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Abstract

All microscopic correlation functions of the spectrum of the Hermitian Wilson Dirac operator

with any number of flavors with equal masses are computed. In particular, we give explicit results

for the spectral density in the physical case with two light quark flavors. The results include the

leading effect in the discretization error and are given for fixed index of the Wilson Dirac operator.

They have been obtained starting from chiral Lagrangians for the generating function of the Dirac

spectrum. Microscopic correlation functions of the real eigenvalues of the Wilson Dirac operator

are computed following the same approach.
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I. INTRODUCTION

The deep chiral limit of QCD with two quark flavors and the intimately related nature

of spontaneous chiral symmetry breaking is of direct phenomenological interest. Also for

studies beyond the standard model such as in QCD like theories with many light flavors

or where the fermions are outside the fundamental representation, the deep chiral limit is

central. By a remarkable series of numerical and analytic developments it is now possible

to access the chiral limit by means of lattice QCD. The work presented in this paper is an

attempt to facilitate the next step to the deep chiral limit by offering an exact analytic un-

derstanding of the average behavior of the small eigenvalues of the Wilson Dirac operator at

nonzero lattice spacing, a. The behavior of these eigenvalues is essential for chiral symmetry

breaking [1–3] as well as for the stability of lattice QCD computations [4].

We consider the eigenvalue density of the Wilson Dirac operator in the microscopic scaling

limit [6–9] where the product of the eigenvalues and the four-volume, V , as well as the

product a2V are kept fixed. This part of spectrum is uniquely determined by [5] global

symmetries, their breaking and the γ5-Hermiticity of the Wilson Dirac operator

D†
W = γ5DWγ5. (1)

Because of this Hermiticity relation, the eigenvalues of the Hermitian Wilson Dirac operator,

D5 ≡ γ5(DW +m), (2)

are real. In addition to correlations of these eigenvalues, we will also analyze the real

eigenvalues of DW in the microscopic limit.

In a recent letter [5] and a longer follow-up [10] we have shown how the quenched micro-

scopic Wilson Dirac spectrum can be obtained from the chiral Lagrangian including order

a2-effects for Wilson fermions. Although the supersymmetric method used in [5, 10] can be

applied to any number of flavors, the proliferation of terms makes the method only practical

for use in the quenched case. Already for one dynamical flavor it becomes rather tedious to

deal with analytically [11].

In this paper we follow a different path, the graded eigenvalue method, that results in

simple expressions for any number of flavors with equal quark mass. It is also possible to

write down compact expressions for all spectral correlation functions. The graded eigenvalue
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method is based on the observation that the order a2 terms in the (graded) chiral Lagrangian

can be linearized at the expense of extra Gaussian integrations. This results in compact

expressions for microscopic Wilson Dirac spectra for any number of flavors and all correlation

functions. The method was originally developed to describe transitions between different

universality classes of Random Matrix Theories [12–15]. The result obtained this way is an

expression in terms of diffusion in superspace where a2 plays the role of time.

All results in this paper are given for fixed index of the Wilson Dirac operator, defined

for a given gauge field configuration by

ν =
∑

k

sign(〈k|γ5|k〉). (3)

Here, |k〉 denotes the k’th eigenstate of the Wilson Dirac operator. The microscopic eigen-

value density for fixed ν gives detailed information on the effect of a nonzero lattice spacing

on the would be topological zero modes at zero lattice spacing.

The study of the spectrum also casts new light [5, 10] on the additional low energy

constants of the chiral Lagrangian which is the backbone of Wilson chiral perturbation

theory as developed in [16–22] (reviews of effective field theory methods at finite lattice

spacings can be found in [23, 24]). By a match of the two-flavor results presented in this

paper to the microscopic spectrum of the Wilson Dirac operator on the lattice, the value of

the low energy constants can be measured. The spectrum of the Hermitian Wilson Dirac

operator in the p-regime of Wilson chiral Perturbation Theory has been discussed in [25]

and the results at next to leading order have been fitted to lattice data in [26].

The paper is organized as follows. Starting from a chiral Lagrangian for spectra of the

Hermitian Wilson Dirac operator at nonzero lattice spacing, we derive compact expressions

for all spectral correlation functions for any number of flavors. In the second part of this

paper, we obtain expressions for the distribution of the chiralities over the real eigenvalues

of the Wilson Dirac operator. Some technical details involving Efetov-Wegner terms are

discussed in Appendix A, and in Appendix B we give explicit expressions for partition

functions in terms of an integral over a diffusion kernel.
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II. SPECTRAL PROPERTIES OF THE HERMITIAN WILSON DIRAC OPERA-

TOR

The generating function for p-point spectral correlation functions of the eigenvalues of

the Hermitian Wilson Dirac operator for QCD with Nf dynamical quarks in the sector of

gauge field configurations with index ν is given by (recall that D5 = γ5(DW +m))

Zν
Nf+p|p =

〈

detNf (D5)

p
∏

k=1

det(D5 + zk)

det(D5 + zk ′ − iǫkγ5)

〉

. (4)

The average is over gauge field configurations with index ν weighted by the Yang-Mills

action. For p = 0 this is just the Nf flavor partition function. We will evaluate this

generating function in the microscopic limit where V → ∞ with

mV, zkV, zk
′V, a2V (5)

kept fixed. The axial masses zk are required when we apply the graded method to obtain p-

point eigenvalue correlation functions of the Hermitian Wilson Dirac operator. For example,

from the graded generating function Zν
Nf+1|1(m, z, z′; a) we can obtain the spectral resolvent

Gν
Nf+1|1(z,m; a) = lim

z′→z

d

dz
Zν

Nf+1|1(m, z, z′; a), (6)

and the density of eigenvalues, ρν5(λ
5, m; a), of D5 follows from

ρν5(λ
5, m; a) =

〈

∑

k

δ(λ5
k − λ5)

〉

Nf

=
1

π
Im[Gν

Nf+1|1(−λ5)]ǫ→0. (7)

To derive expressions for the correlation functions in the microscopic limit we will rely on

the graded eigenvalue method. Before deriving the general result, we will first consider the

case p = 0, which is just the Nf -flavor partition function.

