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We use Soft Collinear Effective Theory (SCET) to analyze the transverse momentum broadening,
or diffusion in transverse momentum space, of an energetic parton propagating through quark-
gluon plasma. Since we neglect the radiation of gluons from the energetic parton, we can only
discuss momentum broadening, not parton energy loss. The interaction responsible for momentum
broadening in the absence of radiation is that between the energetic (collinear) parton and the
Glauber modes of the gluon fields in the medium. We derive the effective Lagrangian for this
interaction, and we show that the probability for picking up transverse momentum k⊥ is given by
the Fourier transform of the expectation value of two transversely separated light-like path-ordered
Wilson lines. This yields a field theoretical definition of the jet quenching parameter q̂, and shows
that this can be interpreted as a diffusion constant. We close by revisiting the calculation of q̂ for
the strongly coupled plasma of N = 4 SYM theory, showing that previous calculations need some
modifications that make them more straightforward and do not change the result.

I. INTRODUCTION

One of the central discoveries made in experimental
heavy ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven National Laboratory is that
the droplets of quark-gluon plasma produced in these
collisions are sufficiently strongly coupled that they are
able to “quench jets” [1–4]. That is, when a very en-
ergetic quark or gluon (energetic enough that if it were
in vacuum it would manifest itself as a jet, and with
an energy that is much greater than the temperature of
the medium in which it finds itself) plows through the
strongly coupled plasma, it loses sufficient energy that
few high momentum hadrons are seen in the final state.
This phenomenon manifests itself in many observables,
including a depletion of the overall number of high trans-
verse momentum hadrons and the absence of high trans-
verse momentum hadrons back-to-back with a single high
momentum hadron that the experimentalists have trig-
gered on. The suite of observables collectively referred to
as jet quenching makes it possible to study how parton
fragmentation is affected by the presence of a strongly
coupled plasma and of how the medium responds to the
energy and momentum that a fragmenting parton dumps
into it. After a very energetic parton is produced, unless
it is produced at the edge of the fireball heading outwards
it must propagate through as much as 5-10 fm of the hot
and dense medium produced in the collision. Because the
production cross-sections for hard partons are well deter-
mined (both by perturbative QCD calculations and by
experimental measurements in proton-nucleus collisions)
these hard partons serve as well-calibrated probes of the
strongly coupled plasma whose properties we are inter-
ested in. At present at RHIC, the highest energy partons
that are available for use as probes of the medium have
transverse momenta of several tens of GeV. When heavy
ion collision experiments begin at the Large Hadron Col-
lider at CERN in Geneva, experimentalists there will be
able to study the interaction of partons with a few hun-

dred GeV momenta with the medium produced in those
collisions.

The presence of the strongly coupled medium results
in the hard parton losing energy and changing the di-
rection of its momentum. The change in the direction
of its momentum is often referred to as “transverse mo-
mentum broadening”, a phrase that needs explanation.
“Transverse” here and throughout the remainder of this
paper means perpendicular to the original direction of
the hard parton. (In the preceding paragraph, we used
“transverse” in its more standard sense, meaning per-
pendicular to the beam direction.) “Broadening” refers
to the effect on a jet when the directions of the momenta
of many hard partons within it are kicked; averaged over
many partons in one jet, or perhaps in an ensemble of
jets, there is no change in the mean momentum but the
spread of the momenta of the individual partons broad-
ens.

In the high parton energy limit, the parton loses en-
ergy dominantly by inelastic processes that are the QCD
analogue of bremsstrahlung: the parton radiates gluons
as it interacts with the medium. It is a familiar fact
from electromagnetism that bremsstrahlung dominates
the loss of energy of an electron moving through matter
in the high energy limit. The same is true in calculations
of QCD parton energy loss in the high-energy limit, as
established first in Refs. [5–7]. The hard parton under-
goes multiple inelastic interactions with the spatially ex-
tended medium, and this induces gluon bremsstrahlung.
It is crucial to the calculation of this radiative energy
loss process that the incident hard parton, the outgoing
parton, and the radiated gluons are all continually be-
ing jostled by the medium in which they find themselves:
they are all subject to transverse momentum broadening.

The transverse momentum broadening of a hard par-
ton is described by P (k⊥), defined as the probability that
after propagating through the medium for a distance L
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the hard parton has acquired transverse momentum k⊥.
1

P (k⊥) depends on L, but we shall not make this depen-
dence explicit in the notation. For later convenience, we
shall choose to normalize P (k⊥) as follows:

∫

d2k⊥
(2π)2

P (k⊥) = 1 . (1.1)

From the probability density P (k⊥), it is straightforward
to obtain the mean transverse momentum picked up by
the hard parton per unit distance travelled (or, equiva-
lently in the high parton energy limit, per unit time):

q̂ ≡ 〈k2⊥〉
L

=
1

L

∫

d2k⊥
(2π)2

k2⊥P (k⊥) . (1.2)

The quantity q̂ is called the “jet quenching parameter”
because it plays a central role in calculations of radia-
tive parton energy loss [6–12], reviewed in Refs. [13–20].
Consequently, q̂ is thought of as a (or even the) property
of the strongly coupled medium that is “measured” (per-
haps constrained is a better phrase) by radiative parton
energy loss and hence jet quenching. But, it is important
to note that q̂ is defined via transverse momentum broad-
ening only. Radiation and energy loss do not arise in its
definition, although they are central to its importance.
The calculation of parton energy loss and transverse

momentum broadening involves widely separated scales.
The energy of the hard parton arises in both, as does
the soft scale T characteristic of the medium. In the
case of radiative parton energy loss, the momentum of
the radiated gluon transverse to that of the incident par-
ton represents a third, intermediate, scale. We can ulti-
mately hope for a factorized description, with physics at
each of these scales cleanly separated at lowest nontriv-
ial order in a combined expansion in the small ratio be-
tween these scales and in the QCD coupling α evaluated
at scales which become large in the high parton energy
limit. And, most importantly, we can aspire to having a
formalism in which corrections to this factorization are
calculable systematically, order by order in these expan-
sions. No current theoretical formulation of jet quench-
ing calculations is manifestly systematically improvable
in this sense. In this paper we take a small step to-
ward such a description: we formulate the calculation
of transverse momentum broadening and the jet quench-
ing parameter in the language of Soft Collinear Effective
Theory (SCET) [21] which has rendered the calculation
of many other processes involving soft and collinear de-
grees of freedom systematically improvable. We are fol-
lowing in the footsteps of Idilbi and Majumder [22], who

1 Throughout this paper, k⊥ is the two-dimensional vector ~k⊥
in transverse momentum space; we shall drop the vector sym-
bol for notational convenience. When we write d2k⊥ we mean
dkxdky. And, k2⊥ will mean ~k⊥ ·~k⊥. We will also represent two-
dimensional vectors in transverse coordinate space by x⊥ and
y⊥, again without the vector symbols.

made the first attempt to extend SCET to describe hard
jets in a dense medium and in so doing realized that
transverse momentum broadening is induced by the in-
teraction between the hard parton and gluons from the
medium whose lightcone momenta are much softer than
T . Gluons in this kinematic regime, which we shall define
precisely in Section II, are conventionally called “Glauber
gluons”. The analysis of Ref. [22] builds upon the earlier
analysis of transverse momentum broadening in Ref. [23].

In Section II, we use the formalism of SCET to set up
the problem of transverse momentum broadening with-
out radiation. We reproduce the result of Ref. [22] that
Glauber gluons are responsible. Extending the calcula-
tion to include radiation, and hence parton energy loss,
is an obvious next step, but we leave it to future work.
(Note that neglecting radiation is not justified by any
controlled approximation.) Sections III, IV and V con-
tain our calculation of P (k⊥). In Section III we use the
optical theorem to relate P (k⊥) to suitable forward scat-
tering amplitudes. In Section IV we use SCET to set
up the effective Lagrangian and Feynman rules needed
to evaluate the relevant amplitudes, and in Section V we
complete the computation. The result we obtain agrees
with an expression first obtained by Casalderrey-Solana
and Salgado and by Liang, Wang and Zhou using differ-
ent methods [17, 24]. The bigger payoff from a SCET
calculation will come once radiation is included and once
the analysis is pushed beyond the present leading order
calculation.

With P (k⊥) in hand, it is easy to obtain the jet quench-
ing parameter q̂, as we describe in Section VI. We find
that P (k⊥), and hence q̂, are determined by the ther-
mal expectation value of the trace of the product of
two light-like Wilson lines separated by a distance x⊥
in the perpendicular direction, which we denote W(x⊥).
P (k⊥) is in fact the Fourier transform of this quantity.
Note that W(x⊥) depends only on the properties of the
strongly coupled medium. It is independent of the en-
ergy of the hard parton, meaning that so are P (k⊥) and
q̂ in the limit in which this hard parton energy is taken
to infinity. Transverse momentum broadening without
radiation thus does “measure” a field-theoretically well-
defined property of the strongly coupled medium. This
is the kind of factorization that we hope to find in a
systematically improvable calculation once radiation is
included.

