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Abstract

In a continuing effort to understand divergences which occur when quantum fields are confined by

bounding surfaces, we investigate local energy densities (and the local energy-momentum tensor)

in the vicinity of a wall. In this paper, attention is largely confined to a scalar field. If the wall is an

infinite Dirichlet plane, well known volume and surface divergences are found, which are regulated

by a temporal point-splitting parameter. If the wall is represented by a linear potential in one

coordinate z, the divergences are softened. The case of a general wall, described by a potential of

the form zα for z > 0 is considered. If α > 2, there are no surface divergences, which in any case

vanish if the conformal stress tensor is employed. Divergences within the wall are also considered.
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I. INTRODUCTION

Quantum vacuum energy, or Casimir energy, referring to the quantum energies of fields

in the presence of material bodies or boundaries, is a mature subject [1]. In the last decade

there have been tremendous advances in both experiment and theory, so that the so-called

Lifshitz theory [2] has been confirmed at the 1% level, and theoretically there is now the

possibility of calculating forces between bodies of practically any shape and constitution.

Even the effects of finite temperature have now been confirmed [3]. Yet, such effects are

controversial, and there are many issues that are still unresolved.

One of the issues that has been controversial almost from the beginnings of the subject is

that of the Casimir self-energy of an object, as opposed to the energy of interaction between

two or more rigid objects. For example, in 1968 Boyer calculated the self-energy of a perfectly

conducting spherical shell of zero thickness and found a surprising repulsive result [4]. This

result has been confirmed by different techniques by many authors since. Yet within a

decade, the meaning of this result was profoundly questioned [5]; not only is the meaning of

self-energy rather obscure, but divergences occur whose omission has resulted in controversy

up to the present time [6]. Some of these divergences are proportional to the volume, to

the surface area, and to the corners, so-called Weyl terms, which can be unambiguously

removed. Curvature divergences are rather more subtle, and the reason Boyer obtained a

finite result was that the interior and exterior curvature contributions cancel. Situations

without curvature, such as triangular prisms [7] and tetrahedra [8], have finite calculable

self-energies when only the interior contributions are included.

The above calculations refer to the total energies of the systems. Yet, there is much inter-

est in local quantum energy densities, or more generally, the vacuum expectation value of the

stress-energy tensor. There are well-known divergences in these as surfaces are approached

[6]. However, most of the work on this subject has studied perfect boundaries, such as ideal

conductors or Dirichlet walls. Since there are still issues regarding surface divergences that

are not well understood, which are particularly relevant when the coupling to gravity is con-

sidered, in this paper we will consider walls that are modeled by potentials that are “softer”

than such a perfect wall. (Soft walls were considered earlier, but apparently only for the

global energy [9].) In particular, we will consider massless scalar fields in three dimensions

in the presence of a potential which depends only on one coordinate, z. We follow Bouas et
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al. [10] and consider semi-infinite potentials, so that the potential vanishes for z < 0 while

it is a monomial in z for z > 0. For special cases (Dirichlet, linear, and quadratic poten-

tials) the energy density may be found explicitly in terms of known functions, but in general

asymptotics yield the information about the nature of the divergences as the region of the

potential is approached from the left, as well as the divergences in the region of the potential.

Unlike many previous investigations of this subject, including some by Milton [6, 11], we

precisely regulate all expressions by inserting a temporal point-splitting. Then precise forms

of the divergences in terms of the temporal splitting parameter are obtained, which exhibit

the expected Weyl terms, as well as the nature of the singularity at the boundary z = 0.

Unlike Ref. [10] we consider a general stress tensor with arbitrary conformal parameter ξ;

that reference considers ξ = 1/4, but we find that for ξ = 1/6 the divergences that occur as

the boundary is approached are removed; in any case, they disappear for a potential higher

than quadratic.