The chiral Lagrangian for Wilson chiral perturbation theory to O(a2) was derived in [16–

18]. In [5] we obtained the microscopic partition function for fixed index ν also to order a2,

by decomposing the partition function according to

ZNf
(m, θ; a) ≡

∞
∑

ν=−∞

eiνθZν
Nf

(m; a). (8)

In the microscopic domain, the partition function reduces to a unitary matrix integral

Zν
Nf
(m, z; a) =

∫

U(Nf )

dU detνU eS[U ], (9)
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where the action S[U ] for degenerate quark masses is given by

S =
m

2
ΣV Tr(U + U †) +

z

2
ΣV Tr(U − U †) (10)

−a2VW6[Tr
(

U + U †
)

]2 − a2VW7[Tr
(

U − U †
)

]2 − a2VW8Tr(U
2 + U †2).

In addition to the chiral condensate, Σ, the action also contains the low energy constants

W6, W7 and W8 as parameters. Since the W6 and W7 terms can be eliminated at the expense

of an extra integration [10], we will only consider the W8 term in the remainder of this paper.

For the reasons discussed in section VII of [10] we consider only W8 > 0. To simplify our

notation below, we will absorb the factor VW8 into a2 and the factor V Σ into m, zk and λ5

a2VW8 → a2, mV Σ → m, zkV Σ → zk and λ5V Σ → λ5. (11)

Eq. (9) is a supersymmetric extension of Wilson chiral perturbation theory with partial

quenched quarks with masses zk and z′k which gives us access to the spectrum of the Dirac

operator. Up to a normalization factor, the term proportional to W8 in the action (10) can

be rewritten as

e−a2Tr(U2+U†2) = e−2Nfa
2−a2Tr(U−U†)2 ,

= ce−2Nfa
2

∫

dσeTrσ
2/16a2+ 1

2
Trσ(U−U†), (12)

where σ is anti-hermitian, and c is a normalization constant. In a diagonal representation

of σ denoted by S ≡ diag(is1, · · · , isNf
) the partition function with index ν is thus given by

(up to a normalization constant)

Zν
Nf

(m; a) = e−2Nfa
2

∫

dsk∆
2({sk})

∫

U(Nf )

dU detνUe−
∑

k s2
k
/16a2e

1
2
TrU†(m+S)+ 1

2
TrU(m−S)

=

∫

dsk∆
2({sk})e−

∑
k s2

k
/16a2detν(m− S) Z̃ν

Nf
({(m2 + s2k)

1/2}; a = 0). (13)

The Vandermonde determinant is defined by

∆(x1, · · · , xp) =

p
∏

k>l

(xk − xl), (14)

and an explicit expression for the partition function at a = 0 is given in Eq. (29). The

expression for the partition function will be discussed in more detail for Nf = 1 and 2 in

Appendix B.
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The fermionic partition function has been written as an integral over a diffusion kernel

times the partition function at a = 0. Next we will show that exactly the same is true for

the graded generating functional obtained in [5]. The generating function of the microscopic

p-point spectral correlation functions of the Hermitian Wilson Dirac operator with index ν

is given by

Zν
Nf+p|p(M,Z; a) =

∫

dU Sdet(iU)νe
i
2
Trg(M[U−U−1])+ i

2
Trg(Z[U+U−1])+a2Trg(U2+U−2), (15)

where M ≡ diag(m1 . . .mNf+2p) and Z ≡ diag(z1 . . . zNf+2p), and the integration is over

Gl(Nf + p|p)/U(p), see [27]. We use the convention that TrgA = Tr[Af ]− Tr[Ab], with Af

the fermion-fermion block of A, and Ab its boson-boson block. The definition of Sdet follows

form the relation SdetA = exp[Trg logA]. Notice that in comparison to (9) the integration

over U has been rotated by i so that the convergence of the bosonic integrals is assured

[5, 10]. A similar rotation is necessary when computing the spectrum of the Dirac operator

at nonzero chemical potential [28]. The common origin is the non-Hermiticity of the Dirac

operator. The manipulations from (9) to (13) can be repeated for the graded partition

function. We start from the identity

ea
2Trg(U2+U†2) = e−2Nfa

2+a2Trg(U+U†)2 ,

= ce−2Nfa
2

∫

dσeTrgσ
2/16a2+ i

2
Trgσ(U+U†), (16)

where σ is an (Nf + p|p) graded “Hermitian” matrix (see (21)) and c is an integration

constant. After shifting integration variables σ → σ − Z we obtain (the normalization

constants will be fixed at the end of the calculation)

Zν
Nf+p|p(M,Z; â) = e−2Nfa

2

∫

dσ

∫

dU Sdetν(iU)eTrg(σ−Z)2/16a2+ i
2
Trg(σ+M)U+ i

2
Trg(σ−M)U−1

.

(17)

We will evaluate this partition function for the (p+Nf |p) graded diagonal matrix

Z = diag(ǫ, · · · , ǫ, z1, · · · , zp, z′1, · · · , z′p), (18)

and it is understood that the limit ǫ → 0 is taken at the end of the calculation.

The partition function (9) and the generating function (15) satisfy the relation

Z−ν
Nf

(m, z; a) = Zν
Nf

(m,−z; a), (19)

Z−ν
Nf+p|p(M,Z; a) = Zν

Nf
(M,−Z; a). (20)
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For this reason we only consider the case ν ≥ 0 below. For z = 0 (Z = 0) the generating

function does not depend on the sign of ν.

The graded matrix σ has the structure

σ =





iσf α

β σb



 (21)

with Hermitian (p +Nf) × (p +Nf ) matrix σ†
f = σf , Hermitian p× p matrix σ†

b = σb, and

α and β are matrices in the Grassmann algebra. The matrix σ can be diagonalized by a

super-unitary transformation [29]

σ = uSu−1, with S ≡





is 0

0 t



 , (22)

where s = diag(s1, . . . , sp+Nf
) and t = diag(t1, . . . , tp) contain the real eigenvalues sk and tk.

Next we transform to the eigenvalues of σ and the super-unitary matrix U as integration

variables. The measure is given by

dσ = B2
Nf+p|p(S)

Nf+p
∏

k=1

dsk

p
∏

k=1

dtk du. (23)

with Berezinian

BNf+p|p(S) =

∏Nf+p
k>l (isk − isl)

∏p
k>l(tk − tl)

∏p
k=1

∏Nf+p
l=1 (tk − isl)

. (24)

The measure du is the superinvariant Haar measure.

