21]. While a generic choice of spectral data bm = am|SGUT uniquely specifies φ up to gauge equivalence, this is
no longer true when the bm are sufficiently nongeneric that C becomes singular, as it does when (3.9) factors.
Given such a collection of bm’s one must therefore take more care in identifying the field configuration for φ
that accurately captures the physics near SGUT.

One particularly natural possibility that requires us to make an additional assumption but requires no new
data is to use each component of C to specify a separate Higgs bundle of smaller rank. If C = C(2)C(3) splits into
quadratic and cubic factors, for instance, they uniquely determine U(2) and U(3) bundles, respectively. Provided
we choose the spectral data so that the coefficient b1 ∼ b0trφ in the full product C = C(2)C(3) vanishes, these two

11The canonical bundle arises here because φ itself is a section of this bundle.
12More specifically, what we mean by ĈSD is the proper transform of (3.10) when the singularities of Y4 are resolved.
13The U(1)’s are most easily seen in the M-theory language, where they come from reduction of C3 along suitable (1, 1)-forms in

Y4. The (1, 1)-forms for our ’new’ U(1)’s are specified by suitable (’traceless’) combinations of the various components of ĈSD.
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bundles can be combined to yield an SU(5)⊥ bundle. Such bundles are said to be “block reconstructible” and
allow a naive extension of the eigenvalue-based analysis that we used to study the structure of generic SU(5)⊥
bundles above. We will abuse language in this paper and refer to such bundles as “spectral cover bundles” and
the resulting models as “spectral cover models” even though one could in principle write a spectral cover for
a non-Abelian Higgs bundle that does not satisfy the “block reconstructible” property14. Essentially all Higgs
bundles that have been studied in the F-theory literature are of this type. The reason is that they appear to
be the right Higgs bundles for describing the Calabi-Yau 4-folds that we know how to construct as Tate models
(3.1) with factored spectral divisor (3.10). The dictionary relating spectral data to local geometric moduli can
be used to compare the structure of matter curves and U(1) symmetries that we obtain from the local Higgs
bundle description and the 4-fold geometry (3.1). Even the chiral spectrum can be seen to match using the
formalism of [10].

Throughout the rest of this paper, we will focus on the local description based on geometries of the type (3.4)
or, equivalently, the 8-dimensional E8 gauge theory on R

3,1 × SGUT with Higgs bundle specified by a spectral
cover (3.9) and taken to be block reconstructible whenever (3.9) factors. When we talk about models with
extra U(1) symmetries in this way, we make an intrinsic assumption that our local model is embeddable into a
global one in which the global object (3.10) factors. This does not always have to be the case; as emphasized
in [8, 9, 10], our local model might indicate the presence of U(1) symmetries that are not actually present in
the global completion. This reflects the fact that local models only capture the physics of SU(5)GUT-charged
degrees of freedom and do not know about the dynamics of GUT-singlet fields, which can break our U(1)
symmetries by attaining large expectation values.

3.3 Technical Matters and Matter Curves

We now turn to some technical details for how to work with “spectral cover bundles” with a particular focus
on the structure of matter curves. We refer the reader to [6] for a more complete discussion.

In spectral cover models, the effect of the monodromy group is to effectively quotient the spectrum by
removing the distinction between fields whose SU(5)⊥ weights lie in the same orbit. As a result, we get one
10ti field for each distinct orbit of the ti’s under monodromy with a similar story for 5ti+tj ’s. This means that

we get one 10(a) for each component, C(a), of C while we get one 5
(ab)

for each pair of components, C(a) and
C(b), of C where we allow for the case a = b when C(a) has multiple sheets. We emphasize this relation between
matter curves and components of of the spectral cover because the wave functions of charged fields are properly
described not on curves inside S but rather by suitable lifts of those curves to C. In what follows, we will use
the notation Σ for matter curves inside S and Σ̃ for the corresponding lifts to C.

The curves Σ̃ are most easily described as topological classes in the total space of the canonical bundle over
S, (KS → S), since this is the ambient space in which the spectral cover is defined. Following Donagi and
Wijnholt [38], one can perform computations by compactifying this space provided that care is taken to remove
any spurious contributions that arise at ∞. This compactified space, X = P(O ⊕ KS), takes the form of a
P
1-bundle over S and comes equipped with two sections, σ and σ∞, that satisfy σ · σ∞ = 0. We will use π

to denote the projection map π : X → S. That our original space was (KS → S) is encoded in the fact that
σ∞ = σ + π∗c1 where c1 is the conventional shorthand for c1(S).

In this language, the full spectral cover C (3.9) is a divisor inside X with topological class

C = 5σ + π∗η , (3.13)

where η is a divisor class in S that we are free to choose. In mapping the spectral data to algebraic deformations
of a local Calabi-Yau 4-fold Y4, the class η becomes identified with the combination 6c1−t where −t is shorthand
for the normal bundle to S inside the base B3 of Y4.

For a generic spectral cover C, we expect 10 fields to localize whenver any of the eigenvalues of φ vanish.
Viewing the sheets as local eigenvalues, this means that the 10 matter curve should arise when C meets the

14We feel this language is justified because Higgs bundles that are not “block reconstructible” will require additional data, in
addition to that contained in the spectral cover, to specify and describe.

15



section σ
Σ̃10 = C · σ Σ10 = η − 5c1 . (3.14)

The result for Σ10 agrees with the 10 matter curve in the local Calabi-Yau 4-fold specified by the same spectral
data [38, 39, 6] under the identification η = 6c1 − t. Similarly, the 5 matter curve corresponds to a locus where
ti + tj = 0 for some pair of eigenvalues ti and tj with i 6= j. We can get this by considering the intersection
C ∩ τC where τ is the involution that sends the holomorphic section V associated to σ∞ from V → −V . This
effectively multiplies all eigenvalues by −1 so that

C ∩ τC ⊃ (ti = 0 locus) + (ti + tj = 0 locus) + (ti, tj → ∞ locus) . (3.15)

The 5 matter curve can therefore be determined by removing the 10 matter curve and component at ∞ from
C ∩ τC. The result is that

Σ̃
5
= 2σ · π∗(8c1 − 3t) + π∗() · π∗() Σ

5
= 8c1 − 3t . (3.16)

When C splits into factors, the determination of matter curves is a straightforward generalization of the
above procedure. For instance, when C = C(3)C(2) for cubic and quadratic components C(3) and C(2), the matter
curve for 10’s associated with orbits of the first three eigenvalues {t1, t2, t3} is given by

Σ̃
(3)
10

= C(3) ∩ σ . (3.17)

The determination of 5 matter curves can be a bit tricker but is nevertheless completely straightforward. In all
cases, the matter curves in S can be matched to singularity enhancements of a local Calabi-Yau 4-fold whose
algebraic complex structure deformations are specified by the same spectral data as the spectral cover Higgs
bundle.

3.4 Dudas-Palti Relations

While U(1) symmetries are important for phenomenology, F-theory GUTs typically make use of another crucial
ingredient. To break SU(5)GUT down to the Standard Model gauge group SU(3) × SU(2) × U(1)Y , it is
conventional to introduce a nontrivial internal flux FY along the U(1)Y direction. This mechanism is particularly
useful because the hypercharge flux can be used to lift any leptoquarks that might survive from SU(5)GUT as
well as the triplet partners of the Higgs doublets Hu and Hd. In order to avoid lifting the U(1)Y gauge boson,
however, this flux has to satisfy a particularly special condition: it must be dual to a curve inside S that is
trivial in the homology of B3 [3, 4]. This condition has important implications for how hypercharge flux can be
distributed among the matter curves. For instance, we immediately see that FY · Σ = 0 for any curve Σ in S
that descends from a nontrivial divisor class inside B3. Because c1 and t are both curves of this type, we have

FY · c1 = FY · t = FY · η = 0 (3.18)

and hence

∑

10 matter curves, i

∫

Σ
10

(i)

FY = (c1 − t) · FY = 0

∑

5 matter curves, a

∫

Σ
5
(a)

FY = (8c1 − 3t) · FY = 0
. (3.19)

It is well-known that these relations, along with the statement

3
∑

10 matter curves, i

Σ
(i)
10

−
∑

5 matter curves, a

Σ
(a)

5
+ 5c1 = 0 (3.20)
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combine to ensure that the resulting 4-dimensional theory does not exhibit any MSSM gauge anomalies.
In the course of building spectral cover models with U(1) symmetries, additional constraints on the distri-

bution of U(1)Y flux arose. In early work [6] it was noted that models with a spectral cover that splits into
quartic and linear factors must have U(1)Y flux on at least one 10 curve whenver U(1)Y flux threads any of
the 5 matter curves15.

More recently, Dudas and Palti [12] developed a framework for describing a large collection of spectral cover
models with multiple U(1)’s and observed an interesting pattern. Phrasing it in a language that does not
explicitly depend on spectral cover, we can write the Dudas-Palti observation as

∑

10 matter curves ,i

qi

∫

Σ
(i)
10

FY =
∑

5 matter curves ,a

qa

∫

Σ
5
(a)

FY , (3.21)

where qi/qa is the common charge of all fields on the corresponding matter curve under one of the U(1)
symmetries that has been engineered. Recently, it has been shown that this relation, like (3.19) and (3.20), is a
consequence of 4-dimensional anomaly cancellation. In the following, however, we would like to give an explicit
technical derivation of (2.1) for spectral cover models.

