
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lehmann-Symanzik-Zimmermann S-matrix elements on the
Moyal plane

A. P. Balachandran, Pramod Padmanabhan, and Amilcar R. de Queiroz
Phys. Rev. D 84, 065020 — Published 15 September 2011

DOI: 10.1103/PhysRevD.84.065020

http://dx.doi.org/10.1103/PhysRevD.84.065020


REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Preprint typeset in JHEP style - PAPER VERSION SU-4252-

The LSZ S-Matrix Elements on the Moyal

Plane

A. P. Balachandran

Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA

E-mail: bal@phy.syr.edu

Pramod Padmanabhan

Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA

E-mail: ppadmana@syr.edu

Amilcar R. de Queiroz

Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70919-970,

Brasilia, DF, Brazil

E-mail: amilcarq@unb.br

Abstract: Field theories on the Groenewold-Moyal(GM) plane are studied using

the Lehmann-Symanzik-Zimmermann(LSZ) formalism. The example of real scalar

fields is treated in detail. The S-matrix elements in this non-perturbative approach

are shown to be equal to the interaction representation S-matrix elements. This is a

new non-trivial result: in both cases, the S-operator is independent of the noncom-

mutative deformation parameter θµν and the change in scattering amplitudes due to

noncommutativity is just a time delay. This result is verified in two different ways.

But the off-shell Green’s functions do depend on θµν . In the course of this analysis,

unitarity of the non-perturbative S-matrix is proved as well.
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1. Introduction

Spacetime at the Planck scale is possibly noncommutative. Physical arguments sug-

gest this possibility [1]. A noncommutative spacetime which may model such non-

commutativity is described by the Moyal algebra [1]. This noncommutative algebra

Aθ is given by

[xµ, xν ] = iθµν , µ, ν = 0, 1, 2, 3, (1.1)

θµν = −θµν = real constants.

The commutation relations Eq.(1.1) are apparently Lorentz non-invariant. How-

ever there does exist a twisted action of the Lorentz group on Aθ which is compatible

with its multiplication map. Thus Eq.(1.1) can be made compatible with a twisted

action of the Poincaré group.

Quantum field theories (qft’s) on Aθ have been extensively studied in the past [2,

3, 4, 5]. Different approaches have been used to study them. The initial ones start-

ing from [2] were based on the star product approach. There were others using the

Seiberg-Witten map [6] of the noncommutative theory to a commutative one. Most

of these approaches were plagued by the phenomenon of UV/IR mixing as was first

shown in [2]. There were also questions regarding the renormalizability of these field

theories. The approaches of [4, 7] restored renormalizability by using a different

propagator and interaction for these theories. They also proved that their formu-

lation of scalar field theory is renormalizable to all orders [8, 9]. In another line of

development, with the appearance of the possibility of a twisted action of the Lorentz

group on the Moyal plane [10], it was quickly realized by Balachandran and coworkers

that the statistics of the quantum fields have to be twisted in order to be compatible

with the deformed symmetry group of the noncommutative spacetime [11]. As a

consequence the twisted perturbative S-matrix was shown to be independent of the

noncommutative parameter θµν [12] in the absence of gauge fields. However when

there is an interaction among non-abelian gauge and matter fields, the θ-dependence

and UV/IR mixing reappear [13].

These models are interesting on the phenomenological side as well. As they

are theories which violate CPT [14] and Lorentz invariance and can lead to Pauli-

forbidden transitions [15, 16], they help us to model the latter as well. They also lead

to anisotropies in the CMB spectrum [17, 18]. For detailed reviews of the physics

on the Moyal plane covering both the theoretical and the phenomenological aspects

see [3, 19, 20, 21].

Qft’s on the Moyal plane can be extended to include gauge fields as well [22]. The

gauge fields in the approaches of [22] are not twisted unlike the matter fields and so

the gauge group remains the same as in the commutative theory. This circumvents a

problem faced in alternative formulations of gauge theories on the Moyal plane where

the finite-dimensional Lie algebra of the group of the gauge theory gets enlarged
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into an infinite dimensional algebra. One important consequence of the twisted field

approach of [22] to gauge theories is the addition of a central element to the spacetime

symmetry algebra of the system. This results in a new deformed Hopf algebra with

a new coproduct. This coproduct does not obey the coassociativity condition. This

makes the spacetime also nonassociative [22].

In the present work, we concentrate on the twisted scalar field theory on the

Moyal plane in the absence of gauge fields. We compute the S-matrix elements of

this theory using the LSZ reduction formula for the noncommutative case devel-

oped in [23]. It was remarked in [23] that these amplitudes can be computed using

the perturbation theory of Wightman functions [24] with appropriate modifications.

However here we do not use the Wightman function perturbation theory, but in-

stead present two nonperturbative ways of computing the scattering amplitudes.

The methods relate the commutative and noncommutative scattering amplitudes.

