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Abstract

We study the radiation of gravitational waves by self-gravitating binary systems in

the low-energy limit of Hořava gravity. We find that the predictions for the energy-

loss formula of General Relativity are modified already for Newtonian sources: the

quadrupole contribution is altered, in part due to the different speed of propagation

of the tensor modes; furthermore, there is a monopole contribution stemming from an

extra scalar degree of freedom. A dipole contribution only appears at higher post-

Newtonian order. We use these findings to constrain the low-energy action of Hořava

gravity by comparing them with the radiation damping observed for binary pulsars.

Even if this comparison is not completely appropriate – since compact objects can-

not be described within the post-Newtonian approximation – it represents an order

of magnitude estimate. In the limit where the post-Newtonian metric coincides with

that of General Relativity, our energy-loss formula provides the strongest constraints

for Hořava gravity at low-energies.
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1 Introduction

General Relativity (GR) continues to stubbornly agree with every observation related to

gravity [1]. This would be extremely desirable if the theory could be merged with quantum

mechanics in a straightforward way. Unfortunately, the current situation is far from this: the

search for a consistent theory of quantum gravity remains elusive and there is no experimental

guidance to shed light on it. Furthermore, the cosmological constant problem aside1, the

success of GR as a low-energy effective field theory (EFT) points towards the Planck mass

MP ≈ 1019 GeV as the physical frontier where one expects to learn anything about quantum

gravity. If the preceding arguments are realized in Nature, experimental information about

quantum gravity will indeed be sparse in the foreseeable future.

More interesting for phenomenology are the proposals for ultraviolet (UV) completions

of GR where the previous logic fails. These include models of gravitation with a low-energy

cutoff beyond which GR ceases to be valid [2, 3]. If this cutoff scale is as low as the TeV, these

proposals may have interesting phenomenology and may even be relevant for the resolution of

the hierarchy problem. Another recent proposal in this category is Hořava gravity [4, 5]. This

framework yields a concrete UV completion of GR, with effects that may permeate basically

any gravitational experiment. It is on the implications of Hořava gravity for gravitational

radiation that we pursue in this paper.

Essentially, Hořava’s proposal consists of considering the existence of a preferred time-

foliation of spacetime. Assuming the presence of this absolute structure, the GR Lagrangian

can be supplemented by operators which render it power-counting renormalizable without

destroying the unitarity of the theory [4]. The result is a non-relativistic theory of quantum

gravity [5] (in the sense that it is Lorentz-violating). The preferred foliation is in principle

detectable at any energy scale, and it is not surprising that this approach (which is designed

to cure the unsatisfactory behaviour of GR at distances of the order M−1
P ≈ 10−33 cm) gener-

ically also modifies the theory at large distances2 [5]. Among the different implementations

of Hořava’s idea, we consider the so-called “healthy extension” [7]. This version possesses

a stable Minkowski background where the issues about strong coupling appearing in other

approaches are absent. Furthermore, variants of Hořava’s original proposal can be retrieved

1One may argue that the cosmological constant problem is a hint towards the actual theory of quantum

gravity, and that a successful framework of quantum gravity should provide a mechanism to explain this

phenomenological observation. We do not address this particular issue here.
2A counterexample to this argument can be found in [6]. However, it is not clear how GR is recovered at

large distances in this proposal.
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for a particular limit of this (generic and stable) case [7].

The low-energy (large-distance) sector of the theory is encoded into a scalar field ϕ,

called3 the “khronon”, that characterizes the foliation structure and interacts with a metric

field. We refer to this low-energy scalar-tensor theory as “khronometric” theory [5]. The extra

scalar field ϕ turns out to be massless, and its presence modifies most of the predictions of

GR, including the parametrized-post-Newtonian (PPN) parameters [5, 7, 9] and cosmological

phenomena [10, 11]. These modifications differ from those of standard scalar-tensor theories

[1, 12]. They are close, however, to the predictions of Einstein-aether theory (or æ-theory for

short) [13]. This is not surprising since both theories incorporate a field whose expectation

value violates Lorentz invariance (a unit timelike vector in the case of Einstein-aether, and ϕ

in our case), and are otherwise generic. It can be shown that the khronon ϕ corresponds to

the hypersurface-orthogonal mode of æ-theory, and many of the predictions of both theories

are indeed identical [5, 8]. The PPN parameters derived from æ-theory and khronometric

theory restrict the parameter space of those theories but are otherwise in agreement with

current observations. Thus, both (low-energy) models represent interesting alternatives to

GR, which, furthermore, have a high energy cutoff . The further advantage of khronometric

theory is that beyond this energy cutoff there is a known UV completion, in the form of

Hořava gravity.