3.5 Deriving the Dudas-Palti Relations for Spectral Cover Models

To proceed, consider a spectral cover with Ncomp components so that (Ncomp− 1) > 0 U(1) factors are retained
from the underlying E8 symmetry. Let us introduce some notation for the Ncomp components

C =
∑

a

C(a) (3.22)

and write their topological classes in X as

[C(a)] = naσ + π∗(ξa) (3.23)

with
∑

components, a

na = 5
∑

components, a

ξa = η . (3.24)

In general, each component C(a) gives rise to a distinct 10 matter curve from

Σ̂
(a)
10

= σ · C(a) = σ · π∗(Σ
(a)
10

) (3.25)

associated to the fields 10(a). Explicit computation shows that, for our spectral cover

Σ
(a)
10

= ξa − nac1 . (3.26)

Now, let us consider the 5 matter curves involving C(a). We get one matter curve, Σ̂
(aa)

5
from C(a) ∩ τC(a)

associated to the fields 5
(aa)

. We also get additional matter curves, Σ̂
(a)

5
, from C(a) ∩ τC(i) for i 6= a associated

to the fields 5
(ai)

. Both sheets of Σ̂
(aa)

5
sit inside C(a) so its topological class will take the form

Σ̂
(aa)

5
= 2σ · π∗(Σ

(aa)

5
) + π∗(∗) · π∗(∗) . (3.27)

On the other hand, only one sheet of Σ̂
(ai)

5
sits inside C(a) (the other sits inside C(i)). The topological class of

that sheet is
Σ̂

(ai)

5
= σ · π∗(Σ

(ai)

5
) + π∗(∗) · π∗(∗) . (3.28)

15It was erroneously claimed in [6] that this property generalizes to all models with factored spectral covers. As we will explicitly
see later, this is not the case.
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With this information, let us now consider what results from the topological intersection16 of C(a) with the full
spectral cover C. In general, we have

C(a) · C =
(

10 matter curve in C(a)
)

+
(

5 matter curves in C(a)
)

+
(

component at ∞ in C(a)
)

. (3.29)

That we get a copy of the 10 matter curve in C(a) reflects the fact that this curve sits in both C(a) and C.
The component at ∞, on the other hand, represents the part of the spectral cover that lies along ∞ in the
compactification X of the canonical bundle (KS → S). As we said before, this component must be removed
when extracting matter curves as described, for instance, in [6]. The full component at ∞ for C · C is simply
3σ∞ · π∗η and the part of this that sits inside C(a) · C is given by 3σ∞ · π∗ξa

17. With this, we expect on general
grounds that

C(a) · C = σ ·



Σ
(a)
10

+ 2Σ
(aa)

5
+
∑

i6=a

Σ
(ai)

5
+ 3π∗ξa



+ π∗(∗) + π∗(∗) . (3.30)

Explicit computation, however, yields

C(a) · C = (naσ + π∗ξa) · (5σ + π∗η)

= σ · (naπ
∗η + 5π∗ξa) + π∗(∗) · π(∗)

. (3.31)

Comparing (3.30) to (3.31) and making use of (3.26), we see that our matter curves must satisfy the relation

Σ
(a)
10

= 2Σ
(aa)

5
+
∑

i6=a

Σ
(ai)

5
− na(η + 2c1) . (3.32)

Because FY is orthogonal to both η and c1 (3.19), this implies that

FY · Σ
(a)
10

= FY ·

(

2Σ
(aa)

5
+

a
∑

i=1

Σ
(ai)

5

)

. (3.33)

This is a mathematical statement of the observation by Dudas and Palti of how hypercharge flux was
distributed on the matter curves of their models [12]. We get one equation for each component C(a) of the
spectral cover with each side representing a sum over matter curves weighted by the SU(5)⊥ weight of that
component. Recalling that each U(1) is given by a traceless linear combination of these weights, though, it is
natural to ask what we get by taking the corresponding linear combinations of (3.33). Doing this, we get

∑

a

qaFY · Σ
(a)
10

=
∑

i

qiFY · Σ
(i)

5
, (3.34)

where qa (qi) denotes the U(1) charge of 10(a) (5
(i)
) fields and the sum over i now runs over all 5 matter

curves. This set of Ncomp − 1 equations is precisely the version of the DP relations that we quoted in (2.1).
Because (3.33) consisted of Ncomp equations, (3.34) seems to be missing one relation. This is obtained by simply
summing both sides over all components and leads to

FY ·
∑

a

Σ
(a)
10

= FY ·
∑

i

Σ
(i)

5
, (3.35)

which is a trivial equation; both sides vanish identically from (3.19) because
∑

a Σ
(a)
10

= c1 − t and
∑

iΣ
(i)

5
=

8c1 − 3t.

16We emphasize that this is a topological intersection. Strictly speaking, 5 curves sit inside C(a)∩τC(b) where τ is a Z2 involution
on the ambient space. Since C(b) and τC(b) are in the same topological class, we do not worry about this for topological intersections.

17A review of these computations can be found in Appendix D.
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3.6 Survey

Our general analysis of the consequences of the DP relations in Section 2 showed that generically it will be
difficult to build models that are both consistent with unification and sufficiently suppress proton decay. In this
section we give a survey of solutions to the DP relations, and analyze them with respect to

• Unification

• Proton Decay

• µ-Term

The detailed analysis is provided in Appendix E and a summary of all models follows in the next subsection. The
survey is comprehensive for all models with two U(1) symmetries that can arise from spectral cover constructions
and has been summarized in the Introduction. In particular, this restricts the integers Ni and Pi in (2.19) to be
equal. We constrain ourselves to models with at least two unbroken U(1)s as one will be broken subsequently
by the vev of the charged singlet, and we require at least another U(1) that is not affected by the singlet vev
and can protect against proton decay operators. Note that the U(1) symmetries are realized in terms of the
spectral cover C by requiring a factorization into n+ 1 factors:

U(1)n requires C =
n+1
∏

i=1

C(i) . (3.36)

Furthermore, when realizing these models, the only constraints on fluxes that we impose are the Dudas-Palti
relations, which will restrict the hypercharge flux FY . There may be further restrictions on other fluxes, once
they are realized in a full-fledged global model, however, we do not impose such restrictions. In this sense, the
class of models in the survey may get even further restricted.

We presented the summary table already in Section 1.2. The salient features of the models were as follows.
Labeling the exotic spectrum as in Table 1.3 by the integers K,L,M,N , we show in Appendix E that the only
choices are as follows:

Models Exotic Spectra Dim 5
1, 2, 9 N − L = 1 XQ3L/Λ2

3, 4 N − L = 2 K ≥ M X2Q3L/Λ3

5, 6, 7, 8 L = 2 M = N = 0 X† 2Q3L/Λ4

10 N − L = 1 K − L = M XQ3L/Λ2

(3.37)

In the appendices A and E we provide a detailed description of each of these models, including the U(1) charge
assignments as well as the detailed exotic content. The last column in this table summarizes which dimension
5 proton decay operators are still present in these models, where Λ is the high-scale relevant for these models.

The survey is performed systematically by first picking one of the two spectral cover factorizations, 2+ 2+ 1

or 3+ 1+ 1. For each factorization, there are several embeddings of matter and Higgs curves into the spectral
cover, and for each such matter curve assignment, there are flux and hypercharge flux choices. We systematically
analyze all such models, by first fixing a singlet with specific charges λi − λj , and then surveying which models
allow for all exotics to be lifted by veving this singlet. For each such singlet and matter curve assignment we
then present the most general flux and hypercharge flux assignment that is a solution to the DP relations (2.1)
and furthermore gives rise to a three-generation model.

Note that in models 5,6,7 and 8 the singlet’s vev will give rise to a large µ-term due to the coupling

1

Λ

∫

d2θX2HuHd,

and so these models are clearly not good for particle phenomenology. Meanwhile, models 1,2,9 and 10 likely have
too large dimension 5 operators that are dangerous for proton decay. This leaves only models 3 and 4 deserving
of further investigation. Namely, computing the dynamical vev of X will answer the question if dimension 5
operators in models 3 and 4 are sufficiently suppressed.
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A List of Models

In this Appendix, we provide a list of the spectral cover models from our survey that could realize a U(1)χ
symmetry, a U(1)PQ symmetry, and lift all charged fields except for precisely the matter content of the MSSM
by giving an expectation value to exactly one SU(5)GUT singlet field. The models are of two basic types
depending on the factorization structure of the spectral cover. In all cases, we have three factors and we label
them as

C = C(a)C(d)C(e) (A.1)

For the two factorization structures, these labels correspond to factors of the following degrees

Factorization Structure Deg of C(a) Deg of C(d) Deg of C(e)

2 + 2 + 1 2 2 1
3 + 1 + 1 3 1 1

(A.2)

The description of each model begins by identifying the singlet X whose expectation value will lift the non-
MSSM exotics. More specifically we list the SU(5)⊥ weights. We label 10s according to their corresponding

component so that 10(x) localizes on the matter curve C(x) · σ and 5
(xy)

localizes on a matter curve contained

in C(x) ∩ τC(y). The SU(5)⊥ weight of 10(x) is denoted λx while that of 5
(xy)

is denoted λx + λy. Singlet
weights are of the form λi − λj for i, j labeling some components of C. Note that singlets with weights λi − λj

and λj − λi are conjugates of one another. We will only assume an expectation value to one singlet field; its
conjugate will not obtain a nonzero expectation value.

For each matter curve, we will provide the number of units of bulk G-flux, labeled G, and hypercharge flux,
labeled FY , and then list the net chirality of the different zero modes that localize there. The fluxes, and hence
the spectra, will typically be parametrized by a number of integers whose ranges are specified explicitly. We
next identify the U(1) subgroups of SU(5)⊥ that are preserved in a notation that is hopefully clear from the
context. We write explicitly the U(1) charges of all fields and present the operator that can generate dimension
5 proton decay when the singlet X picks up a nonzero expectation value. Finally, we summarize the exotic
spectrum using the M,N,K,L parametrization of (1.3), which we repeat here for clarity

SU(5) origin Exotic Multiplet Degeneracy
(1,1)+1 ⊕ (1,1)−1 M +N

10⊕ 10 (3,2)+1/6 ⊕ (3,2)−1/6 M
(3,1)−2/3 ⊕ (3,1)+2/3 M −N

5⊕ 5 (3,1)+1/3 ⊕ (3,1)−1/3 K
(1,2)−1/2 ⊕ (1,2)+1/2 K − L

5H (3,1)1/3 0
(1,2)−1/2 −1

5H (3,1)+1/3 0
(1,2)−1/2 1

(A.3)

For this parametrization to make sense, we must have

M ≥ |N | K ≥ 0 K − L ≥ 0 (A.4)

We now move on to the list of ’models’.

A.1 Model 1

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λd − λa (A.5)

21



Matter Curve G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ P + 1 3 + G̃+ (P + 1) 3 + G̃ 3 + G̃− (P + 1)

10(d) −G̃ −(P + 1) −G̃− (P + 1) −G̃ −G̃+ (P + 1)

10(e) 0 0 0 0 0

(A.6)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H 0 1 0 −1

5
(ad)

↔ 5H Gad P − 1 Gad (Gad − P ) + 1

5
(dd)

−Gad −P −Gad −(Gad − P )

5
(ae)

0 0 0 0

5
(de)

↔ 5M 3 0 3 3

(A.7)

where
Gad ≥ 0 (Gad − P ) ≥ 0 G̃ ≥ |P + 1| (A.8)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.9)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 −1 −2 0 −2 2

(A.10)

1

Λ2
XQ3L is allowed (A.11)

Exotic Spectrum

M N K L

G̃ P + 1 Gad P
(A.12)
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A.2 Model 2

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λd − λa (A.13)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ P +Gaa + 1 3 + G̃+ (P +Gaa + 1) 3 + G̃ 3 + G̃− (P +Gaa + 1)

10(d) −G̃ −(P +Gaa + 1) −G̃− (P +Gaa + 1) −G̃ −G̃+ (P +Gaa + 1)

10(e) 0 0 0 0 0
(A.14)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H Gaa 1 +Gaa Gaa −1

5
(ad)

↔ 5H −Gaa P − 1−Gaa −Gaa 1− P

5
(dd)

0 −P 0 P

5
(ae)

0 0 0 0

5
(de)

↔ 5M 3 0 3 3

(A.15)

where
Gaa ≥ 0 (−P ) ≥ 0 G̃ ≥ |P +Gaa + 1| (A.16)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.17)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 −1 −2 0 −2 2