When the in- and out- states are momentum eigenstates, the θ-dependence is in

the form of an overall phase multiplying the commutative scattering amplitude. It

represents a time delay [25]. The corresponding θ-dependence via the perturbative

interaction representation S-matrix elements appears in the form of the same overall

phase so that both approaches are mutually consistent.

We emphasize that the emergence of this consistency is nontrivial since the sys-

tematic formulation of the interaction representation from the Heisenberg represen-

tation for the Moyal plane is not easy as we indicate later.

The situation with regard the off-shell Green’s functions is different. They do

depend on θµν on the Moyal plane as we shall see.

The paper is organized as follows. Section 2 briefly recalls what the noncommu-

tative Moyal algebra (Aθ) is and the notion of twisted quantum fields. In section 3

the LSZ formalism is reviewed for both the θµν = 0 and the θµν 6= 0 cases.

Section 4 shows the two nonperturbative methods of computing the scattering

amplitudes in the noncommutative case. In section 5 we conclude with a few impor-

tant remarks. Directions for further work are also indicated in this section.

2. Twisted Relativistic Quantum Fields on the Moyal plane

Aθ

The Gronenwold-Moyal or Moyal plane is the algebra Aθ of smooth functions on

R
d+1 with a twisted (star) product. It can be written as [10, 26, 27]

f ⋆ g := mθ(f ⊗ g)(x) = m0(Fθf ⊗ g)(x) (2.1)

where m0(f ⊗ g)(x) := f(x) · g(x) stands for the usual pointwise multiplication of

the commutative algebra A0,

Fθ = exp
( i

2
θµν∂µ ⊗ ∂ν

)

, (2.2)
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is called the Drinfel’d twist element and θµν = −θνµ = constant. P. Watts [28] and

R. Oeckl [29] were the first to observe that the star product in Eq.(2.1) can be cast

using an Fθ.

We next briefly explain the notion of twisted Poincaré symmetry for the Moyal

plane.

The proper orthochronous Poincaré group P↑+ acts on mutiparticle states through

a coproduct which is a homomorphism from CP↑+ to CP↑+ ⊗ CP↑+ where CP↑+ is the

group algebra of P↑+ [30]. The factors in the tensor product here act through unitary

representations of the Poincaré group on the single particle Hilbert spaces. On the

noncommutative spacetime the coproduct should be compatible with the twisted

multiplication map. The work of Aschieri et al. [27] and Chaichian et al. [10] based

on Drinfel’d’s original work [26] shows that h ∈ P↑+ acts on Aθ(R
d+1) compatibly

with mθ i.e,

mθ(∆θ(h)f ⊗ g) = h ·mθ(f ⊗ g), f, g ∈ Aθ(R
d+1) (2.3)

if its coproduct is given by

∆θ(h) = F−1θ (h⊗ h)Fθ, (2.4)

where Fθ = e−
i
2
P̂µ⊗θµν P̂ν and P̂µ is the generator of translations. It is realized as −i∂µ

on functions. Thus ∆θ(h) is a twisted version of the standard coproduct ∆0(h) =

h⊗ h.

Next we define the notion of twisted statistics on the Moyal plane.

The action of the twisted coproduct is not compatible with the standard flip or

statistics operator defined by τ0. The operator τ0 flips two elements of V ⊗ V where

V is a representation space for CP↑+:

τ0(f ⊗ g) = g ⊗ f (2.5)

where f, g ∈ A0. Now τ0Fθ = F−1θ τ0 so that τ0 ∆θ(h) 6= ∆θ(h)τ0. This shows that

the usual statistics operator is not compatible with the twisted coproduct. Hence it

should be changed in quantum theory. Now the new “twisted” statistics operator

[34]

τθ ≡ F−1θ τ0Fθ, τ 2θ = 1⊗ 1 (2.6)

does commute with the twisted coproduct,

∆θ(h) = F−1θ h⊗ h Fθ. (2.7)

Hence τθ is an appropriate twisted flip operator and twisted bosons and fermions are

to be defined using the projectors 1
2
(I± τθ) respectively.

We now define twisted quantum fields φθ which we will use throughout the rest

of this paper. Here for simplicity, we assume that they are scalar fields. They are

“covariant” [35] under the twisted action of the Poincaré group and incorporate
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the above twisted statistics in their creation and annihilation operators. Their star

products have the important self-reproducing property

φθ ⋆ φθ ⋆ · · ·φθ(x) = (φ0(x)φ0(x) · · ·φ0(x))θ (2.8)

where on the right, φ0’s are first multiplied as ordinary fields and then finally twisted

as the subsequent θ indicates.