II. DIRICHLET WALL

Consider a massless scalar field in three-dimensional space subject to a Dirichlet wall

v(z) =







0, z < 0,

∞, z > 0.
(2.1)

The Green’s function, the solution to
(

∂2

∂t2
−∇2 + v

)

G(x, x′) = δ(x− x′), (2.2)

has the form

G(x, x′) =

∫

dω

2π

(dk⊥)

(2π)2
e−iω(t−t′)eik⊥·(r−r

′)⊥g(z, z′; κ), (2.3)

where, for z, z′ < 0,

g(z, z′, κ) = −1

κ
eκz< sinh κz>, (2.4)

where z<, z> is the lesser, greater of z and z′. Here

κ2 = k2
⊥ − ω2, (2.5)

where we have anticipated making the Euclidean rotation (not just a Wick rotation)

ω → iζ, (t− t′) → iτ, (2.6)
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so we may regard κ as positive.

The energy-momentum tensor for the scalar field is

tµν = ∂µφ∂νφ− 1

2
gµν

(

∂λφ∂
λφ

)

− ξ
(

∂µ∂ν − gµν∂2
)

φ2, (2.7)

where ξ the conformal parameter, which for the conformal value of ξ = 1
6
yields a traceless

stress tensor, tλλ = 0. The connection between the classical causal (Feynman) Green’s

function and the (time-ordered) vacuum expectation values of the fields is

〈φ(x)φ(x′)〉 = 1

i
G(x, x′), (2.8)

so the one-loop vacuum energy density of the field is

u(z) = 〈t00〉 = 1

2i

(

∂0∂′0 +∇ ·∇
′
)

G(x, x′)

∣

∣

∣

∣

x′→x

+ iξ∇2G(x, x). (2.9)

Using the Fourier representation (2.3) we have for the energy density

u(z) =
1

2

∫

dζ

2π

(dk⊥)

(2π)2
eiζτ

[(

−ζ2 + k2
⊥ +

∂

∂z

∂

∂z′

)

g(z, z′)

∣

∣

∣

∣

z′→z

− 2ξ
∂2

∂z2
g(z, z)

]

. (2.10)

Here, we have regulated the integral by retaining τ as a temporal point-splitting regulator,

to be set equal to zero at the end of the calculation. We now introduce polar coordinates in

the ζ-k volume, so that

ζ = κ cos θ, |k⊥| = κ sin θ (2.11)

and then the integral over the regulator term is

∫ 1

−1

d cos θ eiτκ cos θ =
2

κτ
sin κτ. (2.12)

Inserting the Green’s function (2.4) into the energy integral (2.10) yields

1

8π2

∫ ∞

0

dκ κ3

[

e2κz
(

4ξ − 1− 1

κ2

∂2

∂τ 2

)

+
1

κ2

∂2

∂τ 2

]

2

κτ
sin κτ. (2.13)

The two terms in Eq. (2.13) consist of a z-dependent term and a constant. The latter is

just the bulk energy density arising from the free part of the Green’s function,

g0(z, z
′) =

1

2κ
e−κ|z−z′|. (2.14)

This is evaluated as

u0 =
1

4π2

∂2

∂τ 2
1

τ

∫ ∞

0

dκ sin κτ =
3

2π2τ 4
, (2.15)
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which uses the integral
∫ ∞

0

dx sin x = 1. (2.16)

This result is just the well-known volume Weyl term. If |z| ≫ τ , we can take τ → 0 in the

remaining term, and we find for the Dirichlet wall

u(z)− u0 = −1− 6ξ

6π2

∫ ∞

0

dκ κ3e2κz = − 1− 6ξ

16π2z4
. (2.17)

This is exactly the form found near one of the plates for the two-plate Casimir situation

[6, 11]. Note that this term vanishes for ξ = 1/6, which suggests that it has no significance,

disregarding gravity. If we keep the regulator, we can integrate over the whole volume to

the left of the wall:

∫ 0

−∞

dz(u− u0) =
1

8π2

∫ ∞

0

dκ κ2

[

4ξ
sinκτ

κτ
+ 2

cosκτ

(κτ)2
− 2

sin κτ

(κτ)3

]

= − 1

8πτ 3
. (2.18)

This uses the evaluations

∫ ∞

0

dκ cosκτ = 0,

∫ ∞

0

dκ κ sin κτ = 0,

∫ ∞

0

dκ

κ
sin κτ =

π

2
. (2.19)

The result (2.18) is exactly the second Weyl term, expressing the energy per unit area for a

Dirichlet wall.

