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This paper is motivated by prospects for non-Abelian statistics of deconfined particle-like objects in 3+1
dimensions, realized as solitons with localized Majorana zeromodes. To this end, we study the fermionic collec-
tive coordinates of magnetic monopoles in 3+1 dimensional spontaneously-broken SU(2) gauge theories with
various spectra of fermions. We argue that a single Majoranazeromode of the monopole is not compatible
with cancellation of the Witten SU(2) anomaly. We also compare this approach with other attempts to realize
deconfined non-Abelian objects in3 + 1 dimensions.

I. INTRODUCTION

Point particles in 3+1 dimensions cannot have non-Abelian
statistics because of the triviality of the topology of their con-
figuration space [1]. However, a particle-like object with extra
structure can have a configuration space with more interest-
ing homotopy. Inspired by ideas from topological insulators
[2], Teo and Kane [3] recently made a specific proposal in
this direction. The objects in question are hedgehogs of a 3-
component order parameter, coupled to fermionic excitations
that are gapped in the presence of a non-zero order parameter.
Freedmanet al [4] show that these objects exhibit what they
call projective ribbon statistics; the data needed to specify a
configuration include the preimage under the order parameter
map of the north pole and a nearby point.

The hedgehog defects support real fermionic zero modes
and multiple hedgehogs are associated with a non-local
Hilbert space generated by the zero mode operators. Mo-
tions of the hedgehogs implement unitary transformations in
the non-local Hilbert space, a concept familiar from topolog-
ical quantum computing in2 + 1 dimensions [5]. Because
exchanging identical particles leads to a non-trivial unitary
transformation of the quantum state instead of merely a phase,
we say such objects have non-Abelian statistics. The pres-
ence of Majorana zero modes and the non-trivial configuration
space are both crucial to this story.

Freedmanet al also point out the following problematic fea-
ture of the model of Teo and Kane: if the order parameter
field has a nonzero stiffness, a single hedgehog is not a finite-
energy configuration. Configurations with zero net hedgehog
number can have finite energy, but there will be a confining
force between the hedgehogs due to gradient energy in the or-
der parameter field. This energy cost will scale at least linearly
with the separation between the hedgehogs. The cost may be
even higher in the absence of full SU(2) symmetry for the or-
der parameter (and such symmetry is unlikely given that the
order parameter involves both superconducting and particle-
number-conserving terms). This makes it difficult to imagine
adiabatically moving these solitons around each other.

Putting aside the issues with using this proposal as a plat-
form for quantum computing (note further that braiding of
Majoranas does not provide a set of universal gates), we would
like to confront the conceptual question of whether it is pos-
sible in principle to deconfine such non-Abelian particles in
3 + 1 dimensions. We are also interested more generally in
what happens to Majorana zero modes when the relevant or-

der parameter field begins to fluctuate. If we were able to
deconfine non-Abelian particles in3 + 1 dimensions, there
would be profound practical and conceptual implications.

One suggestion for removing the confining energy follows
the analogous step in the study of vortices in 2d: gauge the ro-
tation symmetry in the order parameter space. If all directions
are gauge-equivalent, there need not be a confining energy be-
tween the hedgehogs, which in the resulting gauge theory are
’t Hooft-Polyakov monopoles [6, 7]. (There will be a mag-
netic Coulomb force between the monopoles, but this falls off
with their separation.) But 3+1 dimensional SU(2) gauge the-
ory with the requisite fermion content, namely a single Weyl
doublet (i.e. eight Majorana fields), suffers from the Witten
SU(2) anomaly [8] (as [4] also observe). One implication of
this is that the gauge field partition sum vanishes identically.
Another pathology resulting from the anomaly is a violation
of fermion parity by the gauge dynamics. Specifically, an in-
stanton creates a single fermion in violation of fermion parity.
The addition of an adjoint Higgs field (relative to the discus-
sion of [8]) doesn’t change the structure of the fermion deter-
minant which is responsible for the fatal factor of−1 (which
it acquires under the gauge transformations which represent
the nontrivial element ofπ4(SU(2))), as we argue below in
§II A.

We will construct below a microscopically-consistent the-
ory which, in a range of energy scales, looks like this Witten-
anomalous SU(2) gauge theory in the Higgs phase with a sin-
gle Weyl doublet. The spectrum of fermionic particles with
E < MW is identical to that of the theory described above;
at these energies, the Witten anomaly is cancelled by a certain
Wess-Zumino-Witten term made from the adjoint scalar and
the gauge field. (This situation is similar, but not identical,
to models discussed by d’Hoker and Farhi [9, 10].) However,
this term is ill-defined when the order parameter vanishes, as
it does in the core of the monopole, and we must provide a UV
completion to address the question of whether the monopole
has a Majorana zeromode. The simplest UV completion of
this model involves adding in another Weyl fermion doublet.

Before preceeding with an analysis of the SU(2) gauge the-
ory, we pause to consider an alternative possible route to de-
confine the localized objects hosting Majorana modes. In-
stead of gauging the SU(2) symmetry that is spontaneously
broken by the order parameter field in the Teo-Kane model,
we can consider disordering the broken phase into a liquid-
like phase without any broken symmetry [4, 11]. Importantly,
we must achieve this disordering without proliferating the
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monopole defects that hosted Majorana modes, otherwise we
will trivially lose the localized Majorana mode. The simplest-
to-describe disordered phase has a description in terms of an
emergent U(1) gauge field, and the hedgehog defects, assum-
ing they have finite energy, become magnetic monopoles in
the U(1) gauge theory: we are again led to a description in
terms of magnetic charges in an Abelian gauge theory. (We
describe other possibilities for disordered phases in the last
section.) Now the important question is: do the Majorana
modes survive the disordering process, and if so, are the mag-
netic monopoles in this theory deconfined (only interacting
via a long range Coulomb interaction) particles carrying Ma-
jorana zero modes? Again the question of the survival of the
Majorana modes requires short-distance information aboutthe
theory. Later we will return to this question for the disordered
state, arguing on general grounds that this particular scenario
is unlikely.