Consider a free untwisted(θµν = 0) scalar field, φ0 of mass m. It has the mode

expansion

φ0(x) =

∫

dµ(p)(a0(p) ep(x) + a
†
0(p) e−p(x)) (2.9)

where ep(x) = e−ip·x, p · x = p0x0 − ~p · ~x, dµ(p) = d3p

(2π)3
1√
2p0

, p0 = |
√

~p2 +m2|. The

creation and annihilation operators satisfy the standard commutation relations, the

nonvanishing commutator being

a0(p) a
†
0(q)− a

†
0(q) a0(p) = (2π)3δ3(~p− ~q). (2.10)

The one-particle states are defined as

|~p〉 =
√

2E~p a
†
0(p) |0〉, (2.11)

with E~p = p0. The scalar product between two such states is given by

〈~p|~q〉 = 2E~p (2π)3 δ3(~p− ~q). (2.12)

The completeness relation for the 1-particle states is given by

I1−particle =

∫

d3p

(2π)3
1

2E~p

|~p〉〈~p|. (2.13)

The quantum mechanical two-particle bosonic states for θµν = 0 can be con-

structed from φ0 as:

〈0|φ0(x1)φ0(x2)
√

2E~q

√

2E~p a
†
0(q) a

†
0(p)|0〉 = (1 + τ0)(e~p ⊗ e~q)(x1, x2)

≡ 〈x1, x2|p, q〉S0
, (2.14)

|p, q〉S0
=
√

2E~q

√

2E~p a
†
0(q)a

†
0(p)|0〉S0

,(2.15)

where τ0 is the commutative flip operator. Here the right hand side is symmetric in

x1 and x2.

The two-particle states in non-commutative quantum field theory should obey

twisted statistics. Using Eq.(2.9) as a guide, we can construct the twisted scalar

quantum field φθ(x) as

φθ(x) =

∫

dµ(p)(aθ(p) ep(x) + a
†
θ(p) e−p(x)) (2.16)

– 4 –



It is possible to write the twisted creation and annihilation operators a
†
θ(p), aθ(p)

in terms of the untwisted operators in Eq.(2.9). The transformation connecting the

twisted and untwisted creation and annihilation operators is called the “dressing

transformation” [31, 32] and is given by

aθ(p) = a0(p) e
− i

2
pµθ

µνPν . (2.17)

Using the above twisted field, we can construct twisted two-particle states as in

Eq.(2.14):

〈0|φθ(x1)φθ(x2)
√

2E~q

√

2E~p a
†
θ(q) a

†
θ(p)|0〉 = (1 + τθ)(e~p ⊗ e~q)(x1, x2)

≡ 〈x1, x2|p, q〉Sθ
, (2.18)

|p, q〉Sθ
=
√

2E~q

√

2E~p a
†
θ(q)a

†
θ(p)|0〉Sθ

,(2.19)

where τθ is the twisted flip operator given in Eq.(2.6). Note that the reversed ordering

of p, q as we go from LHS to RHS really matters here [33]. From Eq.(2.18) we can

deduce the relations [34, 35]

a
†
θ(p) a

†
θ(q) = eipµθ

µνqνa
†
θ(q) a

†
θ(p), (2.20)

aθ(p) aθ(q) = eipµθ
µνqνaθ(q) aθ(p) (2.21)

Here Pµ is the four-momentum operator:

Pµ =

∫

d3p

(2π)3
(a†0(p) a0(p))pµ =

∫

d3p

(2π)3
(a†θ(p) aθ(p))pµ. (2.22)

Note that both the twisted and untwisted 4-momentum operators are the same since

pµθ
µνPν commutes with a

†
0(p) a0(p).

We can write the twisted quantum field in terms of the untwisted one with the

help of the dressing transformation as

φθ(x) = φ0(x)e
1
2

←−
∂µθ

µνPν (2.23)

3. The Untwisted and Twisted LSZ Reduction Formula

The LSZ formalism for computing scattering amplitudes is non-perturbative. There

are two ways to arrive at the formula for scattering amplitudes [36, 37, 38]. We use

the approach given in [38]. After discussing it briefly for θµν = 0, we recall [23],

where the twisted LSZ reduction formula was derived.

The θµν = 0 case

Consider an interacting quantum field theory whose Hamiltonian H can be split as

H = H0 +HI (3.1)
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where H0 is the free Hamiltonian for a massive field and HI is the interaction part.

H0 is used to define the states in the infinite past and infinite future. The in- and

out-states of the theory are eigenstates of the full Hamiltonian H , which evolve

like free states in the infinite past and future. On the other hand, free states are

eigenstates of the free Hamiltonian H0, whose evolutions are governed by H0 itself.

The LSZ formalism works with the in- and out-states. There are creation-annihilation

operators a
†in(out)
0 (k), a

in(out)
0 (k) which create the in- and out- states. Note that these

are not the free creation-annihilation operators. They are used in the mode expansion

of the in- and out-fields. They help create the in(out) states |k1, k2, · · · , kN ; in(out)〉.
The interacting vacuum is unique after a phase choice.

