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Abstract

Recently a low-energy effective theory on non-Abelian semilocal vor-
tices in N = 2 SQCD with the U(N) gauge group and N + Ñ quark
flavors was was obtained in field theory [1]. The result is exact in a cer-
tain limit of large infrared cut-off. The resulting model was called the
zn model. We study quantum dynamics of the zn model in some detail.
First we solve it at large N in the leading order. Then we compare our
results with those of Hanany and Tong [2] (the HT model) who based
their derivation on a certain type-IIA formalism, rather than on a field-
theory construction. In the ’t Hooft limit of infinite N both model’s
predictions are identical. At finite N our calculations agree with the
Hanany–Tong results only in the BPS sector. Beyond the BPS sector
there is no agreement between the zn and HT models. Finally, we
study perturbation theory of the zn model from various standpoints.
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1 Introduction

Dorey and collaborators observed [3,4] that the BPS spectrum of the twisted mass-deformed
two-dimensional N = (2, 2) CPN−1 sigma model coincides with that of the four-dimensional
N = 2 SU(N) supersymmetric quantum chromodynamics (SQCD) with N massive flavors
(in a certain vacuum). This correspondence holds upon identification of the holomorphic
parameters of the two theories, e.g. the masses and the strong coupling scales. Similarities
between sigma models in two dimensions and gauge theories in four dimensions have been
discussed for a long time, since the discovery of asymptotic freedom and instantons in the
O(3) sigma model [5]. The observation [3, 4] showed that these similarities go beyond the
qualitative level in some supersymmetric theories. The deep reasons for this coincidence were
revealed thanks to the discovery of the non-Abelian vortices in the color-flavor locked phase
of supersymmetric QCD [2,6–9]. The two-dimensional CPN−1 sigma model is nothing other
than the low-energy description of the non-Abelian string. Excitations of the non-Abelian
string correspond to states of the bulk SQCD which are confined on the strings. In particular,
BPS kinks of the CPN−1 model are confined monopoles from the bulk perspective [8]. No
surprise then that the kink spectrum exactly coincides with the monopole spectrum.

The above results were naturally generalized to SU(N) supersymmetric QCD with N+Ñ
flavors (i.e. the number of flavors is larger than that of colors). In this case one deals with
the so-called semilocal [10–13] non-Abelian strings. Hanany and Tong suggested a world-
sheet model for such strings [2] (the HT model 1) from type-IIA brane considerations. The
Hanany–Tong model can be easily formulated as the strong coupling limit of a U(1) gauge

theory with N positively charged fields and Ñ negatively charged fields under this U(1).
While the Hanany–Tong model is exactly the theory considered by Dorey and collabora-

tors, it is not the genuine effective theory on the semilocal string world sheet. The program of
the field-theoretic honest-to-god derivation started with Refs. [14–16]. Very recently a break-
through was achieved in [1] with the derivation of the “exact” effective theory on semilocal
strings valid in the limit logL→∞, where L is an infrared cut-off assumed to be very large.

This exact nonlinear sigma model, to which we will refer to as the zn model, was proven
to have a different target-space metric than the HT model (albeit the same topology).

Our task is to explore dynamics of the zn model per se and in comparison with the HT
model. It is crucial to explicitly demonstrate that the zn model has the same BPS spectrum
as four-dimensional SQCD, as it was noted previously [3, 4] with regards to the HT model.
We show that this is indeed the case. Moreover in the ’t Hooft limit of infinite N the solutions
of both models are identical. However, at finite N the zn and HT models are different in
the non-BPS sectors. In particular, they have distinct perturbation theories. We analyze
perturbation theory in the zn model and explain in which sense one can use here the notion
of a single β function.

We prove that the β functions of the zn model coincide with that of the HT model at

1The target space of the nonlinear sigma model obtained this way is now noncompact. In mathematics

it is mostly known as an O(−1)Ñ fibration over CPN−1.
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one loop. Thanks to supersymmetry, this is enough to show the correspondence of the exact
twisted Veneziano-Yankielowicz-type superpotentials which encode the BPS mass formula
in terms of the central charges of each state. We conclude that the two models agree in the
BPS sectors.

The paper is organized as follows. First, in Sec. 2 we introduce and compare two-
dimensional sigma models which have recently been discussed in the literature in the context
of semilocal strings in SQCD: the zn model [1] and the Hanany-Tong [7,2] model. In Sec. 5
we study the large-N solution, which we use in Sec. 5.4 to determine the spectrum of the
theory. We present an exact twisted superpotential which encodes the BPS spectrum at
finite N in Sec. 4. Finally, in Sec. 6 we study vacuum manifolds and perturbation theories
of these models in the geometric formulation. We summarize and conclude in Sec. 7.

2 World-Sheet Theory on Non-Abelian

Semi-Local Vortices: the zn Model

Non-Abelian semilocal vortex strings (strings for short) are known to be supported by N =

2 SQCD with Nf = N + Ñ massless flavors and the U(N) gauge group [7, 2] provided one
introduces a non-vanishing Fayet-Iliopoulos term ξ. Actually, the correct topological object
to examine in connection with the semilocal strings is the second homotopy group of the
vacuum manifold, which in the present case, is a Grassmannian manifold (defined as follows):

π2(Mvac) = π2

(
GrN,Ñ

)
≡ π2

(
SU(N + Ñ)

SU(N)× SU(Ñ)× U(1)

)
= Z . (2.1)

The homotopy group above is the one lying behind the description of lumps in the associated
nonlinear sigma-model, which arises as the low-energy limit of the N = 2 SQCD. This is the
main reason why semilocal strings are similar to lumps [12, 15, 16]. Similarly to lumps, the
semilocal strings have power-law behaviors at large distances, and possess new size moduli
determining their characteristic thickness. Nevertheless, they still retain their nature of
strings (flux tubes), which is manifest when we send the size moduli to zero. In this limit we
recover just the ANO string, with its exponential behavior [10]. The stringy nature is also
justified by the existence of the following non-trivial homotopy group:

π1(U(1)× SU(N)/ZN) = Z . (2.2)

The moduli space of a single semilocal string is a non-compact space of complex dimension
N+Ñ [7,14,16]. One can interpret N−1 zero modes as parameterizing orientational degrees

of freedom of the non-Abelian string2, while further Ñ modes parameterize the size(s) of the
semilocal string. Finally, one last parameter is due to translational modes; it is related to

2The moduli space of a non-Abelian semilocal string contains indeed a subspace which corresponds to
CPN−1 , the orientational moduli space of a traditional non-Abelian string.

3



the position of the string center on the perpendicular plane. Dynamically the latter moduli
is decoupled from the rest. The corresponding dynamics is sterile. In the remainder of
the paper it will be not mentioned. Then by the moduli space we will understand the
(N + Ñ − 1)-dimensional manifold.

A crucial property of semilocal strings is that, in deriving the world-sheet theory, one
encounters an infrared divergence of the type

log
L

|ρ|
, (2.3)

regularized by an infrared (IR) cutoff L. Here ρ is the typical size of a semilocal vortex.
The above logarithmic divergence is due to long-range tails of the semilocal string which fall
off as powers of the distance from the string axis (in the perpendicular plane) rather than
exponentially. In the non-Abelian semilocal strings both the size and orientational moduli
become logarithmically non-normalizable [14]. A convenient and natural IR regularization,
which maintains the BPS nature of the solution 3 can be provided by a mass difference
∆m 6= 0 of the (s)quark masses; then L ∼ 1/|∆m|, so that (2.3) becomes

log
1

|ρ||∆m|
. (2.4)

2.1 The zn model

These large logarithms account for basically all difficulties in the previous treatments of
the semilocal strings. Such divergent terms were calculated e.g. in Refs. [14, 16]. The
situation was dramatically reversed in [1]. In this work the problem became an advantage:
all logarithmic terms were obtained from the bulk-theory description of the semilocal string.
Then, one can derive an exact world-sheet theory for the semilocal strings in the limit of (2.3)
or (2.4) tending to ∞. The resulting model, which was called the zn model, is N = (2, 2)
supersymmetric theory with the following action4