Crucially, and as a consequence of our field-theoretical
formulation, we find that the ordering of operators in the
expectation valueW(x⊥) is not that of a standardWilson
loop — the operators (like the color matrices) are path
ordered, whereas in a standard Wilson loop operators
are time ordered. This subtlety, which had not been no-
ticed previously in the present context although the same
ordering does arise in a different kinematic regime [25],
throws into question the calculation of q̂ in the strongly
coupled plasma of large-Nc N = 4 supersymmetric Yang-
Mills (SYM) theory reported in Refs. [26, 27]. In Section
VII we therefore use gauge/gravity duality to repeat this
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calculation. The subtleties introduced in the gravity cal-
culation, corresponding to the subtlety of operator order-
ing in the field theory, turn out not to change the results
of Ref. [26] for W(x⊥) and q̂ in N = 4 SYM theory. In
fact, they solidify these results since it now turns out
that there is only one extremized string world sheet that
is bounded by the light-like Wilson lines, and it is the
one identified on physical grounds in Refs. [26, 27].
In Section VIII we look ahead to future work.

II. SET-UP AND KINEMATICS

Consider an on-shell high energy parton with initial
four momentum2

q0 ≡ (q+0 , q
−
0 , q0⊥) = (0, Q, 0) (2.1)

propagating through some form of QCD matter, which
for definiteness we will take to be quark-gluon plasma
(QGP) in equilibrium at temperature T although the
discussion of this paper would also apply to propagation
through other forms of matter. We will assume through-
out that Q is very much larger than the highest momen-
tum scales that characterize the medium, which for the
case of QGP means Q ≫ T . Thus, we have a small
dimensionless ratio in our problem:

λ ≡ T

Q
≪ 1 . (2.2)

Although as we have already noted we will use much
of the SCET formalism developed by Idilbi and Ma-
jumder [22], there are important differences between our
use of this formalism and theirs. First, we shall analyze
the propagation of the high energy parton in the frame
in which the medium through which it is propagating is
at rest whereas they work in the Breit frame, as appro-
priate for their analysis of deep inelastic scattering on
large nuclei. Second, our definition (2.2) differs from the
choice of λ made in Ref. [22]. In their case, they choose λ
such that λ2Q is somewhat greater than the characteris-
tic momentum scale of the partons in the nuclear medium
that they analyze whereas we have defined λ such that
λQ = T .
Our goal is to characterize the transverse momentum

broadening of the hard parton by computing P (k⊥),
the probability density for the transverse momentum
k⊥ acquired by the hard parton after it has propagated
through the medium for a distance L. In the high energy
limit (2.2), there are three distinct contributions to the
transverse momentum broadening of the hard parton:

1. Generic gluons in the medium, which we shall call
soft gluons, have momenta

ps ∼ (T, T, T ) ∼ Q(λ, λ, λ) . (2.3)

2 The light cone coordinates are defined by q± = 1√
2
(q0 ± q3).

After the hard parton absorbs (or emits) a soft
gluon from (into) the medium, its momentum be-
comes ∼ Q(λ, 1, λ). This means that it has picked
up transverse momentum of order λQ ∼ T . In ad-
dition, however, the hard parton has been kicked
off-shell by of order λQ2, meaning that this pro-
cess is suppressed by a coupling αs(

√
TQ), which

is small in the high energy limit (and, plausibly,
for jets with Q > 100 GeV in nucleus-nucleus colli-
sions at the LHC.) Subsequently, the off-shell par-
ton radiates a gluon or gluons, possibly with mo-
menta ∼ Q(λ, 1,

√
λ). A future analysis of these

processes (which are suppressed by powers of a per-
turbative αs but may nevertheless make an impor-
tant contribution to radiative parton energy loss
because the medium is dominantly soft gluons) will
require adding modes with momenta ∼ Q(λ, 1, λ),

and possibly ∼ Q(λ, 1,
√
λ), to the effective theory,

namely modes that are not soft and are also not the
collinear or Glauber modes to which we now turn.

2. The hard parton can absorb (or emit) gluons from
(into) the medium that are parametrically softer
than (2.3). This induces momentum broadening
without radiation. Specifically, consider gluons
from the medium with momenta

p ∼ Q(λ2, λ2, λ) , (2.4)

which are normally called “Glauber gluons”. After
absorbing or emitting Glauber gluons, the momen-
tum of the hard parton is of order

q ∼ Q(λ2, 1, λ) . (2.5)

We shall refer to modes with momenta of this para-
metric order as “collinear”. As above, the momen-
tum broadening is of order λQ ∼ T . But, here the
parton is only off-shell by of order λ2Q2 ∼ T 2. Fur-
ther absorption or emission of Glauber gluons keeps
the parton off-shell by of the same order.3 And yet,
repeated absorption and emission of Glauber glu-
ons continually kicks the hard parton and can re-
sult in significant transverse momentum broaden-
ing. The interaction vertex of each Glauber gluon
with the parton is governed by αs(T ) and so can
be strongly coupled. At a heuristic level, one can
imagine Glauber gluons as a gluon background sur-
rounding the parton and as a result of frequent

3 As does absorption or emission of modes with momenta ∼

Q(λ2, λ2, λ2), which are conventionally referred to as “ultrasoft.”
Since in the present context they introduce no distinct physical
effects, they are simply a subset of the Glauber modes and thus
are included in our analysis. So too are all modes whose momenta
are proportional to even higher powers of λ. Interestingly, modes
with momenta ∼ Q(λ2, λ, λ) also introduce no distinct physical
effects. They are not conventionally called Glauber gluons, but
our analysis of Glauber gluons applies to them also.
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small kicks from this background, the parton will
undergo Brownian motion in momentum space. We
shall see that in the high energy limit the trajectory
of the parton in position space is not affected.

3. The initial hard parton, with a collinear momen-
tum q as in (2.5), can fragment into two collinear
partons each with momenta of this order. Since all
three partons have virtuality of order λ2Q2 ∼ T 2,
this radiative process is not suppressed by any per-
turbatively small αs. (Although fragmentation can
occur in vacuum, in the medium the rate for this
process will be modified, as all three partons are
continually interacting with the Glauber gluons
from the medium.) This radiative process is the
dominant contribution to parton energy loss. It
also contributes to transverse momentum broaden-
ing, but we defer the calculation of this contribution
to the future, focussing in this paper on momentum
broadening in the absence of radiation, as in 2. We
also defer consideration of the case where the ini-
tial parton itself is far off-shell, and consequently
radiates.

Let us recapitulate. Processes 1, 2 and 3 all yield
transverse momentum broadening. We neglect process
3 in this paper, deferring the case where the number of
collinear particles increases to a future analysis of ra-
diative parton energy loss. Process 1 is suppressed by
αs evaluated at a high momentum scale meaning that in
the Q→ ∞ limit process 2 makes a larger contribution to
momentum broadening. With this justification, we shall
neglect process 1 throughout this paper. But, process 2
is triggered by the Glauber gluons in the medium, and
these are less numerous than the soft gluons that are the
generic modes in the plasma. So, even though process
2 dominates process 1 in the strict Q → ∞ limit, pro-
cess 1 may be relevant at the values of the hard parton
momentum Q that are accessible at RHIC and the LHC.
Clearly, before data can be confronted all 3 processes
must be included. We focus on non-radiative momen-
tum broadening in the Q → ∞ limit in this paper both
because it is the easiest case to handle and because it
provides the natural context in which the jet quenching
parameter arises.
We shall be interested in a hard parton with initial mo-

mentum Q(0, 1, 0) that interacts repeatedly with Glauber
gluons; after the first such interaction the hard parton
momentum is of order Q(λ2, 1, λ), namely collinear.
Before beginning our analysis, we should explain why

we neglect gluons from the medium whose momenta scale
with λ in some way other than the Glauber gluons (that
we include) or the soft gluons (whose neglect we have
explained above). Gluons in the medium for which some
momentum component scales like a positive power of Q
are in principle present but they are suppressed by an
exponentially small Boltzmann factor in the λ → 0 high
energy limit, and can safely be neglected. The only other
case to consider is gluons in the medium with momenta

∼ Q(λ, λ2, λ). Interaction with these gluons from the
medium increases the virtuality of the hard parton in
the same way that interaction with the soft gluons does,
and so should be treated in an analysis beyond that in
this paper which includes radiative processes.
We shall use the language of Soft Collinear Effective

Theory (SCET) [21] to set up this problem, since in the
λ→ 0 limit we have a natural separation of scales, and a
natural organization of the modes into kinematic regimes:
collinear, soft, and Glauber. The problem that we ana-
lyze in this paper really does not use the full power of
SCET, however, since we shall only work to lowest non-
trivial order in λ and in αs evaluated at any scale higher
than T . Including radiative processes and the interac-
tion with the soft gluons that is suppressed by αs(

√
TQ)

would exercise more of the machinery of SCET than our
analysis of transverse momentum broadening in the ab-
sence of radiation will.
In our analysis we will essentially consider the Glauber

gluon insertions as external background fields and aver-
age them over the thermal ensemble only at the end of
the calculation. That is, we first consider the propaga-
tion of the hard parton in the presence of one background
field configuration, analyzing this problem including arbi-
trarily many interactions with the background field. The
nonperturbative physics of the medium does not enter
this calculation. We shall then stop, leaving unevaluated
in our answer the quantity that arises that does depend
on the physics of the medium, namely the jet quenching
parameter q̂. As we shall show, q̂ is determined by an av-
erage of certain light-like Wilson lines over background
field configurations drawn from a thermal ensemble. If
the medium is weakly coupled, this average should be
perturbatively calculable in thermal field theory. If the
medium is strongly coupled, the only nonperturbative
method we know of evaluating this thermal average is
gauge/gravity duality. In Section VII we revisit the com-
putation of q̂ in strongly coupled N = 4 Supersymmetric
Yang-Mills theory.