The LSZ reduction formula for θµν = 0 can be now written as

〈k′N , ..., k′1; out|kM , ..., k1; in〉 =
∫

I G0
N+M(x′1, ..., x

′
N ; x1, ..., xM), (3.2)

where

I =

N
∏

i=1

d4x′i

M
∏

j=1

d4xj e
−i(kj ·xj−k′i·x′

i) i(∂′2i +m2) i(∂2
j +m2) (3.3)

and

G0
N+M(x′1, ..., x

′
N ; x1, · · · , xM) = 〈Ω|T [φ0(x

′
1) · · ·φ0(x

′
N )φ0(x1) · · ·φ0(xM)] |Ω〉

(3.4)

where |Ω〉 is the interacting vacuum and G0
N+M(x′1, ..., x

′
N ; x1, · · · , xM ) is the Green’s

function for M in-fields and N out-fields. The proof is standard and can be found

in textbooks like [38].

Now we write down the twisted LSZ formula.

The θµν 6= 0 case

It was argued in [23] that the relations between the twisted in- and out-creation-

annihilation operators and the free creation-annihilation operators are:

a
in, out
θ (k) = a

in, out
0 (k)e−

i
2
kµθ

µν P̂ν , (3.5)

a
†in, out
θ (k) = a

†in, out
0 (k)e

i
2
kµθ

µν P̂ν . (3.6)

Thus as remarked above, the in- and out-fields can be obtained from the commutative

ones from the formula

φ
in, out
θ = φ

in, out
0 e

1
2

←−
∂ µθ

µν P̂ν . (3.7)

The twisted in- and out-states are created using the twisted in- and out creation-

annihilation operators. The twisted LSZ reduction formula is given by [23]

θ〈k′N , ..., k′1; out|kM , ..., k1; in〉θ =
∫

I Gθ
N+M(x′1, ..., x

′
N ; x1, ..., xM), (3.8)
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where I is defined in Eq.(3.3), and

Gθ
N+M(x′1, · · · , x′N ; x1, · · · , xM ) = T

[

e−
i
2 [

∑

i<j ∂zi,µθ
µν∂zj,ν ]×

W 0
N+M(z1, · · · , zN ; zN+1, · · · , zN+M)

]

(3.9)

with

zi = x′i, i ≤ N ; zN+i = xi, i ≤ M. (3.10)

In the above W 0
N+M(z1, · · · , zN ; zN+1, · · · , zN+M) is the Wightman function for

θµν = 0 given by

W 0
N+M(z1, · · · , zN ; zN+1, · · · , zN+M) = 〈Ω|φ0(z1) · · ·φ0(zN+M)|Ω〉 (3.11)

where |Ω〉 is the exact vacuum of the fully interacting theory, the arguments of the

fields are given in Eq.(3.10) and φ0’s are the fully interacting commutative quantum

fields.

We will use this formula to evaluate scattering amplitudes in the noncommutative

case.

4. Non-perturbative Computations of the Scattering Ampli-

tudes

In this section, in order to avoid index cluttering, we use notations such as

pi ∧ pj ≡ pi,µ θµν pj,ν , ∂ ∧ P = ∂µθ
µνPν (4.1)

where i, j stand for particle labels, and µ, ν as usual stand for spacetime components.

Method 1

The in- and out- states for the twisted case are

|pM , ..., p1; in〉θ =
√

(2E~p1) · · · (2E~pM ) a†inθ (p1) · · ·a†inθ (pM)|Ω〉

=
√

(2E~p1) · · · (2E~pM ) a†in0 (p1) · · ·a†in0 (pM)|Ω〉e i
2

∑

i<j≤M pi∧pj(4.2)

and

|p′1, ..., p′N ; out〉θ =
√

(2E~p′1
) · · · (2E~p′N

) a†outθ (p′N) · · · a†outθ (p′1)|Ω〉 (4.3)

=
√

(2E~p′1
) · · · (2E~p′

N
) a†out0 (p′N) · · · a†out0 (p′1)|Ω〉e

i
2

∑

i<j≤N p′i∧p′j

respectively.
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It can now be immediately seen that the twisted scattering amplitude in terms

of the untwisted scattering amplitude can be obtained by using the definition of the

LSZ S-matrix:

Sθ(p
′
N , ..., p

′
1; pM , ..., p1) = θ〈p′N , ..., p′1; out|pM , ..., p1; in〉θ. (4.4)

By using the definition of the twisted in- and out- states given by Eq.(4.2) and

Eq.(4.3) respectively, we see that

θ〈p′N , ..., p′1; out|pM , ..., p1; in〉θ = e
i
2 [

∑

i<j≤M pi∧pj−
∑

i<j≤N p′i∧p′j] × (4.5)

0〈p′N , ..., p′1; out|pM , ..., p1; in〉0.

Thus the twisted scattering amplitude for any process is given by

Sθ(p
′
N , ..., p

′
1; pM , ..., p1) = e

i
2 [

∑

i<j≤M pi∧pj−
∑

i<j≤N p′i∧p′j] × (4.6)

S0(p
′
N , ..., p

′
1; pM , ..., p1).

This relation between the commutative and the noncommutative scattering ampli-

tudes is the same as the one obtained via the interaction representation formalism

[12, 41].

We note that this method is non-perturbative and is completely independent of

the interaction term in the scalar field theory considered.