For degenerate quarks masses, Mk = m, the integral over u can be performed by a graded

generalization [13, 30] of the Itzykson-Zuber formula,

∫

dueTrg(ρ−ξ)2/2τ = B0 +
1

(2πτ)(Nf+2p)/2

e(1/2τ)Trg(X
2+R2) det e−Rb

k
Xb

l
/τ det e−Rf

k
Xf

l
/τ

BNf+p|p(X)BNf+p|p(R)
. (25)

Here, X and R are the diagonal representation of ξ and ρ, in this order. B0 contains the

contributions due to the boundary terms. They result from the product of the infinity due

the singularities in the measure and the vanishing result due to the Grassmann integration

after changing to eigenvalues as integration variables. These contributions can be worked out

by expanding the eigenvalues of σ in powers of the nilpotent terms (see Appendix A). They

do not contribute to the spectral correlators discussed below and will be further analyzed in

a future publication.
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Ignoring the contribution from B0 we find the generating function

Zν
Nf+p|p(M,Z; a) =

e−2Nfa
2

(16πa2)p+Nf/2

∫

dU Sdet(iU)ν
∫

dsdt
BNf+p|p(S)

BNf+p|p(Z)

e+
i
2
Trg(S+m)U+ i

2
Trg(S−m)U−1 × e(1/16a

2)Trg(S2+Z2) det e−Sb
k
Zb

l
/8a2 det e−Sf

k
Zf

l
/8a2 . (26)

The integral over U can be expressed in terms of the generating function for a = 0. A

convenient expression is obtained by observing that the masses Sk +m and Sk −m can be

replaced by the same mass i
√

m2 − S2
k for both chiralities. A further simplification results

from the symmetry of the integrand in the sk and the tk variables so that all terms in

the Laplace expansion of the determinants from the Itzykson-Zuber integral give the same

contribution. In terms of the a = 0 partition function we thus obtain

Zν
Nf+p|p(m,Z; a) =

∏p
k,l=1(z

′
k − zl)

∏p
k z

′
k
Nf

∆({zl})∆({z′k})
∏p

k z
Nf

k

e−2Nfa
2

(16πa2)(Nf+2p)/2

∫

dsdtBNf+p|p(S)∆(S/8a2)

×eTrg[(S−Z)2]/16a2
(∏

k(m− isk)
∏

l(m− tl)

)ν

Z̃ν
Nf+p|p

(

{(s2k +m2)1/2}, {(m2 − t2l )
1/2}; a = 0

)

,

(27)

where Vandermonde determinant, ∆(S/8a2) = ∆(is1/8a
2, . . . , isNf

/8a2), and the prefactors

result from the limit ǫ → 0.

We have succeeded in rewriting the a dependence of the generating function as an integral

over the product of a diffusion kernel and the a = 0 generating function given by [31, 32]

Z̃ν
Nf+p|p(x1, · · · , xNf+2p; a = 0) (28)

= c

(
∏Nf+2p

k=Nf+p+1 xk

∏Nf+p
k=1 xk

)ν

det[(xk)
l−1Iν+l−1(xk)]

∆(x2
1, · · · , x2

Nf+p)∆(x2
Nf+p+1, · · · , x2

Nf+2p)

with

Iq(xk) = Iq(xk), k = 1, · · · , Nf + p,

Iq(xk) = (−1)qKq(xk), k = Nf + p + 1, · · · , Nf + 2p. (29)

We added a tilde to Z̃ν
Nf+p|p because the mass-factors due to the zero modes have been

amputated which is not the case for the partition function at a 6= 0.

The p point correlation function is obtained by differentiating with respect to the zk and

putting z′k = zk afterwards. Only if all factors in the product
∏

(z′k − zk) are differentiated
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do we get a nonzero result. The remaining factors from the Berezinian BNf+p|p(Z) cancel.

We thus find the correlator of p resolvents

Gν
Nf+p|p(z1, · · · , zp; a) =

e−2Nfa
2

Zν
Nf

(m; a)

1

(16πa2)(Nf+2p)/2

∫

dsdtBNf+p|p(S)∆(S/8a2) (30)

×eTrg[(S−Z)2]/16a2
∏

k(m− isk)
ν

∏

l(m− tl)ν
Z̃ν

Nf+p|p

(

{(s2k +m2)1/2}, {(m2 − t2l )
1/2}; a = 0

)

.

This result is universal in the sense that given the definition of ν according to Eq. (9), it is

completely determined by the symmetries and Hermiticity properties of the QCD partition

function [10]. Below we discuss explicit results for the microscopic spectral density for

Nf = 0, 1 and 2. We also check that the partition function for Nf flavors reduces to

previously derived results for Nf = 0 and Nf = 1.

A. Explicit Results for the Spectrum of D5

In this section we discuss explicit results for the microscopic spectral density of D5 for

the quenched case and one and two dynamical flavors.

1. The quenched case

In this case the Berezinian is given by

B1|1(S) =
1

t− is
(31)

and the generating function reduces to

Zν
1|1(m, z, z′; a) =

z′ − z

16a2π

∫

dsdt

t− is
e−[(s+iz)2+(t−z′)2]/16a2 (m− is)ν

(m− t)ν
(32)

×Z̃ν
1|1(

√
m2 + s2,

√
m2 − t2; a = 0).

Here,

Z̃ν
1|1(x, y; a = 0) =

yν

xν
[yKν+1(y)Iν(x) + xKν(y)Iν+1(x)]. (33)

The resolvent is given by

Gν
1|1(z) =

d

dz

∣

∣

∣

∣

z′=z

Zν
1|1(m, z, z′; a). (34)
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Only the term where the prefactor z′ − z is differentiated contributes to the resolvent. In

the microscopic limit, this results in

Gν
1|1(z) = − 1

16a2π

∫

dsdt

t− is
e−

[s2+t2]

16a2
(m− is− z)ν

(m− t− z)ν
(35)

×Z̃ν
1|1(
√

m2 − (is+ z)2,
√

m2 − (t + z)2; a = 0).

Note that we also shifted the integration variables s and t by −iz and z′, respectively. The

effect of this shift is discussed in Appendix A.

The quenched microscopic eigenvalue density of D5 follows from the imaginary part of

the resolvent, cf. Eq. (7). We have checked numerically that this result coincides with the

result obtained from a standard supersymmetric computation in [5]. See [5, 10] for plots of

the quenched density.

