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This paper is motivated by prospects for non-Abelian statisof deconfined particle-like objects in 3+1
dimensions, realized as solitons with localized Majoragr@modes. To this end, we study the fermionic collec-
tive coordinates of magnetic monopoles in 3+1 dimensiopah&neously-broken SB) gauge theories with
various spectra of fermions. We argue that a single Majormamode of the monopole is not compatible
with cancellation of the Witten S(2) anomaly. We also compare this approach with other atteroptsalize
deconfined non-Abelian objects 3+ 1 dimensions.

I. INTRODUCTION der parameter field begins to fluctuate. If we were able to
deconfine non-Abelian particles B1+ 1 dimensions, there

Point particles in 3+1 dimensions cannot have non-Abeliarfould be profound practical and conceptual implications.
statistics because of the triviality of the topology of thean- One suggestion for removing the confining energy follows
figuration space [1]. However, a particle-like object wittra  the analogous step in the study of vortices in 2d: gauge the ro
structure can have a configuration space with more interestation symmetry in the order parameter space. If all diogr!i
ing homotopy. Inspired by ideas from topological insulator are gauge-equivalent, there need not be a confining energy be
[2], Teo and Kane [3] recently made a specific proposal inftween the hedgehogs, which in the resulting gauge theory are
this direction. The objects in question are hedgehogs of a 3t Hooft-Polyakov monopoles [6, 7]. (There will be a mag-
component order parameter, coupled to fermionic excitatio netic Coulomb force between the monopoles, but this fafls of
that are gapped in the presence of a non-zero order parametéith their separation.) But 3+1 dimensional &) gauge the-
Freedmaret al [4] show that these objects exhibit what they ory with the requisite fermion content, namely a single Wey!
call projective ribbon statistics; the data needed to specify a doublet {.e. eight Majorana fields), suffers from the Witten
configuration include the preimage under the order parameté&U(2) anomaly [8] (as [4] also observe). One implication of
map of the north pole and a nearby point. this is that the gauge field partition sum vanishes ideriical

The hedgehog defects support real fermionic zero modednother pathology resulting from the anomaly is a violation
and multiple hedgehogs are associated with a non-loc&lf fermion parity by the gauge dynamics. Specifically, an in-
Hilbert space generated by the zero mode operators. Mdstanton creates a single fermion in violation of fermionityar
tions of the hedgehogs implement unitary transformatians i The addition of an adjoint Higgs field (relative to the discus
the non-local Hilbert space, a concept familiar from topgelo Sion of [8]) doesn’t change the structure of the fermion dete
ical quantum computing i2 + 1 dimensions [5]. Because Minantwhich is responsible for the fatal factor-et (which
exchanging identical particles leads to a non-trivial amyit it acquires under the gauge transformations which reptesen
transformation of the quantum state instead of merely aghasthe nontrivial element ofr,(SU(2))), as we argue below in
we say such objects have non-Abelian statistics. The pre§J|A-
ence of Majorana zero modes and the non-trivial configumatio We will construct below a microscopically-consistent the-
space are both crucial to this story. ory which, in a range of energy scales, looks like this Witten

Freedmaret al also point out the following problematic fea- anomalous S(2) gauge theory in the Higgs phase with a sin-
ture of the model of Teo and Kane: if the order parametegle Weyl doublet. The spectrum of fermionic particles with
field has a nonzero stiffness, a single hedgehog is not a-finite” < My is identical to that of the theory described above;
energy configuration. Configurations with zero net hedgeho@t these energies, the Witten anomaly is cancelled by aerta
number can have finite energy, but there will be a confiningVess-Zumino-Witten term made from the adjoint scalar and
force between the hedgehogs due to gradient energy in the dhe gauge field. (This situation is similar, but not ideritica
der parameter field. This energy cost will scale at leastliilye  to models discussed by d’Hoker and Farhi [9, 10].) However,
with the separation between the hedgehogs. The cost may Bais term is ill-defined when the order parameter vanishes, a
even higher in the absence of full &2) symmetry for the or- it does in the core of the monopole, and we must provide a UV
der parameter (and such symmetry is unlikely given that theompletion to address the question of whether the monopole
order parameter involves both superconducting and pexticl has a Majorana zeromode. The simplest UV completion of
number-conserving terms). This makes it difficult to imagin this model involves adding in another Weyl fermion doublet.
adiabatically moving these solitons around each other. Before preceeding with an analysis of the(8Wgauge the-

Putting aside the issues with using this proposal as a plabry, we pause to consider an alternative possible route-to de
form for quantum computing (note further that braiding of confine the localized objects hosting Majorana modes. In-
Majoranas does not provide a set of universal gates), wedvoulstead of gauging the SW) symmetry that is spontaneously
like to confront the conceptual question of whether it is-pos broken by the order parameter field in the Teo-Kane model,
sible in principle to deconfine such non-Abelian particles i we can consider disordering the broken phase into a liquid-
3 4+ 1 dimensions. We are also interested more generally ifike phase without any broken symmetry [4, 11]. Importantly
what happens to Majorana zero modes when the relevant owe must achieve this disordering without proliferating the



monopole defects that hosted Majorana modes, otherwise wgroup its image in any unitary group must be quite limited.
will trivially lose the localized Majorana mode. The simgte In this paper we study the possibility of non-Abelian
to-describe disordered phase has a description in terms of @article-like excitations in a 3+1 dimensional field theolty
emergent Y1) gauge field, and the hedgehog defects, assumparticular, we explore the apparent conflict between a sing!
ing they have finite energy, become magnetic monopoles iMajorana zeromode of the 't Hooft-Polyakov monopole (we
the U(1) gauge theory: we are again led to a description inwill refer to such an object as a ‘Majorana monopole’) and
terms of magnetic charges in an Abelian gauge theory. (Wenicroscopic consistency of the $2J gauge theory.

describe other possibilities for disordered phases indse | The outline of the paper is as follows. In the next section
section.) Now the important question is: do the Majoranaye generalize the classic analysis of Jackiw and Rebbi fi4] t
modes survive the disordering process, and if so, are the magonstruct the zeromode solution of the Dirac equation in the
netic monopoles in this theory deconfined (only interactingwitten-anomalous theory described above. In section i&, w
via a long range Coulomb interaction) particles carryingMa discuss the cancellation of the Witten anomaly and its &ffec
jorana zero modes? Again the question of the survival of then the zeromode structure of the monopole. In section IV
Majorana modes requires short-distance information aheut we discuss an instructive example in 4+1 dimensions. In sec-
theory. Later we will return to this question for the disat®  tion V we provide general arguments for obstructions to Ma-
state, arguing on general grounds that this particulars@en jorana monopoles in 3+1 dimensions following the desiderat
is unlikely. described above.