The aim of this paper is to further constrain khronometric theory based on the loss

of energy due to the emission of gravitational waves (GWs) from a binary self-gravitating

system. This is a relevant test for gravitational theories given its sensitivity to the way

gravity propagates (e.g. the degrees of freedom and corresponding properties), and also

to the strong-field regime since known astrophysical sources of GWs tend to have strong

gravitational self-energies [12, 14, 15]. The confirmation of GR’s famous quadrupole formula

in the damping of a binary pulsar’s orbit is indeed one of its triumphs [16, 17]. Radiation

tests have also been used in the past to constrain possible modifications of GR [1, 18, 19].

A priori for both æ-theory and khronometric theory, one expects this radiation formula to

be modified due to a different speed of propagation of the tensor modes and the presence

of new propagating fields. These modifications imply new ways to constrain the parameter

space of the theory, independently of PPN and cosmological considerations. While the above

expectations have been verified for æ-theory in the weak-field regime in [20], the constraints

obtained are not final since the astrophysical systems for which radiation damping has been

observed are not in the weak-field regime [1]. The incorporation of strong-field effects in the

3From Greek χρoνoς – time. The khronon is also known as the “T-field” [8].
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Einstein-aether began in [21].

We focus on the radiation formula in the post-Newtonian (weak field, slow-motion and

weakly stressed [14]) regime of khronometric theory. This restriction is interesting for two

reasons. First, we find deviations from GR’s quadrupole formula already at leading order.

(This is similar to what happens in æ-theory, as computed in [20].) Second, and from a

purely pragmatic point of view, many of the formulae we present in this paper are useful for

the phenomenologically relevant situation of compact sources. First results relevant for the

study of gravitational radiation from these systems include the black hole solutions derived

in [22, 23], and those for neutron stars in æ-theory [24]. The use of binary pulsar observations

to constraint Hořava gravity was suggested in [25].

To extract information about the damping of the orbit of a binary self-gravitating system

from the emission of GWs, we take advantage of the fact that khronometric theory is semi-

conservative (in the language of [12]). Then, for the bound system there exists a conserved

energy that decreases due to the emission of gravitational radiation. By computing the energy

flux at infinity, we can derive the flux of energy lost by the binary. Under the assumption

that this energy is extracted entirely from the orbital motion of the binary, the subsequent

damping of the orbits can be computed using Kepler’s third law. This assumption has been

tested to lowest order in GR [15], and is plausible for khronometric theory.

This work is structured as follows. In Sec. 2, we define the action for khronometric theory

and the equations of motion relevant for low-energy phenomenology. Sec. 3 is devoted to the

linearized equations for the fields far away from the source (far-zone). In Sec. 4, we study

the conserved properties of the source relevant for the post-Newtonian (PN) calculation. We

derive the explicit expressions for the the different waveforms, up to and including the first

PN order corrections in Sec. 5. In Sec. 6, we determine the formula for the average power

loss in GWs. This formula is evaluated for a Newtonian system of two point-masses in Sec. 7,

where the Peters-Mathews parameters for khronometric theory are derived. We summarize

our results and conclude in Sec. 8. Appendix A contains a derivation of the PPN parameters

for our model (whose full expressions appear here for the first time). Appendix B compares

the monopole contribution, or lack thereof, in both khronometric theory and æ-theory for a

particular choice of parameters. Finally, Appendix C provides a summary of the notion of

energy relevant for our study.
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Conventions

We use the (+−−−) signature. For an arbitrary expression X, the overbar X̄ denotes the

part of X linear in perturbations. The superscript XNL is the non-linear part of X, i.e.