In the a → 0 limit at fixed m and z, the Gaussian integrals in Eq. (33) become δ-functions

which can be integrated resulting in

lim
a→0

Zν
1|1(m, z, z′; a) =

[

(z −m)

(z′ −m)

]ν

Z̃ν
1|1(

√
m2 − z2,

√

m2 − z′2; a = 0). (36)

The prefactor gives the contribution from the zero modes to the resolvent

ν

z −m
, (37)

whereas the second factor gives the contribution of the nonzero modes for a = 0.

B. One Flavor

For Nf = 1 the generating function is given by

Zν
2|1 =

e−2a2

64a3π3/2

(z′ − z)z′

z

∫

dtds1ds2(is2 − is1)

(t− is1)(t− is2)
e−[s21+(s2+iz)2+(t−z′)2]/16a2 (38)

×(m− is1)
ν(m− is2)

ν

(m− t)ν
Z̃ν

2|1((s
2
1 +m2)1/2, (s22 +m2)1/2, (m2 − t2)1/2; a = 0),

where

Z̃ν
2|1(x1, x2, x3) =

xν
3

xν
1x

ν
2(x

2
2 − x2

1)
det











Iν(x1) x1Iν+1(x1) x2
1Iν+2(x1)

Iν(x2) x2Iν+1(x2) x2
2Iν+2(x2)

(−1)νKν(x3) (−1)ν+1x3Kν+1(x3) (−1)νx2
3Kν+2(x3)











.

(39)
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To obtain the resolvent we differentiate with respect to z′ and put z′ = z after differ-

entiation. An additional minus sign arises because z′ is the bosonic source term. We thus

find

Gν
2|1(z) = − e−2a2

64a3π3/2Zν
1 (m; a)

∫

ds1ds2dt(is2 − is1)

(t− is1)(t− is2)
e−[s21+(s2+iz)2+(t−z)2]/16a2 (40)

×(m− is1)
ν(m− is2)

ν

(m− t)ν
Z̃ν

2|1((s
2
1 +m2)1/2, (s22 +m2)1/2, (m2 − t2)1/2; a = 0),

where the s2 and t integration contours are shifted such that s2 + iz and t− z run over the

real axis. The resolvent is normalized with respect to the one flavor partition function given

in Eq. (100). As for the quenched case we have checked numerically that the one flavor

microscopic density, which follows from the imaginary part of Gν
2|1, is identical to the result

[11] obtained from chiral perturbation theory using the standard supersymmetric method.

We refer to [11] for plots.

The small a limit for fixed m and z can be obtained by first shifting s2 → s2 − iz and

t → t + z and then expand the nonexpential factors in Eq. (39). The integration measure

can be expanded as

(is2 − is1 + z)

(t+ z − is1)(t− is2)
= [1 +

1

z
(is2 − t)]

1

t− is2
+ · · · . (41)

For small a the partition function Z̃2|1((s
2
1+m2)1/2, ((s2 − iz)2 +m2)1/2, (m2−(t+z)2)1/2; a =

0) (denoted by Z̃2|1 below) can be expanded to first order in sk and t

m−νZ̃ν
1 (m; a = 0) + s1

d

ds1
Z̃2|1

∣

∣

∣

∣

s1=s2=t=0

+ s2
d

ds2
Z̃2|1

∣

∣

∣

∣

s1=s2=t=0

+ t
d

dt
Z̃2|1

∣

∣

∣

∣

s1=s2=t=0

. (42)

The term linear in s1 does not contribute to leading order in a and the remaining terms can

be written as

m−νZ̃ν
1 (m; a = 0) + (t− is2)

d

dt
Z̃2|1

∣

∣

∣

∣

s1=s2=t=0

= m−νZ̃ν
1 (m; a = 0) + (t− is2)

d

dz′

∣

∣

∣

∣

z′=z

Z̃2|1(m,
√
m2 − z2,

√

m2 − z′2). (43)

The linear term in s1 in the expansion of the prefactor

(m− is1)
ν(m− z − is2)

ν

(m− z − t)ν
=

mν(m− z)ν

(m− z′)ν

[

−ν
is1
m

+ ν
t− is2
m− z

]

+ · · · . (44)

also vanishes after integration. Combining the contributions from Eqs. (41-44) we obtain

the small a limit

Gν(z) =
ν

z −m
+ G̃ν(m, z; a = 0) +

1

z
, (45)
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where G̃ν(m, z; a = 0) is the resolvent of the nonzero eigenvalues. The additional 1/z term

will be canceled by Efetov-Wegner terms which contribute to the real part of the resolvent.

C. Two Flavors

In this section we write out the Nf = 2 generating function with dynamical quark masses

m and index ν. With the Berezinian given by

B3|1(s) =
(is2 − is1)(is3 − is1)(is3 − is2)

(t− is1)(t− is2)(t− is3)
(46)

we find the generating function

Zν
3|1 = − e−4a2

π2(16a2)3
z′2(z′ − z)

z2

∫

ds1ds2ds3dt(is2 − is1)
2(is3 − is1)(is3 − is2)

(t− is1)(t− is2)(t− is3)

×e−[s21+s22+(s3+iz)2+(t−z′)2]/16a2 (m− is1)
ν(m− is2)

ν(m− is3)
ν

(m− t)ν

×Z̃ν
3|1((s

2
1 +m2)1/2, (s22 +m2)1/2, (s23 +m2)1/2, (m2 − t2)1/2; a = 0). (47)

The partition function for a = 0 is given by

Z̃ν
3|1(x1, x2, x3, x4; a = 0) = 2

xν
4

xν
1x

ν
2x

ν
3

1

(x2
3 − x2

2)(x
2
3 − x2

1)(x
2
2 − x2

1)
(48)

× det















Iν(x1) x1Iν+1(x1) x2
1Iν+2(x1) x3

1Iν+3(x1)

Iν(x2) x2Iν+1(x2) x2
2Iν+2(x2) x3

2Iν+3(x2)

Iν(x3) x3Iν+1(x3) x2
3Iν+2(x3) x3

3Iν+3(x3)

(−1)νKν(x4) x4(−1)ν+1Kν+1(x4) x2
4(−1)ν+2Kν+2(x4) x3

4(−1)ν+3Kν+3(x4)















.

The resolvent is obtained by differentiating the factor z′ − z with respect to z at z′ = z.