To clarify, our desiderata for deconfined non-Abelian exci- Related work appears in [15], which studies an interesting
tations in 3+1 dimensions are as follows. First we will dis- fermion dimer model whose low energy physics includes ma-
cuss the desired form of the regulated theory at high energigorana monopoles interacting with gauge fields as well as gap
and then the form of the theory at low energies. From thdess fermionic degrees of freedom. Some features of 3d non-
point of view of condensed matter physics, we would mostAbelian particles appear to be realized in their model, beit w
like to have a microscopic lattice model involving only spin emphasize that their conclusions do not contradict our own;
like or electron-like degrees of freedom that enters a phaseur analysis suggests that the gapless fermions are edsenti
where there are deconfined particles. We do not accept as[45] also studies a 5d model similar to the one discussed in
valid realization a model that contains Majorana fermion de §IV.
grees of freedom in a microscopic lattice model. We make
this requirement because we do not want to put the Majoranas
in “by hand”. However, we would permit a Majorana based ||, MAJORANA MONOPOLES IN AN ANOMALOUS
lattice model provided we could reinterpret it as an interme THEORY
diate scale description arising from a truly microscopiaielo

of electrons, likely in the presence of superconductiatypi- Consider an S(2) gauge theory in 3+1 dimensions with a

partite lattice is asufﬁuent condltlc_m). From the pointiw scalar field® in the adjoint representation; we will suppose
of high energy physics, we WO[.JId like to have an anomaly freethat the action for is such that in the ground state it breaks
gauge theory coupled to fermions and scalars that has a n°§U(2) down to U1). Include also a single S1) doublet of
perturbative regularization of some type, be it lattice ggau Weyl fermions, y; altogether there ar2® — 8 real fermion
theory or string theory. In the high energy way of thinking; w degrees of freéd’om This is half as many fermion degrees of
do not require the absence of gauge fields in the microscoplﬁzeedom as considéred by Jackiw and Rebbi in their 3+1-d

description, for exgmple, we W(.)u'd accept an asymptogicall discussion [14], and the same number as considered by Wit-
free gauge theory interacting with Dirac fermions. ten [8]. As we demonstrate next, this theory suffers from the

In the low energy theory, we have two general inter-witten anomaly — if we try to quantize the gauge field, we get
ests. First, any putative non-Abelian particle-like eattidns  nonsense. Specifically, the partition function vanishebea
should have a clearly defined configuration space. We shoulgectation values of gauge invariant observables are ureefin
have a clear understanding of the non-locality inhererttisit  For the discussion in this section the bosonic fiebdst will

configuration space that permits otherwise point-like clsie therefore be treated as background fields.
to have interesting statistics. Second, it must be possible  Consider the fermion Lagrange density

perform motions of the non-Abelian excitations withouthhig
energy cost, without dramatically exciting other degreks o
freedom, without violating causality or unitarity, and kgt
producing decoherence in the space of “protected” states. F
example, decoherence due to unscreened gauge fields limiteere x,, is a (left-handed) Weyl doublet of SR): o = 1,2
our ability to superpose states with macroscopically dgifeé  is a spin indexa = 1,2 is a gauge indexa* = (1, —d)".
charge configurations. We emphasize especially the issue dhe covariant derivative is defined 88,,x),,, = JuXaa —
the low energy configuration space. This space must be riciyA .., xa» WhereA,,q; is the SU2) gauge field.\ is a com-
enough to support representations of its fundamental grouplex coupling constant. Note that becayss in a pseudoreal
that are non-local, as with non-Abelian anyon represemmati representation of both the $2) gauge group and the Lorentz
of the braid group ir2 4+ 1. The symmetric group is known to group, the objeci® = x”io?iT? transforms in the conju-
be insufficient for this purpose [12, 13], and indeed as agfinit gate representation of both groups. There is no nonvamjshin

1 -
Lfermions - XTiaﬂDHX - EAXTZ'O'QZ'TQF . (I)X + h.c. (21)
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gauge-invariant and Lorentz-invariant mass term (notlinvo wherec is areal constant. We emphasize that the phase of the
ing the Higgs field®) with this field content. We will com- normalizable solution is determined by normalizabilitytioé
ment in§lll D on the effect of Lorentz-breaking terms of the solution at large-.
form xfy. Quantizing this fermionic collective coordinate gives a-Ma
This theory has two independent mass scales: the mass jfrana fermion acting on the monopole Hilbert space, which
the W-bosonsmy = gv (v is the vev of the adjoint Higgs is represented by a unique state. This leads inevitablyte no
field, g is the SU2) gauge coupling at the scaley), and the  Abelian statistics for the monopoles, in the same manner as
mass of the fermionw. expected for vortices in p+ip superconductors or the pfaffia
guantum Hall state [5, 19-22]. Briefly, two widely-sepacate
monopoles will have two Majorana zeromodes, which can be
A. Persistence of Witten anomaly combined intoc = 22192 with {c, ¢} = 1; this algebra
must be represented by a two-state system. Interchangng th
The addition of the adjoint scaldr and its coupling to the monopoles adiabatically implements the operator
fermion doublet does not modify the anomalous transforma-
tion law of the fermion determinant. That this is the case can Uy—o = exp (57172) = exp (iz(1 — 2c+c))
be seen by embedding the theory in an($Ugauge theory 4 4

with a perturbative gauge anomaly as in [16-18]. The releyyith two pairs of monopoles we could perform operations
vant theory has an §J) adjoint scala>, an SU3) triplet of  \yhich do not commute with each other.