To clarify, our desiderata for deconfined non-Abelian exci-
tations in 3+1 dimensions are as follows. First we will dis-
cuss the desired form of the regulated theory at high energies
and then the form of the theory at low energies. From the
point of view of condensed matter physics, we would most
like to have a microscopic lattice model involving only spin-
like or electron-like degrees of freedom that enters a phase
where there are deconfined particles. We do not accept as a
valid realization a model that contains Majorana fermion de-
grees of freedom in a microscopic lattice model. We make
this requirement because we do not want to put the Majoranas
in “by hand”. However, we would permit a Majorana based
lattice model provided we could reinterpret it as an interme-
diate scale description arising from a truly microscopic model
of electrons, likely in the presence of superconductivity (a bi-
partite lattice is a sufficient condition). From the point ofview
of high energy physics, we would like to have an anomaly free
gauge theory coupled to fermions and scalars that has a non-
perturbative regularization of some type, be it lattice gauge
theory or string theory. In the high energy way of thinking, we
do not require the absence of gauge fields in the microscopic
description, for example, we would accept an asymptotically
free gauge theory interacting with Dirac fermions.

In the low energy theory, we have two general inter-
ests. First, any putative non-Abelian particle-like excitations
should have a clearly defined configuration space. We should
have a clear understanding of the non-locality inherent in this
configuration space that permits otherwise point-like objects
to have interesting statistics. Second, it must be possibleto
perform motions of the non-Abelian excitations without high
energy cost, without dramatically exciting other degrees of
freedom, without violating causality or unitarity, and without
producing decoherence in the space of “protected” states. For
example, decoherence due to unscreened gauge fields limits
our ability to superpose states with macroscopically different
charge configurations. We emphasize especially the issue of
the low energy configuration space. This space must be rich
enough to support representations of its fundamental group
that are non-local, as with non-Abelian anyon representations
of the braid group in2+ 1. The symmetric group is known to
be insufficient for this purpose [12, 13], and indeed as a finite

group its image in any unitary group must be quite limited.
In this paper we study the possibility of non-Abelian

particle-like excitations in a 3+1 dimensional field theory. In
particular, we explore the apparent conflict between a single
Majorana zeromode of the ’t Hooft-Polyakov monopole (we
will refer to such an object as a ‘Majorana monopole’) and
microscopic consistency of the SU(2) gauge theory.

The outline of the paper is as follows. In the next section
we generalize the classic analysis of Jackiw and Rebbi [14] to
construct the zeromode solution of the Dirac equation in the
Witten-anomalous theory described above. In section III, we
discuss the cancellation of the Witten anomaly and its effects
on the zeromode structure of the monopole. In section IV
we discuss an instructive example in 4+1 dimensions. In sec-
tion V we provide general arguments for obstructions to Ma-
jorana monopoles in 3+1 dimensions following the desiderata
described above.

Related work appears in [15], which studies an interesting
fermion dimer model whose low energy physics includes ma-
jorana monopoles interacting with gauge fields as well as gap-
less fermionic degrees of freedom. Some features of 3d non-
Abelian particles appear to be realized in their model, but we
emphasize that their conclusions do not contradict our own;
our analysis suggests that the gapless fermions are essential.
[15] also studies a 5d model similar to the one discussed in
§IV.

II. MAJORANA MONOPOLES IN AN ANOMALOUS
THEORY

Consider an SU(2) gauge theory in 3+1 dimensions with a
scalar fieldΦ in the adjoint representation; we will suppose
that the action forΦ is such that in the ground state it breaks
SU(2) down to U(1). Include also a single SU(2) doublet of
Weyl fermions,χ; altogether there are23 = 8 real fermion
degrees of freedom. This is half as many fermion degrees of
freedom as considered by Jackiw and Rebbi in their 3+1-d
discussion [14], and the same number as considered by Wit-
ten [8]. As we demonstrate next, this theory suffers from the
Witten anomaly – if we try to quantize the gauge field, we get
nonsense. Specifically, the partition function vanishes and ex-
pectation values of gauge invariant observables are undefined.
For the discussion in this section the bosonic fieldsΦ, A will
therefore be treated as background fields.

Consider the fermion Lagrange density

Lfermions = χ†iσ̄µDµχ−
1

2
λχT iσ2iτ2~τ · ~Φχ+ h.c. (2.1)

Hereχαa is a (left-handed) Weyl doublet of SU(2): α = 1, 2
is a spin index,a = 1, 2 is a gauge index.̄σµ = (1,−~σ)µ.
The covariant derivative is defined as(Dµχ)αa = ∂µχαa −
igAµabχαb whereAµab is the SU(2) gauge field.λ is a com-
plex coupling constant. Note that becauseχ is in a pseudoreal
representation of both the SU(2) gauge group and the Lorentz
group, the objectχC ≡ χT iσ2iτ2 transforms in the conju-
gate representation of both groups. There is no nonvanishing,
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gauge-invariant and Lorentz-invariant mass term (not involv-
ing the Higgs fieldΦ) with this field content. We will com-
ment in§III D on the effect of Lorentz-breaking terms of the
formχ†χ.

This theory has two independent mass scales: the mass of
theW -bosons,mW = gv (v is the vev of the adjoint Higgs
field, g is the SU(2) gauge coupling at the scalemW ), and the
mass of the fermionλv.

A. Persistence of Witten anomaly

The addition of the adjoint scalarΦ and its coupling to the
fermion doublet does not modify the anomalous transforma-
tion law of the fermion determinant. That this is the case can
be seen by embedding the theory in an SU(3) gauge theory
with a perturbative gauge anomaly as in [16–18]. The rele-
vant theory has an SU(3) adjoint scalar̃Φ, an SU(3) triplet of
Weyl fermionsχ̃ and an SU(3) triplet of scalarsΥ, with the
coupling

LSU(3) ⊃ χ̃aΥbǫabcΦ̃cdχ̃d, (2.2)

wherea = 1, 2, 3 is a triplet index. Condensing the scalar
triplet 〈Υ〉 = λ breaks the SU(3) down to SU(2), and the cou-
pling (2.2) reduces to the desired coupling between the Weyl
fermions charged under the unbroken SU(2) and the adjoint
scalar in (2.1). The form of the perturbative SU(3) anomaly is
unaffected by the addition of scalars and so the calculationof
the variation of the fermion measure by integrating the SU(3)
anomaly [16–18] is unmodified compared to the theory with-
out scalar fields.