(A.18)

1

Λ2
XQ3L is allowed (A.19)

Exotic Spectrum

M N K L

G̃ P +Gaa + 1 Gaa Gaa + P
(A.20)
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A.3 Model 3

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λd − λa (A.21)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ P + 1 3 + G̃+ (P + 1) 3 + G̃ 3 + G̃− (P + 1)

10(d) −G̃ −(P + 1) −G̃− (P + 1) −G̃ −G̃+ (P + 1)

10(e) 0 0 0 0 0

(A.22)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H 0 1 0 −1

5
(ad)

Gad Gad Gad 0

5
(dd)

↔ 5H −Gad −Gad − 1 −Gad 1

5
(ae)

↔ 5M 3 + Ĝ P −Gad − 1 3 + Ĝ 3 + Ĝ+Gad + 1− P

5
(de)

−Ĝ −P +Gad + 1 −Ĝ −Ĝ−Gad − 1 + P

(A.23)

where
Gad ≥ 0 Ĝ ≥ 0 Ĝ+Gad + 1− P ≥ 0 G̃ ≥ |P + 1| (A.24)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.25)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 −2 4

(A.26)

1

Λ3
X2Q3L is allowed (A.27)

Exotic Spectrum

M N K L

G̃ P + 1 Gad + Ĝ P − 1
(A.28)
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A.4 Model 4

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λd − λa (A.29)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ Gaa + P + 1 3 + G̃+ (Gaa + P + 1) 3 + G̃ 3 + G̃− (Gaa + P + 1)

10(d) −G̃ −(Gaa + P + 1) −G̃− (Gaa + P + 1) −G̃ −G̃+ (Gaa + P + 1

10(e) 0 0 0 0 0
(A.30)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H Gaa Gaa + 1 Gaa −1

5
(ad)

−Gaa −Gaa −Gaa 0

5
(dd)

↔ 5H 0 −1 0 1

5
(ae)

↔ 5M 3 + Ĝ P − 1 3 + Ĝ 3 + Ĝ− (P − 1)

5
(de)

−Ĝ −(P − 1) −Ĝ −Ĝ+ (P − 1)

(A.31)

where
Gaa ≥ 0 Ĝ ≥ 0 Ĝ− (P − 1) ≥ 0 G̃ ≥ |Gaa + P + 1| (A.32)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.33)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 −2 4

(A.34)

1

Λ3
X2Q3L is allowed (A.35)

Exotic Spectrum

M N K L

G̃ Gaa + P + 1 Gaa + Ĝ Gaa + P − 1
(A.36)
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A.5 Model 5

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λa − λd (A.37)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(A.38)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

−Gad −1 −Gad −Gad + 1

5
(ad)

Gad 2 Gad Gad − 2

5
(dd)

0 −1 0 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(A.39)

where
Gad ≥ 2 (A.40)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.41)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 2 4

(A.42)

1

Λ4
X† 2Q3L is allowed (A.43)

Exotic Spectrum

M N K L
0 0 Gad 2

(A.44)
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A.6 Model 6

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λa − λd (A.45)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(A.46)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

−Gad −Gad + 1 −Gad −1

5
(ad)

Gad 2Gad − 2 Gad 2−Gad

5
(dd)

0 −Gad + 1 0 Gad − 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(A.47)

where
Gad ≥ 2 (A.48)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.49)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 2 4

(A.50)

1

Λ4
X† 2Q3L is allowed (A.51)

Exotic Spectrum

M N K L
0 0 Gad 2

(A.52)
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A.7 Model 7

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λa − λd (A.53)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(A.54)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 Gdd − 1 0 1−Gdd

5
(ad)

−Gdd 2(1−Gdd) −Gdd −2 +Gdd

5
(dd)

Gdd Gdd − 1 Gdd 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(A.55)

where
Gdd ≥ 2 (A.56)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.57)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 2 4

(A.58)

1

Λ4
X† 2Q3L is allowed (A.59)

Exotic Spectrum

M N K L
0 0 Gdd 2

(A.60)
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A.8 Model 8

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λa − λd (A.61)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(A.62)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 1 0 −1

5
(ad)

−Gdd −2 −Gdd −Gdd + 2

5
(dd)

Gdd 1 Gdd Gdd − 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(A.63)

where
Gdd ≥ 2 (A.64)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0













(A.65)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 2 4

(A.66)

1

Λ4
X† 2Q3L is allowed (A.67)

Exotic Spectrum

M N K L
0 0 Gdd 2

(A.68)
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A.9 Model 9

This is a 2+2+1 model with quadratic components C(a) and C(d) and linear component C(e).

Singlet weight is λe − λa (A.69)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ Gaa + P + 1 3 + G̃+ (Gaa + P + 1) 3 + G̃ 3 + G̃− (Gaa + P + 1)

10(d) 0 0 0 0 0

10(e) −G̃ −(Gaa + P + 1) −G̃− (Gaa + P + 1) −G̃ −G̃+ (Gaa + P + 1)
(A.70)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H Gaa Gaa + 1 Gaa −1

5
(ad)

Gad P Gad Gad − P

5
(dd)

↔ 5M 3 0 3 3

5
(ae)

↔ 5H −Gaa −Gaa − 1 −Gaa 1

5
(de)

−Gad −P −Gad −(Gad − P )

(A.71)

where
Gaa ≥ 0 Gad ≥ 0 (Gad − P ) ≥ 0 G̃ ≥ |Gaa + P + 1| (A.72)

U(1)1 ∼













−2 0 0 0 0
0 −2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 −2













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













(A.73)

Field 10M 5M Hu Hd X Q3L
U(1)1 −2 6 4 −4 0 0
U(1)2 1 2 −2 −3 −5 5

(A.74)

1

Λ2
XQ3L is allowed (A.75)

Exotic Spectrum

M N K L

G̃ Gaa + P + 1 Gaa +Gad Gaa + P
(A.76)
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A.10 Model 10

This is a 3+1+1 model with cubic component C(a) and linear components C(d) and C(e).

Singlet weight is λd − λa (A.77)

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) ↔ 10M 3 + G̃ Gaa + 1 3 + G̃+ (Gaa + 1) 3 + G̃ 3 + G̃− (Gaa + 1)

10(d) −G̃ −(Gaa + 1) −G̃− (Gaa + 1) −G̃ −G̃+ (Gaa + 1)

10(e) 0 0 0 0 0

(A.78)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

↔ 5H Gaa Gaa + 1 Gaa −1

5
(ad)

↔ 5H −Gaa −Gaa − 1 −Gaa 1

5
(ae)

↔ 5M 3 + Ĝ 0 3 + Ĝ 3 + Ĝ

5
(de)

−Ĝ 0 −Ĝ −Ĝ

(A.79)

where
Gaa ≥ 0 Ĝ ≥ 0 G̃ ≥ |Gaa + 1| (A.80)

U(1)1 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4













U(1)2 ∼













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0













(A.81)

Field 10M 5M Hu Hd X Q3L
U(1)1 1 −3 −2 2 0 0
U(1)2 1 1 −2 −2 −4 4

(A.82)

1

Λ2
XQ3L is allowed (A.83)

Exotic Spectrum

M N K L

G̃ Gaa + 1 Gaa + Ĝ Gaa
(A.84)

B Exotic Spectra

In this appendix, we use the Dudas-Palti relations (2.1) to derive the constraint (2.20) on the exotic spectrum.
What makes this somewhat tricky is that we are not interested in net chiralities of exotics but rather the number
of vector-like pairs that we get by summing the exotic spectra from different matter curves.

Consider, for instance, the set of exotics that localize on a 5 matter curve, Σ
(0)

5
. The chiral spectrum is

determined by two integers, k0 and ℓ0, that encode the bulk flux and “hypercharge flux” as in (2.13) and (2.14).
Because ki and ℓj carry information about chirality, though, we cannot determine the net spectrum by simply
summing them over all 5 matter curves. This sum will yield the net chirality of exotics, which vanishes, rather
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than the net number of doublet or triplet pairs. To get information about the net spectrum itself, we need to
compute weighted sums

∑

5 matter curves, i

qi

(

n(3,1)+1/3
− n(3,1)−1/3

)

and
∑

5 matter curves, i

qi

(

n(1,2)−1/2
− n(1,2)+1/2

)

, (B.1)

where qi is the U(1) charge associated to the 5 fields on a given 5 matter curve, Σ
5,i. The U(1) charge of

doublets and triplets from the 5 is qa while the U(1) charge of doublets and triplets from the 5 is −qa. This
means that the above computes the net number of doublets and triplets weighted not by their chirality but
rather by their U(1) charge

∑

5 matter curves, i

qi

(

n(3,1)+1/3
− n(3,1)−1/3

)

=
∑

Triplets of
charge Qp

Qpntrips,p

∑

5 matter curves, i

qi

(

n(1,2)−1/2
− n(1,2)+1/2

)

=
∑

Doublets of
charge Qp

Qpndoubs,p

(B.2)

where ndoubs,p and ntrips,p count the number of doublets or triplets irrespective of their chiralities. Let us
emphasize this by writing

ndoubs,p ≥ 0 ntrips,p ≥ 0 . (B.3)

Now, using (2.14) we recognize the difference of the right-hand sides in (B.2) as nothing other than the right-
hand-side of the Dudas-Palti relations (2.1)

∑

Triplet
charges Qp

Qpntrips,p −
∑

Doublet
charges Qq

Qqndoubs,q =
∑

5 matter curves, i

qi

[(

n(3,1)+1/3
− n(3,1)−1/3

)

−
(

n(1,2)−1/2
− n(1,2)+1/2

)]

=
∑

5 matter curves, i

qi

∫

Σ
(i)

5

FY

(B.4)

We can use similar reasoning to relate the left-hand-side of the Dudas-Palti relations (2.1) to the weighted spectra
of exotics that arise from 10 matter curves. To write the result, we use n(1,1),p to denote the net number of
(1,1)+1’s and (1,1)−1’s of charge Qp and n(3,2),p and n(3,1),p for the similar numbers of (3,2)+1/6’s/(3,2)−1/6’s
and (3,1)−2/3/(3,1)+2/3’s, respectively. With this notation, we find two relations

∑

(1,1) or cc
charges Qp

Qpn(1,1),p −
∑

(3,2) or cc
charges, Qq

Qqn(3,2),p =
∑

10 matter curves, a

qa

[

(

n(1,1)+1
− n(1,1)−1

)

−
(

n(3,2)+1/6
− n(3,2)−1/6

)]

=
∑

10 matter curves,a

qa

∫

Σ
(a)
10

FY

(B.5)

∑

(3,2) or cc
charges, Qp

Qpn(3,2),p −
∑

(3,1) or cc
charges, Qq

Qqn(3,1),q =
∑

10 matter curves,a

qa

[(

n(3,2)+1/6
− n(3,2)−1/6

)

−
(

n(3,1)−2/3
− n(3,1)+2/3

)]