Szn =

∫
d2x

{
1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

e2

2

(
|ni|2 − r

)2

+ |∂k(zjni)|2 + |∇kni|2 + |mi − m̃j|2 |zj|2|ni|2 +
∣∣∣√2σ +mi

∣∣∣2 |ni|2} ,
i = 1, ..., N , j = 1, ..., Ñ , ∇k = ∂k − iAk . (2.5)

Here ni and zj are the orientational and size moduli fields, respectively, e2 and r are the
gauge coupling and the two-dimensional Fayet-Iliopoulos. In deriving the effective action

3Alternatively, L can represent a finite length of the string, or a finite volume of the transverse space.
4Here we write down only the bosonic part of the action; we will include fermions in Sec. 5.
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above from the four-dimensional bulk theory one finds the crucial relationship between four
and two dimensional couplings [7, 8]:

r =
4π

g2
4D

. (2.6)

Finally, mi and m̃j are twisted masses5. It is assumed that at the very end we take the
limit e → ∞. In this limit the gauge field Ak and its superpartners become nondynamical,
auxiliary [17,18] and can be integrated out

Ak = − i

2r
(n̄i∂kni − ni∂kn̄i),

√
2σ = −1

r

∑
i

mi |ni|2. (2.7)

Moreover, in this limit the term (|ni|2 − r)2
in Eq. (2.5) implies the constraint 6

N∑
i

|ni|2 = r . (2.8)

The fact that the number of degrees of freedom following from (2.5) is correct, namely,

N + Ñ − 1, can be seen once we take into account the D-term condition (2.8) and, in
addition, gauge away a U(1) phase. The global symmetry of the world–sheet theory (2.5) is
the same as in that of the bulk theory,

SU(N)× SU(Ñ)× U(1) , (2.9)

which is broken down to U(1)N+Ñ−1 by the (s)quark mass differences.

2.2 The HT model

As was already mentioned, non-Abelian semilocal strings were previously studied within a
string theory approach based on D-branes by Hanany and Tong (see [19,2] for the IIB setup
and [2] for the IIA setup). In the IIA picture a flux tube is represented by a D2-brane
stretched between an NS5 and D4 branes. The effective theory on the world-sheet of the
D2-brane, is then given by the strong-coupling limit (e → ∞) of a two-dimensional U(1)

gauge theory with N positive and Ñ negatively charged matter superfields. In components

5These twisted masses are equal to the four-dimensional complex masses present in the bulk theory.
6We stress that this constraint is different from that in the Hanany–Tong model, see below.
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it reads

SHT =

∫
d2x

{
1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

e2

2

(
|nwi |2 − |zwj |2 − r

)2

+ |∇kn
w
i |2 + |∇̃kz

w
j |2 +

∣∣∣√2σ +mi

∣∣∣2 |nwi |2 +
∣∣∣√2σ + m̃j

∣∣∣2 ∣∣zwj ∣∣2} ,
i = 1, ..., N, j = 1, ..., Ñ ,

∇k = ∂k − iAk , ∇̃k = ∂k + iAk . (2.10)

With respect to the U(1) gauge field Ak the fields nwi and zwi have charges +1 and −1,
respectively. We endow these fields with a superscript “w” (weighted) to distinguish them
from the ni and zj fields which appear in the zn model, see (2.5). If only charge +1 fields
were present, in the limit e→∞ we would get a conventional twisted-mass deformed CPN−1

model. The Hanany-Tong model can be obtained by the dimensional reduction (from 4D

to 2D) of the supersymmetric quantum electrodynamics with N charge 1 and Ñ charge −1
chiral superfields.

3 β function

Let us calculate the one-loop renormalization of the coupling constant r in the zn model
(2.5). To this end we can limit ourselves to the massless case mi = m̃j = 0. Then the action
(2.5) can be rewritten as

Szn =

∫
d2x

{∣∣∂k(zjni)∣∣2 +
∣∣∇kn

i
∣∣2 + iD

(
|ni|2 − r0

)}
, (3.1)

where r0 is a bare coupling constant and the limit e → ∞ is taken. Integration over the
auxiliary field D ensures the condition (2.8), while the gauge field is given by

Ak = − i

2|n|2
(n̄i∂kn

i − ni∂kn̄i). (3.2)

Next, we rearrange the kinetic term by decomposing

∂k(z
jni) = zj∇kn

i + ni∇̃kz
j . (3.3)
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As a result, the action (3.1) takes the form

Szn =

∫
d2x

{ ∣∣∇kn
′ i∣∣2 +

∣∣∣∇̃kz
′ j
∣∣∣2 + iD′

(∣∣n′ i∣∣2 − ∣∣z′ j∣∣2 − r0

)
+

1

|n′|2
(z′∇kz̄

′) (n̄′∇kn
′) +

1

|n′|2
(
z̄′∇̃kz

′
)(

n′∇̃kn̄
′
)

− 1

2|n′|2
(
∂k|n′|2

) (
∂k|z′|2

)
− 1

4|n′|2
(
∂k|z′|2

)2
}
, (3.4)

where we introduced new variables

n′i =
√

1 + |z|2 ni, z′j =
√
r0 z

j, D′ =
1

1 + |z|2
D , (3.5)

and the indices i, j are contracted in the brackets, e.g. (z′∇kz̄
′) ≡

(
z′ j∇kz̄

′
j

)
. In passing

from (3.1) to (3.4) we used the constraint |n|2 = r0. Solving the equations of motion for the
gauge potential Ak in (3.4) we find that it is still given by Eq. (3.2), as it should, of course.

A disadvantage of formulation (3.4) in terms of n′ and z′ is rather obvious: change of
variables (3.5) is not holomorphic and, therefore, the metric of the target manifold in (3.4)
does not explicitly look as a metric of a Kähler manifold. Certainly, we know that the model
(2.5) is N = (2, 2) supersymmetric and has a Kähler target-space metric in terms of the
original fields n, z.

The action (3.4) reveals a similarity between the zn model and the HT model (2.10). In
particular, the first line in (3.4) is identical to the massless limit of the HT model (2.10)
at e → ∞. Moreover, all terms in the second and third lines in (3.4) do not contribute at
one-loop. Therefore, we conclude that the one-loop renormalization of the coupling constant
r is identical in the zn and HT models.

More explicitly, to calculate the one-loop renormalization of r we represent the fields n′

and z′ in (3.4) as sums of classical background fields plus quantum fluctuations,

n′ i = ni0 + δni, z′j = zj0 + δzj. (3.6)

The renormalization of r can be calculated as that of the linear in D′ term in (3.4). Let us
write the third term in the first line in (3.4) as

iD′
(
|ni0|2 − |z

j
0|2 + |δni|2 − |δzj|2 − r0

)
. (3.7)

It contributes to the one-loop renormalized coupling r

rren = r0 − 〈 |δni|2 〉+ 〈 |δzj|2 〉 , (3.8)

where 〈...〉 stands for vacuum averaging.
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Calculating the one-loop tadpole contributions here using canonical propagators of n′

and z′ fields defined by the first line in (3.4) we get

rren(µ) = r0 − (N − Ñ)

∫
d2k

(2π)2

1

k2
= r0 −

N − Ñ
2π

log
M

µ
, (3.9)

where M is the ultraviolet cutoff, while µ is the infrared normalization point. The terms
proportional to N and Ñ arise due to loops of n′ and z′ fields, respectively. Introducing the
dynamical scale of the theory Λ,

Λ ≡M exp

(
− 2π r0

N − Ñ

)
, (3.10)

we rewrite (3.9) as

rren(µ) =
N − Ñ

2π
log

µ

Λ
. (3.11)

The zn model is asymptotically free at N > Ñ (which is assumed throughout the paper).
The one-loop renormalization of its coupling constant is identical to that of the HT model
calculated in [18].