III. OPTICAL THEOREM AND TRANSVERSE

MOMENTUM BROADENING

Our goal is to compute the probability distribution
P (k⊥), normalized as in (1.1), which is the probability
for the hard parton to have acquired transverse momen-
tum k⊥ after its propagation through the medium for
a distance L. The field theory tools we use to perform
this computation are the S matrix and the optical the-
orem. In particular, we cut the forward scattering am-
plitude to get the total probability for any interaction to
have occurred. If we add to this the probability that the
hard parton propagates a distance L through the medium
without any interaction, we must obtain 1.
We shall imagine a cubic box with sides of length L

that is filled with the medium, and that satisfies periodic
boundary conditions. This leads to the quantization of
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q′0q′1q′m−1q0 q1 qn−1 k k

p′1p′2p′m−1p′mpnpn−1p2p1

y′1y′2y′m−1y′mynyn−1y2y1

FIG. 1: Leading diagram for the transverse momentum broadening of a hard (collinear) parton, in the absence of any radiation.
All the gluons are Glauber gluons. We shall assume that all the Glauber gluons are drawn from an equilibrium thermal
ensemble, neglecting the possibility that earlier interactions of the hard parton with the medium may change the medium in
some way that affects the hard parton through later interactions. That is, we are neglecting the possibility that the way that
the medium recoils could influence the distribution of gluons seen by the hard parton.

momenta

p =
2π

L
(n1, n2, n3) , (3.1)

for integers ni. We consider a single-particle in state de-
scribing the incident hard parton. Because we are ignor-
ing radiation, the only out states that we need consider
are also single-particle states, which we shall label by
the quantized three-momentum p and a discrete set of
quantum numbers σ (mass, spin, charge, etc.). We use a
Greek letter to denote the whole collection of p and σ,
and we normalize the states as follows

〈α′|α〉 = δα′α , (3.2)

where δα′α is a Kronecker delta.
From now on we denote the single particle initial and

final states by |α〉 and |β〉, respectively. The S-matrix
element Sβα is defined as the probability amplitude for
the process α → β. Conservation of probability implies
unitarity for the S-matrix:

∑

β

|Sβα|2 = 1 . (3.3)

As usual, we first isolate the identity part of the S-matrix

Sβα = δβα + iMβα , (3.4)

in so doing defining the interaction matrix element Mβα.
From (3.4) we obtain

|Sβα|2 =

{

|Mβα|2 β 6= α
1− 2ImMαα + |Mαα|2 β = α .

(3.5)

The unitarity condition (3.3) then reads

2 Im Mαα =
∑

β

|Mβα|2 . (3.6)

At this formal level, (3.6) would still be valid if we
were including the effects of radiation, meaning that final
states |β〉 would include many particle states.

In the present paper, we are interested in computing
the probability for the process α→ β, where both states
describe single particles with v = 1 since we are taking
Q → ∞. The final state β differs from the initial state
α only in its value of k⊥. No other quantum numbers
change. In particular, β = α corresponds to k⊥ = 0.
Thus, we have

∑

β

= L2

∫

d2k⊥
(2π)2

, (3.7)

where the L2/(2π)2 comes from the box normalization, in
which summing over β means summing over the values of
the n1 and n2 in (3.1). And, in our context the unitarity
condition (3.3) must be equivalent to the statement that
P (k⊥) is normalized as in (1.1). Upon using (3.5) and
(3.7) to write (3.3), comparison to (1.1) therefore allows
us to identify

P (k⊥) = L2

{

|Mβα|2 β 6= α
1− 2 ImMαα + |Mαα|2 β = α .

(3.8)
Our strategy will be to first compute twice the imagi-
nary part of the forward scattering amplitude, 2 ImMαα,
by cutting the appropriate diagrams. Once we know
2 ImMαα we can use the unitarity relation (3.6) to read
off
∑

β |Mβα|2. Knowing (3.7), we will immediately be

able to identify P (k⊥) for k⊥ 6= 0 (i.e. α 6= β), and the
normalization condition (1.1) will then fix P (0).
The leading diagrams for the forward scattering ampli-

tude are given in Fig. 1, with the dashed line indicating
where we cut the diagram and with all gluon lines being
Glauber gluons. Note that we include arbitrarily many
Glauber gluon insertions. In Fig. 1, the Glauber gluons
can be connected to the parton propagators in (n+m)!
ways, but evaluating the diagram yields an identical fac-
tor in the denominator, meaning that we can consider
just one diagram for a given m,n. The full amplitude
is obtained by summing over all m and n. If we denote
twice the imaginary part of the amplitude depicted in
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q′0q0

FIG. 2: Loop diagrams like this one vanish for kinematic reasons if the gluon in the loop is soft or Glauber. If the gluon in the
loop is collinear, cutting this diagram describes radiative processes with two collinear particles in the final state which we do
not analyze in this paper.

Fig. 1 by Amn, the imaginary part of the forward scat-
tering amplitude is then given by

2 ImMαα =
∞
∑

m=1,n=1

Amn . (3.9)

To compute P (k⊥) we will need to separate the inte-
gration over the transverse momentum k⊥ at the cut-
ting line. It will therefore be convenient to introduce
d2Amn/d

2k⊥ via

Amn =

∫

d2k⊥
(2π)2

d2Amn

d2k⊥
. (3.10)

We shall not consider loop diagrams as in Fig. 2. When
the gluon in the loop is soft or Glauber (or in fact ultra-
soft) the diagram is trivially zero in the Feynman gauge.
If we define the light cone vectors n̄µ (in the direction of
motion of the hard parton) and nµ (useful in the next
section) by

n̄ ≡ 1√
2
(1, 0, 0,−1) and n ≡ 1√

2
(1, 0, 0, 1) , (3.11)

in Feynman gauge the vertices in the loop in Fig. 2 are
given by n̄ν n̄µgµν = 0. When the gluon in the loop is
collinear the diagram is nonvanishing but we defer its
evaluation to a future evaluation of radiative processes,
since cutting this diagram across the loop describes a
radiative process with two collinear particles in the final
state, as in what we called process 3 in Section II.

IV. EFFECTIVE LAGRANGIAN AND

FEYNMAN RULES

In this Section we describe the Feynman rules needed
to compute the amplitude in Fig. 1. For this purpose, we
need the effective Lagrangian governing the interaction
between collinear partons and Glauber gluons [22]. We
shall sketch its derivation using SCET [21].

q
= iQ

2q+Q−q2
⊥+iǫ

6 n

= igta nµ 6 n
q

µ, a

q′

FIG. 3: Feynman rules for collinear quarks interacting with
Glauber gluons.

The hard parton propagating through the medium can
be a quark or gluon. We shall first take it to be a quark,
describing the derivation of the effective Lagrangian in
full for this case. We will then quote the result for the
case where the hard parton is a gluon.
Consider a quark that is collinear along the − direc-

tion, with momentum scaling as

q =
(

q+, q−, q⊥
)

= Q
(

λ2, 1, λ
)

. (4.1)

As usual in SCET, we divide the quark field ξ(x) into a
sum of a big component ξn̄(x) and a small component
ξn(x):

ξ(x) = ξn̄(x) + ξn(x), (4.2)

with

ξn̄(x) ≡
/̄n/n

2
ξ(x), ξn(x) ≡

/n/̄n

2
ξ(x) , (4.3)

where we have defined the light cone vectors nµ and n̄µ

in (3.11). The small component ξn(x) can be integrated
out by using its equations of motion from the QCD La-
grangian for the quark sector,

LQCD = ξ̄i /Dξ, Dµ ≡ ∂µ − igAµ , (4.4)
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q
= −i

2q+Q−q2
⊥+iǫ







gµν − (1 − α)
qµqν

2q+Q−q2
⊥







 δab

= −2 ig (taG)bc nµ × [gνρQ +
q

µ, a

q′

ν, bµ, a

ν, b ρ, c
nν(q′⊥ − q⊥)ρ − nρ(q′⊥ − q⊥)ν − α−1

2α

(

nρqν + nνq′ρ
)





FIG. 4: Feynman rules for collinear gluons interacting with Glauber gluons in any covariant gauge. (In Feynman gauge, the
gauge parameter is α = 1.) taG are the SU(N) generators in the adjoint representation.

yielding the following effective Lagrangian for ξn̄(x):

Ln̄ = ξ̄n̄ i/n (n̄ ·D) ξn̄ + ξ̄n̄ i /D⊥

1

2 in ·D i /D⊥ /n ξn̄ , (4.5)

where we shall only consider the case where Aµ describes
a Glauber gluon, as we discussed in Section II. Since the
interaction between a collinear quark and Glauber gluons
can change q⊥ but cannot change q−, it is convenient to
define ξn̄,q⊥(x) via [21, 22]

ξn̄(x) = e−iQx+
∑

q⊥

eiq⊥·x⊥ξn̄,q⊥(x) . (4.6)

Note that derivatives acting on ξn̄,q⊥(x) give only O(λ2)
contributions and note also that

6 n̄ ξn̄,q⊥ = ξ̄n̄,q⊥ 6 n̄ = 0 (4.7)

as a result of the projection (4.3). Plugging the field
expansion (4.6) into the Lagrangian (4.5) we obtain

Ln̄ =
∑

q⊥,q′
⊥

ei(q⊥−q′
⊥
)·x⊥ ξ̄n̄,q′

⊥

[

i (n̄ ·D) (4.8)

+
(

/q⊥ + i /D⊥

) 1

2 (Q+ in ·D)

(

/q⊥ + i /D⊥

)

]

/nξn̄,q⊥ .

