
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Rapid thermalization in field theory from gravitational
collapse

David Garfinkle and Leopoldo A. Pando Zayas
Phys. Rev. D 84, 066006 — Published  8 September 2011

DOI: 10.1103/PhysRevD.84.066006

http://dx.doi.org/10.1103/PhysRevD.84.066006


LF13541D

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Rapid Thermalization in Field Theory from Gravitational Collapse

David Garfinkle∗

Department of Physics, Oakland University, Rochester, MI 48309 and

Michigan Center for Theoretical Physics, Dept. of Physics, University of Michigan, Ann Arbor, MI 48109

Leopoldo A. Pando Zayas†

Michigan Center for Theoretical Physics, Dept. of Physics, University of Michigan, Ann Arbor, MI 48109

Motivated by the duality with thermalization in field theory, we study gravitational collapse of a
minimally coupled massless scalar field in Einstein gravity with a negative cosmological constant.
We investigate the system numerically and establish that for small values of the initial amplitude
of the scalar field there is no black hole formation, rather, the scalar field performs an oscillatory
motion typical of geodesics in AdS. For large enough values of the amplitude of the scalar field we
find black hole formation which we detect numerically as the emergence of an apparent horizon.
Using the time of formation as an estimate for thermalization in the field theory we conclude that
thermalization occurs very rapidly, close to the causal bound for a very wide range of black hole
masses. We further study the thermalization time in more detail as a function of the amplitude and
the width of the initial Gaussian scalar field profile and detect a rather mild structure.
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Introduction – Understanding cooperative phenom-
ena far from equilibrium poses one of the most challeng-
ing problems of present physics. One source of methods
is provided by the AdS/CFT correspondence [1] which
identifies a field theory without gravity with a string the-
ory with gravity. In the classical limit of string theory
one can use the appropriate generalization of Einstein’s
equations to follow the evolution in time of the fields in
the dual field theory. In this context the gauge/gravity
duality opens a particularly important window in the ab-
sence of regular field theoretic methods: to study far from
equilibrium phenomena one needs to study the evolution
of Einstein’s equation with appropriate boundary condi-
tions.

In the framework of the AdS/CFT correspondence a
field theory in equilibrium at finite temperature is dual
to a black hole in asymptotically AdS spacetime [2]. One
very important development has been the establishment
of the correspondence for applications to linear response
theory for the near equilibrium region, that is, in the
regime of long wave lengths and low energies with lo-
cal fluid variables varying very slowly compared to mi-
croscopic scales (see [3] for a review). The next frontier
comes from the fact that the evolution of spacetimes with
the formation of black hole horizons is equivalent to non-
equilibrium dynamics and evolution towards thermaliza-
tion in field theory.

Besides the general reasons to study far from equi-
librium phenomena using the gauge/gravity correspon-
dence one practical motivation comes from the RHIC and
LHC experiments. Two crucial points are worth high-
lighting: (i) the observed Quark-Gluon Plasma (QGP)
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is strongly coupled and (ii) hydrodynamical description
fits in a wide range of processes. Theoretical and exper-
imental developments indicate that the QGP produced
at RHIC is a strongly interacting liquid rather than the
weakly interacting gas of quarks and gluons that was pre-
viously expected [4–6]. Another piece of evidence point-
ing to the need for methods applicable to strong coupled
theories comes from the fact that the produced plasma
locally isotropizes over a time scale of τiso ≤ 1fm/c.
The dynamics of such rapid isotropization in a far-from-
equilibrium non-Abelian plasma can not be described
with the standard methods of field theory or hydrody-
namics [7]. In this letter we propose to study such rapid
thermalization via its gravity dual – gravitational col-
lapse.

The question of thermalization is also crucial in con-
densed matter systems. There is an active interest in the
understanding of the time evolution of a system following
a quench [8–11]. A holographic approach to this area is
showing promise in lower dimensions [12]. String theory
also provides a framework for understanding some super-
conductors holographically [13, 14]. Moreover, some hard
to understand properties of condensed matter system like
the structure of non-Fermi liquids have been recently de-
scribed using holographic models [16] [17]. These models
always involve a black hole and we believe that the for-
mation of such a black hole will help our understanding
of those systems at a more fundamental level.