In exactly the same way we can compute all the components of the stress tensor. The

result, for |z| ≫ τ , is exactly as expected:

〈tµν〉 = 1

2π2τ 4
diag(3, 1, 1, 1) +

1− 6ξ

16π2z4
diag(−1, 1, 1, 0). (2.20)

The bulk term has the required traceless, rotationally-invariant form, since it is unaware

of the wall. The surface-divergent term vanishes for the conformal case, and exhibits no

force on the wall, so is unobservable. This stress tensor trivially satisfies energy-momentum

conservation, ∂µ〈tµν〉 = 0.

Incidentally, note that if the cutoff were omitted for the bulk term, we would obtain a

form that is consistent not with rotational symmetry, but with the symmetry for the 2 + 1

dimensional breakup as seen in the finite part of the stress tensor for the interaction between

two Dirichlet plates:

u0 → − 1

12π2

∫ ∞

0

dκ κ3diag(1,−1,−1, 3). (2.21)
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III. LINEAR WALL

We next consider the linear wall,

v(z) =







0, z < 0.

z, z > 0.
. (3.1)

The energy density to the left of the wall is given by Eq. (2.10), whereas to the right of the

wall, the potential must be included, or in general

u(z) =
1

2
〈
[

(∂0φ)2 +∇φ ·∇φ + vφ2
]

− 2ξ∇2φ2]〉. (3.2)

In Eq. (3.2) the fields are to be evaluated at coincident points, and again the connection

with the Green’s function is given by Eqs. (2.8) and (2.3), where now the reduced Green’s

function satisfies
(

− ∂2

∂z2
+ k2 + v(z)− ω2

)

g(z, z′) = δ(z − z′). (3.3)

As we saw before, it is convenient to perform a Euclidean rotation, ω → iζ .

To find the energy density for the region to the left of the wall, z < 0, we solve Eq. (3.3)

in the two regions, always assuming z′ < 0, in terms of the variable κ2 = k2 + ζ2:

z < 0 : g(z, z′) =
1

2κ
e−κ|z−z′| + A(z′)eκz, (3.4a)

z > 0 : g(z, z′) = B(z′)Ai(κ2 + z). (3.4b)

Here we have chosen the boundary conditions that as z → ±∞, the Green’s function must

vanish. The functions A and B are determined by the requirement that the function and

its derivative must be continuous at z = 0. This leads to two equations

B(z′)Ai(κ2) =
1

2κ
eκz

′

+ A(z′), (3.5a)

1

κ
B(z′)Ai′(κ2) = − 1

2κ
eκz

′

+ A(z′), (3.5b)

which may be immediately solved:

A(z′) =
1

2κ
eκz

′ 1 + Ai′(κ2)/κAi(κ2)

1− Ai′(κ2)/κAi(κ2)
, (3.6a)

B(z′) =
eκz

′

κAi(κ2)− Ai′(κ2)
. (3.6b)
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Thus, in particular, the reduced Green’s function in the potential-free region is

z, z′ < 0 : g(z, z′) =
1

2κ
e−κ|z−z′| +

1

2κ
eκ(z+z′)1 + Ai′(κ2)/κAi(κ2)

1− Ai′(κ2)/κAi(κ2)
. (3.7)

When we insert this into the expression for the energy density (2.10) we omit the vac-

uum term in the Green’s function, since that has no knowledge of the potential, and was

completely analyzed in the previous section. We are left with for z < 0 (|z| ≫ τ)

u(z)− u0 =
1− 6ξ

6π2

∫ ∞

0

dκ κ3e2κz
1 + Ai′(κ2)/κAi(κ2)

1−Ai′(κ2)/κAi(κ2)
. (3.8)

Unlike the integral over real phase shifts [10], the integrand is monotonically tending to zero

as κ → ∞. The integral is therefore finite for all z < 0, and may be very easily evaluated by

Mathematica. The results are shown in Fig. 1. It is seen that the energy density diverges

as z → 0, not at z = 1; in fact, by using the asymptotic expansion of the Airy function,

1 + Ai′(κ2)/κAi(κ2)

1−Ai′(κ2)/κAi(κ2)
∼ − 1

8κ3
, κ → ∞, (3.9)

it behaves for small negative z like

u ∼ 1− 6ξ

96π2

1

z
. (3.10)

The comparison with the exact numerical integration with this leading asymptotic behavior

is also shown in Figs. 1, 2.