Next, we wish to expand the Lagrangian (4.8) to low-
est order in λ, but before we can do that we need to
determine how the effective theory fields scale with λ.
For the collinear fermion ξn̄ we can derive its scaling by
counting powers of λ in its propagator, as is standard in
SCET [21], and we find

ξn̄ ∼ Q3/2λ . (4.9)

We derive the scaling of the gluon field Aµ in the Glauber
region of momentum space as in Ref. [22], which is to say
by thinking ofAµ as being sourced by a current consisting
of the generic excitations in the medium. In our case,
working in the rest frame of the thermal medium, the
generic thermal partons have momenta of orderQ(λ, λ, λ)
whereas in the Breit-frame analysis of Ref. [22] generic

partons have momenta of order Q(1, λ2, λ). This means
that although we can use the arguments of Ref. [22] we
get a different result. In any covariant gauge we find the
scaling

Aµ ∼ Q(λ2, λ2, λ2) (4.10)

for the Glauber gluon fields. A detailed derivation is
given in Appendix B. With the scaling of the effective
theory fields in hand, we can now expand the Lagrangian
(4.8) order by order in λ. We find

Ln̄ = LO(λ4)
n̄ + LO(λ5)

n̄ +O
(

λ6
)

, (4.11)

with the leading order term in the Lagrangian taking the
form

LO(λ4)
n̄ =

∑

q⊥,q′
⊥

ei(q⊥−q′
⊥
)·x⊥ ξ̄n̄,q′

⊥

[

in̄ ·D +
q2⊥
2Q

]

/nξn̄,q⊥

(4.12)
and the next-to-leading order term being given by

LO(λ5)
n̄ =

∑

q⊥,q′
⊥

ei(q⊥−q′
⊥
)·x⊥

1

2Q
ξ̄n̄,q′

⊥

[

g
(

/q
′
⊥
/A⊥ + /A⊥/q⊥

)

+ g2A2
⊥

]

/nξn̄,q⊥ .

(4.13)

For our purposes, only the leading order Lagrangian
(4.12) is needed; from (4.12) we obtain the Feynman rules
shown in Fig. 3. We have given the next-to-leading order
Lagrangian (4.13) solely for the purpose of demonstrat-
ing explicitly that even though the perpendicular com-
ponent of the Glauber field A⊥ scales with λ in the same
way that A+ does, see (4.10), the interaction between
collinear quarks and A⊥ arises only at O(λ5). Because
these interactions are suppressed by one power of λ rel-
ative to the interactions in (4.12), they can safely be ne-
glected in our analysis.
If instead we consider the case where the incident hard

parton is a collinear gluon, whose components scale as

(

A+
n̄, q, A

−
n̄, q, A

⊥
n̄, q

)

∼ Q
(

λ2, 1, λ
)

, (4.14)
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the discussion is similar. In any covariant gauge, we find
the propagator of a collinear gluon and its interaction
vertex with a Glauber gluon are those given in Fig. 4.
The terms in the second line in the Feynman rule for the
triple gluon interaction in Fig. 4 were absent in the first
version of our paper. They were pointed out subsequently
in Ref. [28]. None of them makes any contribution to any
of our results. Neither does the α-dependent term in the
gluon propagator.

V. EVALUATING THE FORWARD

SCATTERING AMPLITUDE

We are now ready to perform the explicit evaluation
of the contribution to the forward scattering amplitude
given by the diagram in Fig. 1 using the Feynman rules
derived in the previous section. The hard parton in the
diagram can be a collinear quark or a collinear gluon.
We shall present the quark case explicitly, and state the
result for a hard gluon at the end. This is the most
technical section of our paper; the reader not interested
in technicalities can safely skip to the result.
The Feynman rules derived in Section IV assume rel-

ativistic normalization of the states, whereas we need to

convert to box normalization in order to obtain P (k⊥)
using the optical theorem as described in Section III.
Comparing the standard relativistic normalization

〈α, relativistic|α′, relativistic〉 = (2π)3 2Eα δ
3 (qα − qα′)

(5.1)
to the box normalization (3.2) determines that the box
normalized states are given by

|α〉 = 1√
2EαL3

|α, relativistic〉 , (5.2)

meaning that the box normalized matrix elements are
given by

Mαβ =
1

2L3
√

EαEβ

Mαβ

∣

∣

∣

∣

∣

relativistic

. (5.3)

We have Eα = Eβ = Q/
√
2, and therefore

d2Amn

d2k⊥
=

1√
2QL3

d2Amn

d2k⊥

∣

∣

∣

∣

relativistic

. (5.4)

Using the Feynman rules given in Fig. 3, the amplitude
corresponding to Fig 1 can be written as

d2Amn

d2k⊥
=

1√
2QL3

∫

dk+dk−

(2π)2

n−1
∏

i=1

d4qi
(2π)4

m−1
∏

j=1

d4q′j
(2π)4

× ξ̄n̄(q
′
0)

1
∏

j=m−1

[

(−ig)A+(−p′j) /n
−iQ

2Qq′+j − q′ 2j ⊥ − iǫ
/̄n

]

(−ig)A+(−p′m)/n

× 2πQδ
(

2k+Q− k2⊥
)

/̄n igA+(pn)/n

n−1
∏

i=1

[

iQ

2Qq+i − q2i⊥ + iǫ
/̄n igA+(pi)/n

]

ξn̄(q0)

(5.5)

with

pi = qi − qi−1 for i = 1, . . . , n− 1 (5.6)

and pn = k − qn−1,

p′i = q′i − q′i−1 for i = 1, · · · ,m− 1 (5.7)

and p′m = k − q′m−1,

γ+ = n̄ · γ = /̄n , γ− = n · γ = /n , (5.8)

and with A+ representing Aa+ taF , where taF are the
SU(N) generators in the fundamental representation. In
the products in (5.5) the gauge fields are understood to
be ordered as

1
∏

j=m−1

A+(−p′j) ≡ A+(−p′1) · · ·A+(−p′m−1) (5.9)

and

n−1
∏

i=1

A+(pi) ≡ A+(pn−1) · · ·A+(p1) . (5.10)

Note additionally that in writing (5.5) we have used

2πQ θ(k+) δ
(

2k+Q− k2⊥
)

/̄n (5.11)

in place of a propagator at the cutting line. And, in (5.5)
there are only m + n − 1 independent momentum inte-
grations since there is one overall constraint coming from
conservation of momentum. Finally, let us stress that we
are treating the Aµ(p) as background fields and will aver-
age them (say over a thermal ensemble) only at the end.
We are doing the full calculation of the propagation of
the hard parton in a given background field configura-
tion; the fact that the medium these fields describe is (or
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isn’t) strongly coupled only becomes relevant once one
does the averaging over an ensemble of field configura-
tions.

After performing an average over the color indices, we
can rewrite (5.5) as

d2Amn

d2k⊥
=
Emn√

2

∫

dk+dk−

(2π)2

n−1
∏

i=1

d4qi
(2π)4

m−1
∏

j=1

d4q′j
(2π)4

Tr





1
∏

j=m

(−ig)A+(−p′j)
n
∏

i=1

igA+(pi)





× 2πQ δ
(

2k+Q− k2⊥
)

1
∏

j=m−1

[

−iQ
2Qq′+j − q′ 2j ⊥ − iǫ

]

n−1
∏

i=1

[

iQ

2Qq+i − q2i⊥ + iǫ

]

(5.12)

with

Emn ≡ 1

QL3Nc
ξ̄n̄(q

′
0) (/n/̄n)

m−1
/n/̄n/n (/̄n/n)

n−1
ξn̄(q0) .