The coupling constant r can be complexified by adding a θ term in the theory. The
target space in the model at hand is Kählerian but non-Einstein7. Therefore, r does not
completely specifies the one-loop renormalization group (RG) flow of this theory. We will
discuss this question in more detail later. Here let us make a statement using the HT model
as an example (a similar statement can be formulated for the zn model too). Let us keep the
coupling constant e large but finite. Then we have two large parameters of mass dimension
one: the ultraviolet cutoff M and e. The normalization point µ is supposed to be � M .
If µ � e, then the effective action must be holomorphic in the complexified coupling r,
implying that higher loops cannot contribute to the β function in this domain. The one-loop
renormalization (3.11) is actually exact both, in the zn and HT models for such values of µ.
The holomorphicity is lost, generally speaking, when we evolve µ below e, due to emergence
of additional structures in the effective Lagrangian, see Sec. 6. In this domain the RG flow
ceases to be one-loop. However, in the large-N limit, in the leading in N order, the one-loop
nature is preserved.

4 Exact Effective Twisted Superpotentials

The one-loop calculation performed in the previous section can be enhanced by supersymme-
try to give exact results, as shown in Refs. [20,4] in both the regimes e� µ and e� µ. To
see this, first we recall that the renormalized Fayet-Iliopoulos in two-dimensional N = (2, 2)

7For an Einstein manifold, the Ricci tensor is proportional to the metric tensor.
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must be written in terms of a complex twisted superpotential W̃ of Veneziano–Yankilowicz
type [21,20], as dictated by supersymmetry:

reff = −W̃ ′
eff(σ) . (4.1)

Using the result of the previous section we can write down the following effective twisted
superpotential for the zn model in the case of the vanishing masses.

W̃eff = −N − Ñ
2π

√
2σ

(
log

√
2σ

Λ
− 1

)
. (4.2)

The one-loop expression above is exact, thanks to holomorphicity, in the regime e � µ.
Nevertheless, there are two important observations which makes the potential above a crucial
tool for extracting exact results from the theory at all values of the coupling e. First notice
that the twisted superpotential above does not depend on the gauge coupling e. This is due
to the fact that only the couplings which can be promoted to twisted chiral superfields can
appear in W̃ , and this is certainly not the case for e. The bottom line of this observations is
that the all the information which can be extracted from this potential are actually exact,
and also valid in the nonlinear sigma model limit when e → ∞. The second observation is
that the difference of the values of the twisted superpotential W̃ between two vacua gives
the central charges and thus the masses of the BPS states of the theory8

MBPS = |Z| = ∆W̃ . (4.3)

Notice again that the mass formula written above is exact for all values of e. While it
represents a perturbative calculation at small e, it encodes full non-perturbative corrections
to the masses of all BPS states in the regime e→∞.

We wish to emphasize here that (4.2) is exact only if applied to the BPS sector of the
theory. Once we start looking at perturbations around the vacua given by minimization of
the twisted superpotential, formula (4.2), or its massive generalization, is of no use. Still,
when we treat the model in the large-N approximation, the effective potential

V (σ) =
∣∣∣W̃ ′

eff

∣∣∣2 , (4.4)

give the correct spectrum of the theory. We will address both questions in the next section.
Finally let us note that twisted masses can be introduced in the theory by gauging each

U(1) factor in the U(1)Nf group by its own gauge field with non-zero σ-component (equal
to associated mass) [18]. This leads to the following generalization of the effective twisted

8Differences between different vacua give the masses of the solitonic states such as kinks. Since W̃ is a
multi-valued function, it makes sense to take differences between the values of W̃ taken between the same
vacua but on different Riemann sheets. This will give masses of the perturbative spectrum.
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superpotential (4.2) to the case of non-zero twisted masses:

W̃eff = − 1

2π

N∑
i=1

(
√

2σ +mi)

(
log

√
2σ +mi

Λ
− 1

)
+

+
1

2π

Ñ∑
j=1

(
√

2σ + m̃j)

(
log

√
2σ + m̃j

Λ
− 1

)
. (4.5)

Clearly this effective twisted superpotential identically coincides with the one for HT model
[18].

This fact together with the matching of the kink spectrum obtained at the classical
level in Ref. [1], leads us to claim the matching of the BPS spectra of the zn and HT at
both semiclassical and quantum levels. As a consequence, the BPS spectrum of the bulk
theory coincides with the BPS spectrum of the true effective theory on semilocal vortices,
as expected.

5 Large-N Solution of the zn Model

In this section we will study the zn model at large N along the lines of Witten’s analysis [17].

Namely, we will consider the limit N →∞, Ñ →∞, while the ratio of Ñ and N is kept fixed.
The representations (2.10) and (3.4) suggest that to the leading order in N the solutions
of zn and the HT models are the same. The reason for this is that all terms in the second
and third lines in (3.4) distinguishing the zn model from the HT model give nonvanishing
contributions only at a subleading order in N . Indeed, they can show up in the potential for
σ only at the two-loop order and are not reducible to the n′ and z′ field tadpoles proportional
to N or Ñ . Inspection of the SU(N) and SU(Ñ) index flow readily reveals that these two-
and higher-loop contributions are at most O(N0) in the large N -limit.

Below we will calculate the effective action for the zn model with twisted masses in the
large-N limit. The action of the zn model (2.5) in the gauged formulation, with the fermion
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fields taken into account, is

Szn =

∫
d2x

{
1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

1

2e2
D2 +

1

e2
λ̄R i∂L λR +

1

e2
λ̄L i∂R λL

+
∣∣∂k(zjni)∣∣2 +

∣∣∇kn
i
∣∣2 + |mi − m̃j|2 |zj|2|ni|2

+
∣∣∣√2σ +mi

∣∣∣2 ∣∣ni∣∣2 + iD
(
|ni|2 − r0

)
+ ξ̄iR i∇L ξ

i
R + ξ̄iL i∇R ξ

i
L

+
[
i(
√

2σ +mi) ξ̄iRξ
i
L + i

√
2 n̄i (λRξ

i
L − λLξiR) + H.c.

]
+ (z̄j ξ̄iL + n̄iχ̄jL) i∂R(zjξiL + niχjL) + (z̄j ξ̄iR + n̄iχ̄jR) i∂L(zjξiR + niχjR)

+
[
i(mi − m̃j)

(
|zj|2ξ̄iRξiL + |ni|2χ̄jRχjL + ξ̄iRχ

j
Lz̄jn

i + χ̄jRξ
i
Ln̄iz

j
)

+ H.c.
]

+ χ̄jRχ
j
Rξ̄iLξ

i
L + χ̄jLχ

j
Lξ̄iRξ

i
R + χ̄jLχ

j
Rξ̄iRξ

i
L + χ̄jRχ

j
Lξ̄iLξ

i
R

}
, (5.1)

where the fields Ak, σ, D and λL,R form the gauge supermultiplet, while ξi and χj are fermion
superpartners of ni and zj, respectively. Left and right derivatives are defined as

∇L ≡ ∇0 − i∇3 , ∇R ≡ ∇0 + i∇3 . (5.2)

5.1 Effective potential at large N

Now we will integrate over the ni, zj and ξi, χj fields and then minimize the resulting effective
action with respect to the fields σ and D from the gauge multiplet. This will be done in the
saddle point approximation. The large-N limit ensures that the corrections to the saddle
point approximation (suppressed by 1/N) are negligible.

Technically, integrating out the ni, zj and ξi, χj fields in the saddle point boils down
to calculating a set of one-loop graphs with the ni and zj superfields propagating in loops.
As was mentioned, in this section we will obtain the effective potential of the theory as a
function of σ and D. Minimization of this potential determines the vacuum structure of the
theory. At this stage we can drop the gauge field Ak and its fermion superpartners λL,R in
(5.1) because they have no vacuum values. If desirable, one can restore the Ak dependence
in the final result from gauge invariance, through replacing partial derivatives by covariant.