The scattering amplitude on the Moyal plane given by Eq.(4.6) also shows that

the twisted S-matrix is unitary in a trivial way, since the commutative S-matrix is

unitary.

Method 2

In this second method we will find the same result via the reduction formula. It brings

out the difference between scattering amplitudes and off-shell Green’s functions.

The computation shown here closely follows the derivation of the reduction for-

mula given in [36].

Here we will consider as an example the time ordered product of four fields

representing a process of two particles going into two other particles described by

the correlation function

G0
2+2(x

′
1, x
′
2; x1, x2) = 〈Ω|T (φ0(x

′
1)φ0(x

′
2)φ0(x1)φ0(x2)) |Ω〉 (4.7)

which is the appropriate Green’s function for the untwisted case. The Green’s func-

tions for the twisted case is obtained by replacing the commutative fields by the

noncommutative ones and G0
2+2 by Gθ

2+2. The procedure involves finding the pole

structure in momentum space of the Fourier transform of G0
2+2(x

′
1, x
′
2; x1, x2).

We first consider the commutative case.
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θµν = 0

Let us consider the general off-shell Fourier transforms

∫ j
∏

i=1

d4x′i e
ip′i·x′

iG0
N+M(x′1, ..., x

′
N ; x1, ..., xM) = G̃0

(j)
(p′1, ..., p

′
j, ..., x

′
N , x1, ...., xM).

(4.8)

Consider Fourier transforming G0
2+2(x

′
1, x
′
2; x1, x2) in just x′1. Assume without

loss of generality that x′01 is associated with an outgoing particle. Split the x′01 -integral

into three regions as follows:

(
∫ ∞

T+

dx′01 +

∫ T−

−∞
dx′01 +

∫ T+

T−

dx′01

)

d3x′1 eip
′0
1 x′0

1 −i~p′1·~x′
1 G0

2+2(x
′
1, x
′
2; x1, x2). (4.9)

Here T+ >> max(x′02 , x
0
1, x

0
2) and T− << min(x′02 , x

0
1, x

0
2). Since T+ ≥ x′01 ≥ T− is

a finite interval, the corresponding integral will not give any pole. A pole comes

from single particle insertion in the integral over x′01 ≥ T+ in G0
2+2 as we now show

following [36]. In the integration between the limits T+ and +∞, φ(x′1) stands to the

extreme left inside the time-ordering so that

G0
2+2(x

′
1, x
′
2; x1, x2) =

∫

d3q1

(2π)3
1

2E~q1

〈Ω|φ0(x
′
1)|q1〉〈q1|T (φ0(x

′
2)φ0(x1)φ0(x2)) |Ω〉+OT

(4.10)

where OT stands for the other terms. These other terms include those which arise

from the omitted time orderings.

The matrix element of the field φ0(x
′
1) can be written as

〈Ω|eiP ·x′
1φ0(0)e

−iP ·x′
1|E~q1, ~q1〉 = 〈Ω|φ0(0)|E~q1, ~q1〉e−iq1·x

′
1|q01=E~q1

= 〈Ω|φ0(0)|q01, ~q1 = 0〉e−iq1·x′
1|q01=E~q1

(4.11)

where E~q1 =
√

~q1
2 +m2. In obtaining the above relation we have used the Lorentz

invariance of the vacuum and of φ0(0) [36]. Thus

〈Ω|φ0(x
′
1)|E~q1, ~q1〉 =

√
Ze−i(E ~q1

x′0
1 −~q1·~x′

1) (4.12)

where

〈Ω|φ0(0)|q01, ~q1 = 0〉 =
√
Z (4.13)

and q01 > 0. In the above
√
Z is the field-strength renormalization factor. So the

integral between T+ and +∞ becomes

√
Z

1

2E~p′1

∫ ∞

T+

dx′01 e
i
(

p′01 −E~p′
1
+iǫ

)

x′0
1 〈p′1|T (φ2′φ1φ2) |Ω〉+OT (4.14)
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where ǫ > 0 is the adiabatic cut-off and φ0(xi) = φi. Performing the x′01 integral we

get

G̃0
(1)
(p′1, x

′
2, x1, x2) =

√
Z

i

2E~p′1

e
i
(

p′01 −E~p′
1
+iǫ

)

T+

(

p′01 − E~p′1
+ iǫ

)〈p′1|T (φ2′φ1φ2) |Ω〉+OT (4.15)

which as p′01 → E~p′1
, becomes

G̃0
(1)
(p′1, x

′
2, x1, x2) =

√
Z

i

p′21 −m2 − iǫ
〈p′1|T (φ2′φ1φ2) |Ω〉+OT. (4.16)

In the integration over (−∞, T−), φ0(x
′
1) will stand to the extreme right in the

time ordered product, so the one-particle state contribution comes from

〈q1|φ0(x
′
1)|Ω〉 =

√
Zei(E~q1

x′0
1 −~q1·~x′

1). (4.17)

The energy denominator is thus 1
p′01 +E~p′

1
−iǫ and has no pole for p′01 > 0. Thus the

answer for the pole is given by Eq.(4.16).