(5.13)
Using equation (4.7), /̄n/n + /n/̄n = 2, and equation (A8)
from Appendix A, we find that

Emn =
2n+m−1

QL3Nc
ξ̄n̄(q

′
0) /n ξn̄(q0) =

1

L3Nc
2n+m . (5.14)

We have also used the fact that before the hard parton
interacts with the first Glauber gluon it has momentum
q0 = Q(0, 1, 0) and the fact that for forward scattering
q0 = q′0. Because q0⊥ = q′0⊥ = 0,

n
∑

i=1

pi⊥ =

m
∑

i=1

p′i⊥ = k⊥ . (5.15)

Note that all the pi⊥’s and p
′
i⊥’s are of order λQ = T in

magnitude, while the typical value of their sum k⊥ may
turn out to be larger: since q̂ is the mean k2⊥ picked up
per distance travelled, the typical value of k2⊥ after a hard
parton has travelled a distance L is q̂L, meaning that k2⊥
grows with L.

It is now convenient to introduce

A+(pi) =

∫

d4yi e
ipiyi A+(yi),

A+(−p′j) =

∫

d4y′j e
−ip′

jy
′

j A+(y′j) , (5.16)

and note that

n
∑

i=1

piyi −
m
∑

j=1

p′jy
′
j = −q0 · y1 + q′0 · y′1 + k · (yn − y′m)

+

n−1
∑

i=1

qi · (yi − yi+1)−
m−1
∑

j=1

q′j ·
(

y′j − y′j+1

)

. (5.17)

Using (5.14), (5.16) and (5.17), the result (5.12) becomes

d2Amn

d2k⊥
=

2n+m

√
2L3Nc

∫ n
∏

i=1

d4yi

m
∏

j=1

d4y′j e
−iq0·(y1−y′

1)

× Tr





1
∏

j=m

(−ig)A+(y′j)

n
∏

i=1

igA+(yi)





× g(yn − y′m, k⊥)

×
m−1
∏

j=1

f∗(y′j − y′j+1)

n−1
∏

i=1

f(yi − yi+1) ,

(5.18)

where we have defined

f(z) ≡
∫

d4q

(2π)4
iQ

2Qq+ − q2⊥ + iǫ
eiq·z

= δ(z+)θ(−z−) iQ

4πz−
e−i Q

2z−
z2
⊥ ,

(5.19)

and

g(z, k⊥) ≡
∫

dk+dk−

(2π)2
2πQδ

(

2k+Q− k2⊥
)

eik·z

=
1

2
δ(z+)e−ik⊥·z⊥+i

k2
⊥

2Q
z−

.

(5.20)

So far, we have not used the Q → ∞ limit anywhere
in the calculation itself, although of course we used it in
setting up the problem. We shall now use the fact that
both f(z) and g(z, k⊥) simplify in this limit, once we
make our statement of this limit precise. As long as

Q≫ p2⊥z
− , (5.21)

where p2⊥ ∼ T 2 is the typical magnitude of the pi⊥’s and
p′i⊥’s, the function f(z) from (5.19) becomes

f(z) ≈ 1

2
δ
(

z+
)

θ
(

−z−
)

δ2 (z⊥) . (5.22)

And, as long as

Q≫ k2⊥z
− , (5.23)
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the function g(z, k⊥) from (5.20) becomes

g(z, k⊥) ≈
1

2
δ
(

z+
)

e−ik⊥·z⊥ . (5.24)

Since (5.23) is the stronger of the two criteria, if (5.23)
is satisfied both f and g simplify. Note that when f(z)
and g(z, k⊥) are employed in (5.18) their argument z−

cannot be larger than L− ≡
√
2L, the distance along

the lightcone that the hard parton travels through the
medium, corresponding to travelling a distance L. In or-
der to guarantee that f and g simplify we shall therefore
henceforth require that

Q≫ k2⊥L ∼ q̂L2 . (5.25)

The physical significance of this criterion emerges upon

analyzing the implications of the fact that in (5.22) the
function f(z) is proportional to δ2(z⊥). This means that
in the regime (5.25) the distance L that the hard par-
ton propagates through the medium is short enough that
the trajectory of the hard parton in position space re-
mains well-approximated as a straight line, even though
it picks up transverse momentum. We see this explicitly
by plugging the expressions (5.22) and (5.24) into (5.18)
and evaluating the integrals with delta functions, which
set

y+i = y′+j ≡ y+, yi⊥ ≡ y⊥, y′j⊥ ≡ y′⊥ . (5.26)

We find

d2Anm

d2k⊥
=

√
2

L3Nc

∫

dy+dy⊥dy
′
⊥ e

−ik⊥·(y⊥−y′

⊥
)

n
∏

i=1

dy−i

m
∏

j=1

dy′−j

× Tr
[

θ(y′−m − y′−m−1) · · · θ(y′−2 − y′−1 ) (−ig)A+(y+, y′−1 , y′⊥) · · · (−ig)A+(y+, y′−m , y′⊥)

× θ(y−n − y−n−1) · · · θ(y−2 − y−1 ) igA
+(y+, y−n , y⊥) · · · igA+(y+, y−1 , y⊥)

]

. (5.27)

Now, summing over all m and n, we obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

√
2

L3Nc

∫

dy+dy⊥dy
′
⊥ e

−ik⊥·(y⊥−y′

⊥
)
〈

Tr
[(

W †
F [y

+, y′⊥]− 1
)

(

WF [y
+, y⊥]− 1

)

]〉

(5.28)

where we have introduced the fundamental Wilson line
along the lightcone

WF

[

y+, y⊥
]

≡ P

{

exp

[

ig

∫ L−

0

dy−A+(y+, y−, y⊥)

]}

(5.29)
with P denoting path-ordering, and where we have now
restored the expectation value in the medium. Recall
that to this point we have been calculating how the hard
parton propagates through one background gauge field
configuration. Now that in (5.28) we have pushed this
calculation through to the point that the gauge field ap-
pears only in the Wilson lines along the lightcone, we can
complete the story by averaging over gauge field configu-
rations. If the medium is quark-gluon plasma in equilib-
rium, then the average represented by 〈. . .〉 is a thermal
average. In our derivation of (5.28) it makes no differ-
ence whether the medium is strongly coupled or weakly
coupled; this distinction, or indeed any properties of the
medium, only become relevant when one seeks to evalu-
ate the thermal average.
We have made a leap in going from (5.27), in which

the gluon fields A+ describe Glauber gluons, to (5.28),
in which we are taking a thermal average over all gluon
fields. By gauge invariance, we know that (5.28) must be

the correct generalization of (5.27) in the present context.
But, in future when the effects of soft gluons and radi-
ation (processes 1 and 3 from Section II) are computed,
it is possible that additional separately gauge invariant
contributions to transverse momentum broadening may
arise. As an aside, note that the expression (5.28) is valid
in any covariant gauge but not, for example, in a light-
cone gauge in which A+ = 0 and the light-like Wilson
lines in (5.28) are given by the identity. Upon redoing
the calculation in such a gauge, (5.28) would contain the
expectation value of a transverse Wilson line joining the
ends of the two light-like Wilson lines.

Because the medium is translation-invariant, the ex-
pectation value of the trace of the product of Wilson
lines that arises in (5.28) must be independent of y+ and
can only depend on the difference y⊥−y′⊥. Upon making
the change of variables

X⊥ =
1

2
(y′⊥ + y⊥), x⊥ = y⊥ − y′⊥, (5.30)
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we find

∞
∑

m=1,n=1

d2Anm

d2k⊥
= a

∫

d2x⊥ e
−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

(5.31)

with

a =

√
2

L3Nc

∫

dy+d2X⊥ =

√
2

LNc

∫

dy+ . (5.32)

We now have to find a way to regularize the integral
over y+. We assume that we throw particles toward the
medium for a time interval ∆t, which is arbitrary and
much larger than the box size L. We have normalized
our states such that they describe one particle per volume
L3. And, the particles they describe move at the speed
of light. Therefore, the incident flux is 1/L3. The total
number of particles which propagate through the medium
in the time interval ∆t is then given by

1

L3
L2 ∆t =

∆t

L
, (5.33)

which means that in order to obtain the probability dis-
tribution for a single particle to acquire transverse mo-
mentum k⊥ we must divide (5.31) by ∆t/L. The integral
over y+ is the projection of the time interval along the
y+-axis, namely ∆t/

√
2, and we have

a→ L

∆t
a =

√
2

∆tNc

∫

dy+ =
1

Nc
. (5.34)

We therefore finally obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

1

Nc

∫

d2x⊥ e
−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.35)

Recall from (3.9) that the forward scattering amplitude
which appears in the unitarity relation (3.6) is given by

2 ImMαα =

∫

d2k⊥
(2π)2

∞
∑

m=1,n=1

d2Anm

d2k⊥
. (5.36)

As anticipated in Section III, we can now use the uni-
tarity relation (3.6) as well as (3.7), (5.35) and (5.36) to
identify

|Mβα|2 =
1

L2Nc

∫

d2x⊥ e
−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.37)

We now have all the ingredients in place to use (3.8) to
obtain the probability distribution P (k⊥). We find

P (k⊥) =

∫

d2x⊥ e
−ik⊥·x⊥ WF (x⊥) (5.38)

where we have defined

WF [x⊥] ≡
1

Nc

〈

Tr
[

W †
F [0, x⊥]WF [0, 0]

]〉

. (5.39)

To demonstrate that (5.38) is correct it suffices to check
first that P (k⊥)/L

2 and (5.37) are identical when k⊥ 6= 0,
which is the case since their difference is proportional to
δ2(k⊥), and second that (5.38) is correctly normalized as
in (1.1), which is the case since

∫

d2k⊥
(2π)2

∫

d2x⊥ e
−ik⊥·x⊥ WF (x⊥) = WF (0) = 1.