Since the action (5.1) is not quadratic in ni, zj and ξi, χj fields we do the integration in
two steps. First, we integrate over ni and ξi. It turns out that the resulting effective action
will be quadratic in zj and χj and at the next stage we will be able to integrate out these
fields too.
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After rescaling the ni and ξi fields similar to that in (3.5), namely,

n′i =
√

1 + |z|2 ni, ξ′i =
√

1 + |z|2 ξi (5.3)

integration over the bosonic fields gives the determinant

N∏
i

[
det

(
−∂2

k +
iD

1 + |z|2
+M2

Bi

)]−1

, (5.4)

while the fermion integration gives

N∏
i

det
(
−∂2

k +M2
Fi

)
, (5.5)

where M2
B and M2

F are the following functions:

M2
Bi(σ, z

j, χj) =
1

1 + |z|2
{
|
√

2σ +mi

∣∣∣2 + |mi − m̃j|2 |zj|2

+ |∂kzj|2 + χ̄jR i∂L χ
j
R + χ̄jL i∂R χ

j
L + i(mi − m̃j)χ̄jRχ

j
L

}
(5.6)

and

M2
Fi(σ, z

j, χj) =
1

(1 + |z|2)2

{
|
√

2σ +mi

∣∣∣2 +
∣∣(mi − m̃j) |zj|2

∣∣2
+ (
√

2σ̄ + m̄i)(mi − m̃j) |zj|2 + (
√

2σ +mi)(m̄i − ¯̃mj) |zj|2

+ i
[
(
√

2σ +mi) + (mi − m̃j) |zj|2χ̄jRχjL + H.c.
]}

. (5.7)

Calculating the determinants (5.4) and (5.5) gives the effective action as a functional of the
fields σ, D, zj and χj,

Seff(σ,D, zj, χj) =

∫
d2x

{
1

4π

N∑
i=1

[(
M2

Bi +
iD

1 + |z|2

)
log

M2

M2
Bi + iD

1+|z|2

+
iD

1 + |z|2
+M2

Fi log
M2

M2
Fi

+M2
Bi −M2

Fi

]
− iDr0

}
,

(5.8)

where M is the ultraviolet cut-off scale.
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Next, expand the action (5.8) in powers of the fields zj and χj. We see that certain terms
quadratic in these fields come with an infinitely large logarithmic Z-factors. This is a crucial
point. Say, we get kinetic terms of the type{

|∂kzj|2 + χ̄jR i∂L χ
j
R + χ̄jL i∂R χ

j
L

}
log

M2

µ2
, (5.9)

where µ is some infrared scale determined by the value of σ and twisted masses. We absorb
this infinite Z-factor redefining the fields zj and χj as

z′j =

√
N

4π
log

M2

µ2
zj, χ′j =

√
N

4π
log

M2

µ2
χj. (5.10)

Now if we re-express the effective action (5.8) in terms of new variables, we see that higher
powers of the z′j and χ′j fields are suppressed by powers of the large logarithm and can be
dropped. As a result, the effective action (5.8) turns out to be quadratic in the z′j and χ′j

fields! Thus, we obtain

Seff(σ,D, zj, χj)

=

∫
d2x

{
1

4π

N∑
i=1

[(
|
√

2σ +mi

∣∣∣2 + iD

)
log

M2

|
√

2σ +mi|2 + iD
+ iD

− |
√

2σ +mi|2 log
M2

|
√

2σ +mi|2

]
+ |∂kz′j|2 + χ̄′jR i∂L χ

′j
R + χ̄′jL i∂R χ

′j
L

− iD(r0 + |z′j|2)

+ |
√

2σ + m̃j|2 |z′j|2 −
[
(
√

2σ + m̃j)χ̄
′
jRχ

′j
L + H.c.

]}
. (5.11)

Note, that the sign of the interaction term of z′ with D (and χ′L,R with σ) shows that the
z′ multiplet has charge −1, as was expected. One can restore the gauge field dependence in
(5.11) through the substitution

∂k → ∇̃k. (5.12)

Simultaneously, we will recover terms proportional to (z̄j∂kz
j) and

(
χ̄jLχ

j
L

)
,
(
χ̄jRχ

j
R

)
. The z′

and χ′L,R-dependent part of the action (5.11) is just the U(1) gauge theory of the z′ multiplet
with charge −1 plus the FI D-term r0.

Now, since the action (5.11) is quadratic in the fields from the z′ multiplet we can integrate
out z′ and χ′L,R. As a result, we arrive at the effective potential as a function of the fields σ

13



and D

Veff(σ,D) =
1

4π

N∑
i=1

[(∣∣∣√2σ +mi

∣∣∣2 + iD

)
log

M2

|
√

2σ +mi|2 + iD
+ iD

− |
√

2σ +mi|2 log
M2

|
√

2σ +mi|2

]

+
1

4π

Ñ∑
j=1

[(∣∣∣√2σ + m̃j

∣∣∣2 − iD) log
M2

|
√

2σ + m̃j|2 − iD

− iD − |
√

2σ + m̃j|2 log
M2

|
√

2σ + m̃j|2

]
− iDr0 . (5.13)

Using the β function of the theory we can trade the bare coupling r0 here for the dynamical
scale Λ, by writing

r0 =
N − Ñ

2π
log

M

Λ
. (5.14)

Substituting this in (5.13) we see that the dependence on the ultraviolet cut-off scale M
cancels out, and we get

Veff(σ,D) =
1

4π

N∑
i=1

[
−
(
|
√

2σ +mi

∣∣∣2 + iD

)
log
|
√

2σ +mi|2 + iD

Λ2
+ iD

+
∣∣∣√2σ +mi

∣∣∣2 log
|
√

2σ +mi|2

Λ2

]

+
1

4π

Ñ∑
j=1

[
−
(
|
√

2σ + m̃j

∣∣∣2 − iD) log
|
√

2σ + m̃j|2 − iD
Λ2

− iD + |
√

2σ + m̃j|2 log
|
√

2σ + m̃j|2

Λ2

]
. (5.15)

This can be viewed as a master formula.
Equation (5.15) presents exactly the effective potential which one would obtain from

the HT model (2.10) by integrating out the nwi and zwj fields at large N and Ñ . As was
expected, the large-N solutions of both models coincide.

5.2 Switching on vacuum expectation values of n and/or z

Much in the same way as in the HT model, the strong coupling phase with the vanishing
vacuum expectation values (VEVs) of both n and z fields occurs in the zn model at mi ∼
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mj ∼ Λ (we will discuss the vacuum structure of the theory in the large-N approximation
in Sec. 5.3). At large/small masses the fields n/z develop VEVs and the theory is in the
n-Higgs/z-Higgs phase, respectively.

To take into account the possibility of the n and z fields developing VEVs in (5.1) we
integrate out all n and z fields but one, say, n1 and z1, cf. [22]. At the first stage this boils
down to adding to (5.11) the following term:∫

d2x

(∣∣∣√2σ +m1

∣∣∣2 + iD

)
|n1|2. (5.16)

At the second stage (integrating out z′s) we keep intact the terms depending on z′1 in (5.11).
This procedure leads us to the following final effective potential, which now depends on the
fields σ, D and n1, z′1

Veff(σ,D, n1, z′1)

=
1

4π

N∑
i=2

[
−
(∣∣∣√2σ +mi

∣∣∣2 + iD

)
log
|
√

2σ +mi|2 + iD

Λ2
+ iD

+ |
√

2σ +mi|2 log
|
√

2σ +mi|2

Λ2

]

+
1

4π

Ñ∑
j=2

[
−
(∣∣∣√2σ + m̃j

∣∣∣2 − iD) log
|
√

2σ + m̃j|2 − iD
Λ2

− iD + |
√

2σ + m̃j|2 log
|
√

2σ + m̃j|2

Λ2

]

+

(∣∣∣√2σ +m1

∣∣∣2 + iD

)
|n1|2 +

(∣∣∣√2σ + m̃1

∣∣∣2 − iD) |z′1|2. (5.17)

Varying the above expression with respect to the fields σ, D, n1 and z′1 we derive the vacuum
equations of the theory at large N , Ñ .

5.3 The vacuum structure

Here we will briefly review the vacuum structure of the the HT and zn models (for a detailed
analysis see [23]). Given the fact that Eq. (5.17) is the same in both models, so are the
solutions.