This results in

Gν
3|1(z; a) =

e−4a2

π2(16a2)3Zν
Nf=2(m; a)

∫

ds1ds2ds3dt
(is2 − is1)

2(is3 − is1)(is3 − is2)

(t− is1)(t− is2)(t− is3)

×e−
1

16a2
[s21+s22+(s3+iz)2+(t−z)2] (m− is1)

ν(m− is2)
ν(m− is3)

ν

(m− t)ν

×Z̃ν
3|1((s

2
1 +m2)1/2, (s22 +m2)1/2, (s23 +m2)1/2, (m2 − t2)1/2; a = 0), (49)

where the s3 and t integration contours are shifted such that s3 + iz and t − z run over

the real axis. The resolvent has been normalized with respect to the two-flavor partition

function defined in Eq. (103).
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)

FIG. 1: Spectral density of D5 for Nf = 2, ν = 0, m = 3 for a = 0.25 (black curve) and a = 0 (red

curve).
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FIG. 2: The spectral density of the eigenvalues of D5 in the sector with index ν = 0 plotted for

Nf = 0, 1 and 2. The value of a = 0.25 and m = 3. The increasing repulsion from the origin for

larger Nf is clearly visible.

The microscopic eigenvalue density of D5 with two light flavors of mass m is then given

by

ρ
ν,Nf=2
5 (λ5, m; a) =

1

π
Im[Gν

3|1(−λ5)]ǫ→0. (50)

In Fig. 1 we show the two-flavor microscopic spectral density of D5 as a function of λ5 for

ν = 0 and m = 3 and compare the result for a = 0.25 and a = 0. The area below the

two curves is the same within our numerical accuracy. In Fig. 2 we compare the two-flavor

result to the one-flavor result and the quenched result with the same parameters.
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FIG. 3: The effect of the index on the spectral density of the Hermitian Wilson Dirac operator for

two flavors. Results for index ν = 1 (left) and ν = 2 (right) are shown for m = 3 and a = 0.25 (red

curve) and a = 0 (black curve). The vertical black line marks the position of the ν fold δ-function

due to the exact topological modes at a = 0. Note that the primary effect of a for small a is to

smear out the δ-function.

The effect of non-zero index ν for Nf = 2 is displayed in Fig. 3. Note that the two

flavor eigenvalue density is positive definite (the square of the Wilson-fermion determinant

is real and positive) and that the spectral gap cannot close completely on the microscopic

scale due to the repulsion from the origin (the square of the Wilson-fermion determinant

vanishes quadratically as an eigenvalue of D5 approaches zero). It would be most interesting

to compare these analytical predictions to dynamical lattice data, such as those presented

in [4].

For small a at fixed m and z we can write

(is3 − is1 + z)(is3 − is2 + z)

(t− is1 + z)(t− is2 + z)(t− is3)
= [1 +

2

z
(is3 − t)]

1

t− is3
. (51)

The constant term contributes to the real part of the resolvent, and as in the one-flavor

case, we expect that it will be canceled by contributions from the Efetov-Wegner terms.

The a → 0 limit of the Nf = 2 resolvent is obtained by expanding the pre-exponential

factors in Eq. (49) as in the one-flavor case.
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III. THE DISTRIBUTION OF REAL MODES

We now consider the eigenvalues of the usual Wilson Dirac operator DW . For small

nonzero values of the lattice spacing a, the eigenvalues, λW , of DW spread into a narrow

band around the imaginary axis of the complex eigenvalue plane. The eigenvalues in the

complex plane make up complex conjugate pairs λW , (λW )∗ or are exactly real. See [33] for

a derivation of these properties of the Wilson Dirac operator. In this section we analyze the

microscopic spectral correlation functions for the real eigenvalues of DW .

The generating function for the p-point correlation function with Nf dynamical quarks

in the sector of gauge field configurations with index ν takes the form

Zν
Nf+p|p =

〈

detNf (DW +mf )

p
∏

k=1

det(DW +mk)

det(DW +m′
k − iǫγ5)

〉

. (52)

The spectral resolvent for the one point function is

Σν
Nf+1|1(m,mf ; a) = lim

m′→m

d

dm
Zν

Nf+1|1(mf , m,m′; a). (53)

To be precise, the one point function that corresponds to this resolvent is the distribution

of the chiralities, sign(〈k|γ5|k〉), over the real modes, λW
k ∈ R,

ρνχ(λ
W , mf ; a) ≡

〈

∑

λW
k

∈R

δ(λW
k + λW ) sign(〈k|γ5|k〉)

〉

Nf

. (54)

In the sector with index ν as defined in eq. (3) we have
∫

dλW ρνχ(λ
W , mf ; a) = ν. (55)

The fact that the results obatined below from Wilson chiral perturbation theory satisfy this

demonstrates that the sectors defined in eq. (8) correspond to a Dirac operator DW with

index ν as defined in eq. (3) [10].

The distribution of the chiralities over the real modes, can be obtained from the imaginary

part of the spectral resolvent (see section II of [10])

ρνχ(λ
W , mf ; a) =

1

π
Im[Σν

Nf+1|1(mf , m = λW ; a)]ǫ→0. (56)

The p-point spectral resolvent is given by

Σν
Nf+p|p(m1, . . . , mp, mf ; a) = lim

m′
1→m1

. . . lim
m′

p→mp

d

dm1
· · · d

dmp
(57)

×Zν
Nf+p|p(mf , m1, . . . , mp, m

′
1, . . . , m

′
p; a).
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As in the case of the one-point function, the discontinuities across the real axis give the

p-point density correlation functions.

As was discussed in [5], the generating function for the correlation functions (57) is given

by

Zν
Nf+p|p(M; a) =

∫

dU Sdet(iU)νe
i
2
Trg(M[U−U−1])+a2Trg(U2+U−2), (58)

which is just the generating function (15) for Z = 0. The mass matrix corresponding to

(52) is given by the (p+Nf |p) graded diagonal matrix

M ≡ diag(mf , · · · , mf , m1, · · · , mp, m
′
1, · · · , m′

p). (59)

The first Nf entries are the physical masses and need not be identical.