B. The Majorana zeromode

The Dirac equation which results from varying (2.1) is

0 = δχ̄Sfermion = −iσ̄µDµχ+ λ†iσ2Φ · τiτ2χ⋆ . (2.3)

We consider this Dirac equation in the background of the ’t
Hooft-Polyakov monopole solution,

AB
0 = 0 ; AB

i = ǫijB r̂
jA(r) ; ΦB = r̂Bφ(r) (2.4)

(B = 1, 2, 3 is an adjoint index) with

A(r)
r→∞
≈ 1/r, φ(r)

r→∞
≈ v. (2.5)

A zero-energy solution of (2.3) is of the form:χαa =
iτ2αag(r) (whereα is the spin index anda is the SU(2) in-
dex). This is the same ansatz as in equation A4 of [14]. With
this substitution, the zeromode equation reduces to

(∂i + 2r̂iA)g + iλφr̂ig
⋆ = 0. (2.6)

By rephasing theχ field, we can assume WLOG thatλ is real
and positive. The solution forg is then

g(r) = ce−πi/4e−
∫

r(λφ−2A) (2.7)

wherec is areal constant. We emphasize that the phase of the
normalizable solution is determined by normalizability ofthe
solution at larger.

Quantizing this fermionic collective coordinate gives a Ma-
jorana fermion acting on the monopole Hilbert space, which
is represented by a unique state. This leads inevitably to non-
Abelian statistics for the monopoles, in the same manner as
expected for vortices in p+ip superconductors or the pfaffian
quantum Hall state [5, 19–22]. Briefly, two widely-separated
monopoles will have two Majorana zeromodes, which can be
combined intoc = γ1+iγ2

2 , with {c, c†} = 1; this algebra
must be represented by a two-state system. Interchanging the
monopoles adiabatically implements the operator

U1⇋2 = exp
(π

4
γ1γ2

)

= exp
(

i
π

4
(1− 2c+c)

)

With two pairs of monopoles we could perform operations
which do not commute with each other.

We note that the coupling ofχ to the gauge field does not
play a crucial role in generating this zeromode; since (by
(2.5)) the dominant term in the exponent of (2.7) at larger
comes from the scalar profile, the gauge field can be set to
zero without interfering with the zeromode. The existence of
the zermode solution without the gauge field essentially fol-
lows from the analysis of [3].

If only this were a consistent quantum system. We de-
scribe one pathology of this system. Recall that in the case
of a Dirac fermion there is a complex fermion zero mode in
the ungauged theory. Once the SU(2) symmetry is gauged,
the low energy gauge group is U(1) and hedgehog config-
urations become magnetic monopoles. Now what happens
to the two states living on a hedgehog in the ungauged the-
ory? In fact [14], they become bosonic, having charge±1/2
under the unbroken U(1) due to the low energy U(1) theta
term of π. To see this, assume that the charge−1/2 state
is bosonic, then when we add a fermion in the zero mode of
charge1 we reach a state of charge1/2 which would appear
to differ in spin by1/2 from the bosonic state. But we have
forgotten the gauge field which adds extra angular momen-
tum. Indeed, a unit charge orbiting a minimal monopole leads
to a gauge field configuration with angular momentum given
by a half integer. This extra half integer angular momentum
when combined with the bare half integer angular momentum
of the fermion leads again to a bosonic state. In fact, we can
check from the structure of the zero mode that the position
and spin of the fermion are correlated so that no matter where
the fermion is measured its spin will always compensate ther̂
angular momentum contribution coming from the field.

Now the puzzle: in the case of a single Weyl fermion, we
found that the complex fermion was replaced by a real zero
mode, but what should happen when we turn on the gauge
field? Heuristically, we should obtain half of the pair of states
with charges±1/2. Let O+1 be an operator that moves us
from the−1/2 to the 1/2 charge state so thatO+1 carries
charge 1. By analogy with the definition of the Majorana
fermion, an apparently interesting combination to consider is
O+1 + O†

+1, but this operator creates states that decohere in
the presence of the fluctuating U(1) field; we can identify no
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candidate for the pointer states into which they should deco-
here. Is the Witten anomaly to blame? The simplest resolution
of the Witten anomaly, namely adding a second identical Weyl
doublet, removes the spectre of decoherence by adding an ex-
tra real zero mode in the monopole core allowing for complex
solutions, as we’ll see next.

To summarize, we found an SU(2) gauge theory where
magnetic monopoles of an unbroken U(1) gauge field appear
to carry Majorana zero modes. However, this theory suf-
fers from the Witten anomaly rendering all gauge invariant
observables ill-defined. Related pathologies include a viola-
tion of fermion number by instantons and decoherent U(1)
charge superpositions. In what follows, we try to cure the
Witten anomaly while preserving the zero mode structure of
the monopole.

III. CANCELLING THE WITTEN ANOMALY

It is possible to cancel the Witten anomaly by adding to the
action a certain functional of the adjoint scalar. To see that
this is the case, consider integrating out a Weyl fermionχ2

coupled to the scalar field as above:

ln

∫

Dχ2 exp (iSferm[χ2]) = Γ[Φ, A] + non-universal stuff.

(3.1)
The functionalΓ defined by this equation is well-behaved be-
cause of the gap in the fermion spectrum. The both-hand
side of equation (3.1) must shift byπ (mod 2π) under an
SU(2) gauge transformation representing the nontrivial class
of π4(SU(2)). The fact that the non-universal, short-distance
stuff on the RHS does not accomplish this shift follows be-
cause it is not sensitive to the topology of spacetime.

It is difficult to give an explicit expression for the functional
Γ. Naively, the WZW term for SU(2) vanishes identically.
However, our term is not quite the usual WZW term since it
arises from a pfaffian rather than a determinant,i.e. it is in-
variant under only real-linear basis changes. A similar situ-
ation with different fermion representations arises in [9,10],
where the effective action contains terms taking the form of
the gauge variation of our functionalΓ. In §II A, we have
determined the anomalous transformation ofΓ by embedding
into a theory with a perturbative anomaly; this trick does not
immediately determine the form ofΓ itself. It would be useful
to find an explicit expression for this functional.

One thing aboutΓ, however, is certain: it is ill-defined when
the order parameterΦ is not invertible. A simple argument
for this is that only whenΦ is invertible are the fermion de-
grees of freedom gapped. Therefore, in any field configuration
whereΦ vanishes, such as the core of the magnetic monopole,
a model where the Witten anomaly is cancelled by the varia-
tion of Γ[Φ] requires a UV completion.