Weyl fermionsy and an SW3) triplet of scalarsY', with the We note that the coupling of to the gauge field does not

coupling play a crucial role in generating this zeromode; since (by
- = (2.5)) the dominant term in the exponent of (2.7) at large
Lsu(3) 2 XaToabe®eaXa, (22) " Comes from the scalar profile, the gauge field can be set to
wherea = 1,2,3 is a triplet index. Condensing the scalar 260 without interfering with the zeromode. The existentce o

triplet (T) = X breaks the SBB) down to SU2), and the cou- the zermode solution without the gauge field essentially fol
pling (2.2) reduces to the desired coupling between the WeyPWs from the analysis of [3].

fermions charged under the unbroken(8lJand the adjoint T only this were a consistent quantum system. We de-
scalar in (2.1). The form of the perturbative Sanomaly is ~ SCTibe one pathology of this system. Recall that in the case
unaffected by the addition of scalars and so the calculaion ©f @ Dirac fermion there is a complex fermion zero mode in
the variation of the fermion measure by integrating the:gu  the ungauged theory. Once the @Ysymmetry is gauged,

anomaly [16-18] is unmodified compared to the theory with-{N€ low energy gauge group is(l) and hedgehog config-
out scalar fields. urations become magnetic monopoles. Now what happens

to the two states living on a hedgehog in the ungauged the-
ory? In fact [14], they become bosonic, having chatge/ 2
B. The Majorana zeromode under the unbroken () due to the low energy U) theta
term of 7. To see this, assume that the chargk/2 state
is bosonic, then when we add a fermion in the zero mode of
chargel we reach a state of chardg¢2 which would appear
0 = 85 Stermion = —i0" D, x + Alic?® - rir?x* . (2.3) 10 differ in spin by1/2 from the bosonic state. But we have
forgotten the gauge field which adds extra angular momen-
We consider this Dirac equation in the background of the ’ttum. Indeed, a unit charge orbiting a minimal monopole leads
Hooft-Polyakov monopole solution, to a gauge field configuration with angular momentum given
‘ by a half integer. This extra half integer angular momentum
Al =0; AP =epA(r); " =#P¢(r) (2.4)  when combined with the bare half integer angular momentum
) S ) of the fermion leads again to a bosonic state. In fact, we can
(B = 1,2, 3 is an adjoint index) with check from the structure of the zero mode that the position
s oo s oo and spin of the fermion are correlated so that no matter where
Alr) =~ 1/r, ¢(r) =~ v (2.5)  the fermion is measured its spin will always compensaté the
A zero-energy solution of (2.3) is of the formyu, — angular momentum.contribution comilng from the fielq.
ir2_g(r) (wherea is the spin index and is the Su;‘)l in- Now the puzzle: in the case of a single Weyl fermion, we
dea;) This is the same ansatz as in equation A4 of [14]. Wit found that the complex fermion was replaced by a real zero
this éubstitution the zeromode equation reduces to . %Ode’ but what should happen when we turn on the gauge
' field? Heuristically, we should obtain half of the pair ofteta
, . N aa ok with chargest1/2. Let O, be an operator that moves us
(9 + 27 A)g + irPig™ = 0. (2:6) from the —1/2 to the 1/2 charge state so tha®,, carries
By rephasing the field, we can assume WLOG thais real ~ charge 1. By analogy with the definition of the Majorana
and positive. The solution far is then fermion, an apparently interesting combination to consisle
. 041 + (’)TH, but this operator creates states that decohere in
g(r) = ce~ ™/ e [T (A0-24) (2.7)  the presence of the fluctuating U field; we can identify no

The Dirac equation which results from varying (2.1) is



candidate for the pointer states into which they should deco  A. Generic couplings in the two-Weyl-doublet theory
here. Is the Witten anomaly to blame? The simplest resalutio

of the Witten anomaly, namely adding a second identical Weyl - consider the fermion lagrangian density

doublet, removes the spectre of decoherence by adding an ex-

tra real zero mode in the monopole core allowing for complex Losermions = X' 110" D,xr — N xFio?ir?7 - &x 5 + h.c.
solutions, as we’'ll see next.

To summarize, we found an $2) gauge theory where —m!xTiciT*x; + h.c. (3.2)

magnetic monopoles of an unbrokeflY gauge field appear Herey 1. are a pair of (left-handed) Weyl doublets of G

to carry Majorana zero modes. However, this theory suf-I — 1,2is a flavor indexa — 1,2 is a spin indexa — 1,2
fers from the Witten anomaly rendering all gauge invarianﬁs a géuge index. Altogether tr’lere are nPv= 8 compfex

observables ill-defined. Related pathologies include &vio fermion degrees of freedom. This is the same set of fermion

tion of fermion ng_mber by instantons and decohere(it)u degrees of freedom considered by Jackiw and Rebbi and twice
charge superpositions. In what follows, we try to cure the,

Wit v whil ina th de struct F‘S many as considered by Witten.
thle ﬁ%ﬁggg?gy while preserving the zero mode Structure oty o comment on symmetries of this action, and sim-

plifications that can be made by field redefinitions of the
fermions. The Yukawa coupling term is more explicitly writ-
ten as

Ill.  CANCELLING THE WITTEN ANOMALY /\IJX}"Z-GQZ-TQF. q_))XJ +he =
_ _ _ _ NIy Tio%ir?s - By + Af UX};' <f>z'02i7'2x} .