In order to derive the p-point function the we start with the identity (instead of the

identity (16))

ea
2Trg(U2+U−12) = e2Nfa

2+a2Trg(U−U−1)2 ,

= ce2Nfa
2

∫

dσeTrgσ
2/16a2+ i

2
Trgσ(U−U−1), (60)

where σ is an (Nf + p|p) graded Hermitian matrix (see Eq. (21)) and c a normalization

constant.. After a shift of σ by M we obtain

Zν
Nf+p|p(M; a) = e2Nfa

2

∫

dσ

∫

dU Sdetν(iU)eTrg(σ−M)2/16a2+ i
2
Trg σ(U−U−1). (61)

The next step is to decompose σ = uSu−1 with S a diagonal graded matrix (see Eq. (22))

and perform the integration over u by a supersymmetric generalization of the Itzykson-Zuber

integral. We find

Zν
Nf+p|p(M; a) =

e2Nfa
2

(16πa2)(Nf+2p)/2

∫

dsdt
BNf+p|p(S)

BNf+p|p(M)
det e−Mb

k
Sb
l
/8a2 det e−Mf

k
Sf
l
/8a2

×eTrg[S
2+M2]/16a2

∏

k(isk)
ν

∏

l(tl)
ν
Z̃ν

Nf+p|p

({

√

(isk)2
}

,
{

√

(tl)2
}

; a = 0
)

. (62)

For degenerate dynamical quarks the above expression can be further simplified.

det e−Mf
k
Sf
l
/8a2 = ∆(m1, · · · , mNf

)∆(Sf
1 /8a

2, · · · , Sf
Nf

/8a2)e
−m(Sf

1+···+Sf
Nf

)/8a2

×det[e−mkS
f
l
/8a2 ]k,l=Nf+1,··· ,Nf+p + permutations of Sf

k . (63)
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All permutations of the Sk give the same contribution. For m′
k → mNf+k we obtain

∆(m1, · · · , mNf
)

BNf+p|p(M)
→

p
∏

k=1

(m′
k −mNf+k). (64)

The final expression for the generating function with degenerate quark masses is given by

Zν
Nf+p|p(M; a) =

∏p
k=1(m

′
k −mNf+k)e

2Nfa
2

(16πa2)(Nf+2p)/2

∫

dsdtBNf+p|p(S)∆(Sf
1 /8a

2, · · · , Sf
Nf

/8a2)

×e(1/16a
2)Trg[(S−M)2]

∏

k(isk)
ν

∏

l(tl)
ν
Z̃ν

Nf+p|p

({

√

(isk)2
}

,
{

√

(tl)2
}

; a = 0
)

. (65)

In order to obtain nonzero contributions to the spectral resolvent (57) all mk in the pre-

factor have to be differentiated. Below we give the explicit expressions in a couple of cases

relevant for current lattice simulations. This expression is only valid if the sign ǫ is the same

for all bosonic quark. To extract spectral correlation functions we also need expressions for

which the sign of ǫ is different for different bosonic flavors. This issue will be addressed in

a future publication.

A. The quenched case

The quenched one-point function ρνχ(λ
W ; a) follows from

Σν
1|1(m; a) = − 1

16a2π

∫

dsdt

t− is
e−

s2+t2

16a2
(is+m)ν

(t+m)ν
(66)

×Z̃ν
1|1(
√

(is+m)2,
√

(t+m)2; a = 0),

after using (56). The explicit form of Zν
1|1 at a = 0 is given in Eq. (33).

The two-point function in the quenched case is given by

Σν
2|2(m1, m2; a) =

1

(16πa2)2

∫

ds1ds2dt1dt2

× (is2 +m2 − is1 −m1)(t2 +m2 − t1 −m1)

(t1 − is1)(t2 +m2 − is1 −m1)(t1 +m1 − is2 −m2)(t2 − is2)

×e−
1

16a2
[s21+s22+t21+t22]

(is1 +m1)
ν(is2 +m2)

ν

(t1 +m1)ν(t2 +m2)ν
(67)

×Z̃ν
2|2(
√

(is1 +m1)2,
√

(is2 +m2)2,
√

(t1 +m1)2,
√

(t2 +m2)2; a = 0).
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Here the a = 0 partition function takes the form

Z̃ν
2|2(x1, x2, x3, x4; a = 0) = 2

xν
3x

ν
4

xν
1x

ν
2

1

(x2
2 − x2

1)(x
2
4 − x2

3)
(68)

× det















Iν(x1) x1Iν+1(x1) x2
1Iν+2(x1) x3

1Iν+3(x1)

Iν(x2) x2Iν+1(x2) x2
2Iν+2(x2) x3

2Iν+3(x2)

(−1)νKν(x3) x3(−1)ν+1Kν+1(x3) x2
3(−1)ν+2Kν+2(x3) x3

3(−1)ν+3Kν+3(x3)

(−1)νKν(x4) x4(−1)ν+1Kν+1(x4) x2
4(−1)ν+2Kν+2(x4) x3

4(−1)ν+3Kν+3(x4)















.

The two-point correlation function contains a term due to self-correlations,

R2(x, y) =

〈

∑

k,l

1

x+ λk

1

y + λl

〉

=

〈

∑

k

1

x+ λk

1

y + λk

〉

+

〈

∑

k 6=l

1

x+ λk

1

y + λl

〉

. (69)

This term can be rewritten as
〈

∑

k

1

x+ λk

1

y + λk

〉

=
1

y − x

〈

∑

k

1

x+ λk

− 1

y + λk

〉

(70)

which is singular for y → x if x and y are on opposite sides of the cut of the resolvent. It

can be shown in general terms [34] that such singular terms are due to Efetov-Wegner terms

and are not included in the expression (67). They will be analyzed in a future publication.

The two-point spectral correlation function

ρνχ(λ
W
1 , λW

2 ; a) =

〈

∑

λW
k

,λW
l

∈R

δ(λW
k + λW

1 ) sign(〈k|γ5|k〉)δ(λW
l + λW

2 ) sign(〈l|γ5|l〉)
〉

(71)

−
〈

∑

λW
k

∈R

δ(λW
k + λW

1 ) sign(〈k|γ5|k〉)
〉〈

∑

λW
k

∈R

δ(λW
k + λW

2 ) sign(〈k|γ5|k〉)
〉

can also be decomposed into sum of self-correlations and genuine two-point correlations

ρνχ(λ
W
1 , λW

2 ; a) = δ(λW
1 − λW

2 )

〈

∑

λW
k

∈R

δ(λW
k + λW

1 )

〉

(72)

+

〈

∑

λW
k

,λW
l

∈R,k 6=l

δ(λW
k + λW

1 ) sign(〈k|γ5|k〉)δ(λW
l + λW

2 ) sign(〈l|γ5|l〉)
〉

−
〈

∑

λW
k

∈R

δ(λW
k + λW

1 ) sign(〈k|γ5|k〉)
〉〈

∑

λW
k

∈R

δ(λW
k + λW

2 ) sign(〈k|γ5|k〉)
〉

.