For the two-particle scattering p1, p2 → p′1, p
′
2, we can now proceed similarly.

The poles appear in both p′01 and p′02 when both x′01 and x′02 integrations are large:

x′01 , x′02 >> T1 >> x0
1, x0

2. (4.18)

So for these poles

G̃0
(2)
(p′1, p

′
2, x1, x2) =

∫ ∞

T+

dx′01 dx
′0
2 d

3x′1d
3x′2 e

ip′1·x′
1+ip′2·x′

2
1

2!

(

1

(2π)3

)2
d3q1d

3q2

(2E~q1)(2E~q2)
×

〈Ω|φ0(x
′
1)φ0(x

′
2)|~q1~q2〉〈~q1~q2|T (φ1φ2) |Ω〉+OT. (4.19)

Here T+ is considered to be very large. We set φ0(x
′
1), φ0(x

′
2) to be out fields. As we

set |~q2~q1〉 to |~q2~q1〉out for large T+, only 〈Ω|φout+
0 (x′1)φ

out+
0 (x′2)|~q2~q1〉out, where φout+

0

is the annihilation part of the out-field, contributes. Thus there is no time-ordering

needed involving these out-fields. So we have

G̃0
(2)
(p′1, p

′
2, x1, x2) =

∫ ∞

T+

d4x′1d
4x′2 eip

′
1·x′

1+ip′2·x′
2
1

2!

(

1

(2π)3

)2(
d3q1

2E~q1

)(

d3q2

2E~q2

)

×

〈Ω|φout
0 (x′1)φ

out
0 (x′2)|~q2~q1〉out out〈~q2~q1|T (φ1φ2) |Ω〉. (4.20)

Now

〈Ω|φout
0 (x′1)φ

out
0 (x′2)|~q2~q1〉out = 〈Ω|φout

0 (x′1)|~q1〉〈Ω|φout
0 (x′2)|~q2〉+ ~q2 ↔ ~q1. (4.21)

Thus Eq.(4.16) generalizes to

G̃0
(2)
(p′1, p

′
2, x1, x2) =

[√
Z

(

i

p
′2
1 −m2 − iǫ

)] [√
Z

(

i

p
′2
2 −m2 − iǫ

)]

×

out〈~p′1~p′2|T (φ1φ2) |Ω〉+OT. (4.22)
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With similar calculations for incoming poles, with x0
1, x

0
2 << T− << x′01 , x

′0
2 ,

G̃0
(4)
(p′1, p

′
2, p1, p2) =

2
∏

i=1

2
∏

j=1

[√
Z

(

1

p
′2
i −m2 − iǫ

)][√
Z

(

1

p2j −m2 − iǫ

)]

×

out〈p′1 p′2 | p1 p2〉in (4.23)

as required.

θµν 6= 0

We will work along lines similar to the one followed for the commutative case to arrive

at the twisted version of Eq.(4.23). However the process we consider in the noncom-

mutative case will not be a 2-particle scattering process as chosen in the commutative

case. Instead we consider a process where M particles go into N particles.

We introduce the following notations:

p̂ is an on-shell momentum = (E~p =
√

~p 2 +m2, ~p) (4.24)

p is a generic 4-momentum, with p0 > 0. (4.25)

Completeness

The completeness relations for the twisted in- and out-states are the same as in the

commutative case, since the noncommutative phases cancel each other. Hence

a
†in, out
θ (pN) · · · a†in, outθ (p1)|Ω〉〈Ω|ain, outθ (p1) · · ·ain, outθ (pN) =

a
†in, out
0 (pN ) · · ·a†in, out0 (p1)|Ω〉〈Ω|ain, out0 (p1) · · ·ain, out0 (pN). (4.26)

From Eq.(4.26) follow both the resolution of identity given below and hence com-

pleteness for the twisted in- and out-states.

Resolution of Identity

Consider

I ′ =
∑

N

1

N !

(

∫ N
∏

i=1

d3pi

(2π)3
1

2E~pi

)

a
†in, out
θ (pN ) · · ·a†in, outθ (p1)|Ω〉〈Ω|ain, outθ (p1) · · ·ain, outθ (pN).

(4.27)

This is independent of θµν due to Eq.(4.26) and hence is the resolution of identity:

I ′ = I =
∑

N

1

N !

(

∫ N
∏

i=1

d3pi

(2π)3
1

2E~pi

)

a
†in, out
0 (pN) · · ·a†in, out0 (p1)|Ω〉〈Ω|ain, out0 (p1) · · · ain, out0 (pN).

(4.28)
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For the scattering process of M particles to N particles, the twisted N+M-point

Green’s function we need to look at is

Gθ
N+M(x′1, ..., x

′
N ; x1, ..., xM) = 〈Ω|T (φθ(x

′
1) · · ·φθ(x

′
N )φθ(x1) · · ·φθ(xM)) |Ω〉.