XNL ≡ X − X̄. The dot Ẋ denotes the derivative of X with respect to time. Greek indices

refer to spacetime, whereas Latin indices refer to space only. Repeated Latin indices are to be

summed, e.g. Xii ≡ δijXij . We define the symmetrization of indexes as T(ij) ≡ 1
2
(Tij + Tji).

We choose units where c = ~ = 1.

2 Action for khronometric theory at low energies

As outlined in the introduction, Hořava gravity is based on the existence of an absolute time

foliation of spacetime. This allows for the GR Lagrangian to be supplemented with higher

dimensional operators that render the theory power-counting renormalizable [4]. These oper-

ators are suppressed by a scale M∗ whose magnitude is constrained by various phenomenolog-

ical tests. The most stringent of these tests comes from absence of deviations from Newton’s

law at short distances [5] which implies that M∗ & (10 µm)−1 ∼ 1014 Hz [1, 5]. Thus,

these higher dimensional operators are irrelevant for the binary systems of interest4 and we

neglect them in the following. The presence of a preferred foliation also has consequences

at energy scales below M∗. Indeed, at low-energies new operators appear (compared to GR)

that are compatible with the group of gauge invariance preserving the preferred foliation,

i.e. the foliation-preserving diffeomorphism [4, 5]. Renormalization group arguments imply

that these relevant operators should be added to the GR action, which has been done in

the Stückelberg (or covariant) formulation of the theory in [5, 26]. In this formulation, the

preferred-time foliation corresponds to the expectation value of a scalar field ϕ called the

“khronon”. This field is such that the normal to the surfaces of constant field is timelike,

∂µϕ∂
µϕ > 0. (1)

The action of the theory is invariant under diffeomorphisms, and Lorentz invariance is broken

by condition (1) in a spontaneous way. Also, the action must be endowed with invariance

under field reparametrizations

ϕ 7→ f(ϕ), (2)

4As an example, the famous PSR 1913+16 binary pulsar has a characteristic frequency of 102 Hz [1]. We

assume that the speed of propagation of all the modes is similar to the speed of light. We comment on this

assumption when we derive the energy-loss formula in Sec. 6.
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which follows from our requirement of a preferred time-foliation as opposed to a preferred

time. It corresponds to the time reparametrization invariance of the theory in the original

formulation of [4]. The invariance under the transformations (2) is readily implemented by

making the action depend on ϕ through the combination

uµ ≡ ∂µϕ
√

∂ρϕ∂ρϕ
. (3)

Clearly, uµ is non-singular whenever condition (1) is satisfied. Notice also that uµ is a unit

timelike vector.

The low-energy action for the healthy extension of Hořava gravity corresponds to the

most general action describing the coupling of ϕ with a metric field gµν at low-energies and

compatible with the aforementioned invariances [5]. It is given by

S =− Mb
2

2

∫

d4x
√
−g
[

R +Kµν
σρ∇µu

σ∇νu
ρ
]

+ Sm, (4)

where Mb is an arbitrary mass parameter to be related to the Planck mass,

Kµν
σρ = β δµρ δ

ν
σ + λ δµσδ

ν
ρ + αuµuνgσρ,

and α, β and λ are free dimensionless constants5. We also introduce a term Sm in Eq. (4)

representing the matter component of the theory. We assume that matter is universally

coupled to the metric gµν , which enforces the weak equivalence principle [1]. This action

defines what we call “khronometric theory”. For later convenience, we introduce

Sχ ≡ −Mb
2

2

∫

d4x
√−gKµν

σρ∇νu
ρ∇µu

σ = −Mb
2

2

∫

d4x
√−gKµ

σ∇µu
σ,

where

Kµ
σ ≡ Kµν

σρ∇νu
ρ = Kνµ

ρσ∇νu
ρ.

is used to compactify notation.