=
∑

10 matter curves,a

qa

∫

Σ
(a)
10

FY

(B.6)
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Note that the right-hand-sides of both (B.5) and (B.6) are equivalent because the spectrum on each 10 matter
curve in (2.13) is controlled by two integers rather than three. In the end, we conclude that the Dudas-Palti
relations have the following direct effect on the non-GUT part of the spectrum

∑

Triplet
charges Qp

Qpntrips,p −
∑

Doublet
charges Qq

Qqndoubs,q =
∑

(1,1) or cc
charges Qp

Qpn(1,1),p −
∑

(3,2) or cc
charges, Qq

Qqn(3,2),p

=
∑

(3,2) or cc
charges, Qp

Qpn(3,2),p −
∑

(3,1) or cc
charges, Qq

Qqn(3,1),q

(B.7)

Equation (2.20) is nothing more than a suggestive way of writing these relations. To derive it, let us assume as
in section 2.3 that that the exotics get their masses from a cubic superpotential of the form

W0 ∼
∑

i

Xi





∑

j

fexotic,ijf exotic,ij



 (B.8)

in which it is assumed that each exotic multiplet appears exactly once. As discussed in section 2.3, this
superpotential must be a subset of the full superpotential since we assume all exotics are lifted from the
spectrum. Restricting to the couplings in W0 allows us to unambiguously split the exotics into groups according
to the singlets that they couple to18. For each singlet Xi in (B.8), then, we parametrize the set of vector-like
exotics that it couples to in (B.8) as in (2.19)

n(1,1)+1
+ n(1,1)−1

= Mi + Pi

n(3,2)−1/6
+ n(3,2)+1/6

= Mi

n(3,1)−2/3
+ n(3,1)+2/3

= Mi −Ni

n(3,1)+1/3
+ n(3,1)−1/3

= Ki

n(1,2)−1/2
+ n(1,2)+1/2

= Ki − Li

(B.9)

We can now rewrite (B.7) using the fact that the U(1) charges of any two fields that couple to Xi must sum to
minus the charge of Xi, −qXi . Remembering to add in the contribution from Hu and Hd, which are not lifted
by assumption, we find that (B.7) becomes

−qHu − qHd
−

∑

Singlets, i

qXiLi = −
∑

Singlets, i

qXiPi

= −
∑

Singlets, i

qXiNi

(B.10)

which is nothing other than (2.20).

C Engineering Solutions to the Dudas-Palti Relations

Once we have arrived at the condition (3.34), it is natural to ask if it represents the only constraint on the
distribution of hypercharge flux in spectral cover models. There are, of course, two additional conditions that
we encountered earlier but repeat again here for clarity

FY ·
∑

a

Σ
(a)
10

= FY ·
∑

i

Σ
(i)

5
(C.1)

18Of course there may not be a unique way to choose W0 in the end. We assume in this Appendix that a specific choice has been
made.
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While (3.34) reflects the cancellation of mixed MSSM and U(1) anomalies [14], (C.1) reflects the cancellation
of pure MSSM anomalies that involve U(1)Y . We would like to claim that (3.34) and (C.1), which can both be
understood as a consequence of 4-dimensional anomaly cancellation, represent the only nontrivial restrictions
on the distribution of hypercharge flux in spectral cover models. More specifically, we will present “in principle”
constructions of spectral cover models with up to 2 U(1) symmetries that realize the most generic hypercharge
flux distributions allowed by (3.34) and (C.1). Such constructions are only models “in principle” because we
will be forced to introduce a variety of new sections; one must always check that these sections actually exist for
a given choice of SGUT and normal bundle. In some cases, we will also have to make some assumptions about
the vanishing locus of pairs of sections in order to avoid singularities that are not of Kodaira type. Further
restrictions that extend (3.34) and (C.1) may arise if we make special requirements of SGUT, for instance if we
insist that it be a del Pezzo surface, or the normal bundle of SGUT inside B3. We view these as “model-building”
restrictions, however, as opposed to physical obstructions like (3.34) and (C.1).

We now proceed to construct models with one and two U(1) symmetries. The models with two U(1)
symmetries represent generalizations of the constructions in [12].

C.1 Models with one U(1) Symmetry

We begin by considering models that engineer a single U(1) symmetry. Many explicit models of this type have
been constructed in the literature in both the local and global settings [29, 6, 7, 11, 30, 31, 33, 34, 36]. The
spectral cover must factor into two components in order to realize a single U(1) symmetry. These are two
possibilities for how this occurs and we treat each one in turn.

C.1.1 4+1 Factorization

We begin with a factorization into a quartic and linear piece

C4+1 = C(4)C(1) =
(

a4V
4 + a3V

3U + a2V
2U2 + a1V U3 + a0U

4
)

(e1V + e0U) . (C.2)

In general, there will be two 10 matter curves and two 5 matter curves in such a model. The most general
distribution of hypercharge flux consistent with (3.34) and (C.1) is easy to determine and is described below

Matter Curve Origin FY

10(4) C(4) −N

10(1) C(1) N

5
(44)

C(4) − C(4) −N

5
(41)

C(4) − C(1) N

(C.3)

We now describe a spectral cover construction capable of yielding precisely this configuration of hypercharge
flux. In addition to choosing the sections am and en, we also have one choice of bundle that can be thought
of as choosing the topological class of say C(1). More specifically, we take the am and en to be sections of the
bundles described below

Section Bundle
am η − (m+ 1)c1 − ξ
en (1− n)c1 + ξ

(C.4)

As we saw in (3.18), the hypercharge flux is orthogonal to both η and c1 but it need not be orthogonal to ξ. In
principle, then, we can have

FY · ξ = N (C.5)

for any integer N . It is in this way that we can distribute hypercharge flux along the matter curves. To actually
construct a model, however, we must first solve the traceless condition b1 = 0 which, in this case, amounts to

a1e0 + a0e1 = 0 . (C.6)
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To avoid a non-Kodaira type singularity, we are actually forced to assume that e1 and e0 do not simultaneously
vanish anywhere

[e0] · [e1] = 0 (C.7)

so e1 must divide a1 and, correspondingly, e0 must divide a0. We are therefore forced to introduce a new section
α in terms of which

a0 = αe0 a1 = −αe1 . (C.8)

We see that α must be a section of η − 2c1 − 2ξ.
With this, we now turn to the structure of our four matter curves

Matter Curve Origin Equation Class FY

10(4) C(4) a4 η − 5c1 − ξ −N

10(1) C(1) e1 ξ N

5
(44)

C(4) − C(4) a23e0 + a2a3e1 + a4e
2
1α 2η − 7c1 − ξ −N

5
(41)

C(4) − C(1) a4e
2
0 + a3e0e1 + a2e

2
1 η − 3c1 + ξ N

(C.9)

This gives an explicit realization of the hypercharge flux distribution in (C.3). To make everything completely
explicit, we now list all of the sections that are needed to build the model along with the corresponding bundles

Section Bundle
am η − (m+ 1)c1 − ξ
en (1− n)c1 + ξ
α η − 2c1 − 2ξ

(C.10)

where m runs from 0 to 4 and n from 0 to 1. To obtain an actual model, we must specify a complex surface
SGUT along with bundles η and ξ subject to the assumption that holomorphic sections in (C.10) all exist. By
this, we mean that the bundles appearing in (C.10) must all admit honest holomorphic sections. To avoid
non-Kodaira type singularities, we must also require that

[e0] · [e1] = 0 (C.11)

or equivalently
c1(̇c1 + ξ) = 0 (C.12)

C.1.2 3+2 Factorization

We now consider a factorization of C into cubic and quadratic pieces

C3+2 = C(3)C(2) =
(

a3V
3 + a2V

2U + a1V U2 + a0U
3
) (

e2V
2 + e1V U + e0U

2
)

. (C.13)

Here, we expect to find two 10 matter curves and three 5 matter curves. The most general distribution of
hypercharge flux consistent with (3.34) and (C.1) is given by

Matter Curve Origin FY

10(3) C(3) −M −N

10(2) C(2) M +N

5
(33)

C(3) − C(3) −M

5
(32)

C(3) − C(2) M −N

5
(22)

C(2) − C(2) N

(C.14)

At first glance, it seems difficult to realize a two-parameter family of hypercharge flux distributions because
it seems that we only have the freedom to introduce one new bundle, ξ, which determines the relative class
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between the factors C(3) and C(2). A closer glance at the traceless condition, however, will suggest additional
freedom. This condition takes a similar form to the previous example

a1e0 + a0e1 = 0 , (C.15)

but here it is no longer necessary to require that e0 and e1 have no common zeroes. In particular, this means
that e1 need not divide a1. We are free to take e1 to be a product of the form e1 = AB where A divides e0 and
B divides a1, leading to the solution

e0 = ẽ0A

e1 = AB

a0 = −ã1ẽ0

a1 = ã1B

(C.16)

In choosing a bundle for A we have introduced a new parameter into the game. Let us make everything explicit
by writing all sections and their corresponding bundles

Section Bundle
a3 η − 5c1 − ξA − ξB
a2 η − 4c1 − ξA − ξB
ã1 η − 3c1 − ξA − 2ξB
e2 ξA + ξB
ẽ0 c1 + ξB
A c1 + ξA
B ξB

(C.17)

The structure of our five matter curves is now easily determined

Matter Curve Origin Equation Class FY

10(3) C(3) a3 η − 5c1 − ξA − ξB −M −N

10(2) C(2) e2 ξA + ξB M +N

5
(33)

C(3) − C(3) a2B + a3ẽ0 η − 4c1 − ξA −M

5
(32)

C(3) − C(2) a3A
3(a2B + a3ẽ0) +A2e2(a

2
2 + ã1a3B)

+2ã1a2Ae
2
2 + ã21e

3
2 2η − 6c1 + ξA − ξB M −N

5
(22)

C(2) − C(2) B ξB N
(C.18)

where we defined
M = FY · ξA N = FY · ξB . (C.19)

The entire 2-parameter family of solutions to (3.34) and (C.1) has therefore emerged. Note that this family
includes solutions with M + N = 0 that have no hypercharge flux on any 10 matter curves despite having
hypercharge flux threading some 5 matter curves. This possibility was missed in [6] but arises here for a
relatively simple reason. In [6], it was assumed that only the relative class of the spectral cover components
could affect the structure of matter curves. Here, we see another way to adjust the relative classes of matter

curves. Nominally, the 5
(22)

matter curve would be given by e1 = 0 but, when e0 and e1 have A as a common
factor, the A = 0 part of that curve moves off to ∞. A corresponding factor then moves in ’from∞’ to contribute

to 5
(32)19. Through this type of phenomenon the 5 matter curves are able to depend on combinations of ξA

and ξB that are different from the sum ξA + ξB that enters into the 10 matter curves.