The simplest way to do this is obviously to integrate in the
second Weyl doubletχ2 by which we proved the existence of
Γ; we study this possibility next. Are there other ways? In the
final section, we will argue that the answer is ‘no’.

A. Generic couplings in the two-Weyl-doublet theory

Consider the fermion lagrangian density

L2fermions = χI†iσ̄µDµχI − λIJχT
I iσ

2iτ2~τ · ~ΦχJ + h.c.

−mIJχT
I iσ

2iτ2χJ + h.c. (3.2)

HereχIαa are a pair of (left-handed) Weyl doublets of SU(2):
I = 1, 2 is a flavor index,α = 1, 2 is a spin index,a = 1, 2
is a gauge index. Altogether there are now23 = 8 complex
fermion degrees of freedom. This is the same set of fermion
degrees of freedom considered by Jackiw and Rebbi and twice
as many as considered by Witten.

We now comment on symmetries of this action, and sim-
plifications that can be made by field redefinitions of the
fermions. The Yukawa coupling term is more explicitly writ-
ten as

λIJχT
I iσ

2iτ2~τ · ~ΦχJ + h.c. =

λIJχT
I iσ

2iτ2~τ · ~ΦχJ + λ† IJχ†
I~τ ·

~Φiσ2iτ2χ⋆
J .

The matrixλ is symmetric,λIJ = λJI by Fermi statistics.
A general complex symmetric matrix is not diagonalizable,
but rather has different right and left eigenvalues. A complex
symmetric matrix has a singular value decomposition (SVD)
(called Takagi decomposition) of the form

λ =WdWT (3.3)

whered is diagonal with real, positive entriesd =

(

λ1 0
0 λ2

)

,

andW is unitary.
Rephasing the fermion fields by a unitary rotationU =

(U−1)†

χI → UJ
I χJ (3.4)

changes the coupling matrixλ by

λ→ UλUT = UWdWTUT . (3.5)

ChoosingU =W−1 givesλ = d.
By Fermi statistics, the Dirac mass matrixmIJ is antisym-

metric,mIJ = mǫIJ . The effect of the rephasing (3.4) on
the Dirac mass is thereforemIJ → mIJ detU . Having fixed
our freedom to rephase the fermions, the phase of the Dirac
massm will be significant. Global symmetries can constrain
the phase ofm. In particular, with a Hermitian mass matrix,
m = m†, the model preserves a CP symmetry which acts by
χ 7→ iσ2iτ2χ⋆.

Whenλ is purely off-diagonalλ =

(

0 λ0
λ0 0

)

the system

admits an extra U(1) symmetry under which

χ1 7→ eiθχ1, χ2 7→ e−iθχ2 . (3.6)

When the Dirac mass vanishes, the resulting model is identical
to the model studied in [14]. To see this, construct from the
two left-handed Weyl doublets a single Dirac fermion

Ψ ≡

(

χ1

χ⋆
2iτ

2iσ2

)

. (3.7)
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Then the action (3.2), withλ off-diagonal andλ0 ≡ λR0 + iλI0,
is

L2fermions = Ψ̄i /DΨ−Ψ̄
(

λR0 + iλI0γ
5
)

~τ ·~ΦΨ+mΨ̄Ψ. (3.8)

Returning to the SVD form of the action, this is equivalent to
the case where the diagonal entries are equalλ1 = λ2. In this
basis, the U(1) symmetry acts as the SO(2) rotation

χ1 + iχ2 7→ eiθ (χ1 + iχ2) . (3.9)

The general two-Weyl-doublet theory now has three mass
scales: the mass of theW -bosons,mW = gv, and the masses
of the two Weyl fermionsλ1,2v. In the regime

λ1v ≪ mW ≪ λ2v (3.10)

we have a large window of energies in which the bulk spec-
trum is that of the Witten-anomalous theory studied above.

We note that the theory with two Weyl doublets admits a
Lorentz-violating (but gauge-invariant and rotation-invariant)
mass term of the form

LNR =M IJχ†
IχJ . (3.11)

We will comment below in§III D on its effects on the zero-
mode structure.

B. FZMs in the two-Weyl-doublet theory

The Dirac equation is now

0 = δχ̄I
Sfermion = −iσ̄µDµχI

+λ†IJ iσ
2Φ · τiτ2χ⋆

J +m†
IJ iσ

2iτ2χJ (3.12)

When the Dirac massm = 0, in the basis whereλ is diagonal,
the zeromode equations forχ1,2 decouple, and each is of the
form of (2.7). There are then two real solutions:

χIαa(r) = iτ2αagI , gI = cIe
−πi/4e−

∫
r(λIφ−2A) . (3.13)

C. Effect of the Dirac mass

With a nonzero Dirac mass, the zeromode equations for
χ1,2 are coupled. A nonzero Dirac mass requires any putative
zeromode solution to include also a triplet component,i.e. to
have the more general form

χaαI = iτ2aαgI + i
(

τ2τ i
)

aα
giI . (3.14)

The zero-energy Dirac equation is

0 = i~σ · ~Dχ− λ~τ · ~Φiσ2iτ2χ⋆ +miσ2iτ2χ⋆ . (3.15)

Here we have assumedm† = +m, and more specifically

λ =

(

λ1 0
0 λ2

)

m = i

(

0 µ
−µ 0

)

(3.16)

with λ1,2, µ real and positive. The reality ofµ (which implies
that the Dirac mass matrix is hermitian) is not fully general;
we return to this point anon.

Following [14], let

χαaI = MαbI iτ
2
ba =

(

δαbgI + σi
αbg

i
I

)

ǫba . (3.17)

This decomposition incorporates the breaking of
SU(2)gauge × SU(2)spin and decomposesχ ∈ (2, 2)
into irreps of the unbroken SU(2). It reduces the Dirac
equation to the two equations:

0 = i~∇g − 2ir̂Ag − 3~g × r̂A+ λ†g⋆φr̂

−m†~g⋆ + i~∇× ~g + λφr̂ × ~g⋆

0 = i~∇ · ~g + 2i~g · r̂A− λ†~g⋆ · r̂φ+m†g⋆ . (3.18)

The last term in (3.18) forces us to include a nonzero~g when
m 6= 0. The equations forg,~g are (not too surprisingly) sim-
ilar to [14] equation A7a, b with extra terms coming from the
Dirac mass.