Khronometric theory can be considered on its own as an alternative to GR with an extra

scalar field, independently of quantum gravity motivations. This approach is similar to the

way Einstein-æther theories are constructed. The only difference is that the vector uµ is

taken to be a generic timelike vector in æ-theory [13], meaning that it has more degrees of

freedom than in the khronometric case. It also implies an extra term in the generic action

5Note that the parameter λ corresponds to λ′ in the notations of [5]. It also differs from the λ defined in

[4].
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with respect to Eq. (4). This extra term can be absorbed by the ones in action (4) for

hypersurface orthogonal vectors, i.e. whenever uµ satisfies Eq. (3). Khronometric theory

and æ-theory share the nice feature of having a high energy cutoff. The advantage of the

former is that a UV completion in the form of Hořava gravity is known.

Let the khronon and matter energy-momentum tensors be, respectively,

T χ
µν ≡ 2√−g

δSχ

δgµν
, Tm

µν ≡ 2√−g
δSm

δgµν
.

The explicit expression for T χ
µν reads

M−2
b T χ

µν = −∇ρ

(

K(µν)u
ρ +Kρ

(µuν) −K
ρ

(µ uν)

)

+
1

2
gµνK

ρ
σ∇ρu

σ

+ α aµaν + 2∇ρK
ρ
(µuν) − uµuνu

σ∇ρK
ρ
σ − 2α aσu(µ∇ν)u

σ + α aρaρuµuν ,

where we have introduced the notation

aµ ≡ uρ∇ρuµ.

The equations of motion derived from varying the action with respect to the metric are

Qµν ≡ Gµν −M−2
b

(

T χ
µν + Tm

µν

)

= 0. (5)

The equation of motion for the khronon field is

Qχ ≡ ∇µJ
µ ≡ ∇µ

(

1√
X
Pµν [∇σK

σ
ν − α aσ∇νu

σ]

)

= 0, (6)

where

Pµν ≡ (gµν − uµuν) . (7)

As usual, this equation follows from the covariant conservation of the khronon energy-

momentum tensor. That it can be represented as the conservation of a current is a con-

sequence of the invariance of the theory under reparametrizations of the khronon given by

Eq. (2) [26].

3 Equations of motion in the far-zone

The physical system of interest for radiation damping consists of an isolated self-gravitating

astrophysical source. By this we mean that there is a region of spacetime surrounding the
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source where the fields acquire their background values plus small perturbations. Thus, there

exists a coordinate frame where the metric in this region satisfies6,

gµν = ηµν + hµν ,

with |hµν | ≪ 1. For the khronon field, we fix the parametrization invariance (2) by working

with a time coordinate corresponding to the background of the field. Thus, we expand it as

ϕ = t+ χ,

where |χ| ≪ t. It is easy to verify that the background fields are indeed solutions of the

equations of motion (5) in the absence of matter. To derive the flux of energy lost by this

system, it is enough to understand the behavior of the fields produced by the isolated source

in this region where they are weak. This is so because the energy carried by GWs is radiated

away and eventually permeates the “weak-field” zone. We can extract the power radiated by

integrating the flux of energy over a sphere surrounding the source at a particular time after

the emission. This calculation is further simplified in the region far away from the source due

to the applicability of the both the “weak-field” and “far-zone” approximations (see below).

To derive the equations governing the perturbations hµν and χ, we split Eq. (5) and

Eq. (6) into linear and non-linear parts as follows

Ḡµν −M−2
b T̄ χ

µν =M−2
b τµν , Q̄χ = −QNL

χ . (8)

The expression for τµν reads

τµν = Tm
µν +

(

T χ
µν

)NL −M2
bG

NL
µν . (9)

This separation into linear and non-linear parts allows us to solve for hµν and χ perturbatively

in M−2
b . The terms τµν and QNL

χ can be interpreted to be source terms for the linear

equations at different orders in M−2
b . They include contributions from both matter and non-

linear gravitational fields of lower order. For this paper, we are interested in matter sources

that are weakly self-gravitating, slowly moving7 and weakly stressed. These are known as

post-Newtonian (PN) sources [14]. For these systems, one has

v ∼ |h1/200 | ∼
∣

∣

∣

∣

Tm
0i

Tm
00

∣

∣

∣

∣

∼
∣

∣

∣

∣

Tm
ij

Tm
00

∣

∣

∣

∣

1/2

≪ 1, (10)

6In this section, Greek indices are manipulated with the Minkowski metric.
7For theories with modes propagating at different speeds, this means that the typical velocity v of the

source is small with respect to all of them.
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where v is the typical velocity of the source. Thus, we can introduce v as a new parameter of

expansion and consider the predictions of the theory at different orders in v, also known as

PN orders. We content ourselves with the first PN corrections, which amounts to considering

Eqs. (8) where the source terms also include PN corrections. In particular, the metric should

be substituted by its first PN expression (Appendix A) whenever it appears in the non-linear

source terms.