19In other words, different ways of solving the traceless condition can allow us to adjust how the component at ∞ of C(2) ·τ(C(2)+
C(3)) is distributed between C(2) · τC(2) and C(2) ∩ τC(3). Note that the net ’component at ∞’ for C(2) ∩ τ(C(2) + C(3)) cannot be
similarly adjusted.
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As usual, to build explicit models we will need to choose SGUT, η, ξA, and ξB subject to some assumptions.
In this case, all of the holomorphic sections in (C.17) must exist and, further, we must have that

ξA · (ξA + ξB) = 0 (C.20)

in order to avoid the non-Kodaira type singularities that arise wherever A = e2 = 0.

C.2 Models with two U(1) Symmetries

We now turn to models that exhibit 2 U(1) symmetries. We again have two possibilities for the factorization
structure that we consider in turn.

C.2.1 2+2+1

We begin with a factorization into two quadratic pieces and a linear piece

C2+2+1 = C(2)C(2′)C(1) =
(

a2V
2 + a1V U + a0U

2
) (

d2V
2 + d1V U + d0U

2
)

(e1V + e0U) . (C.21)

Here, we expect to find 3 10 matter curves and 5 5 matter curves. The most general distribution of hypercharge
flux consistent with (3.34) and (C.1) is given by

Matter Curve Origin FY

10(2) C(2) −M −N

10(2′) C(2′) M

10(1) C(1) N

5
(22)

C(2) − C(2) −M −N − P

5
(2′ 2′)

C(2′) − C(2′) M −Q

5
(22′)

C(2) − C(2′ P +Q

5
(21)

C(2) − C(1) M +N + P −Q

5
(2′ 1)

C(2′) − C(1) −M − P +Q

(C.22)

For models with multiple U(1) symmetries, the traceless condition becomes significantly more complicated.
Here, it takes the form

b1 = a1d0e0 + d1a0e0 + e1a0d0 = 0 . (C.23)

One simple way to get a solution is to set

d0 = a0e0 d1 = −a1e0 − a0e1 . (C.24)

We don’t have much freedom to choose new bundles with this, though, so we take advantage of the scaling
properties of (C.23) to construct from this another solution

a0 = νã0

d0 = νã0ẽ0

e0 = νẽ0

d1 = −a1ẽ0 − e1ã0

(C.25)

It is easy to see that we will have two additional choices of bundle with this solution. To get a few more, let us
use the trick that we learned from the 3+2 factorization in section C.1.2. There, we learned that we can adjust
5 matter curves by splitting them into components and using our solution to the traceless condition to move

various components to and from ∞. In this case, the matter curves 5
(22)

and 5
(2′ 2′)

are given by the equations
a1 = 0 and d1 = 0, respectively. We can move a component off to ∞ by allowing a1 and a0 (respectively d1
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and d0) to have a common factor. This will introduce a topological tuning because this factor cannot have any
simultaneous zeroes with a2 (d2) but this is something we will have to live with. From the scaling of (C.25),
we can start with any solution and obtain a new one by simultaneously rescaling both a1 and a0 (respectively
d1 and d0). We therefore arrive at the following solution

a0 = νã0δa

a1 = ã1δa

d0 = νã0ẽ0δd

d1 = −δd (ã1ẽ0 + e1ã0)

e0 = νẽ0

(C.26)

It is now a simple matter to write out the sections

Section Bundle
a2 η − 5c1 − ξ1 − ξ2
ã1 η − 4c1 − ξ1 − ξ2 −∆a

ã0 c1 −∆d + ξ1 − ξ2
δa ∆a

d2 ξ1
δd ∆d

e1 ξ2
ẽ0 5c1 + 2ξ1 + ξ2 +∆a −∆d − η
ν η − 4c1 − 2ξ1 +∆d −∆a

(C.27)

and work out the matter curves

Matter Curve Origin Equation Class FY

10(2) C(2) a2 η − 5c1 − ξ1 − ξ2 −M −N

10(2′) C(2′) d2 ξ1 M

10(1) C(1) e1 ξ2 N

5
(22)

C(2) − C(2) ã1 η − 4c1 − ξ1 − ξ2 −∆a −M −N − P

5
(2′ 2′)

C(2′) − C(2′) (ã1ẽ0 + e1ã0) c1 −∆d + ξ1 M −Q

5
(2 2′)

C(2) − C(2′) δaδde1(d2ã1δa − ã1a2δdẽ0 − ã0a2δde1)
−(d2δa − a2δdẽ0)

2ν η − 4c1 +∆a +∆d P +Q

5
(21)

C(2) − C(1) a2ẽ
2
0ν + δae1(ã1ẽ0 + ã0e1) c1 + ξ1 + ξ2 +∆a −∆d M +N + P −Q

5
(2′ 1)

C(2′) − C(1) d2ν − ã1δde1 η − 4c1 − ξ1 −∆a +∆d −M − P +Q
(C.28)

where

M = FY · ξ1

N = FY · ξ2

P = FY ·∆a

Q = FY ·∆d

(C.29)

We have therefore managed to realize the entire 4-parameter family of solutions to (3.34) and (C.1) described
in (C.22). As usual, however, any explicit model must satisfy a few assumptions. In addition to requiring all of
the holomorphic sections in (C.27) to exist, we also need to ensure that

[ν] · [e1] = 0 [ẽ0] · [e1] = 0 [a2] · [δa] = 0 [d2] · [δd] = 0 (C.30)
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in order to avoid non-Kodaira singularities. Equivalently, we need

0 = (η − 4c1 − 2ξ1 +∆d −∆a) · ξ2

= (5c1 + 2ξ1 + ξ2 +∆a −∆d − η) · ξ2

= (η − 5c1 − ξ1 − ξ2) ·∆a

= ξ1 ·∆2 = 0

(C.31)

Let us give an example of 2+2+1 factorization based on the 3-fold constructed in [20]. In this case
SGUT = dP2 and t = h. We can choose

ξ1 = h− e1, ξ2 = e1 . (C.32)

Then, we obtain solutions
∆a = ma(h− e1 − e2) + nae1 + (ma − na)e2

∆d = (ma − na)(h− e1 − e2) + pde2
(C.33)

Requiring that all bundles admit holomorhic sections we find constraints:

0 ≤ ma ≤ 4, 0 ≤ na ≤ 2, 0 ≤ ma − na ≤ 2

0 ≤ pd ≤ 3, pd ≤ 1 +ma − na, ma − na ≤ 1 + pd
(C.34)

It is easy to find solutions of these constraints, for example:

pd = 0, ma = na + 1, na = 0, 1, 2 . (C.35)

C.2.2 3+1+1

Finally, let us turn to a factorization with a cubic piece and two linear pieces

C3+1+1 = C(3)C(1)C(1′) =
(

a3V
3 + a2V

2U + a1V U2 + a0U
3
)

(d1V + d0U) (e1V + e0U) . (C.36)

We expect to find 3 10 matter curves and 4 5 matter curves. The most general distribution of hypercharge flux
consistent with (3.34) and (C.1) is given by

Matter Curve Origin FY

10(3) C(3) −M −N

10(1) C(1) M

10(1′) C(1′) N

5
(33)

C(3) − C(3) −2(M +N)− P

5
(31)

C(3) − C(1) 2M +N + P

5
(31′)

C(3) − C(1′) M + 2N + P

5
(11′)

C(1) − C(1′) −M −N − P

(C.37)

The traceless constraint takes essentially the same form as the 2+2+1 example

b1 = a1d0e0 + d1a0e0 + e1a0d0 = 0 , (C.38)

and we can start with a similar solution

a0 = d0e0 a1 = −d1e0 − d0e1 . (C.39)
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We can now follow a similar procedure to the 2+2+1 example to construct more general solutions from this. In
so doing, we have to be a bit careful because d1 and d0 cannot have simultaneous zeroes and similar for e1 and
e0. To proceed, we first scale a0, d0, and e0 to get a solution of the form

d0 = νd̃0

e0 = νẽ0

a0 = d̃0ẽ0ν

a1 = −(d1ẽ0 + d̃0e1)

(C.40)

Now, we scale a0 and a1 to get the further solution

d0 = νd̃0

e0 = νẽ0

a0 = δad̃0ẽ0ν

a1 = −δa(d1ẽ0 + d̃0e1)

(C.41)

It is easy to write out the sections

Section Bundle
a3 η − 5c1 − ξ1 − ξ2
a2 η − 4c1 − ξ1 − ξ2
d1 ξ1
d̃0 η − 3c1 − ξ1 − 2ξ2 −∆a

e1 ξ2
ẽ0 η − 3c1 − 2ξ1 − ξ2 −∆a

ν 4c1 + 2ξ1 + 2ξ2 +∆a − η
δa ∆a

(C.42)

and work out the matter curves

Matter Curve Origin Equation Class FY

10(3) C(3) a3 η − 5c1 − ξ1 − ξ2 −M −N

10(1) C(1) d1 ξ1 M

10(1′) C(1′) e1 ξ2 N

5
(33)

C(3) − C(3) a2d1ẽ0 + a2d̃0e1 + a3d̃0ẽ0ν 2η − 7c1 − 2ξ1 − 2ξ2 −∆a −2(M +N)− P

5
(31)

C(3) − C(1) d21δae1 − a2d1ν − a3d̃0ν
2 2ξ1 + ξ2 +∆a 2M +N + P

5
(31′)

C(3) − C(1′) d1δae
2
1 − ν(a2e1 + a3ẽ0ν) ξ1 + 2ξ2 +∆a M + 2N + P

5
(1 1′)

C(1) − C(1′) d1ẽ0 + d̃0e1 η − 3c1 − ξ1 − ξ2 −∆a −M −N − P
(C.43)

where

M = FY · ξ1

N = FY · ξ2

P = FY ·∆a

(C.44)

This realizes the entire 3-parameter family of solutions to (3.34) and (C.1) described in (C.37). Again, any
explicit model must satisfy a few assumptions. In addition to requiring all of the holomorphic sections in (C.42)
to exist, we also need to ensure that

[ν] · [d1] = [ν] · [e1] = [d̃0] · [d1] = [ẽ0] · [e1] = 0 (C.45)
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in order to avoid non-Kodaira singularities. Equivalently, we need

0 = (4c1 + 2ξ1 + 2ξ2 +∆a − η) · ξ1

= (4c1 + 2ξ1 + 2ξ2 +∆a − η) · ξ2

= (η − 3c1 − ξ1 − 2ξ2 −∆a) · ξ1

= (η − 3c1 − 2ξ1 − ξ2 −∆a) · ξ2

(C.46)

Let us give an example of the 3+1+1 factorization based on the 3-fold constructed in [20]. In this case
SGUT = dP2 and t = h. We can choose

ξ1 = h− e1 − e2, ξ2 = e1 , . (C.47)

Then,
∆a = (na + 2)(h− e1 − e2) + nae1 + 3e2 , (C.48)

is a solution. Requiring that all bundles in eq 3.38 admit holomorhic sections we find: na = 1, 2, 3.