We make an ansatz of the form~g = r̂gr(r). This eliminates
the curl terms in the Dirac equation, leaving

0 = i~∇g − 2ir̂Ag − λ†g⋆φr̂ −m†~g⋆

0 = i~∇ · ~g + 2iA~g · r̂ + λ†~g⋆ · r̂φ+m†g⋆ . (3.19)

We choose the phases ofg, gr so thatig = g⋆

g ≡ αh, gr ≡ α−1hr, α ≡ e−πi/4. (3.20)

The Dirac equation becomes

0 = ~∇h− 2r̂Ah+ λ†hφr̂ + µǫ~h (3.21)

0 = ~∇ · ~h− 2A~h+ λ†~h · r̂φ− µǫh . (3.22)

In (3.21),(3.22), all complex phases are explicit. With theas-
sumption (3.16), we haveλ† = λ is diagonal. Theǫ symbol
acts on theIJ flavor indices, and is the only thing which does.

The particular solution of (3.22) for~h given the sourceh is:

hr = +µǫr−2e−H̃

∫ r

s2eH̃h(s) (3.23)

whereH̃ ≡
∫ r

(

λ̃φ− 2A
)

andλ̃ has the property that

λ̃m = mλ, (3.24)

which in turn requires

λ̃ =

(

λ2 0
0 λ1

)

. (3.25)

Plugging the solution (3.23) into (3.21) (and remembering that
ǫ2 = −1) gives

∂rh+ (λφ − 2A)h = +µ2r−2eH̃
∫ r

dss2e−H̃h . (3.26)
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Substitutingh = e−Hγ with H ≡
∫ r

(λφ− 2A) gives

r2∂rγ = µ2eH−H̃

∫ r

dss2eH̃−Hγ . (3.27)

Differentiating (3.27) (and thereby introducing an extra in-
tegration constant) gives the linear second-order ODE forγ:

r−2∂re
H̃−Hr2∂rγ = µ2eH̃−Hγ . (3.28)

We know the asymptotic behavior of the solutions at large and
small r. At small r, H, H̃ → 0, and the equation (3.28) re-
duces to the Helmholtz equation

∇2γ ≡ r−2∂rr
2∂rγ = µ2γ (3.29)

whose solutions are

γ
r→0
≈ c(−) e

−µr

r
+ c(+) e

+µr

r
. (3.30)

The combination of these solutions which also solves the in-
tegrodifferential equation (3.27) in the small-r regime has
c(+) = −c(−) ≡ −c:

γ
r→0
≈

c

r

(

e−µr − e+µr
)

. (3.31)

Note that only the combinatioñH − H = λT 1
∫ r
φ (where

1IJ ≡ δIJ , λT = λ1 − λ2) enters this equation. We empha-
size that there is one such solution for each value of the flavor
indexI = 1, 2, labelled by a real integration constantcI :

γI
r→0
≈

cI
r

(

e−µr − e+µr
)

. (3.32)

In the special case where the eigenvalues ofλ are degenerate,
λT = 0, the equation forγ is exactly the Helmholtz equation.
In this case, the solution (3.32) is exact.

At larger, φ(r)
r→∞
≈ v, andA(r)

r→∞
≈ a0

r . Therefore

H
r→∞
≈

(

λ1vr 0
0 λ2vr

)

, H̃ −H
r→0
≈ λT vr1 . (3.33)

To discuss the normalizibility of the solutions at larger, we
distinguish various parameter regimes.

• If µ = 0, both solutionsγI in (3.32) are normalizible
for all λ1,2. Varying the signs or phases ofλ1,2 is in-
nocuous; it merely changes the overall phase of the ze-
romode solution and can be absorbed in a field redefini-
tion.

• For smallµ,

µ <
1

2
|λ1 − λ2|v , (3.34)

both zeromodes are still normalizible.

• Since the zeromode wavefunctions involve products of
exponentials of the formeµre−λvr, one might have
thought (pantingly) that one zeromode would become

non-normalizable,e.g. for µ in between the two
Yukawa-induced fermion masses

λ1v < µ < λ2v. (3.35)

This hope is not realized – there is no change in the
normalizability of the modes atµ = λ1v.

• For µ larger than the geometric mean of the fermion
masses,

√

λ1λ2v < µ , (3.36)

both modes are non-normalizable. There is no value of
the parameters for which an odd number of Majorana
modes are normalizable.

It is interesting to note that we are free to tune the effective
sizes of the two real zero modes independently of each other.
By adjustingλ1 andλ2 we can produce a shell-like configu-
ration of zero modes. More precisely, by making one of the
fermion masses very heavy, we can arrange (in the parameter
regime (3.35)) for only one zero mode to have a sizable wave-
function until very close to the monopole core, as shown in
FIG. 1. Whether this separation of scales could in principle
allow for interesting physical effects is not clear to us.
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FIG. 1: Top: The profile of the zeromode solution forµ = 0. Bot-
tom: One of the profiles in the parameter range (3.35), exhibiting the
ring-like structure.

Note that the variation of the bulk fermion spectrum with
µ corroborates the understanding of the normalizability prop-
erties of the zeromodes presented above. The product of the
bulk fermion masses is the determinant of the fermion mass
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matrix

M = vλ⊗τ3+m⊗1 =







λ1v iµ 0 0
−iµ λ2v 0 0
0 0 −λ1v iµ
0 0 −iµ −λ2v






(3.37)

which is

detM =
(

λ1λ2v
2 − µ2

)2
. (3.38)

Comparing (3.38) to the condition for normalizability of the
zeromodes on the monopole, (3.36), we see that precisely
when the zeromodes become marginally normalizable, there
is a massless fermion in the bulk. Forµ above the critical
value, the zeromodes leak out of the monopole core and join
the bulk states.

If m is not Hermitian, any rephasing analogous to (3.20)
produces overconstraining equations: the solutions are forced
to have nonzero energy. As we discussed above, a CP sym-
metry can enforce hermiticity ofm.