This straightforward analysis is only suited for the first PN corrections. Beyond that,

the analysis becomes more complicated due to the presence of tails and retardation effects.

The correct treatment of the problem in general involves the separation into a near-zone

and a wave-zone. In the near-zone, one can find the metric to any PN order including non-

linearities and minimizing retardation effects. This corresponds to an expansion in the small

parameter to desired order in v. In the wave zone, one can solve the equations of motion

perturbatively in the fields and match the solution to the one found in the near-zone in a

region where both approximations are valid [14, 15, 27, 28]. For the first PN corrections

considered in this paper, this analysis reduces to the one outlined in the previous paragraph.

For higher order corrections the matching is much less trivial [14, 15, 27, 29].

The linearized khronon energy-momentum tensor satisfies the following conservations

laws

∂µT̄ χ
µi = 0, ∂µT̄ χ

µ0 =M2
b Q̄χ. (11)

It follows from the invariance of the linearized theory under linear diffeomorphisms. Next,

from the transverse properties of the Ḡµν and when the equations of motion are imposed,

one finds

∂µ
(

Tm
µν + T χ

µν −M2
bG

NL
µν

)

= 0.

Together with Eq. (11), this yields the following conservation equations for the source tensor

τµν

∂µτµν = −∂µT̄ χ
µν = −M2

b δ
0
ν Q̄χ (12)

which is of particular importance in Sec. 4 and beyond.
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3.1 Wave equations

We decompose the gravitational perturbations into irreducible representations of SO(3),

h00 = 2φ, h0i = − ∂i√
∆
B + Vi,

hij = tij + 2∂(iFj) + 2
∂i∂j
∆

E + 2

(

δij −
∂i∂j
∆

)

ψ,

(13)

where tii = ∂itij = ∂iVi = ∂jFj = 0. We also define the Laplacian by ∆ ≡ ∂i∂i.

Tensors and vectors

To single out the tensorial part of the equations of motion as written in Eq. (8), we introduce

the transverse-traceless projector Pij,kr and the transverse projector Pij

Pij,kr ≡ PikPjr −
1

2
PijPkr, Pij ≡ δij −

∂i∂j
∆

. (14)

A straightforward calculation yields

Pij,krQkr =
1

2
Pij,kr

[

β ḧkr − (∂20 −∆)hkr − 2M−2
b τkr

]

,

leading to the wave equation for the tensor modes

(c−2
t ∂20 −∆)tij = −2M−2

b Pij,ksτks, (15)

with c2t = 1/(1− β) representing the speed of propagation of the tensor polarizations. This

coincides with the results of æ-theory [30].

Consider now the vectorial part of the equations. Contrary to æ-theory [20, 30] this

sector does not contain any propagating polarizations. Indeed, one finds

PijQ0j =
(1− β)

2
∆
(

Vi − Ḟi

)

−M−2
b Pijτj0 = 0,

Pik∂jQkj =
(1− β)

2
∆
(

V̇i − F̈i

)

−M−2
b Pik∂jτkj = 0.

(16)

The first equation represents a constraint and its time derivative yields the second equation

(which follows from gauge invariance). For definiteness, we choose to work in the gauge

Fi = 0, (17)

which completely fixes the gauge freedom in the vector sector.
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Scalars

The scalar sector of the theory is different from GR. In particular, it includes an extra degree

of freedom. We choose to work in the gauge

χ = B = 0, (18)

which completely fixes the gauge in the scalar sector. The choices (17) and (18) are referred

to as the “unitary gauge”. In this gauge, the non-redundant equations of motion derived

from (5) and (6) are

α∆φ = 2∆ψ −M−2
b τ00, (19a)

(β + λ)∆Ė = −2(λ+ 1)∆ψ̇ +M−2
b ∂iτ0i, (19b)

(

c−2
s ∂20 −∆

)

ψ =
αM−2

b

2(α− 2)

(

2

α
τ00 + τii −

(2 + β + 3λ)

(β + λ)

∂i∂j
∆

τij

)

. (19c)

The speed of propagation of the scalar perturbation is given by

c2s =
(α− 2)(β + λ)

α(β − 1)(2 + β + 3λ)
, (20)

which coincides with the scalar mode of æ-theory [30].