First we shall consider the case of vanishing expectation values 〈n1〉 and 〈z′1〉 in Eq. (5.17),
corresponding to the Coulomb branch of the theory. Then, due to relation (4.4), the minima
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of the effective potential (5.17) can be more easily extracted by determining the critical

points of W̃eff (4.5). In this way we then derive the following vacuum equation:9

N∏
i=1

(
√

2σ +mi) = ΛN−Ñ
Ñ∏
j=1

(
√

2σ + m̃j) . (5.18)

Now, as was explained in Section 1, we choose the twisted masses in such a way that the ZN
and ZÑ discrete symmetries are preserved, namely,10

mk = me2πi k
N , k = 0, . . . , N − 1 ,

m̃l = m̃ e2πi l

Ñ , l = 0, . . . , Ñ − 1 . (5.19)

Then, Eq. (5.18) takes the following form:

(
√

2σ)N +mN = ΛN−Ñ
[
(
√

2σ)Ñ + m̃Ñ
]
. (5.20)

The above equation obviously has N complex roots (assuming that Ñ < N) which can be

easily found numerically for any N and Ñ . Interestingly for large N the solutions can be
classified. For the future convenience we introduce a new parameter

α =
Ñ

N
, 0 < α < 1 . (5.21)

Then, depending on the relation between α, m, and m̃, there are two Coulomb branches,
which are referred to as Cm and Cm̃. The roots of Eq. (5.20) can be assigned to one of the
following three groups:

m-vacua: In the domain Cm, i.e.

m̃ < Λ
(m

Λ

)1/α

, m < Λ,

√
2σm,l = Λ

(m
Λ

)1/α

e2πi l

Ñ , l = 1, . . . , Ñ − 1 ; (5.22)

Λ-vacua: These vacua exist only in the Cm domain and are located on the circle of radius
Λ √

2σΛ,k = Λ e
2πi k

N−Ñ , k = 0, . . . , N − Ñ − 1 ; (5.23)

9Note that this equation is valid for any N , not necessarily in the ’t Hooft limit.
10It is worth noting that a a generic choice of the twisted masses would completely break supersymmetry

at the quantum level.
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m̃-vacua: In the domain Cm̃, i.e.

m̃ > Λ
(m

Λ

)1/α

, m̃ > Λ

√
2σm̃,j = Λ

(
m̃

Λ

)α
e2πi j

N j = 0, . . . , N − 1 . (5.24)

The above expressions are approximate to the leading order in 1/N . For small N there
will be corrections, see Figs. 1, 2, and 3. These figures depict the complex σ plane; the
actual vacua that solve Eq. (5.20) are located at the centers of the small black nodes in these
figures, while the dashed circles drawn for reference have radii given by Eqs. (5.22), (5.23),
and (5.24).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1: Vacua of the HT model for N = 5, Ñ = 3 in the Cm domain. We can see two (N−Ñ = 2)
Λ-vacua near the circle of radius Λ and three (Ñ = 3) m-vacua near the circle or radius m1/α in
units of Λ.

Note also that in the regime
m̃

Λ
=
(m

Λ

)1/α

, (5.25)
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Figure 2: Vacua of the HT model for N = 15, Ñ = 3 in the Cm domain. For larger values of N
the formulae (5.22) and (5.23) are getting more precise. Small circle has radius m1/α in units of Λ.

Eq. (5.20) degenerates into

(
√

2σ)N = ΛN−Ñ(
√

2σ)Ñ . (5.26)

This equation has two sets of solutions,

(
√

2σ)N−Ñ = ΛN−Ñ , σ = 0 , (5.27)

where the former solution gives N− Ñ massive vacua and the latter applies to the conformal
regime.

There are two Higgs branches corresponding to 〈n1〉 6= 0 and 〈z′1〉 6= 0 in (5.17). The
former exists for m > Λ and m/Λ > (m̃/Λ)α whereas the conditions for the latter are
(m/Λ)1/α < m̃/Λ < 1. If n1 or z′1 develop VEVs we must work with Eq. (5.17), minimizing
Veff . This minimization was done in [23] and we refer the reader to this paper for further
details.

5.4 Non-BPS spectrum

In Sec. 4 we demonstrated that the spectrum of the zn model in the large-N limit coincides
with that of the HT model; the latter was discussed in detail in [23]. Here we will calculate
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Figure 3: Vacua of the HT model for N = 5, Ñ = 3 in the Cm̃ domain. All vacua localize near the
circle of radius m̃α in units of Λ.

the mass of the particles from the vector multiplet V . As was discussed above, there are
N − Ñ Λ-vacua in this model. Let us choose form Eq. (5.23) the real vacuum, namely,

√
2σ0 = Λ (5.28)

and consider field fluctuations around this vacuum (all Λ-vacua are physically equivalent).
The effective action for these fluctuations is

L = − 1

4e2
γ

F 2
µν +

1

e2
σ 1

(∂µReσ)2 +
1

e2
σ 2

(∂µImσ)2 + i
1

e2
λ

λ̄γµ∇µλ

+ iIm(b̄ σ) εµνF
µν − Veff(σ)− (iΓσ̄λ̄λ+ H.c.) . (5.29)

In the above formula the effective potential Veff(σ) is given by Eq. (5.15), while the gauge and
scalar couplings can be calculated from the corresponding one-loop Feynman diagrams. The
gauge field is coupled to the imaginary part of σ. Figure 4 displays the one-loop diagrams
which contribute to the mixing. All relevant calculations were carried out in [23]. Here, in
addition to these results, we find the mass of the photon from the vector multiplet.

19



γ σ

χ

Figure 4: One-loop diagrams which contribute to the the photon-scalar anomalous mixing.

Masses. For vanishing twisted masses the one-loop superpotential Eq. (5.15) takes the
following form:

V1−loop =
N

4π

(
−
(
iD + 2 |σ|2

)
log

2 |σ|2 + iD

Λ2
+ 2 |σ|2 log

2 |σ|2

Λ2

)

− Ñ

4π

(
−
(
iD − 2 |σ|2

)
log

2 |σ|2 − iD
Λ2

− 2 |σ|2 log
2 |σ|2

Λ2

)

+
N − Ñ

4π
iD . (5.30)

In the case of vanishing twisted masses we can approximately solve the vacuum equation on
the Coulomb branch,

N log
2|σ|2 + iD

Λ2
− Ñ log

2|σ|2 − iD
Λ2

= 0 . (5.31)

Near the vacuum
√

2σ = Λ we expect D to be small. Therefore, we can rewrite the above
equation as

N log

(
1 +

iD

2|σ|2

)
− Ñ log

(
1− iD

2|σ|2

)
+ (N − Ñ) log

2|σ|2

Λ2
= 0 . (5.32)

Then, Taylor-expanding and denoting

d =
iD

Λ2
, s =

2Re(
√

2σ − Λ)

Λ
, (5.33)

we get

d = −N − Ñ
N + Ñ

s . (5.34)
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Equation (5.30) can be rewritten in terms of new variables as

V1−loop =
NΛ2

4π

[
− s(α− 1)− (s+ 1)(α + 1) log(s+ 1)

+
(2sα + α + 1)

α + 1
log

(
2sα + α + 1

α + 1

)

+
α(2s+ α + 1)

α + 1
log

(
2s

α + 1
+ 1

)]
, (5.35)

where α is defined in Eq. (5.21). Using Eq. (5.34) we get, to the second order in s,

V1−loop =
(N − Ñ)2

2(N + Ñ)

s2Λ2

4π
. (5.36)

Next, we will canonically normalize the kinetic terms in Eq. (5.29). In particular, we do
a rescaling

Reσ → eσ 1(Reσ) .

As was shown in [23]

e2
σ 1 =

4π

(N − Ñ)Λ2
. (5.37)

Therefore, the mass of real part of sigma is

mσ1 = 2

√
N − Ñ
N + Ñ

Λ . (5.38)

Note that this expression has 1/N corrections since the vacua (5.23) are given to the leading
order in N . Due to supersymmetry the masses of the photon, fermion and scalar fields are
equal,

mγ = mλ = mσ . (5.39)

Notice that, as should be obvious from the discussion in Section 3, and as we confirmed
in this section with an explicit calculation, the full spectra of the zn model and the HT
model, including the non-BPS sector, are equivalent at the leading order in the large-N
approximation.

6 NLσM Description and Geometric Renormalization

As was first observed in Ref. [1], the HT and zn models have different metrics on their
respective vacua manifolds. In this section we will investigate perturbation theory of both
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models using a nonlinear sigma model (NLσM) description. We will consider in parallel
the geometry of the zn and HT models and study their one-loop renormalization in the
geometric language. We will also show that the Kähler potential of the HT model reduces
to that of the zn model in a certain limit.