An important observation is that the sign of the chirality drops out in the expression for

the self-correlations so that the diagonal part of the two-point correlator gives the density
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of real modes

ρνχ(λ
W
1 , λW

2 = λW
1 ; a) =

〈

∑

λW
k

∈R

δ(λW
k + λW

1 )

〉

. (73)

B. One dynamical flavor

With one dynamical flavor of mass mf we have

Σν
2|1(m,mf ; a) = − e2a

2

64a3π3/2Zν
1 (mf ; a)

∫

ds1ds2dt(is2 +m− is1 −mf )

(t+m− is1 −mf)(t− is2)
e−[s21+s22+t2]/16a2

×(−is1 −mf)
ν(is2 +m)ν

(t +m)ν
Z̃ν

2|1(
√

(is1 +mf )2,
√

(is2 +m)2,
√

(t +m)2; a = 0).

(74)

Note that the one flavor theory has a sign problem and consequently the one-point function

ρνχ(λ
W , mf ; a) =

1

π
Im[Σν

2|1(m− iǫ,mf ; a)]ǫ→0 (75)

changes sign at λW = mf , see also [11] where this function was derived by a direct super-

symmetry computation.

The a → 0 limit at fixed m and mf is obtained by expanding the pre-exponential factors

to first order in the sk and t. This results in

Σν
2|1(m,mf ; a) =

ν

m
+

1

m−mf

+ Σ2|1(m,mf ; a = 0).+ · · · . (76)

The 1/(m−mf ) term is expected to cancel against the Efetov-Wegner terms.

C. Two dynamical flavors

Finally we give the explicit form of the distribution of the chiralities over the real eigen-

values of DW in a sector with fixed index ν for the physically relevant case of two light

flavors with mass mf . The spectral resolvent can be expressed as

Σν
3|1(m,mf ; a) =

e4a
2

π2(16a2)3Zν
Nf=2(mf ; a)

∫

ds1ds2ds3dt

×(is2 − is1)
2(is3 +m− is1 −mf)(is3 +m− is2 −mf )

(t+m− is1 −mf)(t +m− is2 −mf )(t− is3)

×e−
1

16a2
[s21+s22+s23+t2] (is1 +mf )

ν(is2 +mf )
ν(is3 +m)ν

(t+m)ν
(77)

×Z̃ν
3|1(
√

(is1 +mf )2,
√

(is2 +mf )2,
√

(is3 +m)2,
√

(t+m)2; a = 0),
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FIG. 4: The distribution of the chiralities over the real modes for Nf = 0 (red) and 2 (black). The

repulsion away from the quark mass is clear in the unquenched curve. The fact that the area below

the two curves equals ν suggests that the sectors defined in eq. (8) correspond to a Dirac operator

DW with index ν as defined in eq. (3).

where the two flavor partition function in the prefactor is given by Eq. (103) and the explicit

form of Zν
3|1 at a = 0 is given in (48).

A plot of the distribution of the chiralities over the real modes, ρνχ, is given in Fig. 4.

IV. CONCLUSIONS

We have obtained analytical expressions for all microscopic spectral correlation functions

of the Wilson Dirac operator for any number of flavors with equal quark mass. In particular,

we have computed the microscopic spectrum of the Hermitian Wilson Dirac operator in the

physically relevant two flavor case and the distribution of the chiralities over the real eigen-

values of the Wilson Dirac operator. The results were obtained from a chiral Lagrangian for

the generating function of the Wilson-Dirac spectrum using the graded eigenvalue method.

We have also given expressions for an arbitrary number of flavors as well as higher order cor-

relation functions. We have checked that our results for zero and one flavor are in complete

agreement with a previous calculation based on a brute force supersymmetric computation.

Since these results are based on a chiral Lagrangian that follows from the global symmetries

of the lattice QCD partition function they can also be derived from a chiral random matrix
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theory for the Wilson Dirac operator with the same global symmetries. This enables us

to derive additional results using random matrix techniques which we hope to address in a

future paper.

The new results, which have been obtained for a γ5-Hermitian Wilson Dirac operator,

give the leading order effect of the lattice discretization on the spectrum of the Wilson Dirac

operator also in the physically relevant two flavor case. The analytical understanding of the

smallest eigenvalues of the Wilson Dirac operator can be used to optimize the choices of

parameters in lattice QCD for which the simulation is stable. Our results a offer a direct

way to measure the low energy constants of Wilson chiral perturbation theory.
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Appendix A. EFETOV-WEGNER TERMS

In this Appendix we illustrate the effect of Efetov-Wegner terms for the Gaussian super-

integral

Z(z1, z2) =

∫

dσeTrg(σ−Z)2/16a2 , (78)

where σ and Z are the (1|1) supermatrices

σ =





a χ

ρ b



 , Z =





z1 0

0 z2



 , (79)

and dσ is the integral over the matrix elements of σ. Clearly, the integral does not depend

on z1 and z2 so that after a proper normalization of the measure we have

Z(z1, z2) = 1. (80)

The supermatrix σ can be diagonalized by

σ = u





is 0

0 t



u−1 (81)
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with

u = exp





0 α

β 0



 . (82)

We first perform the integral by transforming to the eigenvalues of σ as integration variables

and then perform the integral over u by a supersymmetric generalization of the Itzykson-

Zuber integral. This results in (Actually this is a special case of Eq. (26) where the partition

function for a = 0 is put equal to unity.)

Z(z1, z2) =
(z2 − z1)

16πa2

∫ ∞

−∞

ds

∫ ∞

−∞

dt
1

t− is
e−[(s+iz1)2+(t−z2)2]/16a2 . (83)

Using polar coordinates we obtain

Z(z1, z2) =
z2 − z1
16πa2

∫

drdφeiφ+iθe−[r2+z22−z21−2r
√

z22−z21 cosφ]/16a2 , (84)

with

eiθ =
z2 + z1
√

z22 − z21
. (85)

The integral over φ is a modified Bessel function

Z(z1, z2) =
(z2 − z1)e

iθ

8a2

∫

drI1(r
√

z22 − z21/8a
2)e−[r2+z22−z21 ]/16a

2

. (86)

Using that

∫ ∞

0

dxe−αx2

I1(βx) =
1

β
(eβ

2/4α − 1) (87)

we obtain

Z(z1, z2) = −e−[z22−z21 ]/16a
2

+ 1, (88)

which disagrees with Eq. (80). The missing contributions are the Efetov-Wegner terms

which arise due to nilpotent terms at the singularity of the measure. Below we will evaluate

these terms by regularizing the singularity.