Itis possible to cancel the Witten anomaly by adding to the o 0 0 ) o
action a certain functional of the adjoint scalar. To se¢ thaThe matrixA is symmetric,\"” = A“% by Fermi statistics.

this is the case, consider integrating out a Weyl fermign A general Complex sym_metric matrix_is not diagonalizable,
coupled to the scalar field as above: but rather has different right and left eigenvalues. A campl

symmetric matrix has a singular value decomposition (SVD)
(called Takagi decomposition) of the form

ln/DX2 exp (iSrerm[x2]) = T'[®, A] + non-universal stuff
A=Wdw?T (3.3)

(3.1)
The functionall” defined by this equation is well-behaved be-
cause of the gap in the fermion spectrum. The both-han
side of equation (3.1) must shift by (mod 27) under an  andW is unitary.
SU(2) gauge transformation representing the nontrivial class Rephasing the fermion fields by a unitary rotation =
of 74(SU(2)). The fact that the non-universal, short-distance(U —*)f
stuff on the RHS does not accomplish this shift follows be- 7
cause it is not sensitive to the topology of spacetime. X1 = Urxs

Itis difficult to give an explicit expression for the funatial  changes the coupling matrixby
I'. Naively, the WZW term for S(2) vanishes identically. T -
However, our term is not quite the usual WZW term since it A= UNUT = UWdW U™ (3.5)
arises from a pfaffian rather than a determinast, it is in- Choosing/ = W~ gives\ = d.

variant under only real-linear basis changes. A similar-sit By Fermi statistics, the Dirac mass matrix ; is antisym-

ation with different fermion representations arises in109], metric, mr; = mery. The effect of the rephasing (3.4) on

where the effe_cti_ve action contai.ns terms taking the form oty4 pirac mass is tHerefomU s myy det U. Having fixed

the gauge variation of our functional In §IIA, we have  , freedom to rephase the fermions, the phase of the Dirac

determined the anomalous transformatiody embedding 355, will be significant. Global symmetries can constrain

into a theory with a perturbative anomaly; this trick does no o phase ofn. In particular, with a Hermitian mass matrix,

immediately determine the form ofitself. It would be useful m = m', the model preserves a CP symmetry which acts by

to find an explicit expression for this functional.
One thing aboul, however, is certain: itis ill-defined when _ _ 0 Mo

the order parameteb is not invertible. A simple argument ~ WhenA is purely off-diagonah = ()\0 0) the system

for this is that only whenp is invertible are the fermion de- 54mits an extra () symmetry under which

grees of freedom gapped. Therefore, in any field configuratio . .

where® vanishes, such as the core of the magnetic monopole, X1 efx1, xamr e Pxa . (3.6)

a mode| where t_he Witten anomal_y is cancelled by the Va8 hen the Dirac mass vanishes, the resulting model is idantic
tion of I'[®] requires a UV completion.

. . . . . to the model studied in [14]. To see this, construct from the
The simplest way to do this is obviously to integrate in they,, 5 |eft-handed Wey! doublets a single Dirac fermion
second Weyl doublet, by which we proved the existence of

T"; we study this possibility next. Are there other ways? In the U= X1 3.7)
final section, we will argue that the answer is ‘no’. = \xgit?io? ) '

theredisdiagonalwith real, positive entriels— A0 ,
0 X

(3.4)

X — i02i72x*.
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Then the action (3.2), with off-diagonal and\, = \§+iA\],  with \; 5, 1 real and positive. The reality @f (which implies
is that the Dirac mass matrix is hermitian) is not fully gengral

- - o _ we return to this point anon.
Lotermions = VilDV—W¥ ()‘(IJ% + 2/\670) T OU+mUV. (38) FO||0W|ng [14], let

Returning to the SVD form of the action, this is equivalent to Xaal = Mab1iTh, = (Babgr + 0hp97) €va - (3.17)
the case where the diagonal entries are equat \,. In this
basis, the U1) symmetry acts as the SO(2) rotation This decomposition incorporates the breaking of
‘ SU(2)gauge X SU(2)spin and decomposey € (2,2)
X1 +ix2 — € (x1 +ixz2) . (3.9) into irreps of the unbroken SB). It reduces the Dirac

equation to the two equations:
The general two-Weyl-doublet theory now has three mass

scales: the mass of th&-bosonsmy = gv, and the masses 0 = iVg—2ifAg — 3G x FA + A g*¢p
of the two Weyl fermions\; ,v. In the regime —ng* +iV x 7+ \oF X G*

MU << my < \v (3.10) o

0 = iV-G+2if-FA—Xg - 7o +mlg*. (3.18)

we have a large window of energies in which the bulk spec

trum is that of the Witten-anomalous theory studied above.
We note that the theory with two Weyl doublets admits a

Lorentz-violating (but gauge-invariant and rotationanant)

he last term in (3.18) forces us to include a nonzgwehen
m # 0. The equations fog, § are (not too surprisingly) sim-
ilar to [14] equation A7a, b with extra terms coming from the

t fthe f Dirac mass.
mass term ot the form We make an ansatz of the fogn= 7g¢,-(r). This eliminates
Lyg = MIJX}XJ. (3.11) the curl terms in the Dirac equation, leaving
. . . o oA ~ T
We will comment below irglll D on its effects on the zero- 0 = iVg —2ifAg — Ag"¢7 —m'g"

mode structure. -
0 = iV-§+2A7-7+ X g -ip+migt. (3.19)

B. FZMs in the two-Weyl-doublet theory We choose the phasesg@fy, so thatig = g

_ o =ah, gr=a th,, a=e T4 3.20
The Dirac equation is now g=ol gr=a a=c ( )