D. Non-relativistic mass

The non-relativistic massmχ†χ appears in the Dirac equa-
tion in precisely the same way as the energy. In fact, this term
is nothing but a chemical potential for the chiral symmetry,
and thus it clearly breaks Lorentz invariance while preserving
rotational symmetry. As the full chiral symmetry is anoma-
lous, this term produces a finite density of fermions carrying
a non-conserved charge. This symmetry is also explicitly bro-
ken by the scalar coupling, and so even without the anomaly
the chiral symmetry is broken as in a superconductor. As the
fermion spectrum remains fully gapped in the presence of the
scalar coupling, we expect that the non-relativistic mass does
not seriously affect the zero-mode spectrum. This must be true
in the ungauged theory of a single Weyl doublet coupled to a
scalar field in the adjoint, as such a theory has only a single
Majorana mode on a hedgehog that cannot pair and disappear.

IV. 5D REALIZATION

Consider SU(2) Yang-Mills theory in 4+1 dimensions with
a 5d Dirac fermion in the doublet representation, and an ad-
joint scalar in its condensed phase. Identify the fourth spatial
dimensiony ≃ y+2πR. Consider a kink-antikink configura-
tion of the 5d Dirac massM(y) of the fermion, with the kink
and antikink on opposite sides of the circle, that is

M = +m, y ∈ (0, πR), M = −m, y ∈ (πR, 2πR). (4.1)

The kink and antikink each support a 4d massless Weyl
fermion (for a useful review, see [23]). We can arrange for
the 4d coupling to the scalar field that we have been consider-
ing by using the fact that spinor representations in 5d are also
pseudoreal (the Lorentz group is equivalent to a symplectic
group which has a real invariant form). Using the 4d chiral

basis, a 5d spinor may be writtenΨ = [ψL, ψR]
T . The com-

binationψT
L iσ

2ψL + ψT
Riσ

2ψR is manifestly invariant under
4d Lorentz transformations. The extra four transformations
in the 5d Lorentz group, generated by[γ4, γµ], act infinites-
imally like δψL = ǫσµψR and δψR = −ǫσµψL. The in-
variance under 5d Lorentz transformations then follows from
the identity(σµ)T iσ2 + iσ2σµ = 0. (That is, the symplectic
invariant ofSO(4, 1) isΩ ≡ γ1γ3.) The full coupling is then

ψT
L iσ

2iτ2ΦψL + ψT
Riσ

2τ2ΦψR = ΨT iτ2ΦΩΨ.

We would like to view this model in analogy with lattice
realizations of a single 2+1-dimensional Dirac fermion on the
boundary of a 3+1 dimensional lattice. The extra dimension
allows one to evade the lattice doubling no-go theorems [24–
26]. The Witten anomaly seems to be cancelled by inflow
from the bulk. The precise meaning of the previous sentence
could be clarified given an explicit expression for the WZW
functionalΓ[A,Φ].

This model is unsatisfactory in at least three ways. First,
its five-dimensional nature may make it hard to realize in the
laboratory. Secondly, 5d Yang-Mills theory is not asymptoti-
cally free and must be completed at short distances somehow
(string theory gives interesting ways to do this,e.g. [27]; this
model can also be latticized). Thirdly, if we allow the profile
of the mass to fluctuate, the kink and antikink can annihilate
each other. Nevertheless, the model is instructive.

The model has many mass scales: the W-boson mass,MW ,
the Kaluza-Klein scaleR−1, the Dirac massm, the inverse
thickness of the kink, and an extreme UV cutoff above which
the gauge theory succumbs to higher-energy physics. The last
two we suppose to be inaccessibly high.

At energiesE ≪ 1/R, this model reduces to the two-
doublet theory studied in the previous section.

Having added an extra spatial dimension, monopoles
(whose topological charge is characterized by a non-trivial el-
ement ofπ2(S2)) now become string-like objects which we
refer to as ‘monopole strings’. Consider a monopole string
winding around the fifth dimension at some point in 3d space,
~r = 0. From a 4d point of view, this appears to be a magnetic
monopole. This follows from the fact that the monopole string
currentJµν

M sources the 5d U(1) field strength viadF = JM .
Where the vanishing loci of the order parameterΦ and the 5d
Dirac mass intersect, the 5d Dirac equation will support local-
ized Majorana zeromodes.

This model demonstrates that the two Majorana modes
need not pair up. Here their wavefunctions are separated in
the extra dimension. In the regimem≫ R−1, their overlap is
exponentially small.

To illustrate the physics of this 5d construction, we con-
sider a configuration of four monopole strings each parallel
to the compact direction and wrapping once around it. Each
of the i = 1, ..., 4 monopole strings intersects each of the
a = 1, 2 domain walls once for a total of4 ∗ 2 = 8 Ma-
jorana modes that we labelγia. These operators satisfy the
algebra{γia, γjb} = 2δijδab and are realγ+ia = γia. From
the point of view of 4d physics, a natural basis for this space
of states comes by forming complex fermionsci = γi1+iγi2

2
made from Majoranas at the same point in the non-compact
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directions. Using these fermion operators we can build a space
of 24 states which further subdivides into an8 dimensional
subspace of even fermion parity and an8 dimensional sub-
space of odd fermion parity.

Three important questions must now be answered. First,
what states can be produced by creation of such a system from
the vacuum state (or any other state without such a configu-
ration of monopole strings)? Second, what operations on the
monopole strings can be carried out without large energy cost?
Third, what decoherence free superpositions are possible?

The first question has two immediate answers. The sim-
plest local (from the 4d point of view) vacuum-like state is
the state annihilated by all theci defined above. The Majo-
rana modesγi1 andγi2 can be viewed as the ends of a “quan-
tum wire” as in [28] and it is quite natural from the 4d point
of view to pair up these Majoranas. The second immediate
answer comes from thinking about the creation process by
which such a monopole string configuration could be formed.
For example, we could take monopoles1 and4 to have mag-
netic charge1 and monopoles2 and3 to have magnetic charge
−1. Then we could pair create1,2 and3,4 from the vacuum
state. With this process in mind, and remembering that the
Majorana wavefunction overlap in the compact direction can
be made exponentially small, a natural initial state would be
that state annihilated by complex fermions formed from Majo-
ranas on neighboring monopoles (independently for each do-
main wall). This state also has even fermion parity but is not
equal to the state annihilated by all theci.