(5.40)
It is also straightforward to check that

2 ImMαα = 2− 1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

(5.41)

and

P (0)

L2
= |Sαα|2

= |Mαα|2 +
1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

− 1

= 1− 2 ImMαα + |Mαα|2 , (5.42)

as in (3.8). The expression (5.38) with (5.39) is our cen-
tral technical result.
The analysis of this section can be applied completely

analogously to the case in which the hard parton is a
collinear gluon, instead of a collinear quark. The only
changes are that A+ is now in the adjoint representation
and the 1/Nc factor in (5.39) becomes 1

N2
c−1 . We con-

clude that whether the hard parton is a collinear quark
or gluon, the probability distribution takes the form

P (k⊥) =

∫

d2x⊥ e
−ik⊥·x⊥ WR(x⊥) (5.43)

with

WR(x⊥) =
1

d (R)

〈

Tr
[

W †
R[0, x⊥]WR[0, 0]

]〉

(5.44)

where R is the SU(N) representation to which the
collinear particle belongs and d (R) is the dimension of
this representation. Eq. (5.43) is an elegant expression
saying that the probability for the quark to obtain trans-
verse momentum k⊥ is simply given by the Fourier trans-
form in x⊥ of the expectation value (5.44) of two light-
like Wilson lines separated in the transverse plane by the
vector x⊥. Eq. (5.43) has been obtained previously by
Casalderrey-Solana and Salgado and by Liang, Wang and
Zhou using different methods [17, 24].

VI. q̂ FROM LIGHT-LIKE WILSON LINES

The jet quenching parameter q̂ is the mean transverse
momentum picked up by the hard parton per unit dis-
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FIG. 5: Schwinger-Keldysh contour that must be used in the
evaluation of WR(x⊥).

tance travelled, or equivalently per unit time. We repro-
duce its definition (1.2) here:

q̂ ≡ 1

L

∫

d2k⊥
(2π)2

k2⊥ P (k⊥) . (6.1)

Substituting our result (5.43) for P (k⊥) in (6.1), we find
that

q̂ =

√
2

L−

∫

d2k⊥
(2π)2

k2⊥

∫

d2x⊥ e
−ik⊥·x⊥ WR(x⊥) , (6.2)

where we have replaced L by the distance along the light-
cone L− =

√
2L. Upon evaluating q̂ in Section VII, we

shall see that it is L−-independent.
The probability distribution (5.43), derived in a covari-

ant gauge, contains only the two Wilson lines along the
light cone. Our field theory set-up and SCET calcula-
tion require L−T ≫ 1, and we can therefore consider the
two light-like Wilson lines to have infinite length. In this
limit, it does not matter how we join the two light-like
Wilson lines at infinity along the transverse direction in
order to make the gauge invariance of our result man-
ifest, because in a covariant gauge the contribution of
these short transverse segments is subleading. If we were
to make a gauge transformation from covariant gauge to
a lightcone gauge in which A+ = 0, all of the contri-
butions of the medium to the Wilson loop would then
be encoded in the two short transverse Wilson line seg-
ments. In such a gauge, these short transverse Wilson
line segments would make a contribution to the (loga-
rithm of) the expectation value of the Wilson loop that
is proportional to the extent L− of the medium. This in-
dicates that repeating our calculation in lightcone gauge
would be quite inconvenient, and is the reason we see no
motivation for doing so.
It is important to notice that the expectation value

of the trace of the product of two light-like Wilson lines
that arises in P (k⊥) and hence in q̂, namely WR(x⊥) of
(5.44), has a different operator ordering from that in a
standard Wilson loop. Each of the A+’s in (5.27) can be
written as the product of an operator and a group matrix:

A+ = (A+)ata. It is clear from the explicit expression
(5.27) that in WR(x⊥) both the operators and the group
matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the
operators are time ordered. Because the operators in
(5.44) are path ordered, the expectation value in (5.44)
should be described using the Schwinger-Keldysh contour
in Fig. 5 with one of the light-like Wilson lines on the
Im t = 0 segment of the contour and the other light-like
Wilson line on the Im t = −iǫ segment of the contour.
The infinitesimal displacement of one Wilson line with
respect to the other in Fig. 5 ensures that the operators
from the two lines are ordered such that all operators
from one line come before any operators from the other.
In contrast, the loop C for a standard Wilson loop op-
erator lies entirely at Im t = 0, and the operators for a
standard Wilson loop are time ordered. This distinction
was not made in the early work that related q̂ to a light-
like Wilson loop [8, 14] or in the more recent analyses of
Refs. [26, 27] in which this Wilson loop (with convention-
ally time ordered operators) was evaluated in the plasma
of strongly coupled N = 4 SYM theory. Seeing now that
the property of the medium which controls q̂ is in fact
WR(x⊥), with its path ordered operators, we must re-
visit the calculation of q̂ in strongly coupled N = 4 SYM
theory. We shall do so in Section VII, finding that the
calculation changes but the result does not.
Before turning to the strong coupling calculation of

WR(x⊥) and hence q̂, it is worth casting the relation
between them in a form which yields further intuition. It
has been argued in Refs. [14, 26, 27] that in the adjoint
representation

W(x⊥) = exp

[

− 1

4
√
2
q̂ L− x2⊥

]

. (6.3)

We can use our result (5.43) to check that this expression
is self-consistent. If we substitute (6.3) into (5.43) we
obtain

P (k⊥) =
4
√
2π

q̂ L−
exp

[

−
√
2k2⊥
q̂ L−

]

, (6.4)

which we can then substitute into the definition of q̂,
(6.1), which becomes q̂ = q̂, confirming that the expres-
sion (6.3) is indeed self-consistent. Note that the ex-
pression (6.4) has a simple physical interpretation: the
probability that the quark has gained transverse momen-
tum k⊥ is given by diffusion in momentum space with a
diffusion constant D given by

D = q̂L . (6.5)

This is indeed consistent with the general physical ex-
pectation stated earlier: the effect of small kicks due to
Glauber gluons is that the quark performs Brownian mo-
tion in momentum space even though in coordinate space
it remains on a light-like trajectory.
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VII. COMPUTATION OF q̂ IN STRONGLY

COUPLED N = 4 SUPERSYMMETRIC YANG

MILLS THEORY REVISITED

We now compute (5.44) for N = 4 SYM theory with
gauge group SU(Nc) in the large Nc and strong coupling
limit using its gravitational dual [29], namely the AdS
Schwarzschild black hole at nonzero temperature.
Let us first recall the standard AdS/CFT procedure for

computing a Wilson loop in the large Nc and strong cou-
pling limit [30], which was applied to a light-like Wilson
loop (with standard operator ordering; not that in (5.44))
in Refs. [26, 27]. Consider a Wilson loop operator W (C)
specified by a closed loop C in the (3 + 1)-dimensional
field theory, and thus on the boundary of the (4 + 1)-
dimensional AdS space. 〈W (C)〉 is then given by the ex-
ponential of the classical action of an extremized string
worldsheet Σ in AdS which ends on C. The contour C lives
within the (3 + 1)-dimensional Minkowski space bound-
ary, but the string world sheet Σ attached to it hangs
“down” into the bulk of the curved five-dimensional AdS5
spacetime. More explicitly, consider a Wilson loop made
from two long parallel light-like Wilson lines separated by
a distance x⊥ in a transverse direction. (The string world
sheet hanging down into the bulk from these two Wilson
lines can be visualized as in Fig. 7 below if one keeps ev-
erything in that figure at Im t = 0, i.e. if one ignores the
subtlety that is the reason we are revisiting this calcu-
lation.) Upon parameterizing the two-dimensional world
sheet by the coordinates σα = (τ, σ), the location of the
string world sheet in the five-dimensional spacetime with
coordinates xM is

xM = xM (τ, σ) (7.1)

and the Nambu-Goto action for the string world sheet is
given by

S = − 1

2πα′

∫

dσdτ
√

− det gαβ . (7.2)

Here,

gαβ = GMN∂αx
M∂βx

N (7.3)

is the induced metric on the world sheet and GMN is
the metric of the (4 + 1)-dimensional AdS5 spacetime.
Denoting by S(C) the classical action which extremizes
the Nambu-Goto action (7.2) for the string worldsheet
with the boundary condition that it ends on the curve C,
the expectation value of the Wilson loop operator is then
given by