3.2 Far-zone expressions and post-Newtonian approximation

The equations of motion (15), (16) and (19) contain two types of equations that we wish to

solve, Poisson and wave equations. The Poisson equation is of the form

∆ξ(t, x) = −4πρ(t, x),

whose solution for vanishing boundary conditions at infinity is given by

ξ(t, x) =

∫

d3x̃
ρ(t, x̃)

|x− x̃| .

We assume that the isolated source of GWs can be confined within a sphere of radius R. At

distances far away from the source, r ≡ |x| ≫ R, we can perform the expansion (r̂i = xi/r)

|x− x̃| = r − r̂ix̃i + r O(R/r)2. (21)

We refer to this zone as the “far-zone”. The leading contribution of the solution to the Poisson

equation at large distances is then

ξf(t, x) =
1

r

∫

d3x̃ ρ(t, x̃). (22)
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The sourced wave equations are of the form

(

c−2
σ ∂20 −∆

)

σ(t, x) = 4πµ(t, x), (23)

with speed of propagation cσ. The solution to this equation with radiation boundary condi-

tions is given by (see, e.g. [15])

σ(t, x) =

∫

d3x̃
µ(t− |x− x̃|/cσ, x̃)

|x− x̃| . (24)

Besides adopting the far-zone approximation and using (21), we also assume that r is such

that r ≫ ωR2/cσ, where ω is the largest characteristic frequency of the source. This allows

us to write the leading contribution as

σf (t, x) =
1

r

∫

d3x̃ µ(t− r/cσ + r̂ix̃i/cσ, x̃) =
1

r

∞
∑

n=0

1

n!
∂n0

∫

d3x̃ µ(t− r/cσ, x̃)
(

r̂ix̃i/cσ
)n
,

(25)

where the last identity holds formally. This expression can be simplified further for the PN

sources of interest [12, 14, 31]. As seen in the previous section, khronometric theory involves

two speeds of propagation, the tensor and the scalar speeds ct and cs. We assume that the

system is slowly moving with respect to both speeds which are considered to be of the same

order, ct ∼ cs ∼ 1. Thus, for a typical velocity v ∼ ωR of the source, the sum in Eq. (25)

represents a well-defined expansion in the small parameter,

v ≪ 1,

i.e. it is a PN expansion, cf. Eq. (10). In other words, every time derivative in the near zone

represents an extra O(v).

4 The source: conservation properties

The source terms for the equations (15), (16) and (19) are expressed in terms of the pseudo-

tensor τµν . In order to find solutions to the Poisson and wave equations in the far-zone,

Eqs. (25) and (22) indicate that we need to evaluate various integrals of τµν . In what

follows, we present results that are relevant for simplifying those integrals (and therefore the

wave forms that appear in Sec. 5) and include leading PN corrections. We refer the reader

to Appendix A for more details on the first order PN approximation and the parametrized-

post-Newtonian (PPN) formalism [12].
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From Eq. (12), one can establish the useful integral conservation laws,

∫

d3x τij =
1

2

∫

d3x τ̈00x
ixj − 1

2

∫

d3x ∂µτ̇µ0x
ixj . (26a)

∫

d3x τ̇0ix
j = −

∫

d3x τij. (26b)
∫

d3x τ̇00x
i = −

∫

d3x τi0 +

∫

d3x ∂µτµ0x
i. (26c)

In deriving the previous equations, we assume that all the boundary integrals cancel (the

corrections to this assumption are negligible at large r). The difference with respect to the

GR integral conservation laws is the presence of the terms proportional to ∂µτµ0 coming

from the non-conservation of τµν , Eq. (12). Remember that the current τi0 is conserved for

khronometric theory . Naively one expects ∂µτµ0 to contribute to order as low as O(v3).