. The Dirac equation becomes
0= 6)’(1Sfcrmion - _ZUMD#XI

+A}i0* D - TiT? X+ m) jictiT?xy  (3.12) 0= Vh — 2¢Ah + AT heit + peh (3.21)
When the Dirac mass. = 0, in the basis wherg is diagonal, 0=V-h—24h+ \h-i¢— peh. (3.22)
the zeromode equations fgf » decouple, and each is of the . ,
form of (2.7). There are then two real solutions: In (3.21),(3.22), all complex phases are explicit. With dse

sumption (3.16), we havi’ = ) is diagonal. The symbol
Xiaa(r) = 72,91, g1 = cre~ /A= I (A19=24) (3.13) actson thQJ flavor indices, and is thﬁe qnly thing which gloes.
The particular solution of (3.22) fdr given the sourcé is:

C. Effect of the Dirac mass h, = +M67a—2@—g /T SQeﬁh(s) (3.23)

With a nonzero Dirac mass, the zeromode equations for N s -
x1.2 are coupled. A nonzero Dirac mass requires any putativé/hereH = [ (/\¢ - 2A) andA has the property that
zeromode solution to include also a triplet componeat,to

have the more general form Am = m, (3.24)
Xaal = iTougr +i (7°7°),_ g7. (3.14)  which in turn requires
Th - Di tioni <
e zero-energy Dirac equation is 5= ()E)Q )(\)1> (3.25)

0=id- Dy — A7 ®icit>y* + micir>y* . (3.15)
Plugging the solution (3.23) into (3.21) (and rememberirag t
Here we have assumed’ = +m, and more specifically €2 = —1) gives

MO (0 o
A= (01 /\2) m:z(_ﬂ ‘8) (3.16) Orh+ (A — 2A)h = +p%r ZeH/ dss>eh . (3.26)



Substitutingh = e~ #y with H = [" (A\¢ — 2A) gives non-normalizable,e.g. for u in between the two
. Yukawa-induced fermion masses
2 2 H-H 2 H-H
Oy = d . 3.27
o= / e 7 ( ) Ao < p < Agu. (3.35)
Differentiating (3.27) (and thereby introducing an extra i

) . . This hope is not realized — there is no change in the
tegration constant) gives the linear second-order ODE for P g

normalizability of the modes at = A\, v.

29 H—H 2 _ 2 H-H
r"0Ore r°0y = pe v (3.28) e For 1 larger than the geometric mean of the fermion

We know the asymptotic behavior of the solutions at large and masses,
smallr. At smallr, H, H — 0, and the equation (3.28) re-

duces to the Helmholtz equation VAL <, (3.36)
V2y = r720,0%0,y = u*y (3.29) both modes are non-normalizable. There is no value of
_ the parameters for which an odd number of Majorana
whose solutions are modes are normalizable.
r—0 e Hr etTHr L . .
v ) + ) _ (3.30) It is interesting to note that we are free to tune the effectiv
r r sizes of the two real zero modes independently of each other.

The combination of these solutions which also solves the inBY adjustingA; and; we can produce a shell-like configu-
tegrodifferential equation (3.27) in the smallregime has ration of zero modes. More precisely, by making one of the

) = () = ¢ fermion masses very heavy, we can arrange (in the parameter
regime (3.35)) for only one zero mode to have a sizable wave-
v T & (e —etrry (3.31)  function until very close to the monopole core, as shown in

r FIG. 1. Whether this separation of scales could in principle

L = - allow for interesting physical effects is not clear to us.
Note that only the combinatioH — H = A7l [ ¢ (where g phy

177 = 615, A7 = A1 — A2) enters this equation. We empha- a5
size that there is one such solution for each value of therflavo
indexI = 1,2, labelled by a real integration constapt

3.0

251
r—0 Cr

T (ef‘”‘ — eﬂ”) . (3.32) 20f
T

h(r)

In the special case where the eigenvalues afe degenerate,
Ar = 0, the equation foty is exactly the Helmholtz equation.
In this case, the solution (3.32) is exact.

— 00

—
Atlarger, (r) "~ v, andA(r) & %0 Therefore 00 5 10 15 20 2 %

r—oo (Avr 0
o~ ( 0 Ngur

) . H—H'"Z \orl. (3.33)

To discuss the normalizibility of the solutions at largewe
distinguish various parameter regimes.

h(r)

e If 1 = 0, both solutionsy; in (3.32) are normalizible
for all A\; 5. Varying the signs or phases af » is in-
nocuous; it merely changes the overall phase of the ze-
romode solution and can be absorbed in a field redefini-
tion. '

e For smally,
FIG. 1: Top: The profile of the zeromode solution for= 0. Bot-

tom: One of the profiles in the parameter range (3.35), etthghthe

1
H< §|)‘1 — v, (3.34) ring-like structure.

both zeromodes are still normalizible. o ) )
Note that the variation of the bulk fermion spectrum with

e Since the zeromode wavefunctions involve products ofu corroborates the understanding of the normalizabilityppro
exponentials of the forme*"e~*"", one might have erties of the zeromodes presented above. The product of the
thought (pantingly) that one zeromode would becomebulk fermion masses is the determinant of the fermion mass
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matrix basis, a 5d spinor may be writtdn= [+/;,, ¥z]7. The com-
_ binationyTio?+;, + ¢Eio?y g is manifestly invariant under
)‘1,“ i 0 0 4d Lorentz transformations. The extra four transformation
M = oA +me 1 = _OW /\8“ ?\ 0 (3.37) inthe 5d Lorentz group, generated py, 7], act infinites-
AUl imally like §v;, = ectr andépgr = —eotypr,. The in-
0 0 —ip =X variance under 5d Lorentz transformations then followsifro

hich i the identity(c*)Tio? + io?z* = 0. (That is, the symplectic
which s invariant of SO(4,1) is Q = v'43.) The full coupling is then