The solution for the Green’s function inside the wall is

0 < z, z′ : g(z, z′) = πAi(κ2 + z>)Bi(κ
2 + z<)−

(κBi− Bi′)(κ2)

(κAi− Ai′)(κ2)
πAi(κ2 + z)Ai(κ2 + z′).

(3.11)

The energy density within the wall is given by Eq. (3.2), or

u =
1

8π2

∫ ∞

0

dκ κ2

∫ 1

−1

d cos θ

{[

κ2 + 2
∂2

∂τ 2
+ z

]

g(z, z)

+
∂

∂z

∂

∂z′
g(z, z′)

∣

∣

z′→z
− 2ξ

∂2

∂z2
g(z, z)

}

eiκτ cos θ. (3.12)

Because both terms in g involve Airy functions of argument κ2+z, we can use the differential

equation for the Airy function to write the above as

u =
1

8π2

[

(1− 4ξ)
∂2

∂z2
+ 4

∂2

∂τ 2

]
∫ ∞

0

dκ κ g(z, z)
sin κτ

τ
. (3.13)
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FIG. 1: Energy density (divided by 6ξ− 1) to the left of a linear potential. The exact result (lower

curve) is compared with the asymptotic behavior for small z, Eq. (3.10).
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FIG. 2: Relative error of the asymptotic approximation (3.10).

Let us analyze the divergence structure, by considering the first term in g, Eq. (3.11),

which would be the term arising if the linear potential existed over all space, because Ai(z) →
0 as z → ∞, while Bi(z) → 0 as z → −∞. In any case, this term corresponds to the bulk

energy density

ũ0 =
1

8π2

[

(1− 4ξ)
∂2

∂z2
+ 4

∂2

∂τ 2

]
∫ ∞

0

dκ κπAi(κ2 + z)Bi(κ2 + z)
sin κτ

τ
. (3.14)
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To see the divergence structure, use the leading asymptotic behavior

πAi(κ2 + z)Bi(κ2 + z) ∼ 1

2

1√
κ2 + z

, (3.15)

for large κ. Then we write the resulting κ integral as
∫ ∞

0

dκ κ
1√

κ2 + z
sin κτ =

√
z

∫ ∞

0

dy sin
(

√

y2 − 1
√
zτ

)

, (3.16)

which for small τ is dominated by large y, so that the integral can be approximated by

√
z

∫ ∞

1

dy

{(

1− zτ 2

8y2

)

sin y
√
zτ −

√
zτ

2y

(

1 +
1

4y2

)

cos y
√
zτ

}

. (3.17)

The required integrals are, for small β,
∫ ∞

1

dy sin βy =
1

β
,

∫ ∞

1

dy
sinβy

y2
= −β lnβ + O(β), (3.18a)

∫ ∞

1

dy
cosβy

y
= − ln β + constant,

∫ ∞

1

dy
cosβy

y3
=

β2

2
ln β + O(β2) (3.18b)

and then we see only the τ derivative term contributes in Eq. (3.14), and we obtain the

expected result [10]

ũ0 ∼
3

2π2

1

τ 4
− z

8π2τ 2
+

z2

32π2
ln τ, (3.19)

as the cutoff τ → 0. (Our point-splitting procedure would probably not reveal a possible

δ-function contribution suggested in Ref. [10].)

IV. GENERAL zα POTENTIAL

In general, for an α wall, described by the potential

v(z) =







0, z < 0,

zα, z > 0,
(4.1)

with α > 0, we construct the reduced Green’s function in terms of the two independent

solutions in the region of the potential

(

− ∂2

∂z2
+ κ2 + zα

)







F (z)

G(z)
= 0, (4.2)

where F (z) is chosen to vanish as z → +∞, and G(z) is an arbitrary independent solution.