In this paper we present a full numerical analysis of
the gravitational collapse of a massless minimally coupled
scalar field in the presence of a negative cosmological
constant. We go beyond previous attempts within the
AdS/CFT approach that relied on perturbation theory
[18] or toy models for quench [19–21]. Our focus is on
properties of the thermalization time.

An intuitive explanation for the rapid thermalization
time at RHIC within the context of the gauge/gravity
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correspondence is as follows. Local gauge-invariant op-
erators are mostly sensitive to geometry near the bound-
ary. As explained in [18], in the large N limit which is
the region explored by the gauge/gravity correspondence,
trace factorization ensures that the expectation value of
products equals the product of expectation values. Only
one-point functions of gauge invariant operators survive.
Other studies supporting rapid thermalization in the con-
text of the gauge/gravity correspondence include [19, 21–
23].

Field Theory Setup – Our field theory setup is
rather specific and we clarify it now. The overall field
theoretic question one is interested in answering is: How
does a field theory react to a rapid injection of energy?
This is precisely what the RHIC experiment is all about
for large values of the energy of the colliding particles
– How does QCD matter behave under such collision?
Now the collision is clearly anisotropic as one has two
gold atoms colliding. A gravity approximation to such
experiment has been developed in the context of numer-
ical relativity by Chesler and Yaffe in [24–26]. A natural
time scale in such collision process is the isotropization
time which in the case of RHIC is τiso ≤ 1fm/c [7].
Our setup has one major difference. Namely, our injec-
tion of energy is spatially homogeneous, that is, it is the
same in all points of the field theory space at a given
time. We thus study a situation that is similar but not
exactly equal to a quench. In this sense our setup is per-
haps less directly applicable to RHIC-type experiments
of collision but rather speaks loudly about more univer-
sal properties of strongly coupled field theories at large
N which are dual to gravity theories. What we set out to
study in this paper, using gravity methods, is the time in
field theory between the injection of energy at t = 0 and
the formation of the quark gluon plasma. We call this
time the thermalization time. Of course, other interest-
ing time scales might be present in a given experimental
setup. One example is the above mentioned isotropiza-
tion time, another natural time is the time at which the
hydrodynamical approximation becomes a valid descrip-
tion of the quark gluon plasma. The thermalization time,
as defined in our context, is expected to be of the same
order but slightly smaller than these other two.

Collapse in asymptotically AdS5 spaces – We
consider a minimal Einstein-scalar field action with a neg-
ative cosmological constant Λ = −6/L2:

S =

∫

d5x
√
−g

[

1

2κ

(

R +
12

L2

)

− 1

2
(∂φ)2 − U(φ)

]

. (1)

We tackle this system using numerical methods devel-
oped and tested in [27], [28] which we will describe in
more detail below. We choose the metric Ansatz to be

ds2 = −α2dt2+a2dr2+r2(dχ2+sin2 χ(dθ2+sin2 θdϕ2)),
(2)

where α and a are each functions of only t and r. For

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

C

r

FIG. 1: The constraint quantity at coarse resolution (solid
line) and fine resolution (dotted line).

convenience, let us define

X = ∂rφ, Y =
a

α
∂tφ. (3)

The Einstein equations can be written as:

∂ra =
a

r
(1− a2) +

r a

6

[

X2 + Y 2 + a2(U − 12

L2
)

]

,(4)

∂r ln(aα) =
r

3

(

X2 + Y 2
)

, (5)

3

r
∂ta = αX Y. (6)

Here we are using units where κ = 1. It is worth pointing
out that equation (6) can be shown to be automatically
satisfied when the other equations are satisfied.
The Klein-Gordon equation takes the form

∂tY =
1

r3
∂r

(

r3
α

a
X
)

− αa ∂φU. (7)

The main difference of the system given by equations (4,
5 and 7) with respect to the treatment presented in [27]
and [28] lies in the powers of r that appear. For example,
in equation (7) we have a cubic power or r rather than
a square one. This higher power of r leads to a more
singular behavior near r = 0 which presents a numerical
challenge.
Results – We consider a massless scalar field, i.e.,

U = 0. We choose initial data of the form φ =
A exp(−(r − r0)

2
/σ2) where the amplitude A, center of

the scalar field profile r0 and profile width σ are con-
stants. This determines X through X = ∂rφ and we
choose Y = X initially so that the wave starts out purely
ingoing.
We choose L = 1 and for the spatial grid to be 0 ≤

r ≤ rmax where rmax is a constant. For the simulations
done in this work we use rmax = 10. Since in anti-deSitter
spacetime, more resolution is needed at small r we do not
choose the spatial points to be evenly spaced. Rather, for
a simulation with n spatial points, the value of r at grid
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FIG. 2: φ(0, t) for a small amplitude simulation.

point i is ri = sinh(k(i−1)) where k is a constant chosen
so that rn = rmax.