(4.29)

This is Fourier transformed by integrating with respect to the measure

(

∏

i

d4x′i

)(

∏

j

d4xj

)

ei(
∑

i≤N p′i·x′
i−

∑

j≤M pj ·xj).

Integration over xi, x
′
i gives G̃θ

N+M
(p′1 · · · , p′N , p1 · · · , pM) and the residue at the

poles in all the momenta multiplied together gives the scattering amplitude. This is

just the noncommutative version of the LSZ reduction formula. We show that we

obtain the same answer as Method I for the S-matrix elements in this way.

Pole in just p′1

Fourier transform just in x′1 to obtain

G̃θ

(1)
(p′1, · · · , x′N , x1, · · · , xM) =

∫

d4x′1 ei(p
′0
1 x′0

1 −~p′1·~x′
1)×

〈Ω|T (φθ(x
′
1) · · ·φθ(x

′
N)φθ(x1) · · ·φθ(xM)) |Ω〉. (4.30)

With T+ >> x′0N · · ·x′02 , x0
M , · · · , x0

1, we isolate the term with pole in G̃θ

(1)
:

G̃θ

(1)
(p′1, · · · , x′N , x1 · · ·xM) =

√
Z

∫ ∞

T+

dx′01 d
3x′1 ei(p

′0
1 x′0

1 −~p′1·~x′
1)×

〈Ω|φout
θ (x′1)T (φθ(x

′
2) · · ·φθ(x

′
N )φθ(x1) · · ·φθ(xM)) |Ω〉+OT

=
√
Z

∫ ∞

T+

dx′01 d
3x′1

1

(2π)3
d3q1

2E~q1

ei(p
′0
1 x′0

1 −~p′1·~x′
1)×

〈Ω|φout
θ (x′1)|q̂1〉〈q̂1|T (φθ(x

′
2) · · ·φθ(x

′
N )φθ(x1) · · ·φθ(xM)) |Ω〉+ OT (4.31)

where

〈Ω|φout
θ (x′1)|q̂1〉 = 〈Ω|φout

0 (x′1)|q̂1〉 (4.32)

as the twist gives just 1 in this case. This can be seen by writing φout
θ as e

1
2
∂µθ

µνPνφout
θ

and acting with Pν on 〈Ω|.
Repeating the same procedure as in that of the commutative case, we can extract

the pole 1
p′21 −m2−iǫ and its coefficient.

– 12 –



Extracting poles at p′1, p
′
2

In this case we are led to

G̃θ

(2)
(p′1, p

′
2, x
′
3, · · · , x′N , x1, · · · , xM) =

∫ ∞

T+

d4x′1d
4x′2 e

ip′1·x′
1+ip′2·x′

2(
√
Z)2

d3q̂1d
3q̂2

2!(2E~q1)(2E~q2)
×

〈Ω|φout
θ (x′1)φ

out
θ (x′2)|q̂1, q̂2〉〈q̂1, q̂2|T (φθ(x

′
3) · · ·φθ(x

′
N)φθ(x1) · · ·φθ(xM)) |Ω〉+OT.

(4.33)

Note that there is no twist in |q̂1, q̂2〉 and 〈q̂2, q̂1| (See Eq.(4.28)).

We now compute the matrix element of the two out-fields.

〈Ω|φout
θ (x′1)φ

out
θ (x′2)|q̂1, q̂2〉 =

∫
(

1

(2π)3

)2
d3p′′1
√

2E ~p′′1

d3p′′2
√

2E ~p′′2

e−ip̂
′′
1 ·x′

1−ip̂′′2 ·x′
2×

√

2E~q1

√

2E~q2〈Ω|
(

aout0 (p′′1)e
− i

2
p̂′′1∧P

)(

aout0 (p′′2)e
− i

2
p̂′′2∧P

)

a
†out
0 (q̂2)a

†out
0 (q̂1)|Ω〉

=

∫
(

1

(2π)3

)2
d3p′′1
√

2E ~p′′1

d3p′′2
√

2E ~p′′2

e−ip̂
′′
1 ·x′

1−ip̂′′2 ·x′
2e−

i
2
p̂′′1∧(−p̂′′2+q̂1+q̂2)e−

i
2
p̂′′2∧(q̂1+q̂2)×

√

2E~q1

√

2E~q2〈Ω|aout0 (p′′1)a
out
0 (p′′2)a

†out
0 (q2)a

†out
0 (q1)|Ω〉. (4.34)

The matrix element becomes

〈Ω|aout0 (p′′1)a
out
0 (p′′2)a

†out
0 (q2)a

†out
0 (q1)|Ω〉 = (2π)3 (2π)3

[

δ3(~p′′1 − ~q1)δ
3(~p′′2 − ~q2)

+δ3(~p′′1 − ~q2)δ
3(~p′′2 − ~q1)

]

(4.35)

which means that the whole matrix element is 0 unless

p̂′′1 + p̂′′2 = q̂1 + q̂2. (4.36)

So the noncommutative phase can be simplified according to

e−
i
2
p̂′′1∧(−p̂′′2+p̂′′1+p̂′′2)− i

2
p̂′′2∧(p̂′′1+p̂′′2) = e−

i
2
p̂′′2∧p̂′′1 . (4.37)

Integrations over ~x′1, ~x
′
2 give δ-functions setting

~p′′1 = ~p′1 , ~p′′2 = ~p′2 (4.38)

and hence

p̂′′1 = p̂′1 , p̂′′2 = p̂′2. (4.39)

Thus the noncommutative phase becomes e−
i
2
p̂′2∧p̂′1 .