〈W (C)〉 = exp [i {S(C)− S0}] , (7.4)

where the subtraction S0 is the action of two disjoint
strings hanging straight down from the two Wilson lines.
In order to obtain the thermal expectation value at
nonzero temperature, one takes the metric in (7.3) to

be that of an AdS Schwarzschild black hole,

ds2 = GMNdx
MdxN

= −fdt2 + r2

R2
(dx21 + dx22 + dx23) +

1

f
dr2 ,(7.5)

where R is the curvature radius of the AdS space and
where we have defined

f ≡ r2

R2

(

1− r4H
r4

)

. (7.6)

Here, r is the coordinate of the 5th dimension and the
black hole horizon is located at r = rH . The tempera-
ture T of the Yang-Mills theory plasma is given by the
Hawking temperature of the black hole, T = rH/(πR

2),
and R and the string tension 1/(2πα′) are related to the
’t Hooft coupling4 in the Yang-Mills theory λ ≡ g2Nc by√
λ = R2/α′.
The thermal expectation value of a light-like Wilson

loop at strong coupling was computed as we have just
described in Refs. [26, 27]. We shall quote the result
below (after demonstrating that it is unchanged.) We
comment here, however, that in Ref. [26] it was found
by calculation that the extremized string world sheet,
hanging from the light-like Wilson lines at the boundary,
extends all the way down to the black hole horizon. We
shall see below that in the computation of (5.44) this is
mandatory: it can be inferred without calculation that
the extremized string world sheet must reach the black
hole horizon.
We now consider the computation of (5.44), with its

nonstandard operator ordering corresponding, as we have
discussed in Section VI, to putting one of the two light-
like Wilson lines on the Im t = 0 contour in Fig. 5 and
the other on the Im t = −iǫ contour. The procedure we
shall describe is a specific example of the more general
discussion of Lorentzian AdS/CFT given recently by Sk-
enderis and Van Rees in Refs. [31–33], which we have
followed. However, we shall describe the construction
in a self-contained fashion that (we hope) will make it
sound obvious to any reader familiar with the evaluation
of standard Wilson loops using AdS/CFT.
In order to compute (5.44) we first need to construct

the bulk geometry corresponding to the Im t = −iǫ seg-
ment of the Schwinger-Keldysh contour in Fig. 5. For this
purpose it is natural to consider the black hole geometry
with complex time, i.e. treating the time coordinate t
in the metric (7.5) as a complex variable In Fig. 6, we
show two slices of this complexified geometry. The left
plot is the Penrose diagram for the fully extended black
hole spacetime with quadrant I and III corresponding to

4 As is conventional in the two relevant bodies of literature, we
shall use λ to denote both the ’t Hooft coupling and the SCET
expansion parameter. The context will make clear which we
mean where.
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FIG. 6: Penrose diagrams for Lorentzian (Im t = 0) and Euclidean (Re t = 0) sections of an AdS black hole. In the right panel,
the two light-like Wilson lines are points at r = ∞, indicated by colored dots. These dots are the boundaries of a string world
sheet that extends inward to r = rH , which is at the origin of the Euclidean section of the black hole. In the left panel, the
string world sheet and its endpoints at r = ∞ are shown at Re t = 0; as Re t runs from −∞ to ∞, the string world sheet sweeps
out the whole of quadrant I .

the slice Im t = 0 and Im t = −β
2 respectively, while the

right plot is for the Euclidean black hole geometry, i.e.
corresponding to the slice Re t = 0. Note that because
the black hole has a nonzero temperature, the imaginary
part of t is periodic with the period given by the inverse
temperature β. In the left plot the imaginary time direc-
tion can be considered as a circular direction coming out
of the paper at quadrant I, going a half circle to reach
quadrant III and then going into the paper for a half
circle to end back at I. In the right plot the real time
direction can be visualized as the direction perpendicular
to the paper.

The first segment of the Schwinger-Keldysh contour in
Fig. 5, with Im t = 0, lies at the boundary (r = ∞)
of quadrant I in Fig. 6. The second segment of the
Schwinger-Keldysh contour, with Im t = −iǫ, lies at the
r = ∞ boundary of a copy of I that in the left plot of
Fig. 6 lies infinitesimally outside the paper and in the
right plot of Fig. 6 lies at an infinitesimally different an-
gle. We shall denote this copy of I by I ′. The geometry
and metric in I ′ are identical to those of I. Note that I ′

and I are joined together at the horizon r = rH , namely
at the origin in the right plot of Fig. 6. Now, the thermal
expectation value (5.44) can be computed by putting the
two parallel light-like Wilson lines at the boundaries of I
and I ′, and finding the extremized string world sheet
which ends on both of them. Note that since I and
I ′ meet only at the horizon, the only way for there to
be a nontrivial (i.e. connected) string world sheet whose
boundary is the two Wilson lines in (5.44) is for such a
string world sheet to touch the horizon. Happily, this is
precisely the feature of the string world sheet found by
explicit calculation in Refs. [26, 27]. So, we can use that
string world sheet in the present analysis, with the only

FIG. 7: String configuration for the thermal expectation value
of (5.44).

difference being that half the string world sheet now lies
on I and half on I ′, as illustrated in Fig. 7.

We conclude that the result for the expectation
value (5.44), with its nonstandard path ordering of oper-
ators, is identical to that obtained in Refs. [26, 27] for a
light-like Wilson loop with standard time ordering of op-
erators. That is, in strongly coupled N = 4 SYM theory
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W(x⊥) in the adjoint representation is given by

WA(x⊥) =

exp

[

−
√
2a

√
λL−T

(

πx⊥T

2a

√

1 +
4a2

π2T 2x2⊥
− 1

)]

,

(7.7)

where

a =

√
π Γ(5/4)

Γ(3/4)
≃ 1.311 . (7.8)

The x⊥-independent term in the exponent in (7.7),
namely “the -1”, is the finite subtraction of S0, which was
identified in Ref. [26] as the action of two disjoint strings
hanging straight down from the two Wilson lines to the
horizon of the AdS black hole. Our calculation serves as
a check of the value of S0, since only with the correct
S0 do we obtain WA(0) = 1 and a correctly normalized
probability distribution P (k⊥). Note that our field the-
ory set-up and SCET calculation require L−T ≫ 1, and
our supergravity calculation requires λ ≫ 1, meaning
that our result (7.7) is only valid for

√
λL−T ≫ 1. (7.9)

In this regime, (7.7) is very small unless πx⊥T/(2a)
is small. This means that when we take the Fourier
transform of (7.7) to obtain the probability distribution
P (k⊥), in the regime (7.9) where the calculation is valid
the Fourier transform is dominated by small values of x⊥,
for which

WA(x⊥) ≃ exp

[

− π2

4
√
2a

√
λL−T 3x2⊥

]

, (7.10)

and we therefore obtain

P (k⊥) =
4
√
2a

π
√
λT 3L−

exp

[

−
√
2ak2⊥

π2
√
λT 3L−

]

. (7.11)

Thus, the probability distribution P (k⊥) is a Gaussian
and the jet-quenching parameter can be read off by com-
paring Eqs. (6.3) and (7.10), yielding [26]

q̂ =
π3/2Γ(34 )

Γ(54 )

√
λT 3 . (7.12)

This turns out to be in the same ballpark as the values
of q̂ inferred from RHIC data on the suppression of high
momentum partons in heavy ion collisions [26, 27].
The jet quenching parameter can then be calculated in

any conformal theory with a gravity dual, yielding results
just as in Ref. [27]. In a large class of such theories [27],

q̂CFT

q̂N=4
=

√

sCFT

sN=4
, (7.13)

with s the entropy density. This result makes a central
qualitative lesson from (7.12) clear: in a strongly coupled

plasma, the jet quenching parameter is not proportional
to the entropy density or to some number density of dis-
tinct scatterers. This qualitative lesson is more robust
than any attempt to make a quantitative comparison to
QCD. But, we note that if QCD were conformal, (7.13)
would suggest

q̂QCD

q̂N=4
≈ 0.63 . (7.14)

And, analysis of how q̂ changes in a particular toy model
in which nonconformality can be introduced by hand then
suggests that introducing the degree of nonconformality
seen in QCD thermodynamics may increase q̂ by a few
tens of percent [34].
Our new calculation of q̂ in N = 4 SYM theory

via (5.44) also nicely resolves a technical subtlety in
Refs. [26, 27]. It was observed there (and subsequently
discussed at length in Refs. [35]) that in addition to the
extremized string configuration which touches the hori-
zon, the string action also has another trivial solution
which lies solely at the boundary, at r = ∞. Based on
the connection between position in the r dimension in
the gravitational theory and energy scale in the quan-
tum field theory, the authors of Ref. [26, 27] argued that
physical considerations (namely the fact that q̂ should
reflect thermal physics at energy scales of order T ) re-
quire selecting the extremized string configuration that
touches the horizon. Although this physical argument re-
mains valid, we now see that it is not necessary. In (5.44),
the two Wilson lines are at the boundaries of I and I ′,
with different values of Im t. That means that there are
no string world sheets that connect the two Wilson lines
without touching the horizon. So, once we have under-
stood how the nonstandard operator ordering in (5.44)
modifies the boundary conditions for the string world
sheet, we see that the trivial world sheet of Refs. [26, 27]
and all of its generalizations in Refs. [35] do not satisfy
the correct boundary conditions. The nontrivial world
sheet illustrated in Fig. 7, which is sensitive to thermal
physics [26, 27, 34], is the only extremized world sheet
bounded by the two light-like Wilson lines in (5.44). The
result (7.12) follows.