The Wronskian is

w = F (z)G′(z)−G(z)F ′(z), (4.3)
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which is just a constant.

The Green’s function to the left of the wall is

z, z′ < 0, g(z, z′) =
1

2κ
e−κ|z−z′| +

1

2κ
eκ(z+z′)F (0) + F ′(0)/κ

F (0)− F ′(0)/κ
, (4.4)

and to the right of the wall,

z, z′ > 0 : g(z, z′) =
1

w
F (z>)G(z<)−

1

w
F (z)F (z′)

G(0)−G′(0)/κ

F (0)− F ′(0)/κ
. (4.5)

(Adding an arbitrary multiple of F to G, of course, leaves this expression unchanged.)

For α = 1, F (z) = Ai(κ2+ z), G(z) = Bi(κ2+ z), and w = 1/π, and we recover the result

in the previous section. For α = 2, F (z) = U(κ2/2,
√
2z), G(z) = U(κ2/2,−

√
2z), in terms

of the parabolic cylinder function [12, 13]. Alternative notations for this function are

U(a, x) = D−a−1/2(x). (4.6)

The value of the parabolic cylinder function, and its derivative, at the origin is

Dν(0) =
√
π2ν/2/Γ(1/2− ν/2), (4.7a)

D′
ν(0) = −

√
πeν/2+1/2/Γ(−ν/2). (4.7b)

Therefore, the Wronskian is

w =
π23/2−κ2/2

Γ(κ2/4 + 1/4)Γ(κ2/4 + 3/4)
. (4.8)

The energy density to the left of the wall, z < 0, is immediately generalized from Eq. (3.8):

u(z)− u0 =
1− 6ξ

6π2

∫ ∞

0

dκ κ3 e2κz
F (0) + F ′(0)/κ

F (0)− F ′(0)/κ
. (4.9)

For the quadratic wall

F (0) + F ′(0)/κ

F (0)− F ′(0)/κ
=

1− 2
κ
Γ(κ2/4+3/4)
Γ(κ2/4+1/4)

1 + 2
κ
Γ(κ2/4+3/4)
Γ(κ2/4+1/4)

. (4.10)

Asymptotically,
Γ(κ2/4 + 3/4)

Γ(κ2/4 + 1/4)
∼ κ

2

(

1 +
1

4κ4

)

, κ → ∞, (4.11)

so we approximate the exact energy density to the left of the wall by

u(z)− u0 ∼ −1 − 6ξ

6π2

∫ ∞

1

dκ

8κ
e2κz = −1− 6ξ

48π2
Γ(0,−2z), (4.12)
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FIG. 3: The lower curve shows the exact energy density for the quadratic wall, for z < 0, using

Eq. (4.9) with Eq. (4.10). The upper curve is the asymptotic approximation to that energy density,

given by Eq. (4.12). Again the factor 6ξ − 1 is divided out.

in terms of the incomplete gamma function. The latter is actually a very accurate approxi-

mation as Fig. 3 shows.

In the region of the potential, we can calculate the generalization of the “bulk energy”

(3.14),

ũ0 =
1

8π2

[

(1− 4ξ)
∂2

∂z2
+ 4

∂2

∂τ 2

]
∫ ∞

0

dκ κ g̃0(z, z)
sin κτ

τ
, (4.13)

because the argument leading from Eq. (3.12) to Eq. (3.13) holds for an arbitrary potential.

Here, for the quadratic wall,

g̃0(z, z
′) =

1

w
U(κ2/2,

√
2z)U(κ2/2,−

√
2z). (4.14)

The uniform asymptotic approximation for large order for U(κ2/2,
√
2κt) is given in the

NIST handbook [12]. The leading approximation is rather immediately found to yield

g̃0(z, z) ∼
1

2
√
κ2 + z2

− 1

8

1

(κ2 + z2)5/2
+ . . . , (4.15)

where the subleading term is explained in the following. The leading term differs from

Eq. (3.15) simply by changing the potential from z to z2. This means that we can make the

same substitution in the integral (3.17), and so the bulk energy density (4.13) is

ũ0 =
3

2π2

1

τ 4
− 1

8π2

z2

τ 2
+

1

32π2

[

z4 + 2(1− 4ξ)− 2

3

]

ln τ, (4.16)
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where the −(2/3) ln τ term arising from the subleading term in Eq. (4.15) results in the

appearance of the conformal coefficient (4/3)(1−6ξ) for the constant term multiplying ln τ .