D Some Spectral Cover Technicalities

In this appendix, we describe how to compute the ’components at ∞’ that must be removed from C(a) · τC
when computing matter curves for C(a) a component of the full spectral cover C. This is all well-known and we
include this appendix only for illustration. Let us start by recalling the nature of the net component at ∞. We
can write generic 5-sheeted spectral cover as

C = b5V
5 + b4V

4U + b3V
3U2 + b2V

2U3 + b0U
5 (D.1)

The locus C ∩ τC is described by the equations

0 = U
(

b0U
4 + b2U

2V 2 + b4V
4
)

0 = V 3
(

b3U
2 + b5V

2
) (D.2)

The 10 matter curve is the solution
Σ10 : U = b5 = 0 (D.3)

The 5 matter curve is given by

Σ
5
: b0U

4 + b2U
2V 2 + b4V

4 = b3U
2 + b5V

2 = 0 (D.4)

which is easily seen to be a 2-sheeted cover of the curve b0b
2
5 − b2b3b5 + b23b4 = 0 inside SGUT. What remains is

the ’component at ∞’ that must be subtracted off, namely

3× [V = b0 = 0] (D.5)

where we have explicitly indicated the multiplicity of 3 with which this component appears. The homological
class of this component is simply20

3σ∞ · π∗η (D.6)

20Note that we could, in principle, artifically move some parts of Σ
5
off to infinity by allowing b0 and b3 to have common factors.

There are several reasons to expect that this does not change our identification of the part of C ∩ τC that corresponds to Σ
5
. In

particular, even though we artifically moved some component of Σ
5
off to ∞, that component should still be considered part of

the 5 matter curve. One can see this by looking at the singularity structure of the local Calabi-Yau geometry that the bm specify
as the equation for the SU(6) enhancement locus does not change when b3 and b0 have a common factor. Alternatively, we can
look directly at the antisymmetric spectral cover, CΛ2E , in terms of which the 5 matter curve is just CΛ2E · σ [38]. Nothing special
happens when b3 and b0 carry a common factor other than the splitting of this matter curve into a few components. In what
follows we will just assume generic b3 and b0. Similar concerns enter when discussing the so-called ’components at ∞’ associated
to C(a) ∩ τC below.
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Let us now turn to C(a)∩τC for components C(n) of varying degree n. In general, we can write such a component
as

dnV
n + . . .+ d0U

n (D.7)

for some sections dm. The net homological class of C(n) is

C(n) = nσ + π∗ξn (D.8)

where d0 is a section of the bundle ξn on SGUT. What we want to see explicitly is that the ’component at ∞’
of C(n) ∩ τC that must be removed in the course of computing matter curves is simply

3σ∞ · π∗ξn (D.9)

Since the full spectral cover C is in the class
C = 5σ + π∗η (D.10)

we know that
∑

components

ξn = η (D.11)

D.1 Linear and Quartic Components

Let us now start by considering a linear component C(1) so that

C = (d1V + d0U)
(

a4V
4 + a3V

3U + a2V
2U2 + a1V U3 + a0U

4
)

C(1) = d1V + d0U
(D.12)

The traceless condition implies that
a1d0 + a0d1 = 0 (D.13)

Note that the quartic piece could factor further. Whether or not this actually happens, though, will not have
any effect on the analysis that follows. We can study C(1) ∩ τC by starting with τC and repeatedly utilizing the
relations d0U = −d1V and a1d0 + a0d1 = 0. Doing this, we find an explicit equation for C(1) ∩ τC that takes
the form

0 = d0U + d1V

= d1V
3
(

a2U
2 − a3UV + a4V

2
) (D.14)

From this, we see that the ’component at ∞’ is simply

3× [V = d0 = 0] (D.15)

which is in the class
3σ∞ · π∗ξ1 (D.16)

We can also immediately read off the component at ∞ of C(4) · τC since we can just take C(4) to be the quartic
factor in (D.12). With our above analysis, it is clear that it is in the class

3σ∞ · π∗ (η − ξ1) = 3σ∞ · π∗ξ4 (D.17)

because ξ1 + ξ4 = η from (D.11). We can also write directly the equations for C(4) ∩ τC as

0 = a0U
4 + a1U

3V + a2U
2V 2 + a3UV 3 + a4V

4

= V 3
(

a3d0U
2 + a2d1U

2 + a4d1V
2
) (D.18)

from which (D.17) also follows.
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D.2 Quadratic and Cubic Components

Let us now turn to the cases of quadratic and cubic factors C(2) and C(3). To study a quadratic factor C(2) we
write

C = (a2V
2 + a1V U + a0U

2)(e3V
3 + e2V

2U + e1V U2 + e0U
3)

C(2) = a2V
2 + a1V U + a0U

2
(D.19)

where traceless tells us that
a1e0 + a0e1 = 0 (D.20)

The cubic piece could factor further but this will not affect the analysis that follows for C(2). We can now write
simple equations for C(2) ∩ τC by starting with τC and repeatedly using the defining equation for C as well as
the traceless condition (D.20) to further simplify things. In the end, we find

0 = a0U
2 + a1UV + a2V

2

= V 3
(

−(2a2e1 + 2a1e2 + a0e3)U
2 + a1e3UV − a2e3V

2
) (D.21)

The part that must be subtracted when determining matter curves is precisely

3× [V = a0 = 0] (D.22)

which is in the class
3σ∞ · π∗ξ2 (D.23)

Now, it is a simple matter to compute C(3) · τC. The reasoning above does not depend on whether C(2)

factors further so we know that the component at ∞ that must be removed from C(3) · τC is just

3σ∞ · π∗(η − ξ2) = 3σ∞ · π∗ξ3 (D.24)

We can also write directly the equations for C(4) ∩ τC as

0 = a0U
3 + a1U

2V + a2UV 2 + a3V
3

= V 3
(

(a1e2 + a0e3 + a2e1)U
2 + a2e3V

2
) (D.25)

from which (D.24) also follows.

E Survey

This appendix gives a detailed list of properties of the models and an account of how we arrived at the list of
models given in the survey in Appendix A. Recall that we consider models with two U(1) symmetries, and thus
there are two types of factorizations of the spectral cover, i.e. 2+2+1 and 3+1+1, which we now discuss in
turn.
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E.1 2+2+1

We now discuss in detail how we arrive at the models in Appendix A. We begin with the spectral covers that
factor as 2+ 2+ 1. A generic solution to the Dudas-Palti relations here takes the form

Matter Curve FY

10(a) −M −N

10(d) M

10(e) N

5
(aa)

−M −N − P

5
(ad)

P +Q

5
(dd)

M −Q

5
(ae)

M +N + P −Q

5
(de)

−M − P +Q

(E.1)

There are three types of charged singlets that can break one of our U(1)’s through an expectation value.
In turn, they have weights ±(λa − λd), ±(λa − λe), and ±(λd − λe). To make our analysis systematic, we will
consider in turn what kind of models we can get by letting one of these singlets pick up a nonzero vev. The
second and third cases are related by symmetry so it will be sufficient to consider only the first two.

E.1.1 Singlet with weight λd − λa

A singlet with weight ±(λa − λd) will be unable to lift any exotics on the 10(e) curve so we must set N = 0.
Doing this, the spectrum on each matter curve is as follows

Matter Curve (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) Ga −M Ga Ga +M

10(d) Gd +M Gd Gd −M

10(e) Ge Ge Ge

(E.2)

Matter Curve (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa +M + P

5
(ad)

Gad Gad − P −Q

5
(dd)

Gdd Gdd +Q−M

5
(ae)

Gae Gae +Q−M − P

5
(de)

Gde Gde +M + P −Q

(E.3)

We must put 10M on one of 10(a) or 10(d). Without loss of generality, let us put it on 10(a). This means

that 5H must live on the curve 5
(aa)

.
Because all three generations of 10M live on 10(a), any exotics that localize there must have the same

chirality as the 10M fields. We therefore have two choices. If there are exotics on 10(a), then in order to lift
them the sign of our singlet weight is fixed to

Weight of singlet is λd − λa (E.4)

We shall investigate this possibility for now and return to the case λa − λd with no exotics on 10(a) later.
When the singlet weight is λd − λa, the allowed mass terms are

X10(a)10
(d)

+X5
(aa)

5(ad) +X5
(ad)

5(dd) +X5
(ae)

5(de) (E.5)
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To get a top Yukawa coupling we must put Hu on 5
(aa)

. There can be no excess of up-type doublets because
they do not participate in the allowed mass coupling. We therefore see that

Gaa +M + P = −1 (E.6)

For the assignments of the remaining 5 matter curves there are several possibilities. Note, however, that

the net chirality of both doublets and triplets on 5
(ae)

and 5
(de)

is vanishing. This means that 5H must lie on

5
(ad)

or 5
(dd)

. In each case, the assignment of 5M is fixed by the desire to get a down type Yukawa coupling.
We consider each of these possibilities in turn.

• 5M → 5
(de)

and 5H → 5
(ad)

In this case we need three 5’s on 5
(de)

. There can be no excess of 5’s there because they do not participate
in the mass term. As a result, we have

Gde = 3 Gae = 0 Q = M + P (E.7)

We need at least one down-type doublet on 5
(ad)

to play the role of Hd. There can be an excess of these

doublets in principle because they can be lifted through the mass term. The net chirality on 5
(ad)

and

5
(dd)

has to be +1, though so we find

[Gdd +Q−M ] + [Gad − P −Q] = 1 =⇒ Gdd +Gad −Q = 1 (E.8)

Turning now to the triplets, there are two cases to consider. We can have down-type triplets on 5
(ad)

that

pair with up-type triplets on 5(dd). In this case, we cannot have any triplets on 5
(aa)

. The other option

is to have up-type triplets on 5(ad) that pair up with down-type triplets on 5
(aa)

. In this case, we cannot

have any triplets on 5
(dd)

. We summarize the two cases below.