As for low energy operations, we must at least require
no macroscopic stretching of the monopole strings beyond
that required to have the monopole wrap the compact direc-
tion. If T is the monopole tension, then the mass of the
monopole string is2πT R. In order to perform operations on
the zero mode Hilbert space, we would like to entertain mo-
tions of the monopole strings. However, we must move an
entire monopole string at once in order to avoid a large energy
cost associated with stretching the monopole string. This al-
ways means exchanging pairs (coming from the two domain
walls) of Majorana modes. For example, consider exchang-
ing monopole strings2 and3 in the configuration above. This
implements the operator

U2⇋3 = exp
(π

4
(γ21γ31 + γ22γ32)

)

,

but this operation can be reexpressed in terms of theci as

U2⇋3 = exp
(π

2

(

c2c
+
3 + c+2 c3

)

)

.

This operator acts trivially on states withc+2 c2 = c+3 c3 and
exchanges pairs of states withc+2 c2 = 1 − c+3 c3 mod2. In
other words, it simply moves around local fermions from the
4d perspective. Note also that we have not included the dy-
namics of the gauge field during this exchange process. We
note in passing that there is interesting physics associated with
the dynamics of the gauge field, particularly the role of in-
stantons, for example, an instanton localized along a line in
5d spacetime describes a conduit via which fermions tunnel
from one wall to the other. Since the 4d local basis effec-
tively stacks the two Weyl fermions on top of each other, the

physics should be qualitatively similar to the case of a single
Dirac fermion in 4d discussed above. In particular, once the
gauge field motions are included, we find that the states built
from theci operators are actually all bosonic because of the
extra angular momentum coming from the gauge field.

Finally, what about decoherence free superpositions? The
4d local basisci seems naively decoherence free, but another
regime is possible where the smallest scale isR−1. In this
regime, the Abelian gauge field resulting from the Higgsing
of SU(2) looks five dimensional and may even decohere the
fermions in the 4d local basis generated by theci. However,
in this case we are faced with the question: decohere to what?
There seems to be no local basis once the gauge field is al-
lowed to fluctuate in the 5th dimension. There is also no su-
perconductivity to justify forming decoherence free superpo-
sitions of different charge states. In fact, there is an evensim-
pler configuration that can cause concern. Consider a single
monopole string forming a closed loop which does not wrap
the extra dimension but still punctures one of the domain walls
twice. Now this configuration may cost a lot of energy and be
unstable, but assuming we could hold the monopole string in
place, we appear to have two Majorana modes on a single do-
main wall but again with no obvious local basis to decohere
into. We are again faced with the question: decohere to what?

To resolve these issues, we need to bring in a thus-far ne-
glected piece of the puzzle. In 4d the SU(2) monopole has a
collective coordinate, a rotor degree of freedom corresponding
to the unbroken U(1) charge. The excitations of the rotor gen-
erate the familiar dyon states of the monopole. In the 5d model
we have a new complication: instead of a single quantum me-
chanical rotor, we are faced with a rotor degree of freedom for
each point on the monopole string. Thus the monopole string
supports a finite-size realization of the1 + 1 dimensional XY
model, ac = 1 conformal field theory. These gapless degrees
of freedom can significantly affect the physics. Charge willbe
dynamically screened by the gapless rotor degrees of freedom
living in the monopole string core. In the parameter regime
where the compact radius is large, we have 5d U(1) gauge the-
ory, and the only configurations of the Majorana zero modes
that remain decoherence-free are those connected by a sin-
gle rotor string, and they are still linearly confined by the
monopole string tension. Thus for strings wrapping the com-
pact direction the decoherence free subspace is always the 4d
local basis and we recover the low energy physics of the Dirac
fermion coupled to a scalar in 4d as we must. We can also
consider monopole strings as above that intercept only one
domain wall, but here the majorana zero modes are bound by
the monopole string stretching between them, the same string
that screens their gauge charge.

V. CONCLUSIONS AND GENERAL ARGUMENTS

Despite a promising attempt, we have not found a consis-
tent field theory with Majorana monopoles that are not lin-
early confined. We would like to argue that this conclusion is
general, and will do so from a variety of points of view.
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A. Monopole configuration space

If we had found a consistent gauge theory with unpaired
Majorana operators on the cores of monopoles, we would have
been in serious trouble. Indeed, the fundamental group of the
bareN -monopole configuration space is preciselySN , and
we know that this group has no interesting non-local repre-
sentations [1, 12, 13, 29]1. The existence of extended mag-
netic field lines does not help since the static magnetic field
configuration is completely specified by the positions of the
monopoles via the magnetic Gauss law. One might have
hoped that the Dirac string, which is the remnant of the rib-
bon that proved so essential in the ungauged theory [4], could
play a similar role here. However, this string is unphysicalas
its position can be moved using gauge transformations. For
example, in lattice U(1) gauge theory the Dirac string is com-
pletely meaningless and undefined. Thus the only remaining
possibility is the existence of some subtle topological infor-
mation encoded in the existence of the Dirac string (but not
its precise position) in certain UV completions of U(1) gauge
theory. We can find no such data and although we do not prove
it cannot be found, we regard this possibility as quite remote.
The main point is simply that the configuration of monopoles
in a Coulomb phase is insufficient to support non-Abelian par-
ticles. One would have to add extra data beyond the monopole
positions in any model that realized non-Abelian particle-like
excitations.

B. Callias index and anomaly

Here we make a precise connection between the Majorana
number mod two and the Witten anomaly. Roughly, we can
relate the Witten anomaly to the chiral anomaly mod two; in
turn we can relate the chiral anomaly mod two to the Majorana
number of the monopole.

In a theory with a Witten anomaly, a chiral rotation byπ
is an element of the gauge group [30, 31],i.e. (−1)F acts
in precisely the same way as a gauge rotationeiπτ3 for some
gauge generatorτ3. One way to think about this statement
is that there are no gauge-neutral excitations which carry unit
fermion number; this means that the fermion number and the
gauge charge are the same mod two. The chiral anomaly mod
two is therefore in fact a gauge anomaly [30, 31]. In the
Witten-anomalous theory, the chiral anomaly –i.e. the fact
that an instanton violates the chiral charge by one unit (de-
stroys a RH fermionor creates a LH fermion) – means that
the instanton must also violate the gauge symmetry (despite
the fact that there is no local gauge anomaly)2.