_ 2 2)2
det M = (AAgv” —p%)" (3.38) WTio%ir? by, + phic r20pp = WTirt o0,

Comparing (3.38) to the condition for normalizability ofth e would like to view this model in analogy with lattice
zeromodes on the monopole, (3.36), we see that precisepgalizations of a single 2+1-dimensional Dirac fermion loa t
when the zeromodes become marginally normalizable, thengoundary of a 3+1 dimensional lattice. The extra dimension
is a massless fermion in the bulk. Fprabove the critical allows one to evade the lattice doub“ng no_go theorems [24_
value, the zeromodes leak out of the monopole core and joipg]. The Witten anomaly seems to be cancelled by inflow
the bulk states. from the bulk. The precise meaning of the previous sentence
If m is not Hermitian, any rephasing analogous to (3.20)could be clarified given an explicit expression for the WZW
produces overconstraining equations: the solutions acedo  fynctionall'[4, D].
to have nonzero energy. As we discussed above, a CP sym-Thjs model is unsatisfactory in at least three ways. First,
metry can enforce hermiticity of. its five-dimensional nature may make it hard to realize in the
laboratory. Secondly, 5d Yang-Mills theory is not asympptot
cally free and must be completed at short distances somehow
D. Non-relativistic mass (string theory gives interesting ways to do thég). [27]; this
model can also be latticized). Thirdly, if we allow the prefil
The non-relativistic mass.y 'y appears in the Dirac equa- of the mass to fluctuate, the kink and antikink can annihilate
tion in precisely the same way as the energy. In fact, thia ter each other. Nevertheless, the model is instructive.
is nothing but a chemical potential for the chiral symmetry, The model has many mass scales: the W-boson mégs,
and thus it clearly breaks Lorentz invariance while preisgrv  the Kaluza-Klein scaleR ', the Dirac massn, the inverse
rotational symmetry. As the full chiral symmetry is anoma-thickness of the kink, and an extreme UV cutoff above which
lous, this term produces a finite density of fermions cagyin the gauge theory succumbs to higher-energy physics. The las
a non-conserved charge. This symmetry is also explicitly br two we suppose to be inaccessibly high.
ken by the scalar coupling, and so even without the anomaly At energiesE < 1/R, this model reduces to the two-
the chiral symmetry is broken as in a superconductor. As theoublet theory studied in the previous section.
fermion spectrum remains fully gapped in the presence of the Having added an extra spatial dimension, monopoles
scalar coupling, we expect that the non-relativistic massd (whose topological charge is characterized by a non-tralia
not seriously affect the zero-mode spectrum. This mustee tr ement ofr,(5?)) now become string-like objects which we
in the ungauged theory of a single Weyl doublet coupled to aefer to as ‘monopole strings’. Consider a monopole string
scalar field in the adjoint, as such a theory has only a singlavinding around the fifth dimension at some pointin 3d space,
Majorana mode on a hedgehog that cannot pair and disappear= 0. From a 4d point of view, this appears to be a magnetic
monopole. This follows from the fact that the monopole strin
currentJ}; sources the 5d () field strength vialF' = Jy;.
IV. 5D REALIZATION Where the vanishing loci of the order paramebesind the 5d
Dirac mass intersect, the 5d Dirac equation will supporaloc

Consider SW2) Yang-Mills theory in 4+1 dimensions with ized I_\/Iajorana zeromodes. _
a 5d Dirac fermion in the doublet representation, and an ad- This model demonstrates that the two Majorana modes
joint scalar in its condensed phase. Identify the fourthiaba Nneed not pair up. Here their wavefunctions are separated in
dimensiony =~ y + 27 R. Consider a kink-antikink configura- the extra dimension. In the regime > R~", their overlapis
tion of the 5d Dirac mass/ (y) of the fermion, with the kink ~exponentially small.

and antikink on opposite sides of the circle, that is To illustrate the physics of this 5d construction, we con-
sider a configuration of four monopole strings each parallel

M = +m,y € (0,7R), M =—m,y € (rR,2nR). (4.1) tothe compact direction and wrapping once around it. Each
of thei = 1,...,4 monopole strings intersects each of the
The kink and antikink each support a 4d massless Weyk = 1,2 domain walls once for a total of x 2 = 8 Ma-
fermion (for a useful review, see [23]). We can arrange forjorana modes that we labe},. These operators satisfy the
the 4d coupling to the scalar field that we have been consideglgebra{~;q,vjs} = 20;;04, and are realy;; = Yiq. From
ing by using the fact that spinor representations in 5d & al the point of view of 4d physics, a natural basis for this space
pseudoreal (the Lorentz group is equivalent to a symplectiof states comes by forming complex fermians= %
group which has a real invariant form). Using the 4d chiralmade from Majoranas at the same point in the non-compact
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directions. Using these fermion operators we can build eespa physics should be qualitatively similar to the case of alsing

of 2* states which further subdivides into &dimensional Dirac fermion in 4d discussed above. In particular, once the

subspace of even fermion parity and &aimensional sub- gauge field motions are included, we find that the states built

space of odd fermion parity. from thec; operators are actually all bosonic because of the
Three important questions must now be answered. Firsgxtra angular momentum coming from the gauge field.