– Down-type triplets on 5
(ad)

In this case, we must have
Gad = −Gdd > 0 Gaa = 0 (E.9)

The condition (E.8) becomes
Q = −1 (E.10)

while (E.6) implies
M + P = −1 (E.11)

which is consistent with (E.7). Summarizing, we have

Matter Curve G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ P + 1 3 + G̃+ (P + 1) 3 + G̃ 3 + G̃− (P + 1)

10(d) −G̃ −(P + 1) −G̃− (P + 1) −G̃ −G̃+ (P + 1)

10(e) 0 0 0 0 0

(E.12)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 1 0 −1

5
(ad)

Gad P − 1 Gad (Gad − P ) + 1

5
(dd)

−Gad −P −Gad −(Gad − P )

5
(ae)

0 0 0 0

5
(de)

3 0 3 3

(E.13)

where
Gad ≥ 0 (Gad − P ) ≥ 0 G̃ ≥ |P + 1| (E.14)
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– Up-type triplets on 5
(ad)

In this case, we must have
Gaa = −Gad > 0 Gdd = 0 (E.15)

The condition (E.8) becomes
Gaa = −(Q+ 1) (E.16)

while (E.6) implies
Gaa = −(M + P + 1) (E.17)

which is consistent with (E.7). Summarizing, we have

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ P +Gaa + 1 3 + G̃+ (P +Gaa + 1) 3 + G̃ 3 + G̃− (P +Gaa + 1)

10(d) −G̃ −(P +Gaa + 1) −G̃− (P +Gaa + 1) −G̃ −G̃+ (P +Gaa + 1)

10(e) 0 0 0 0 0
(E.18)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa 1 +Gaa Gaa −1

5
(ad)

−Gaa P − 1−Gaa −Gaa 1− P

5
(dd)

0 −P 0 P

5
(ae)

0 0 0 0

5
(de)

3 0 3 3

(E.19)

where
Gaa ≥ 0 (−P ) ≥ 0 G̃ ≥ |P +Gaa + 1| (E.20)

• 5M → 5
(ae)

and 5H → 5
(dd)

With this assignment, we need one down type doublet on 5
(dd)

and there can be no excess of these doublets
because they do not participate in the mass term. This means that

Gdd +Q−M = 1 (E.21)

in addition to the condition we had before from up-type doublets on 5(aa)

Gaa + P +M = −1. (E.22)

Our 5M ’s sit on 5
(ae)

. There can be an excess of down-type doublets and triplets here because they can
be paired with up-type doublets and triplets on 5(de). In general, we must have

Gae = 3 + Ĝ Gde = −Ĝ Ĝ > 0 Q ≥ M + P = −(1 +Gaa) (E.23)

where we included the information from (E.6).

Turning to the triplets, we again have two cases depending on whether 5
(ad)

houses up- or down-type
triplets.

– Down-type triplets on 5
(ad)

In this case, we must have
Gad = −Gdd ≥ 0 Gaa = 0. (E.24)
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The resulting fluxes and spectra are

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ P + 1 3 + G̃+ (P + 1) 3 + G̃ 3 + G̃− (P + 1)

10(d) −G̃ −(P + 1) −G̃− (P + 1) −G̃ −G̃+ (P + 1)

10(e) 0 0 0 0 0

(E.25)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 1 0 −1

5
(ad)

Gad Gad Gad 0

5
(dd)

−Gad −Gad − 1 −Gad 1

5
(ae)

3 + Ĝ P −Gad − 1 3 + Ĝ 3 + Ĝ+Gad + 1− P

5
(de)

−Ĝ −P +Gad + 1 −Ĝ −Ĝ−Gad − 1 + P

(E.26)

where
Gad ≥ 0 Ĝ ≥ 0 Ĝ+Gad + 1− P ≥ 0 G̃ > |P + 1|. (E.27)

– Up-type triplets on 5
(ad)

In this case, we must have

Gaa = −Gad ≥ 0 Gdd = 0 (E.28)

The resulting fluxes and spectra are

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ Gaa + P + 1 3 + G̃+ (Gaa + P + 1) 3 + G̃ 3 + G̃− (Gaa + P + 1)

10(d) −G̃ −(Gaa + P + 1) −G̃− (Gaa + P + 1) −G̃ −G̃+ (Gaa + P + 1

10(e) 0 0 0 0 0
(E.29)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa + 1 Gaa −1

5
(ad)

−Gaa −Gaa −Gaa 0

5
(dd)

0 −1 0 1

5
(ae)

3 + Ĝ P − 1 3 + Ĝ 3 + Ĝ− (P − 1)

5
(de)

−Ĝ −(P − 1) −Ĝ −Ĝ+ (P − 1)

(E.30)

where
Gaa ≥ 0 Ĝ ≥ 0 Ĝ− (P − 1) ≥ 0 G̃ ≥ |Gaa + P + 1|. (E.31)

E.1.2 Singlet with weight λa − λd

Now that we have exhaustively analyzed the case where the singlet weight is λd −λa, let us return to the other
possibility

The singlet weight is λa − λd (E.32)

Because 10M is on 10(a), any exotics on 10(a) must come from the 10 so that their weight is λa and they
cannot be lifted by our singlet. This means that we must choose

M = N = 0 (E.33)

Further, the allowed mass terms are

X5
(ad)

5(aa) +X5
(dd)

5(ad) + 5
(de)

5(ae) (E.34)
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For the assignments of 5H and 5M , there are several possibilities. Note that the net chirality of both doublets

and triplets are identical on 5
(ae)

and 5
(de)

, which can only pair up with one another via a mass term. This

means that we cannot put Hd on either of these curves. We are also unable to put Hd on 5
(ad)

because down

type doublets there can pair up with up type doublets on 5
(aa)

via the mass term. As a result, our only option
is

5M → 5
(ae)

5H → 5
(dd)

(E.35)

There are now four choices depending on whether we have down type or up type triplets and doublets on 5
(ad)

• Down type triplets and down type doublets on 5
(ad)

In this case, we must have exactly 1 down type doublet and zero down type triplets on 5
(dd)

. The net

chirality of doublets on 5
(ad)

and 5(aa) must then be -1. We find

Gad = −Gaa ≥ 0 Gdd = 0 Gaa + P = −1 Q = 1. (E.36)

Finally, we note that exotics on 5
(ae)

must come from the 5 because they represent an excess beyond the
three generations of 5M that we put there. Among other things, this means that the U(1)Y flux through

5
(ae)

and 5
(de)

must vanish
P = 1 (E.37)

In the end, we have
M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(E.38)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

−Gad −1 −Gad −Gad + 1

5
(ad)

Gad 2 Gad Gad − 2

5
(dd)

0 −1 0 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(E.39)

where
Gad ≥ 2. (E.40)

• Down type triplets and up type doublets on 5
(ad)

In this case, we must have exactly one up type doublet on 5(aa) and zero triplets on 5
(dd)

. Further, the

net chirality of doublets on 5
(ad)

and 5
(dd)

must be +1. We find

Gad = −Gaa ≥ 0 Gdd = 0 −Gad + P = −1. (E.41)

Finally, we note that exotics on 5
(ae)

must come from the 5 because they represent an excess beyond the
three generations of 5M that we put there. Among other things, this means that the U(1)Y flux through

5
(ae)

and 5
(de)

must vanish
Gad −Q− 1. (E.42)

This leads to
M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(E.43)
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Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

−Gad −Gad + 1 −Gad −1

5
(ad)

Gad 2Gad − 2 Gad 2−Gad

5
(dd)

0 −Gad + 1 0 Gad − 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(E.44)

where
Gad ≥ 2. (E.45)

• Up type triplets and down type doublets on 5
(ad)

In this case, we must have zero triplets on 5
(aa)

and exactly 1 down type doublet on 5
(dd)

. The net

chirality of doublets on 5
(aa)

and 5
(ad)

must be -1 while the net chirality of triplets on 5
(ad)

and 5
(dd)

must be 0. This all leads to

Gdd = −Gad ≥ 0 Gaa = 0 Gdd +Q = 1. (E.46)

Finally, we note that exotics on 5
(ae)

must come from the 5 because they represent an excess beyond the
three generations of 5M that we put there. Among other things, this means that the U(1)Y flux through

5
(ae)

and 5
(de)

must vanish
P − 1 +Gdd = 0. (E.47)

This leads to
M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(E.48)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 Gdd − 1 0 1−Gdd

5
(ad)

−Gdd 2(1−Gdd) −Gdd −2 +Gdd

5
(dd)

Gdd Gdd − 1 Gdd 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(E.49)

where
Gdd ≥ 2. (E.50)

• Up type triplets and up type doublets on 5
(ad)

In this case, we must have 0 triplets and 1 up type doublet on 5
(aa)

. The net chirality of triplets on 5
(ad)

and 5
(dd)

must be 0 while the net chirality of doublets must be 1. This leads to

Gdd = −Gad ≥ 0 Gaa = 0 P = −1. (E.51)

Finally, we note that exotics on 5
(ae)

must come from the 5 because they represent an excess beyond the
three generations of 5M that we put there. Among other things, this means that the U(1)Y flux through

5
(ae)

and 5
(de)

must vanish
Q = −1. (E.52)
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This leads to
M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 0 3 3 3

10(d) 0 0 0 0 0

10(e) 0 0 0 0 0

(E.53)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

0 1 0 −1

5
(ad)

−Gdd −2 −Gdd −Gdd + 2

5
(dd)

Gdd 1 Gdd Gdd − 1

5
(ae)

3 0 3 3

5
(de)

0 0 0 0

(E.54)

where
Gdd ≥ 2. (E.55)

E.1.3 Singlet with weight ±(λa − λe) with 10M on 10(a)

Because our singlet treats states with weights λa and λe differently, the choice of where 10M fields localize
becomes important. In this subsection, we take the 10M fields to localize on 10(a). We cannot lift any zero
modes that localize on 10(d) so it better be that the flux there vanishes. This means that M = 0. The spectrum
on each matter curve, in this case, is as follows

Matter Curve (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) Ga −N Ga Ga +N

10(d) 0 0 0

10(e) Ge +N Ge Ge −N

(E.56)

Matter Curve (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa +N + P

5
(ad)

Gad Gad − P −Q

5
(dd)

Gdd Gdd +Q

5
(ae)

Gae Gae +Q−N − P

5
(de)

Gde Gde + P −Q

(E.57)

There are now two subcases depending on the sign of the singlet weight.

• Singlet weight is λe − λa

In this case, the allowed mass terms are

X10(a)10
(e)

+X5
(aa)

5(ae) +X5
(ad)

5(de). (E.58)

Note that 5
(dd)

does not participate in any mass couplings.

Consider now the assignment of 5 matter curves. To get a top Yukawa coupling, we must get Hu from

5(aa). To get a bottom Yukawa coupling, we can then place 5M and 5H on either the pair 5
(ad)

/5
(de)

or

the pair 5
(ae)

/5
(dd)

.

Suppose first that we put 5M/5H on the pair 5
(ad)

/5
(de)

. Because fields on these two curves can only get
mass by pairing with one another, we see that the net chirality of triplets on both must be 3 while the
net chirality of doublets must be 4. This amounts to the conditions

Gad +Gde = 3, −2Q = 1. (E.59)
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Because Q is an integer, we see that there are no solutions.

We are therefore forced to put 5M/5H on the pair 5
(ae)

/5
(dd)

. Regardless of which of the two possibilities

for this assignment we have, the net chiralities of both doublets and triplets on 5
(ad)

and 5
(de)

must both

vanish. Further, we know that all doublets and triplets on 5
(ad)

must be down type in order to participate

in the mass coupling while those on 5
(de)

must be up-type. This means that

Gad −Gde ≥ 0, Gad − P ≥ 0, Q = 0 (E.60)

Now, because Q = 0 there can be no U(1)Y flux threading 5
(dd)

. We are therefore forced to take

5M → 5
(dd)

5H → 5
(ae)

. (E.61)

The down-type doublets on 5
(ae)

do not participate in the mass coupling so there must be exactly one
of those. We can have up-type triplets there that become massive by coupling to down-type triplets on

5
(aa)

. Of course, the up-type doublets on 5
(aa)

do not enter into the mass term so we better have exactly
one of those as well. All of these conditions mean that

Gaa = −Gae ≥ 0, Gaa +N + P = 1, Gae −N − P = −1 (E.62)

where these equations exhibit one redundancy.