1 Deligne’s theorem [29] proves that replacing the braid group by the sym-
metric group gives “local” theories called Rep(G,µ). We have bosons
(µ = 1) or fermions (µ = −1) with a local “internal” symmetryG.

2 We note in passing that the fermion-number violation by instantons seems
to be asymptom of the Witten anomaly, rather than an equivalent statement.
We say this for the following reason. Recently [32, 33] it hasbeen argued
that it is possible to modify gauge theories by restricting the instanton sum,

The chiral anomaly mod two in turn is related by (a gener-
alization of) Callias’ index theorem [34] to the number ofreal
fermion zeromodes of the monopole. The result proved by
Callias counts the index of a complex-linear Dirac operator;
this is the number ofcomplex zeromodes weighted by some
version of chirality. Because of the coupling to the Higgs
field Φ, our Dirac operator is only real-linear, and we wish
to count itsreal zeromodes (in a monopole background), mod
two. This kind of zero mode counting has been considered in
[35], and they concluded that the Chern number indeed counts
the Majorana number mod two. Thus it seems that within
the setup of microscopic fermions coupled to an SU(2) gauge
field and an adjoint scalar, the existence of an unpaired Majo-
rana zero mode in the ungauged theory is unavoidably related
to the presence of the Witten anomaly in the gauge theory.

C. More arguments from low energy

More generally, we could ask if deconfinement is possible
via the disordering route mentioned in the introduction. This
scenario has at least two problems. First, as we argued above,
the configuration space of monopoles is too trivial to support
non-Abelian particles. It appears we must gauge away the
ribbon data or disorder it away. Second, given the unbroken
global SU(2) symmetry in the disordered phase, the quantum
numbers of local excitations should be consistent with the un-
broken symmetry. It is hard to see how we can build a sensi-
ble real zero mode without doing violence to the SU(2) group
structure.

This question can be addressed in more detail using the
slave particle techniques which have been developed for the
study of spin liquids (i.e. disordered groundstates of quantum
spin systems). In the disording scheme described in the intro-
duction, we write the order parameter in terms of bosonszα as
ni = z+τ iz. In a fractionalized phase with unbroken SU(2)
symmetry the doublet fermions will be screened byz and
become SU(2)-neutral; however, the resulting SU(2)-singlet
fermions will carry an internal U(1) gauge charge. As before,
for any hope of success we must disorder then field without
condensing hedgehogs. Assuming we can do this, hedgehogs
will become monopoles of the emergent U(1) gauge field. It
appears difficult to form the necessary decoherence free super-
positions of fermions charged under the internal U(1) to pro-
duce Majorana zero modes on the monopole cores. We also
still have the problem of the monopole configuration space.
Thus we argue that such a phase is either impossible or the
number of Majorana zero modes on the monopole changes
across the phase transition.

It is possible for theU(1) gauge symmetry to be found in a

for example to even instanton numbers. This would make the partition
function π-periodic inθ solve the obstruction given in eqns (18, 19) of
[31]. However, applying the path-integral method for accomplishing this
modification given in [33] to a Witten-anomalous theory doesnot change
the fact that the fermion determininant faithfully represents π4(SU(2)),
and therefore does not prevent the gauge field path integral from vanishing.
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Higgs phase; in this case the Majorana solitons are monopoles
in a superconductor which again are linearly confined by mag-
netic flux tubes, and it is perfectly consistent to have localized
states of indefinite charge.

We can consider other possibilities, where there is noU(1)
gauge symmetry at any energy scale. For example, one could
try to decompose the order parameter asni = bT iτ2τ ib with
b a two component complex doublet of bosons. Now the dis-
orded phase will only have an emergentZ2 gauge field, but
the original order parameter has an extra U(1) symmetry as-
sociated withb → eiθb (whereas the SU(2) transformation
is b → eiθτ

3

b. In other words,n must be complex. Even if
we break this symmetry in the Hamiltonian we can still un-
wind hedgehog configurations using the extra scalar degrees
of freedom. This is to be expected since the hedgehog would
have turned into a localized object in theZ2 gauge theory, but
there is no local object in such a theory in3 + 1 dimensions
(the vortex from2 + 1 is now a vortex line in3 + 1).

The possibility remains that a 3+1-dimensionallattice
model exists with deconfined Majorana monopoles,i.e. that
the continuum limit (our starting point) fails to capture some
crucial element. Certain kinds of lattice models that begin
with Majorana fermions may, not surprisingly, more easily
produce Majorana excitations. If these models cannot be re-
alized with a “proper” regularization involving only complex
fermions coupled to superconductivity, then we are temptedto
regard them as too artificial. We can easily design a network
of Kitaev quantum wires in three spatial dimensions that re-
produce the topological aspects of the Teo-Kane model, how-
ever there is no SU(2) symmetry (it is reduced to a discrete
subgroup) and the confinement is still linear. Without the full
SU(2) symmetry we cannot gauge the model. Furthermore,
there can be no 4d lattice realization of the Teo-Kane model
with full SU(2) symmetry since such a lattice model, when
attached to the surface of the 5d model above, would produce
a trivial surface. Put differently, if such a lattice model did ex-

ist it could be trivially gauged and we would face the Witten
anomalous gauge theory again.

We started from a desire to produce deconfined non-
Abelian particle-like excitations in3+1 dimensions. Specifi-
cally, we were interested in localized objects displaying what
could be called Majorana statistics. The perhaps simplest
route to deconfinement led to an anomalous gauge theory. In
attempting to cure the anomaly, we found repeatedly that de-
confinement requires the number of Majorana zero modes to
be even, giving ordinary statistics. We have made many at-
tempts: high energy fermionic matter, extra dimensions, dis-
ordered phases exhibiting emergent gauge fields, but none led
to deconfined non-Abelian particles. This is all completely
consistent with general expectations about the nature of parti-
cle excitations in three dimensional space. We conclude with
a few comments for future work. We always find linear con-
finement, but this may not be the most general situation. For
example, we can argue that gauging only a subgroup of the full
SU(2) symmetry still leaves linear confinement intact. So how
strongly bound must such non-Abelian particles be in gen-
eral? Finally, there remains the prospect that with the right
low energy data, deconfined non-Abelian particles would be
possible. Although we have ruled out many promising paths
to this goal, it would be very exciting to see such a possibility
realized elsewhere.
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