what states can be produced by creation of such a system from Finally, what about decoherence free superpositions? The
the vacuum state (or any other state without such a configisd local basis:; seems naively decoherence free, but another
ration of monopole strings)? Second, what operations on thgegime is possible where the smallest scal&is'. In this
monopole strings can be carried out without large energiPcos regime, the Abelian gauge field resulting from the Higgsing
Third, what decoherence free superpositions are possible? of SU(2) looks five dimensional and may even decohere the
The first question has two immediate answers. The simfermions in the 4d local basis generated by theHowever,
plest local (from the 4d point of view) vacuum-like state is in this case we are faced with the question: decohere to what?
the state annihilated by all the defined above. The Majo- There seems to be no local basis once the gauge field is al-
rana modes;; andy;» can be viewed as the ends of a “quan- jowed to fluctuate in the 5th dimension. There is also no su-
tum wire” as in [28] and it is quite natural from the 4d point perconductivity to justify forming decoherence free syper
of view to pair up these Majoranas. The second immediatgitions of different charge states. In fact, there is an eien
answer comes from thinking about the creation process bler configuration that can cause concern. Consider a single
which such a monopole string configuration could be formedmonopole string forming a closed loop which does not wrap
For example, we could take monopoleand4 to have mag-  the extra dimension but still punctures one of the domaitswal
netic charga and monopoles and3 to have magnetic charge twice. Now this configuration may cost a lot of energy and be
—1. Then we could pair creatg2 and3,4 from the vacuum  ynstable, but assuming we could hold the monopole string in
state. With this process in mind, and remembering that th©|ace, we appear to have two Majorana modes on a 5ing|e do-
Majorana wavefunction overlap in the compact direction carmmain wall but again with no obvious local basis to decohere
be made exponentially small, a natural initial state wotéd b into. We are again faced with the question: decohere to what?
that state annihilated by complex fermions formed fromMajo 14 resolve these issues, we need to bring in a thus-far ne-
ranas on neighboring monopoles (independently for each dgsjacted piece of the puzzle. In 4d the @Jmonopole has a
main wall). This state also has even fermion parity but is nog.g|jective coordinate, a rotor degree of freedom corredjan

equal to the state annihilated by all the _ to the unbroken (1) charge. The excitations of the rotor gen-
As for low energy operations, we must at least requireg e the familiar dyon states of the monopole. In the 5d hode

no macroscopic stretching of the monopole strings beyongye have a new complication: instead of a single quantum me-

that required to have the monopole wrap the compact direGshapical rotor, we are faced with a rotor degree of freedam fo

tion. If 7 is the monopole tension, then the mass of thegach point on the monopole string. Thus the monopole string
monopole string i277 R. In order to perform operations on g nnorts a finite-size realization of ther 1 dimensional XY

the zero mode Hilbert space, we would like to entertain moiode| a- — 1 conformal field theory. These gapless degrees

tions of the monopole strings. However, we must move ant freedom can significantly affect the physics. Charge béll
entire monopole string at once in order to avoid a large 8Nergqynamically screened by the gapless rotor degrees of freedo
cost associated with stretching the monopole string. This @Jiving in the monopole string core. In the parameter regime
ways means exchanging pairs (coming from the two domaify here the compact radius is large, we have 5t)lgauge the-
walls) of Majorana modes. For example, consider exchangsy and the only configurations of the Majorana zero modes
ing monopole stringg and3 in the configuration above. This  {h5t remain decoherence-free are those connected by a sin-
implements the operator gle rotor string, and they are still linearly confined by the
monopole string tension. Thus for strings wrapping the com-
pact direction the decoherence free subspace is alwaysithe 4
local basis and we recover the low energy physics of the Dirac
fermion coupled to a scalar in 4d as we must. We can also
Us—s = exp (f (cact + C;rcg)) . consiqler monopole strings as above that intercept only one
2 domain wall, but here the majorana zero modes are bound by
This operator acts trivially on states with ¢, = ¢ c3 and the monopole string stretching between them, the samegstrin
exchanges pairs of states withic, = 1 — cicsmod2. In  thatscreens their gauge charge.
other words, it simply moves around local fermions from the
4d perspective. Note also that we have not included the dy-
namics of the gauge field during this exchange process. We
note in passing that there is interesting physics assabreth
the dynamics of the gauge field, particularly the role of in-
stantons, for example, an instanton localized along a line i  Despite a promising attempt, we have not found a consis-
5d spacetime describes a conduit via which fermions tunnekent field theory with Majorana monopoles that are not lin-
from one wall to the other. Since the 4d local basis effecearly confined. We would like to argue that this conclusion is
tively stacks the two Weyl fermions on top of each other, thegeneral, and will do so from a variety of points of view.

™
4
but this operation can be reexpressed in terms of tlas

Uz—3 = exp ( (721731 + 722732))7

V. CONCLUSIONS AND GENERAL ARGUMENTS
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A. Monopole configuration space The chiral anomaly mod two in turn is related by (a gener-
alization of) Callias’ index theorem [34] to the numberredl

If we had found a consistent gauge theory with unpaired€rmion zeromodes of the monopole. The result proved by
Majorana operators on the cores of monopoles, we would have@llias counts the index of a complex-linear Dirac operator
been in serious trouble. Indeed, the fundamental groupeof ththis is the number ofomplex zeromodes weighted by some
bare N-monopole configuration space is precisély, and ~ Version of ch|_raI|ty. Because of the co_upllng to the Higgs
we know that this group has no interesting non-local reprefield ®, our Dirac operator is only real-linear, and we wish
sentations [1, 12, 13, 28] The existence of extended mag- {0 countitsreal zeromodes (in @ monopole background), mod
netic field lines does not help since the static magnetic fieldWo- This kind of zero mode counting has been considered in
configuration is completely specified by the positions of thel35]: and they concluded that the Chern number indeed counts
monopoles via the magnetic Gauss law. One might havé® Majorana number mod two. Thus it seems that within
hoped that the Dirac string, which is the remnant of the rib-the setup of microscopic fermions coupled to anlgauge
bon that proved so essential in the ungauged theory [4]p|cou|f'e|d and an adjoint scalar, the existence of an unpaired Majo
play a similar role here. However, this string is unphysasl fanazero mode in the un_gauged theory is unavoidably related
its position can be moved using gauge transformations. Fde the presence of the Witten anomaly in the gauge theory.
example, in lattice 1) gauge theory the Dirac string is com-
pletely meaningless and undefined. Thus the only remaining

possibility is the existence of some subtle topologicabinf C. More arguments from low energy
mation encoded in the existence of the Dirac string (but not
its precise position) in certain UV completions of ) gauge More generally, we could ask if deconfinement is possible