Taking everything together, the fluxes and spectra are as follows

Gaa = −Gad ≥ 0, Gdd = 0. (E.63)

The resulting fluxes and spectra are

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ Gaa + P + 1 3 + G̃+ (Gaa + P + 1) 3 + G̃ 3 + G̃− (Gaa + P + 1)

10(d) 0 0 0 0 0

10(e) −G̃ −(Gaa + P + 1) −G̃− (Gaa + P + 1) −G̃ −G̃+ (Gaa + P + 1)

(E.64)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa + 1 Gaa −1

5
(ad)

Gad P Gad Gad − P

5
(dd)

3 0 3 3

5
(ae)

−Gaa −Gaa − 1 −Gaa 1

5
(de)

−Gad −P −Gad −(Gad − P )

(E.65)

where
Gaa ≥ 0, Gad ≥ 0, (Gad − P ) ≥ 0, G̃ ≥ |Gaa + P + 1|. (E.66)

• Singlet weight is λa − λe

In this case, we cannot lift any potential exotics on 10(a) since they must come from a 10. As a result,
we have

N = 0. (E.67)

The mass terms of interest are therefore

X5
(ae)

5(aa) +X5
(de)

5(ad). (E.68)
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As before, the presence of a top Yukawa coupling means that we must get Hu from 5(aa). To get a bottom

Yukawa coupling, we can then place 5M and 5H on either the pair 5
(ad)

/5
(de)

or the pair 5
(ae)

/5
(dd)

.

Suppose first that we put 5M/5H on the pair 5
(ad)

/5
(de)

. Because fields on these two curves can only get
mass by pairing with one another, we see that the net chirality of triplets on both must be 3 while the
net chirality of doublets must be 3+1=4. This amounts to the conditions

Gad +Gde = 3, −2Q = 1. (E.69)

Because Q is an integer, we see that there are no solutions.

We are therefore forced to put 5M/5H on the pair 5
(ae)

/5
(dd)

. Regardless of which of the two possibilities

for this assignment we have, the net chiralities of both doublets and triplets on 5
(ad)

and 5
(de)

must vanish.

Further, we know that all doublets and triplets on 5
(ad)

must be up type in order to participate in the

mass coupling while those on 5
(de)

must be down type. This means that

Gde +Gad ≥ 0, Gde + P ≥ 0, G = 0. (E.70)

Now, because Q = 0 there can be no U(1)Y flux threading 5
(dd)

. We are therefore forced to take

5M → 5
(dd)

5H → 5
(ae)

. (E.71)

Any down type doublets on 5
(ae)

will pair with up type doublets on 5(aa), though, making it impossible
to obtain massless Hu and Hd. We therefore conclude that

There are no viable models with singlet weight λa − λe. (E.72)

E.1.4 Singlet with weight ±(λa − λe) with 10M on 10(d)

As in the last case, we cannot have any exotics on 10(d) so we must have M = 0. The spectrum on each matter
curve with this choice is given by

Matter Curve (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) Ga −N Ga Ga +N

10(d) 0 0 0

10(e) Ge +N Ge Ge −N

(E.73)

Matter Curve (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa +N + P

5
(ad)

Gad Gad − P −Q

5
(dd)

Gdd Gdd +Q

5
(ae)

Gae Gae +Q−N − P

5
(de)

Gde Gde + P −Q

(E.74)

The chiralities of exotics on 10(a) can in principle be arbitrary so we cannot conclude anything about the
sign of the singlet weight at this point.

Because 10M is on 10(a), we must get Hu from 5
(dd)

. Further, we know that 5
(dd)

does not participate in
any mass terms for either sign of the singlet weight. This means that we must have

Gdd = 0 Q = −1. (E.75)
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Let us turn now to the 5’s. In order to get a down type Yukawa coupling we must put 5M and 5H on either

5
(aa)

/5
(de)

or 5
(ae)

/5
(ad)

. Note that in neither case can fields on the 5M matter curve couple to 5H matter
curve through the mass term. Wherever we put 5M , it must be that the net chirality of doublets and triplets
on this curve and the one that it couples to via the mass term is 3. Take a closer look at the curves that can
be connected by singlet vevs, though

5
(aa)

↔ 5
(ae)

5
(ad)

↔ 5
(de)

. (E.76)

The net chiralities of triplets and doublets on 5
(aa)

and 5
(ae)

are Gaa +Gae and Gaa +Gae +Q, respectively.

Since Q = −1, these can never be equivalent. Similarly, the net chiralities of triplets and doublets on 5
(ad)

and

5
(de)

are Gad +Gde and Gad +Gde − 2Q, respectively. Again, since Q = −1 these can never be equivalent. We
therefore see that

There are no viable models with singlet weight ± (λa − λe) and 10M on 10(d). (E.77)

E.2 3+1+1

A generic solution to the Dudas-Palti relations here takes the form

Matter Curve FY

10(a) −M −N

10(d) M

10(e) N

5
(aa)

−2(M +N)− P

5
(ad)

2M +N + P

5
(ae)

M + 2N + P

5
(de)

−M −N − P

(E.78)

In order to get a top Yukawa coupling we must always realize 10M on 10(a) and Hu on 5
(aa)

. Without loss
of generality, there are two choices of singlet weights that we can take as ±(λa − λd) and ±(λd − λe). We treat
each of these in turn.

E.2.1 Singlet with weight ±(λa − λd)

A singlet with this weight will be unable to lift any exotics on the 10(e) curve so we must set

N = 0. (E.79)

Doing this, the spectrum we get on each matter curve is as follows

Matter Curve (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) Ga −M Ga Ga +M

10(d) Gd +M Gd Gd −M

10(e) Ge Ge Ge

(E.80)

Matter Curve (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa + 2M + P

5
(ad)

Gad Gad − (2M + P )

5
(ae)

Gae Gae − (M + P )

5
(de)

Gde Gde + (M + P )

(E.81)
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In addition, any exotics on 10(a) must come from the 10 since they arise as excesses of zero modes in addition
to the three generations of 10M ’s that localize there. If we have any such exotics, the singlet weight must be

Singlet weight is λd − λa. (E.82)

We focus on this case for now, which gives rise to the mass terms

X10(a)10
(d)

+X5
(aa)

5(ad) +X5
(ae)

5(de). (E.83)

Because Hu localizes on 5
(aa)

and up type doublets do not participate in the mass term, the number of doublet
zero modes there must be exactly -1

Gaa + 2M + P = −1. (E.84)

To get a down type Yukawa coupling we must put 5H/5M on 5
(ad)

/5
(ae)

. If we put 5M on 5
(ad)

, though, we

encounter a problem. Fields on 5
(ad)

become massive by pairing with fields from 5
(aa)

, where our Higgs doublet

Hu lives. The net chirality of doublets on 5
(aa)

and 5
(ad)

is equivalent to the net chirality of triplets, though,
so it is impossible to get the desired spectrum, which has a net chirality of 3 triplets and 3-1=2 doublets.

Suppose we instead put 5M on 5
(ae)

. In this case, Hd goes on 5
(ad)

. Down type doublets on 5
(ad)

do not
participate in the mass term, though, so we must have exactly 1 such zero mode there. This implies that

Gad − (2M + P ) = 1. (E.85)

We can have up type triplets on 5
(ad)

that pair with down type triplets on 5
(aa)

. This leads to

Gaa = −Gad ≥ 0. (E.86)

We turn finally to the 5M fields on 5
(ae)

. The net chirality of both doublets and triplets on 5
(ae)

and 5(de)

must be 3 which leads to
Gae = 3 + Ĝ, Gde = −Ĝ, M + P = 0. (E.87)

where
Ĝ ≥ 0. (E.88)

In the end, we therefore find the following lone possibility for the spectrum and fluxes

Gaa = −Gad ≥ 0, Gdd = 0. (E.89)

The resulting fluxes and spectra are

M.C. G FY (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) 3 + G̃ Gaa + 1 3 + G̃+ (Gaa + 1) 3 + G̃ 3 + G̃− (Gaa + 1)

10(d) −G̃ −(Gaa + 1) −G̃− (Gaa + 1) −G̃ −G̃+ (Gaa + 1)

10(e) 0 0 0 0 0

(E.90)

Matter Curve G FY (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa + 1 Gaa −1

5
(ad)

−Gaa −Gaa − 1 −Gaa 1

5
(ae)

3 + Ĝ 0 3 + Ĝ 3 + Ĝ

5
(de)

−Ĝ 0 −Ĝ −Ĝ

(E.91)

where
Gaa ≥ 0, Ĝ ≥ 0, G̃ ≥ |Gaa + 1|. (E.92)
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Let us now return to the possibility of singlet weight λa − λd. In this case, we cannot lift any exotics from
10 curves so both M and N must vanish. The mass terms take the form

X5
(ad)

5(aa) +X5
(de)

5(ae). (E.93)

A top Yukawa coupling forces us to put Hu on 5(aa). A bottom Yukawa coupling then requires that 5H/5M be

placed on 5
(ad)

/5
(ae)

. Either way, we must have at least one non-exotic massless down type doublet on 5
(ad)

.
Because of the mass term, we cannot simultaneously keep a massless up type doublet on 5(aa) and a massless

down type doublet on 5
(ad)

so we conclude that

There are no viable models with singlet weight λa − λd. (E.94)

E.2.2 Singlet with weight ±(λd − λe)

A singlet with this weight will be unable to lift any exotics on the 10(a) curve so we must set

M +N = 0. (E.95)

Doing this, the spectrum we get on each matter curve is as follows

Matter Curve (1, 1)+1 (3, 2)+1/6 (3, 1)−2/3

10(a) Ga Ga Ga

10(d) Gd +M Gd Gd −M

10(e) Ge −M Ge Ge +M

(E.96)

Matter Curve (3, 1)+1/3 (1, 2)−1/2

5
(aa)

Gaa Gaa + P

5
(ad)

Gad Gad −M − P

5
(ae)

Gae Gae +M − P

5
(de)

Gde Gde + P

(E.97)

When the singlet weight is ±(λd−λe), none of the fields on 5
(aa)

or 5
(de)

can participate in any mass terms.

Since we must have Hu on 5
(aa)

in order to get a top Yukawa coupling we must take

Gaa = 0 P = −1. (E.98)

When we do this, however, the zero modes on 5
(de)

cannot comprise a complete GUT multiplet. We are therefore

forced to put 5H on 5
(de)

. This is impossible, though, because the absence of triplets on 5
(de)

forces

Gde = 0 (E.99)

which, along with P = −1, leads to an up type doublet on 5
(de)

. We therefore see that

There are no viable models with singlet weights ± (λd − λe). (E.100)
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