We regularize the integral (78) over the matrix elements of σ by introducing the factor

θ(
√
a2 + b2 − ǫ). (89)
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FIG. 5: Shifting the s-integration from C1 to C2 gives an additional contribution from the discon-

tinuity across the imaginary s-axis.

Writing out the decomposition (81) we obtain

a = s− iαβ(is− t),

b = t+ αβ(is− t) (90)

so that

√
a2 + b2 =

√
s2 + t2 − αβ(is− t)2√

s2 + t2
, (91)

and

θ(
√
a2 + b2 − ǫ) = θ(

√
s2 + t2 − ǫ)− δ(

√
s2 + t2 − ǫ)

αβ(is− t)2√
s2 + t2

. (92)

The measure is given by

dσ =
dsdtdαdβ

(t− is)2
(93)

resulting in

Z(z1, z2) =
1

2π

∫

dsdtdαdβ

(t− is)2
θ((a2 + b2)1/2 − ǫ)e[(is−z1)2−(t−z2)2−2αβ(z2−z1)(is−t)]/16a2 . (94)

Expanding the nilpotents in the exponent reproduces the result obtained from the Itzykson-

Zuber integral which does not have to be regularized. We thus find

Z(z1, z2) = e[z
2
1−z22 ]/16a

2

+
z2 − z1
16πa2

∫

dsdt

t− is
e[(is−z1)2−(t−z2)2]/16a2 = 1. (95)
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This is not the end of the story. Because of a discontinuity in the integrand we cannot

simply shift the integration over s by −iz1. There is an additional contribution from the

discontinuity across the imaginary s-axis. We have that (see Fig. 5)

∫

C1

dsF (s) =

∫

C2

dsF (s) (96)

with

∫

C2

dsF (s) =

∫ ∞

−∞

dsF (s− iz1) + i

∫ z1

0

dyF (−iz1 + iy − ǫ)− i

∫ z1

0

dyF (−iz1 + iy + ǫ).

(97)

Applying this to the integral in Eq. (95) we obtain for the contribution of the vertical part

of the integration contour

I∆ ≡ z2 − z1
16πa2

∫

dydt2πδ(t− z1 + y)e[y
2−(t−z2)2]/16a2

=
z2 − z1
8a2

∫ z1

0

dye[2y(z1−z2)−(z1−z2)2]/16a2 ,

= e−(z1−z2)2/16a2 − e[z
2
1−z22 ]/16a

2

. (98)

The second term cancels against the Efetov-Wegner term.

The same derivation can be applied to the calculation of the quenched resolvent. The

conclusion is that if we shift the z and z′ dependence from the exponent to the 1/(t − is)

factor, the Efetov-Wegner term is of the form exp(−(z−z′)2/16a2) which does not contribute

to the quenched resolvent.

Appendix B. DIFFUSIVE PARTITION FUNCTION

The Nf -flavor fermionic partition function was derived in Section II from the chiral La-

grangian. Including the normalization the Nf flavor partition function in the sector with

index ν is given by

Zν
Nf

(m,Z; a) =
e−2Nfa

2

(16πa2)Nf/2

∫

∏

dsk∆({isk})∆({isk/8a2}) (99)

×e−[(s1+iz1)2+···(sNf
+izNf

)2]/16a2
∏

k

(m− isk)
νZ̃ν

Nf
((m2 + s21)

1/2, · · · , (m2 + s2Nf
)1/2; a = 0).

The normalization factor is such that we recover an identity for a → 0.
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For Nf = 1 we find

Zν
Nf=1(m, z; a) =

e−2a2

√
16πa2

∫ ∞

−∞

dse−(s+iz)2/(16a2)(is−m)ν
Iν((s

2 +m2)1/2)

(s2 +m2)ν/2
. (100)

Using the identity

(

is−m

is +m

)ν/2

Iν((s
2 +m2)1/2) =

∫ π

−π

dθ

2π
eiνθe−m sin θ+s cos θ (101)

the integral over s becomes a simple Gaussian integral, and the one-flavor partition function

can be rewritten as

Zν
Nf=1(m, z; a) = e−2a2

∫ π

−π

dθ

2π
eiνθ e−m sin θ−iz cos θ+4a2 sin2 θ (102)

This is indeed the expression for the one flavor partition derived in [5].

For Nf = 2 the normalization factor is given by N = 1/(π(16a2)2), so that the two flavor

partition function reduces to

Zν
Nf=2(m1, m2; a) =

e4a
2

π8a2

∫ ∞

−∞

∫ ∞

−∞

ds1ds2
(is1 − is2)

m1 −m2
e−

1
16a2

[(s1+im1)2+(s2+im2)2](is1)
ν(is2)

ν

×Z̃ν
2 (((is1)

2)1/2, ((is2)
2)1/2; a = 0), (103)

where

Z̃ν
2 (x1, x2) =

2

xν
1x

ν
2(x

2
2 − x2

1)
det

∣

∣

∣

∣

∣

∣

Iν(x1) x1Iν+1(x1)

Iν(x2) x2Iν+1(x2)

∣

∣

∣

∣

∣

∣

. (104)

It is also instructive to work out the partition function for Nf = −1. Using the general

expression (26) we obtain

Zν
Nf=−1(m, z; a) =

e2a
2

√
16πa2

∫ ∞

−∞

dte−(t−z)2/16a2 (m
2 − t2)ν/2

(t−m)ν
(−1)νKν((m

2 − t2)1/2). (105)

Using the identity

2

(

t− iǫ+m

t− iǫ−m

)ν/2

Kν((m
2 − (t− iǫ)2)1/2) =

∫ ∞

−∞

ds e−νse−im sinh s−i(t−iǫ) cosh s (106)

we obtain after performing the Gaussian integration over t and shifting the s-integration by

πi

Zν
Nf=−1(m, z; a) = e2a

2

∫ ∞

−∞

ds e−νseim sinh s+iz cosh s−4a2 cosh2 s

=

∫ ∞

−∞

ds e−νse−im sinh s−iz cosh s−2a2 cosh(2s). (107)
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which agrees with the bosonic part of the result obtained in [5].
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