From GLσM to NLσM . Let us first illustrate the main idea with a simple example.
We will review here how a vacuum manifold of the CP1 NLσM emerges from the gauged
description of the model in the limit when the gauge coupling(s) are sent to infinity.

The corresponding gauged linear sigma model (GLσM) Lagrangian for the CP1 model
in the superfields formalism reads

L =

∫
d4θ

((
|X1|2 + |X2|2

)
eV − rV +

1

e2
|Σ|2

)
, (6.1)

where X1, X2 are chiral multiplets, V is a twisted vector multiplet with field strength Σ, r is
the FI parameter, and e is the gauge coupling. One can see that the following term belongs
to the Lagrangian:

D(|x1|2 + |x2|2 − r) , (6.2)

which gives rise to the D-term constraint and it comes from the terms linear in V . Here
x1,2 are the bottom components of fields X1,2. The constraint modulo the U(1) symmetry
(C2−Z)//U(1), where Z is the locus of |x1|2 + |x2|2− r defines the vacuum target manifold
of the model. In this particular case is given by CP1 ' S2, the two-dimensional sphere of
radius r. By making the radius of the sphere very large we go into the flat limit and the
target manifold of the model should simply reduce to C1. However, this statement is not
evident from analyzing the D-term constraint (6.2). The reason for this is that X1 and X2

are not the true coordinates of the vacuum manifold, but their ratio is. Indeed, integrating
out V in (6.1) we get

L =

∫
d4θ r log

(
|X1|2 + |X2|2

)
. (6.3)

Now we need to fix the gauge in order to keep only physical degrees of freedom, doing this
we obtain the Kähler potential for the CP1 model

K = r log(1 + |X|2) , (6.4)

where X = X2/X1. Let us further do the rescaling X → X/
√
r and take the limit r → +∞.

What we get is
K = |X|2 , (6.5)

which corresponds to the flat metric on C. Note that one could have considered (6.4) and
instead of doing the rescaling expand the Kähler potential for fixed r at small values of
|X|2 and get the same result. It is, of course, a reflection of the equivalence of rescaling the
coordinates and metric. We will compare the HT and zn models later in this section using
small field expansion. In the following subsections we will get the vacuum manifolds for the
two models in question from their gauged descriptions which have been reviewed in Sec. 2.
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6.1 The zn model vs. the HT model

The following Lagrangian describes the zn model [1]

Lzn =

∫
d4θ

(
|Ni|2eV + |Zj|2|Ni|2 − rV +

1

e2
|Σ|2

)
, (6.6)

where we use the following chiral superfields

N i = ni +
√

2θαξiα + θ̄θF i , i = 1, . . . , N

Zj = zj +
√

2θαχjα + θ̄θF̃ j , j = 1, . . . , Ñ , (6.7)

vector field V in the Wess–Zumino gauge (θ1 = θ+ , θ2 = θ− and the same for dotted
components, see [20])

V = θ+θ̄+(A0 + A3) + θ−θ̄−(A0 − A3) + i
√

2σθ−θ̄+ + i
√

2σ̄θ+θ̄−

+
(
2iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) + H.c.

)
+ 1

2
θ4D , (6.8)

and the twisted chiral field Σ = D+D̄−V

Σ = σ + i
√

2θ+λ̄+ − i
√

2θ̄−λ− + θ+θ̄−(D − iF01) . (6.9)

Given the above superfield representations one can derive the full action of the zn model in
components (5.1).

Vacuum manifold of the zn model. Let us proceed with the geometric description of
the theory. Taking the limit e → ∞ and integrating out vector superfield V in (6.6) we
arrive at the following Lagrangian:

Lzn =

∫
d4θ

(
|Zj Ni|2 + r log |Ni|2

)
. (6.10)

Similarly to the CP1 case described above we need to get rid of the unphysical degree of
freedom which is present in the above expression. If we define 11

Φi =
Ni
NN

, i = 1, . . . , N − 1 ,

zj = r−1/2NNZj , j = 1, . . . , Ñ , (6.11)

we get the following Kähler potential for the zn model:

Kzn = r|ζ|2 + r log(1 + |Φi|2) , (6.12)

11Assuming NN 6= 0.
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where
|ζ|2 ≡ |zj|2(1 + |Φi|2) . (6.13)

Note that ζ is not a holomorphic variable in any sense. We use the notation (6.13) as a
shorthand. |ζ|2 is the only combination involving zj’s which is invariant under the global
symmetries (2.9) of the model. Needless to say, so is any power of |ζ|2.

The Kähler potential (6.12) describes geometry of the vacuum manifold of the zn model

in terms of (N + Ñ − 1) unconstrained complex variables. The global SU(N) is realized

nonlinearly much in the same way as in the CPN−1 model while the SU(Ñ) symmetry is

realized linearly on the zj fields. For Ñ = 1, the Kähler potential (6.12) reduces to that
describing the blow-up of the CN space at the origin [24]. In this case we can observe that
the SU(N) symmetry becomes manifest and is realized as the isometry of the target space
after the following redefinition:

|ζ|2 = |Ξi|2 , Ξ1 = z1 , Ξi = z1Φi , i = 2, . . . , N . (6.14)

In this case the Kähler potential takes the form

Kzn = r|Ξi|2 + r log |Ξi|2 . (6.15)

It is instructive to reiterate to make explicit all isometries of (6.12). For simplicity we
put N = 1, so that the second part of the action in (6.12) is, in fact, that of CP1. As is well
known, CP1 is invariant under nonhomogenious nonlinear transformations

Φ→ Φ + β + β̄ Φ2 , Φ̄→ Φ̄ + β̄ + β Φ̄2 , (6.16)

where β and β̄ are infinetissimal transformation parameters. This expresses the SU(2)/U(1)
invariance of the CP1 action. Indeed, under these transformations

1 + ΦΦ̄→
(
1 + ΦΦ̄

) (
1 + βΦ̄

) (
1 + β̄ Φ

)
(6.17)

implying Kähler transformations of log (1 + |Φ|2) under which the CP1 action is invariant.
Let us supplement (6.16) by the following holomorphic transformations of the variables zj

zj →
zj

1 + β̄ Φ
, z̄j →

z̄j
1 + β Φ̄

. (6.18)

We immediately confirm that |ζ|2 is invariant under the combined action of (6.16) and (6.18).
Here it is obvious that this is the only independent invariant of this type. Thus the observed
symmetry only allows polynomials in |ζ|2 in the Kähler potential.

Vacuum manifold of the HT model. Using the same notations for the superfields as
for the zn model we can formulate the HT model (2.10) as the following GLσM (e→∞):

LHT =

∫
d4θ

(
|Ni|2eV + |Zj|2e−V − rV

)
. (6.19)
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Using the same change of variables as in (6.11), after integrating out V in (6.19) we obtain
the Kähler potential for the HT model,

KHT =
√
r2 + 4r|ζ|2 − r log

(
r +

√
r2 + 4r|ζ|2

)
+ r log(1 + |Φi|2) . (6.20)

For N = 2, Ñ = 1, the Kähler potential (6.20) describes the so-called Eguchi–Hanson space

and was discovered by Calabi [25]. For generic Ñ the target manifold in question is the

O(−1)Ñ tautological fiber bundle over CPN−1. For a mathematical derivation of the Kähler
potential (6.20) see [26].

From the HT model to the zn model. At first sight the zn and HT models look
quite different, as much as their Kähler potentials (6.12) and (6.20). This is indeed the case,
but there is a domain of the target space where they reduce to the same model. As we
have already mentioned, the target manifold of the HT model is the total space of the Ñ -th
power of the tautological bundle over CPN−1. Thus this is a noncompact manifold with Ñ
noncompact directions.

We will now make a more quantitative comparison of the two models. Let us consider
Eq. (6.20) at small values of |ζ|2. The result of the small |ζ|2-expansion depends on the sign
of the FI parameter r. Below we will consider both branches.