Since

out〈q̂1, q̂2| → out〈p̂′1, p̂′2| (4.40)
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and due to the identity

out〈Ω|aout0 (q1)a
out
0 (q2) = out〈Ω|aout0 (q2)a

out
0 (q1) (4.41)

we end up with

G̃θ

(2)
(p′1, p

′
2, · · · , x′N , x1, · · · , xM ) =

√
Z

p′21 −m2 − iǫ

√
Z

p′22 −m2 − iǫ
e−

i
2
p̂′2∧p̂′1×

out〈p̂′1p̂′2|T (φθ(x
′
3) · · ·φθ(x

′
N )φθ(x1) · · ·φθ(xM)) |Ω〉+OT. (4.42)

The phase can be absorbed to get the twisted out-state

〈Ω|aoutθ (p̂′2)a
out
θ (p̂′1). (4.43)

Thus the two-particle residue gives the answer appropriate for the one obtained in

Eq.(4.6).

This can be easily generalized to N outgoing particles. For this purpose it, is

enough to prove that the phases associated with the outgoing fields give the appro-

priate phases. This phase comes from manipulating

〈Ω|aoutθ (p̂′1)a
out
θ (p̂′2) · · · aoutθ (p̂′N)|q̂1 · · · q̂N〉 (4.44)

and

〈q̂1 · · · q̂N |a†θ(p̂′N) · · ·a
†
θ(p̂
′
1)|Ω〉. (4.45)

They have phases related by a complex conjugation. They can be calculated by

moving the twists of aθ(p̂
′) to the left in Eq.(4.44) and to the right in Eq.(4.45). This

will give the appropriate phase as seen in Eq.(4.6).

We can proceed in a similar manner for incoming particles as well where the

conjugates of Eq.(4.44) and Eq.(4.45) appear. Putting all this together, the final

answer is easily seen to be the same as the one obtained in Eq.(4.6).

5. Remarks

We have shown two nonperturbative methods relating the commutative and non-

commutative scattering amplitudes. Our important result is that there is complete

consistency between the LSZ and interaction representation S-matrix elements on

the Moyal plane.

In the LSZ formulation, the Drinfel’d twist uses the total four-momentum Pµ in-

cluding interactions. In the interaction representation approach, the Drinfel’d twist

instead uses the non-interacting four-momentum P 0
µ . No systematic derivation of the

interaction representation from an exact formulation using the total four-momentum

Pµ is known in the twisted case. The difficulty in this derivation is the appearance of
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Pµ in the exponential of the Drinfel’d twist. In the absence of this derivation, what

is done in the “interaction representation” is to use the Drinfel’d twist with the non-

interacting four-momentum P 0
µ . The equivalence of LSZ and the latter formalism for

scattering amplitudes is thus a non-trivial justification of the latter approach. We

emphasize that this equivalence does not extend to off-shell Green’s functions [39], a

fact which highlights the nontrivial nature of the equivalence of the LSZ and inter-

action representation scattering theories on the Moyal plane.

The θ-dependence of the S-matrix elements comes through a phase through the

products of external momenta. From this it follows immediately that at least for

S-matrix elements, there can be no θ-dependence in loop diagrams and hence no

possibility of UV-IR mixing in this formalism of quantum scalar fields on the Moyal

plane. Moreover the renormalization of this theory for the S-matrix elements is sim-

ilar to the one followed for renormalizing the S-matrix elements in the corresponding

commutative theory. This in principle completes the renormalization program for

S-matrix elements for this scalar noncommutative field theory on the Moyal plane.

The methods followed here can perhaps be extended to include gauge fields

as well. Noncommutative field theories with gauge fields involve using a centrally

extended Hopf algebra and a corresponding nonassociative spacetime [22]. We leave

the computation of scattering amplitudes in such theories to a future paper.

Thermal field theories on the Moyal plane have also been developed through the

formalism of thermofield dynamics [40, 41]. Scattering amplitudes in noncommuta-

tive thermal field theories can be computed in a manner similar to the one shown in

this paper [40].

The noncommutative phase, though seen in the scattering amplitude vanishes

once the square of the scattering amplitude is taken if the in- and out- states are

energy and momentum eigenstates. Such a result is not true once we look at the

off-shell n-point Green’s functions of twisted quantum fields where the θ-dependence

is not through an overall phase. Such a θ-dependence can have consequences for the

β-function of this theory. This will be reported in a forthcoming paper.
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