This last result may be easily generalized to an arbitrary potential v(z). The bulk Green’s

function at coincident points can be written as

g̃0(z, z) =
1

G′(z)/G(z)− F ′(z)/F (z)
. (4.17)

The leading asymptotic behavior of the solutions is given by the WKB approximation [13],

F (z) ∼ Q−1/4(z) exp

[

−
∫ z

dt

(

Q1/2(t) +
v′′(t)

8Q3/2(t)

)]

, (4.18a)

G(z) ∼ Q−1/4(z) exp

[
∫ z

dt

(

Q1/2(t) +
v′′(t)

8Q3/2(t)

)]

, (4.18b)

where Q(z) = κ2 + v(z). Here it was necessary to keep the first subleading correction, as

given in Ref. [13]. Thus, for large κ,

G′(z)

G(z)
− F ′(z)

F (z)
∼ 2Q1/2(z)

(

1 +
v′′(z)

8Q2(z)

)

. (4.19)

This is the immediate generalization of Eqs. (3.15) and (4.15). Then, the generalization of

the Weyl expansion (3.19) and (4.16) is1

ũ0 ∼
3

2π2

1

τ 4
− 1

8π2

v

τ 2
+

1

32π2

[

v2 +
2

3
(1− 6ξ)

∂2

∂z2
v

]

ln τ, (4.20)

which uses the evaluation

∫ ∞

0

dκ κ

(κ2 + v)5/2
sin κτ ∼ 1

6
τ 3 ln τ, (4.21)

which follows from Eq. (3.18a). Note that the derivative term vanishes for the conformal

value of ξ. This form, of course, follows from the general heat kernel consideration of this

problem, and is seen for ξ = 1/4 in Ref. [10].

The behavior of the energy density to the left of the wall is also worked out easily, in

general. We rescale the equation (4.2) for F (z), so that z = x/κ,

(

− d2

dx2
+ 1 + κ−2−αxα

)

F (z) = 0, (4.22)

1 Ref. [10] proposes that these potential divergences could be subtracted by renormalizing terms in the

Lagrangian describing the background field v.
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and then solve this equation perturbatively in powers of κ−1. F has the form

F (x) ∼ e−x

(

1 +
1

κβ
f(x) + . . .

)

, κ → ∞, (4.23)

where consistency requires β = 2 + α, and f satisfies

f ′′(x)− 2f ′(x)− xα = 0. (4.24)

This may be immediately solved for f ′,

f ′(x) = e2x
(
∫ x

0

dt tα e−2t + C

)

, (4.25)

in terms of a constant C. This will reverse the required decreasing exponential dependence

seen in Eq. (4.23) unless

C = −
∫ ∞

0

dt tα e−2t = −2−1−αΓ(1 + α). (4.26)

In particular, this determines

f ′(0) = −Γ(1 + α)

21+α
. (4.27)

From this we determine the required ratio occurring in Eq. (4.9)

F ′(z = 0)

κF (z = 0)
=

F ′(x = 0)

F (x = 0)
∼ −1 +

1

κ2+α
f ′(0) = −1− Γ(1 + α)

21+ακ2+α
, (4.28)

or
1 + F ′(0)/κF (0)

1− F ′(0)/κF (0)
∼ −Γ(1 + α)

(2κ)2+α
, (4.29)

which generalizes Eqs. (3.9) and (4.11). This gives the asymptotic estimate for the energy

density near the wall on the left:

u(z)− u0 ∼ −1− 6ξ

96π2
|z|α−2Γ(1 + α)Γ(2− α, 2|z|), z → 0−, (4.30)

which generalizes Eqs. (3.10) and (4.12). The singularity at z = 0 disappears for α > 2;

u(0)− u0 =
1− 6ξ

96π2

Γ(1 + α)