(i) r > 0: For small |ζ|2 we can Taylor-expand around |ζ|2 = 0 and observe that the
Kähler potential (6.20) in the second order in |ζ|2 takes the form

KHT = r|ζ|2 + r log(1 + |Φi|2) +O(|ζ|4) , (6.21)

This Kähler potential coincides with the one (6.12) of the zn model.

(ii) r < 0: Small-|ζ|2 expansion gives the following Kähler potential:

KHT = r|ζ|2 − r log(1 + |̃zj|2) +O(|ζ|4) , (6.22)

where 12

z̃j =
Zj
ZÑ

j = 1, . . . , Ñ − 1. (6.23)

This model corresponds to the dual zn sigma model with CPÑ−1 as the base manifold. One
can rewrite its Kähler potential as follows

Kz̃n = r|Ni|2(1 + |̃zj|2) + r̃ log(1 + |̃zj|2) , (6.24)

where r̃ = −r > 0. This manifold has N noncompact and Ñ compact directions. As we will
see later, the one-loop β function (or first Chern class of the bundle) will be proportional in

12Again, it assumed that ZÑ 6= 0.
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this case to N − Ñ . Once we start with the HT model (6.20) with N > Ñ , corresponding

to the asymptotically free theory, N − Ñ will be positive, which will entail growth of the
FI parameter r̃ along the RG flow. Thus the dual zn model is not asymptotically free, but
rather IR free. In what follows we will only concentrate on the first case r > 0.

Thus far we considered small values of |ζ|2. On the contrary, at large values of |ζ|2, as
can be seen from Eqs. (6.12) and (6.20), the two models behave differently. As was shown
in [1], in this limit the zn model has vanishing scalar curvature, whereas the HT model has
not.

One can see from (6.21) that in the leading order the HT and zn models have the same
Kähler potential,

KHT = Kzn +O(|ζ|2) . (6.25)

This observation suggests that at one loop, in the leading order in |ζ|2 the two models have
the same one-loop β functions. Nevertheless, beyond one loop one expects the theories to
have different β functions. Moreover, even at one loop for large values of |ζ|2 the two models
get different corrections. We will give explicit expressions later on in this section.

6.2 Perturbation theory

For any Kähler nonlinear sigma model with the Kähler metric gi̄ and coupling constant g
the Gel-Mann–Low functional (in what follows we shall call it β function for short) reads [27]

βi̄ = a(1)R
(1)
i̄ +

1

2r
a(2)R

(2)
i̄ + . . . , (6.26)

where a(k) are some constants (k = 1, 2, ...) and R(k) are operators composed from k-th power
of the curvature tensors (see e.g. (6.27)). According to the above series a contribution from
the nth loop scales as r1−n. For the metric of a general form the first several terms are
known. The first two of them are

R
(1)
i̄ = Ri̄ ,

R
(2)
i̄ = Rik̄lm̄R

k̄ lm̄
̄ . (6.27)

In supersymmetric sigma models, however, most of the coefficients a(k) from (6.26) vanish.
For example, in supersymmetric CPN−1 sigma model all terms except the first one in (6.26)
are zero [28]. The calculation was based on the instanton counting [29] and the coefficients
of the β function were expressed in terms of the number of the zero modes.

The common lore in perturbation theory of nonlinear sigma models suggests that for
generic Kähler manifolds the theory is nonrenormalizable, as each order in the perturbation
series (6.26) brings in a new operator, with a different field dependence. For some particular
symmetric target manifolds e.g. for the Einstein manifolds, no new structures are produced.
The renormalization is merely reduced to a single coupling constant renormalization. It is
easy to see that the HT and zn model target spaces are not of this kind and all terms in the
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series (6.26) have different field dependence. However, let us have a closer look the one-loop
perturbation theory and see how we can deal with the above mentioned nonrenormalizability.

One-loop renormalization of the Kähler potential in the zn model. For a Kähler
manifold with the Kähler potential K(zi, z̄i) the metric is given by

gi̄ = ∂i∂̄̄K(zi, z̄i) , (6.28)

while all other components (such as gij = 0) vanish. The corresponding Ricci tensor is
therefore a total derivative and is given by

Ri̄ = −∂i∂̄̄ log det(gi̄) . (6.29)

For Einstein manifolds Ricci tensor is proportional to the metric, therefore

− log det(gi̄) = αK(zi, z̄i) (6.30)

up to a Kähler transformation. For instance, for the CPN−1 model the coefficient α in the
above formula is equal to N . As we emphasized previously, for the CPN−1 model this result
is exact: higher loops do not give any corrections to the β function.

Let us now examine the curvature tensors for the zn model. It turns out that the
calculation of the determinant of the metric tensor can be performed exactly for any N and
Ñ ; the answer is more intricate in the HT model. After some calculations we get13

− log det(g
(zn)
i̄ ) = (N − Ñ) log(1 + |Φi|2)− (N − 1) log(1 + |ζ|2) . (6.31)

Let us at this point derive the same quantity for the HT model in order to show how its
one-loop result deviates from the one for the zn model. For the HT model a generic formula
is harder to get, we therefore focus on an example for, say, N = 2, Ñ = 1. One gets

− log det(g
(HT)
i̄ ) = log(1 + |Φi|2)− log

(
1 +

r√
r2 + 4r|ζ|2

)
. (6.32)

This expression obviously gives a different correction to the Kähler potential.
Formula (6.31) means that the Kähler potential acquires an infinite correction and be-

comes

K(1)
zn =

(
r0 −

N − Ñ
2π

log
M

µ

)
log(1 + |Φi|2) + |ζ|2 +

N − 1

2π
log

M

µ
log(1 + |ζ|2) , (6.33)

where M is the UV cutoff and µ is the normalization scale. We immediately see that the
target manifold of the zn model is not of the Einstein type. We can also see that in order to
eliminate the divergence in the last term in the above formula one has to introduce a new
counterterm.

13This result holds up to an additive constant which depends on r. Since the Ricci tensor is a total deriva-
tive we can allow such a freedom. Certainly we can also change this expression by a Kähler transformation.
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A side remark. There exist the so-called quasi-Enstein manifolds or Ricci solitons, for
which the following equality takes place:

Ri̄ = αgi̄ + ∂iv̄̄ + ∂̄̄vi (6.34)

for some vector field v. None of the manifolds considered in this paper are of this kind.
Indeed, one can check that Kählerian structure imposes constraints on the vector field v
which are not satisfied in either zn or HT models. Quasi-Einstein Kähler manifolds had
been investigated by a number of mathematicians as well as physicists. It was shown by
Friedan [30,31], who carried out a stability analysis of RG equations at one loop, that a fix
point of the RG flow has to be a quasi-Einstein manifold. Quasi-Einstein manifolds are quite
hard to find explicitly, for most of the known cases their Kähler potentials are known only
implicitly and in quadratures (see e.g. [26] and references therein for examples related to our

work). However, in the special case of N = Ñ = 1 one can specify the metric explicitly. Its
only nonzero component is given by (see [26])

gRS =
r

1 + |z|2
, (6.35)

where z is a coordinate on the target manifold. Note that for N = Ñ = 1 the zn model is
trivial: it has C as its target space, whereas the HT model has a nontrivial metric 14

gHT =
r√

1 + |z|2
. (6.36)

Based on the arguments given in [30,31] the HT model in this case should flow to the space
with metric (6.35). Studying the fixed points of the RG flow in NLσMs is an interesting
question, but it is beyond the scope of the present paper. Hence we return to the one-loop
renormalization of the zn model.

Renormalization of the FI parameter. The first part of the renormalization procedure
is similar to the CPN−1 model. Indeed, we can extract from the first term the coupling
constant renormalization

rren(µ) = r0 −
N − Ñ

2π
log

M

µ
. (6.37)

The so-called dimensional transmutation occurs at the scale Λ, when the theory becomes
strongly coupled, (rren(Λ) = 0),

r0 =
N − Ñ

2π
log

M

Λ
. (6.38)

14Note that this metric appears on the Higgs branch of the theory when two twisted masses collide (the
Argyres–Douglas point) [18]. The space is asymptotically C/Z2.
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Note that this does not happen for N = Ñ , the FI parameter remains unchanged and the
theory has an IR conformal fixed point.