theory. We can find no such data and although we do not provigia the disordering route mentioned in the introductionisTh
it cannot be found, we regard this possibility as quite r@mot scenario has at least two problems. First, as we argued above
The main point is simply that the configuration of monopolesthe configuration space of monopoles is too trivial to suppor
in a Coulomb phase is insufficient to support non-Abelian parnon-Abelian particles. It appears we must gauge away the
ticles. One would have to add extra data beyond the monopolghhon data or disorder it away. Second, given the unbroken
pos_itions in any model that realized non-Abelian partidte-  global SU2) symmetry in the disordered phase, the quantum
excitations. numbers of local excitations should be consistent with the u
broken symmetry. It is hard to see how we can build a sensi-
ble real zero mode without doing violence to the(S)Jgroup
B. Callias index and anomaly structure.
This question can be addressed in more detail using the
Here we make a precise connection between the Majorarglave particle techniques which have been developed for the
number mod two and the Witten anomaly. Roughly, we carstudy of spin liquidsi(e. disordered groundstates of quantum
relate the Witten anomaly to the chiral anomaly mod two; inspin systems). In the disording scheme described in the-intr
turn we can relate the chiral anomaly mod two to the Majoranaluction, we write the order parameter in terms of bosgnass
number of the monopole. n' = 2772, In a fractionalized phase with unbroken @Y
In a theory with a Witten anomaly, a chiral rotation by ~symmetry the doublet fermions will be screened Hynd
is an element of the gauge group [30, 3¢ (—1)7 acts become S(R2)-neutral; however, the resulting $2J)-singlet
in precisely the same way as a gauge rotatigf: for some  fermions will carry an internal () gauge charge. As before,
gauge generator;. One way to think about this statement for any hope of success we must disorder:thigeld without
is that there are no gauge-neutral excitations which carity u condensing hedgehogs. Assuming we can do this, hedgehogs
fermion number; this means that the fermion number and thwill become monopoles of the emergently) gauge field. It
gauge charge are the same mod two. The chiral anomaly maappears difficult to form the necessary decoherence fresrsup
two is therefore in fact a gauge anomaly [30, 31]. In thepositions of fermions charged under the internél J.to pro-
Witten-anomalous theory, the chiral anomaly.e- the fact duce Majorana zero modes on the monopole cores. We also
that an instanton violates the chiral charge by one unit (destill have the problem of the monopole configuration space.
stroys a RH fermioror creates a LH fermion) — means that Thus we argue that such a phase is either impossible or the
the instanton must also violate the gauge symmetry (despiteumber of Majorana zero modes on the monopole changes
the fact that there is no local gauge anomaly) across the phase transition.
Itis possible for thé/ (1) gauge symmetry to be found in a

1 Deligne’s theorem [29] proves that replacing the braid grby the sym-

metric group gives “local” theories called REp, ). We have bosons for example to even instanton numbers. This would make tingtipa
(1 = 1) or fermions {x = —1) with a local “internal” symmetnG. function w-periodic in# solve the obstruction given in eqns (18, 19) of
2 We note in passing that the fermion-number violation byangins seems [31]. However, applying the path-integral method for acptishing this

to be asymptom of the Witten anomaly, rather than an equivalent statement. modification given in [33] to a Witten-anomalous theory daes change
We say this for the following reason. Recently [32, 33] it bagn argued the fact that the fermion determininant faithfully repnetsers(SU(2)),
that it is possible to modify gauge theories by restrictimg instanton sum, and therefore does not prevent the gauge field path integralanishing.
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Higgs phase; in this case the Majorana solitons are monspolést it could be trivially gauged and we would face the Witten
in a superconductor which again are linearly confined by maganomalous gauge theory again.
netic flux tubes, and it is perfectly consistent to have lizeal We started from a desire to produce deconfined non-
states of indefinite charge. Abelian particle-like excitations i + 1 dimensions. Specifi-
We can consider other possibilities, where there i&iid)  cally, we were interested in localized objects displayirtatv
gauge symmetry at any energy scale. For example, one coutthuld be called Majorana statistics. The perhaps simplest
try to decompose the order parametenas= b’ ir27'b with route to deconfinement led to an anomalous gauge theory. In
b a two component complex doublet of bosons. Now the disattempting to cure the anomaly, we found repeatedly that de-
orded phase will only have an emergéfit gauge field, but  confinement requires the number of Majorana zero modes to
the original order parameter has an extrd Usymmetry as-  be even, giving ordinary statistics. We have made many at-
sociated withb — ¢b (whereas the S(2) transformation tempts: high energy fermionic matter, extra dimensions, di
isb — b In other wordsy must be complex. Even if ordered phases exhibiting emergent gauge fields, but ndne le
we break this symmetry in the Hamiltonian we can still un-to deconfined non-Abelian particles. This is all completely
wind hedgehog configurations using the extra scalar degreg®nsistent with general expectations about the naturertif pa
of freedom. This is to be expected since the hedgehog woulgle excitations in three dimensional space. We conclude wit
have turned into a localized object in the gauge theory, but a few comments for future work. We always find linear con-
there is no local object in such a theorydn+ 1 dimensions  finement, but this may not be the most general situation. For
(the vortex fron? + 1 is now a vortex line irg + 1). example, we can argue that gauging only a subgroup of the full
The possibility remains that a 3+1-dimensiorattice ~ SU(2) symmetry still leaves linear confinementintact. So how
model exists with deconfined Majorana monopoles, that ~ strongly bound must such non-Abelian particles be in gen-
the continuum limit (our starting point) fails to capturexs®  eral? Finally, there remains the prospect that with thetrigh
crucial element. Certain kinds of lattice models that beginow energy data, deconfined non-Abelian particles would be
with Majorana fermions may, not surprisingly, more easily possible. Although we have ruled out many promising paths
produce Majorana excitations. If these models cannot be rdo this goal, it would be very exciting to see such a possybili
alized with a “proper” regularization involving only congx  realized elsewhere.
fermions coupled to superconductivity, then we are temfsted ~ Acknowledgments
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