2− α
22−α, α > 2. (4.31)

For α < 2,

u(z)− u0 = −1− 6ξ

96π2
Γ(1 + α)

(

|z|α−2Γ(2− α)− 22−α

2− α

)

, (4.32)

which as α → 2 from below approaches

u(z)− u0 =
1− 6ξ

48π2
(γ + ln 2|z|) , (4.33)

an accurate approximation to the general estimate (4.30).
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V. CONCLUSIONS

We have explored in this paper the nature of the divergences that occur in the energy

density in quantum field theory near walls, for the case of scalar fields. We generalize the

walls from being perfect Dirichlet boundaries, to potentials of the form zα within the region

of the infinite wall. Besides the usual Weyl volume divergence, which arises from the free

part of the theory, the energy density exhibits a divergence as the wall is approached if

the wall is not too soft, α ≤ 2. That divergent term, however, vanishes if the conformal

stress tensor, characterized by ξ = 1/6, is used. Correspondingly, there is no observable

consequence of this surface-divergent term, absent gravity. We also compute the divergences

that occur within the region of the wall, which depend on the form of the potential. To

obtain unambiguously observable consequences we would need to consider the interaction

between two such walls.

A question arises as to how seriously to take the cutoff. As we noted for the Dirichlet

wall, if the form for the energy density is taken literally for z < τ , we obtain a nonvanishing,

ξ-independent result for the energy of a single wall, agreeing with the expected area term

in the Weyl expansion, Eq. (2.18).

How is this analysis generalized for more realistic theories? A similar divergence in the

energy density occurs near a perfectly conducting boundary if one considers only the electric

or the magnetic part of the energy, or the TE and TM modes separately [14]. The results

there were for parallel plates separated by a distance a, so if we take a → ∞ there we recover

the energy density for a single conducting wall. The electric and magnetic energy densities

near such a perfect boundary at z = 0 are (the volume divergence is omitted here)

uE(z) = −uM(z) =

∫

dζ(dk⊥)

(2π)3
κ

2
e−2κzeiζτ , z > 0, (5.1)

again keeping the point-splitting regulator. Carrying out the integration, we find

uE(z) = −uM(z) =

∫ ∞

0

dκ κ3

8π2
e−2κz 2 sin κτ

κτ
=

1

2π2

τ 2 − 12z2

(τ 2 + 4z2)3
. (5.2)

If the regulator is removed, τ → 0,

uE = −uM → − 3

32π2z4
, (5.3)

the same type of quartic divergence encountered in the nonconformal scalar case, Eq. (2.17).

This result was first observed by Dewitt [15] more than 35 years ago. Not only does this
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energy cancel when the electric and magnetic terms are combined, but if this energy density

is integrated over all space to the right of the plate,
∫ ∞

0

dz uE(z) =
1

2π2

∫ ∞

0

dz
τ 2 − 12z2

(τ 2 + 4z2)3
= 0, (5.4)

we get a vanishing energy! [This result also follows from integrating the integral form of

Eq. (5.2) over z and using Eq. (2.19).] So these surface divergences have but an ephemeral

existence. (These cancellations do not occur, however, for dielectric interfaces [14].)

If we wish to examine the surface divergences in the complete stress-energy tensor in

the electromagnetic case, it is better, of course, to break up the description into TE and

TM modes. For such a local description, we need the rotationally invariant form of the

electromagnetic Green’s dyadic given in Ref. [16]. Then, it is a straightforward calculation

using the methods described in this paper to obtain the stress tensor for the TE and TM

modes in the presence of a perfectly conducting wall at z = 0, for |z| ≫ τ :

〈tµνTE,TM〉 =
1

2π2τ 4
diag(3, 1, 1, 1)∓ 1

32π2z4
diag(2, 1, 1, 0). (5.5)

Remarkably, both terms have vanishing trace, so the individual modes respect conformal

symmetry even in the presence of the wall. The z-dependent surface term cancels for the

complete electromagnetic contribution. Neither term would seem to have any observable

consequence.
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