We tested that the code is working properly by consid-
ering the constraint quantity C ≡ ∂ta − rαXY/3. Note
that it follows from eqn. (6) that C vanishes. How-
ever, the finite size of the grid spacing means that C will
not vanish exactly in the simulation, but that instead
in a properly working simulation, a smaller grid spacing
should lead to a smaller C. In fig. (1) the result of a
test of this sort is shown. The solid line represents C for
a simulation with 800 grid points, while the dotted line
is a simulation with 1600 grid points. In both cases the
simulations have A = 0.02, r0 = 4.0 and σ = 1.5 and the
simulations are run to a time of t = 0.454.

For collapse in asymptotically flat spacetimes, small
amplitude initial data leads to a wave that is initially
ingoing, then undergoes interference near the center and
becomes an outgoing wave. For collapse in asymptot-
ically anti-deSitter spacetimes, we would expect simi-
lar behavior, except that the outgoing wave should then
reach anti-deSitter infinity, bounce and become ingoing
again, leading to another bounce, and so on. And indeed,
this is what we find. Fig. (2) shows the value of the scalar
field at the center as a function of time. (φ(0, t)). The pa-
rameters for this simulation are A = 0.0002, r0 = 4.0 and
σ = 1.5. This simulation was done with 6400 grid points.
Note that there are particular periods of time where the
scalar field at the center is non-negligible and that the
middle of each such time period is separated from the
next one by approximately π. This is exactly what we
would expect if the dynamics is mostly that of a mass-
less scalar field on a background anti-deSitter spacetime.
In the geometric optics limit, such a scalar field prop-
agates along null geodesics, and for anti-deSitter space-
time (with L = 1) it takes a null geodesic a time of π/2
to propagate from the center to infinity.

For sufficiently large amplitudes the collapse process
results in the formation of a black hole. This is signalled
by the formation of a marginally outer trapped surface
(also called an apparent horizon), where the outgoing null
geodesics cease to diverge from each other and instead
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FIG. 3: The dependence of tAH on σ

begin to converge. In spherically symmetric spacetimes,
an apparent horizon has the property that ∇ar∇ar =
0. In our coordinate system this would mean a−2 →
0. More precisely, our coordinate system breaks down
when an apparent horizon forms, and so our signal that
a black hole is forming is that a → ∞ in the simulations.
Actually, it suffices to set a fairly moderate value for the
maximum allowed value of a, which we denote amax and
to stop the simulation whenever a reaches amax, noting
that a black hole has formed at that time. The position
r at which a = amax gives us the size of the black hole
and allows us to estimate its mass.

We would like to know how long the process of black
hole formation takes, i. e., we would like to know how
much time elapses between the initial time and the time
a marginally outer trapped surface forms. For simula-
tions it is natural to use the coordinate t as a measure
of time, and this is the notion of time that we will use
here. In particular, we denote by tAH the coordinate
time t at which an apparent horizon first forms. Note
that our coordinate t has geometric meaning in that it is
the coordinate that is orthogonal to the area coordinate
r. However, one might also want to know how long the
process takes in terms of an ingoing null coordinate v as
used in [18]. Such a coordinate is constant along ingoing
null geodesics and can be normalized by e.g. choosing it
to be equal to the anti-deSitter time at infinity.

The time of black hole formation tAH depends on the
choice of initial data. In particular, we want to know
how this time depends on the initial width of the pulse
σ. This dependence is shown in fig. (3) which gives tAH

for several simulations with different values of σ. For
each of these simulations we have A = 0.02 and r0 = 4.0.
These simulations were done with 6400 grid points.