It was shown in [26] that the first Chern class of the Ñ -th power of the tautological fiber
bundle over CPN−1, or in our notation the target space of the HT model, restricted to the
base is given by

c1(MHT)
∣∣∣
CPN−1

= (N − Ñ) [ωCPN−1 ] , (6.39)

where [ωCPN−1 ] denotes the Kähler class of CPN−1. In the above calculations this fact is
reflected by (6.37). Since in the N = (2, 2) supersymmetric theories the Kähler class is
only renormalized at one loop [32, 30], (6.37) represents the exact answer for the FI term
renormalization. Unfortunately one cannot say much about the exact part of the Kähler
form. Generally speaking, it is known to be modified at every order in perturbation theory
and its structure is unpredictable unless we carry out an explicit calculation. We will place
some argument in the next paragraph about renormalization of such terms at small |ζ|2.

At this point we can make a connection with the GLσM one-loop computation (3.11). We
have mentioned earlier that in the GLσM formulation at finite value of the gauge coupling
e there are only two divergent one-loop graphs which are regularized by the UV cutoff – the
tadpoles emerging from the D-term constraint. The FI renormalization (3.11) was obtained
after calculating these tadpoles. Equation (6.37) confirms this by the corresponding NLσM
calculation performed above. One may now ask if we can trace the origin of the remaining
terms in the one-loop β function, like the last term in (6.31)?

The answer is quite tricky, we will sketch a part of it here. One needs to look more
carefully at the perturbation theory at finite e. There will be one-loop (and also higher loop)
graphs which will have log(µ/e), where µ is the IR cutoff (it appears from propagation of
light fields in the loops). After we make a transition from the GLσM to the NLσM by
increasing e, we will hit the UV cutoff on the way e ∼M . In NLσM we identify M = e.

This argument shows us how additional structures, which were not present in the genuine
UV domain of the GLσM (i.e. the domain above e) appear in the geometrical renormaliza-
tion. From the standpoint of the finite-e GLσM they are of the infrared origin.

Below we will analyze the renormalization of the linear term in |ζ|2 in (6.33).

Renormalization of the non-Einstein part. Equation (6.31) gives the exact one-loop
answer for the β function of the zn sigma model (after applying ∂i∂̄̄ to it). Nevertheless
it is instructive to understand how the linear term in |ζ|2 (and higher order terms as well)
appear in perturbation theory in geometric formulation. At small |ζ|2 one can expand the
logarithm in the last term in Eq. (6.31) to get

− log det(gi̄) = (N − Ñ) log(1 + |Φi|2)− (N − 1)|ζ|2 +O(|ζ|4) . (6.40)

Using (6.33) and the coupling renormalization (6.37) we obtain for the |ζ|2 term

K(1)
zn ⊃ |ζ|2

(
1 +

1

r

N − 1

2π
log

M

µ

)
= Z|ζ|2 . (6.41)
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Therefore we can absorb this Z factor by redefining |ζ|2 → |ζ|2/Z. The contribution (6.41)
arises in the following calculation. Since the general structure of the effective action is already
known, we can perform a calculation at any point in the target space. It is convenient to
choose the background field ni → 0 (while, at the same time, ∂inj 6= 0). Then, as well-
known, the logarithmically divergent contribution comes only from the tadpole graphs of the
type depicted in Fig. 5. In the one-loop tadpole graphs the contributions of the second and

Figure 5: Tadpole graphs determining logarithmically divergent contributions to the β function
near the origin of the CPN−1 space. Two contributions are considered in the text: (a) the dashed
line represents the zj fields, while the solid line ∂n̄∂n; and (b) the dashed line represents the ni
fields, the solid line ∂z̄∂z.

first terms in (6.12) in the effective action are completely untangled from each other. The
second term produce just the standard CPN−1 renormalization of r,

rren(µ) = r0 −
N

2π
log

M

µ
, (6.42)

cf. Eq. (3.9). Now, let us examine the impact of the first term in (6.12). There are two
options. We can choose ∂n̄∂n as the background and let zj propagate in the loop (option
(a) in Fig. 5) or vice versa. The first option obviously produces

∆K
(1)
(a) =

Ñ

2π
log

M

µ
|Φi|2 , (6.43)

which results in the following term in the renormalized Kähler potential

Ñ

2π
log

M

µ
log
(
1 + |Φi|2

)
. (6.44)

The difference in signs compared to (6.42) appears from the very beginning. Combining
(6.42) and (6.44) we recover (3.9) or (6.37). The second option, with the ni fields are in the
loop, leads us to

∆K
(1)
(b) =

N − 1

2π
log

M

µ

Ñ∑
j=1

|zj|2 (6.45)
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which in turn gives
N − 1

2π
log

M

µ
|ζ|2 . (6.46)

In the course of the RG flow from the UV cut-off M down to µ the first term in the Kähler
potential (6.12) acquires the following Z factor

|ζ|2 → Z|ζ|2 , Z = 1 +
N − 1

2π
log

M

µ
. (6.47)

Thus we can see that at small values of |ζ|2 the theory can be renormalized at one loop and
no counterterm is needed. This is, however, not the case for higher order terms.

7 Conclusions

In this paper we extensively studied the effective theory on semilocal non-Abelian flux tubes
in N = 2 SQCD. We continued the developments of [1] where an explicit exact Lagrangian
of the corresponding two-dimensional theory (zn model) was derived in a genuinely field
theoretic setup. The analysis we have performed in this work for the zn model has been
carried out in parallel with the HT model [2]. The latter was found on semilocal vortices in a
D-brane setup. The bottom line of our investigation is that only the BPS sector is correctly
reproduced by the HT model; the one-loop β functions of zn and HT models coincide. The
one-loop β function exhausts the renormalization of the FI term, which means that the exact
twisted superpotentials and the BPS spectra of the two models are the same. This result
represents the first proof, carried exclusively in a field theory context, of the correspondence
of the BPS spectra between four dimensional N = 2 SQCD and the effective theory on
the semilocal vortices therein constructed. We also show that the HT and zn model are
equivalent in the large-N(Ñ) approximation.

The physics beyond the BPS sector is however different. The difference between the zn
and HT models becomes clear when we look at the perturbation theory in the geometric
formulation. First of all, the target manifolds of the two models are different, hence their
perturbation series do not coincide. We managed to single out a “corner” in the target space
of the two models where the metrics look the same at the leading order in the FI parameter
(alternatively, in the vicinity of the origin in the noncompact subspace, see Sec. 6) for details).
However, far from the origin renormalization coefficients are completely different. Speaking
geometrically, the zn model is a deformation of the HT model in terms of deforming the
sections of the bundle (Eqs. (6.31) and (6.32) illustrate this).

Contrary to the case of the CPN−1 model, where one-loop renormalization can be com-
pletely understood in terms of a single coupling renormalization (the Kähler class, or the
FI term), which is also one-loop-exact, this is not the case both in the zn and HT models.
It occurs because both target manifolds are non-Einstein, hence the Ricci tensors (which
give the one-loop β functions) are not proportional to the metric. Nevertheless, due to nice
geometric properties of the fiber bundles (recall that the HT model lives on the total space
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of the tautological bundle for CPN−1), the first Chern class of this bundle is proportional
to the Kähler class with exactly the right coefficient which also appears in the one-loop
renormalization of the FI term.

As we discussed in Sec. 3 in the GLσM formulation of both zn and HT models there
are only two divergent graphs (tadpoles), which contribute to the renormalization of the FI
parameter (3.9). However, according to the result (6.31), in the NLσM formulation the
one-loop renormalization consists not only of the FI shift, but also from the wavefunction
renormalization of ζ. Moreover, an additional counterterm is needed in order to fully absorb
the one-loop divergence. It is interesting if we relate the two perturbation series in any phys-
ically meaningful way. The answer to this question may be negative as, generally speaking,
perturbations around a GLσM fixed point (small gauge coupling) and NLσM perturbation
theory are different. Moreover, the limit e→∞ leads us away from the perturbative regime
of the corresponding GLσM . Still, more detailed perturbative analysis of the gauge theory
at finite e is required in order to better understand which Feynman graphs contribute to the
UV divergences. This is a suggestive topic for the future research.
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