VIII. FUTURE DIRECTIONS

We have computed the probability density P (k⊥) that
describes the transverse momentum broadening experi-
enced by a hard parton moving through the quark-gluon
plasma of QCD upon neglecting the possibility of gluon
radiation. Our result is (5.43), which relates P (k⊥) to the
expectation value of two light-like Wilson lines W(x⊥) in
(5.44). In turn, the jet quenching parameter q̂ can be ob-
tained from W(x⊥) according to (6.2).
In Section VII we have computed W(x⊥) in the plasma

of large-Nc strongly coupled N = 4 SYM theory. The
fact that the Wilson lines in (5.44) have operators (and
not just color matrices) that are path ordered introduces
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subtleties into this calculation that had not been previ-
ously taken into account. However, these subtleties turn
out not to change the results (6.3) for W(x⊥) and (7.12)
for q̂. In fact, the calculation has become more straight-
forward than previously realized, since there is only one
extremized string world sheet bounded by these Wilson
lines.
These results open a variety of future directions:

• W(x⊥), and from it q̂, can be computed for the
plasma of QCD at high enough temperatures that
physics at scales ∼ T is weakly coupled using the
hard thermal loop effective theory. It would be in-
teresting to compare the value of q̂ so obtained to
other weak-coupling determinations of this quan-
tity (see e.g. [36]).

• Our soft collinear effective theory analysis should
be extended to include the effects of radiation, al-
lowing the analysis of parton energy loss in addi-
tion to transverse momentum broadening. When
a collinear quark radiates a collinear gluon, all
three collinear particles (incoming quark, outgo-
ing quark, radiated gluon) will experience trans-
verse momentum broadening due to interactions
with Glauber gluons that we have calculated. It
is therefore reasonable to expect that q̂ will enter
into the calculation of the spectrum of the radiated
gluons and thus the parton energy loss, as is the
case in other formalisms in which these quantities
are calculated. It will be very interesting to see
how q̂ enters into the soft collinear effective theory
analysis of parton energy loss.

• Our soft collinear effective theory analysis should
be extended to include the interaction of the hard
parton with soft gluons from the plasma, in addi-
tion to the Glauber gluons that we have focussed
on. These effects are suppressed by a power of a
perturbative α and so are subleading in the limit
of infinite parton energy, but because there are
more soft gluons in the plasma than Glauber glu-
ons these effects (and radiation) should be included
in the analysis before any comparison with data is
attempted.

• The full power of soft collinear effective theory lies
in its systematic organization of higher order cor-
rections. This potential motivates the whole ap-
proach and so of course should be investigated, but
only after the directions above have been pursued.

• We have calculated P (k⊥) in QCD and determined
that it is related toW(x⊥); we have then calculated
W(x⊥) in strongly coupled N = 4 SYM theory. It
would be interesting to use gauge/gravity duality to
compute P (k⊥) itself for a quark moving through
the N = 4 SYM plasma with v → 1, to see that it
is given by (5.43).

• The calculation of W(x⊥) that we have done for a
quark with any finite mass M moving with v → 1
can easily be extended to the case of Wilson lines
that are not quite light-like, with a velocity v that
is less than 1 but that satisfies (1 − v2)1/4 <√
λT/M [27]. But, our formulation of P (k⊥) in

terms of W(x⊥) relies on the Q → ∞ limit and
so does not extend to this regime. Some progress
has been made in the opposite kinematic regime,
namely for a quark moving through the plasma
with a velocity v that can be as small as zero and
is not too large: (1 − v2)1/4 >

√
λT/M . This

regime incorporates the limit in which one first
takes M → ∞ and only then allows v → 1. Al-
though P (k⊥) has also not been calculated in this
regime, the analogue of q̂, which is conventionally
denoted κT , has been computed in N = 4 SYM
theory in Refs. [25, 37, 38]. (κT describes the mean
transverse momentum picked up per distance trav-
elled for quarks in this kinematic regime, but it has
not been related to jet quenching.) The formal-
ism used to compute κT in this different kinematic
regime is quite different from ours. It starts from
the physics of a heavy quark diffusing in position

space, whereas in the limit in which we do our cal-
culation the quark follows a straight line trajectory
in position space, diffusing only in transverse mo-
mentum. This different physical picture yields a
different calculation, phrased in terms of correla-
tion functions of local operators inserted along a
single Wilson line. Not surprisingly, the result for
κT is quite different from (7.12). Clearly, the v → 1
and M → ∞ limits do not commute. And yet,
Casalderrey-Solana and Teaney derive a field theo-
retical expression for κT that is very similar to our
(6.2) [25]. Perhaps this is a hint that a common
formalism for the calculation of P (k⊥) at all v can
be found. This remains an open problem.
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Appendix A: The fermion bilinear ξ̄s,n̄(q)γ
−ξs,n̄(q)

In this Appendix we evaluate the fermion bilinear
ξ̄s,n̄(q)γ

−ξs,n̄(q) that arises in Section V. We use the



17

Dirac basis for the gamma matrices

γ0 =

(

1 0
0 −1

)

γi =

(

0 σi

−σi 0

)

(A1)

with

γ+ = /̄n =
γ0 + γ3√

2
=

1√
2

(

1 σ3

−σ3 −1

)

(A2)

and

γ− = /n =
γ0 − γ3√

2
=

1√
2

(

1 −σ3

σ3 −1

)

. (A3)

It is straightforward to find the spinor wave function
for a collinear quark with four momentum

q = (0, Q, 0) (A4)

withQ≫ m by solving the free Dirac equation, obtaining

ξs,n̄(q) =
√

q0
(

χs

−σ3χs

)

, (A5)

where χs is a two-component spinor normalized as

χ†
rχs = δrs . (A6)

Now, using (A5) and (A3) and suppressing the spin
indices, we find

ξ̄s,n̄(q)γ
−ξs,n̄(q)

=
q0√
2

(

χ†
s −σ3χ†

s

)

(

1 −σ3

−σ3 1

)(

χs

−σ3χs

)

= 2
√
2q0 , (A7)

namely

ξ̄s,n̄(q)γ
−ξs,n̄(q) = 2q− , (A8)

which is the result we use in going from (5.13) to (5.14).

Appendix B: Scaling of the Glauber field

In this Appendix, we derive the scaling of the Glauber
gluon field Aµ with λ. Following the method described
in Ref. [22], we derive the scaling of Aµ by analyzing the
linear response formula

Aa
µ(x) =

∫

d4y Gab
µν(x − y)Jb ν(y) (B1)

which describes the Glauber gluon field sourced by the
current Jb ν that is composed of generic excitations of
the medium. Here, Gab

µν is the Glauber gluon propagator,
which is given at tree-level in any covariant gauge by

Gab
µν(x− y) = δab

∫

d4p

(2π)4
−igµν
p2 + iǫ

e−ip·(x−y) . (B2)

For the purpose of determining the scaling of the Glauber
gluon field Aµ, it suffices to consider the contribution to
the current Jb ν coming from the quarks ψ in the medium,
namely

Jb ν(y) = ψ̄(y)γνtbψ(y) . (B3)

We expand the field ψ into its Fourier components

ψ(y) =

∫

d3q

(2π)3
√

2Eq

∑

s=1,2

[

bs
q
us(q)e−iq·y + ds †

q
vs(q)eiq·y

]

q0=Eq

,

(B4)

where Eq = |q|, and the domain for the integration over
d3q is q ∼ λQ, since we are in the medium frame. Thus,
the expression (B1) for the Glauber gluon field includes
the term

Aa
µ(x) =

∫

d3q d3p

(2π)6
√

2Eq

√

2Eq−p

−i e−ip·x

p2 + iǫ
∑

r,s

br †
q−p

bs
q
ūr(q − p) γµt

aus(q) ,
(B5)

as well as other terms that scale the same way. Here, p
has support in the Glauber region.

We can now use Eq. (B5) to determine how Aµ scales
with λ. The power counting of the bs

q
operator is obtained

from the anti-commutation relation

{

br
q
, bs

q′

}

= δrs(2π)3δ3(q− q′) , (B6)

which implies that br
q
∼ λ−3/2Q−3/2. Likewise, the scal-

ing of the spinor us(q) can be obtained from the com-
pleteness relation

∑

s=1,2

us(q)ūs(q) = /q , (B7)

which implies that us(q) ∼ λ1/2Q1/2. Knowing the
scaling of bs

q
and us(q), and using d3q ∼ λ3Q3 and

Eq ∼ Eq−p ∼ λQ as appropriate for generic modes from
the medium and d3p ∼ λ4Q3 and p2 ∼ λ2Q2 as ap-
propriate for Glauber modes, the scaling of each of the
components of the Glauber gluon field Aµ now follows
from Eq. (B5). We obtain

Aµ ∼ Q
(

λ2, λ2, λ2
)

, (B8)

namely Eq. 4.10.
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