We also want to know how the time of apparent horizon
formation depends on the initial amplitude of the pulse
A. This dependence is shown in fig. (4) which gives tAH

for several simulations with different values of A. For
each of these simulations we have σ = 1.5 and r0 = 4.0.
These simulations were done with 6400 grid points. The
masses of the black holes formed in the simulations range
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FIG. 4: The dependence of tAH on A

from 1.0 for the smallest amplitude to 62.1 for the largest
amplitude, that is, over two orders of magnitude.
Some aspects of fig. (4) can be understood using the

properties of null geodesics in anti-deSitter spacetime.
For a shell starting at infinity and propagating along a
null geodesic, it would take a time of π/2 to reach the
center. However, we start our shells at r0 = 4 rather than
infinity, and a null geodesic takes a time of t = 1.32 to
propagate from r = 4 to the center. A shell of small mass
must reach a small radius before it forms an apparent
horizon, so it is not surprising that at small amplitude
tAH ≈ 1.32. However, the more massive a shell is, the
larger the radius at which an apparent horizon forms,
and therefore the shorter the time needed to propagate
to that radius. Therefore we would expect tAH to be
a decreasing function of A, and fig. (4) confirms this
expectation.
The thin Vaidya shell approximation – Of the

many setups discussed in the literature, the one that can
be most directly compared to our work here is the one
presented in [18]. This work provided, to our knowledge,
the first systematic analysis of the thin shell Vaidya col-
lapse as the dual of rapid thermalization in field theory.
Let us briefly discussed the setup in [18] which consid-

ered an action of the form (1). Their metric is spherically
symmetric and is given in Vaidya type coordinates

ds2 = 2drdv − g(r, v)dv2 + f2(r, v)dΩ2

φ = φ(r, v). (8)

where dΩ2 is the line element of the unit S3. The crucial
physical information is stored in the scalar field profile
which is φ0(v) < ǫ for 0 < v < T and otherwise vanishes.
In [18], a perturbation theory in ǫ was developed. The
situation we treat is not precisely the same as that of
[18]: our initial data is different, and the fact that we
use different coordinate systems makes direct compar-
isons somewhat involved. Nonetheless, there are many
similarities. Our Gaussian profile falls off so fast that it
might as well be of compact support, and our choice of
ingoing waves means that at large r the profile is essen-
tially a function of an ingoing null coordinate v. We can

also choose our parameters A and σ (corresponding re-
spectively to the ǫ and T of [18]) sufficiently small to be
within the perturbative regime of [18] or sufficiently large
that that perturbative regime is no longer valid. Fur-
thermore, in both cases many of the main features of the
collapse process seem to depend simply on the approxi-
mate propagation of the scalar field along null geodesics
until the shell becomes sufficiently small that a trapped
surface can form.

The main advantage of our method is that we can state
rather precisely such things as when a black hole forms
and how large it is without having to be in the regime
where the perturbation expansion of [18] is well approx-
imated by its first couple of terms.

Conclusions – Stated in terms of the coordinate
time used in our simulations, the time of black hole for-
mation is not instantaneous and depends on the time the
shell takes to propagate to a sufficiently small radius that
its mass will give rise to a horizon. However, because a
sufficiently thin shell propagates along an ingoing null
geodesic, this means that if an ingoing null coordinate is
chosen as the time, then black hole formation is essen-
tially instantaneous. Thus the question of rapid thermal-
ization in the AdS/CFT correspondence seems to hinge
on the question of what bulk coordinate is the dictionary
translation of time in the boundary CFT. Our explicit
simulations show rapid thermalization with times always
comparable to the time it takes a null geodesic to travel
from the center of the shell profile to the radius at which
the shell is sufficiently compact to form a horizon. We
obtain our results for masses ranging over two orders of
magnitude. In a more detailed study we verify that the
dependence on the width is milder than the dependence
on the amplitude.

We have laid the foundation that will allow us to pro-
vide, in full detail, various other properties of the ther-
malization process by studying its gravitational dual. For
example, the role of a mass term in the potential for
the scalar field. In the AdS/CFT correspondence the
mass of the scalar field is related to the conformal di-
mension of the dual operator. We have considered a
massless field corresponding to a dimension four oper-
ator in the field theory. Following the discussions pre-
sented in [18, 19, 21, 22], we plan to discuss two-point
functions, Wilson loops and the entanglement entropy in
our collapsing simulations. The study of these quantities
naturally allows for a more precise definition of thermal-
ization time than the general one used in this paper. We
will present those results elsewhere.
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