To see that this is not the case, we notice that Eqs. (26) can be simplified by writing

the equation of motion (6) as an equation for a conserved current (which corresponds to

the Noether current related to the invariance of the theory under reparametrizations of ϕ,

Eq. (2)),

∂µ(
√−gJµ) = 0. (27)

Furthermore, in the unitary gauge, ϕ = t and J0 = 0 (see Appendix D of [5]). Since J i is

linear in perturbations, we find that

Q̄χ = −∂i(
√
−gJ i)NL. (28)

Thus,

∂µτ0µ =M2
b ∂i(

√
−gJ i)NL ∼ O(v5), (29)

and the dipolar corrections turn out to be large in PN order. In particular, at order O(v5)

only the Eq. (26c) is modified with respect to GR. A straightforward but tedious calculation

using the PN metric displayed in Eq. (48) yields

∫

d3x ∂µτ0µx
i =

1

2

∫

dx ρ
[

(αPPN
1 − αPPN

2 )V PPN
i + αPPN

2 W PPN
i

]

+O(v6), (30)

where

αPPN
1 =

4(α− 2β)

β − 1
,

αPPN
2 =

(α− 2β)(−β[3 + β + 3λ]− λ + α[1 + β + 2λ])

(α− 2)(β − 1)(β + λ)
.

(31)
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These constants are the PPN parameters related to the violation of Lorentz invariance of the

theory (see Appendix A). In the limit of small parameters they coincide with those found

in [5]. The potentials V PPN
i and W PPN

i are also defined in Appendix A. Finally, the form

of the Eq. (30) is identical to the one found for æ-theory [21].

The previous formulae (26) and (30) can also be derived by relating the pseudo-tensor

τµν to a conserved (but asymmetric) object. Indeed, from Eqs. (12) and (6) it is evident that

Tµν ≡ τµν +M2
b δ

0
µ ηνρJ̄

ρ

satisfies

∂νTµν = 0.

This object has a contribution linear in the fields. To build a quadratic conserved pseudo-

tensor it is enough to add the conserved current found in (27) and consider the object

T
q
µν ≡ τµν +M2

b δ
0
µηνρ(J̄

ρ −
√
−gJρ) = τµν −M2

b δ
0
µ ηνρ(

√
−gJρ)NL.

The resulting integral conservation laws for this object are then identical to the ones found

in [12, 21]. The existence of this conserved quadratic current is a generic consequence of the

theory being semi-conservative in the language of [12]. This conserved current satisfies

T
q
0i − T

q
i0 =M2

b (
√
−gJ i)NL.

Then, one can use the Eq. (4.103) in [12] to compute (29). Even if this method may save a

lot of computations, it is inconvenient since the result in [12] is derived in the PPN gauge,

whereas we are interested in the result in the unitary gauge (30).

5 Wave forms in the far-zone

We are now ready to compute the explicit form of the wave solutions in the far-zone, which

we do consistently up to O(v6) in the PN approximation. For the tensor and vector modes,

the solutions of Eqs. (15), (16), (25) and (26) are (in the gauge Fi = 0)

tij(t, x) = − 1

4πM2
b r
P̂ij,ksQ̈ks(t− r/ct)−

1

2πM2
b ct r

P̂ij,ksr̂
aṠks,a(t− r/ct) +O(v6), (32a)

Vi(t, x) = − c2t
2πM2

b

(

1

r

∫

d3x̃ Pijτj0(t, x̃)

)

, (32b)

14



where

Q(t)ij ≡ I(t)ij −
1

3
δijIkk(t), Iij(t) ≡

∫

dx̃ τ00(t, x̃)x̃
ix̃j ,

Sks,a(t) ≡
∫

d3x̃ τks(t, x̃)x̃
a.

The quantity Qij represents the quadrupole of τ00. Note that in the far-zone, the longitudinal

projector Pij of Eq. (14) can be substituted by the longitudinal part of the algebraic projector,

P̂ij ≡ δij − r̂ir̂j.

This substitution is valid up to O(R/r) terms. The object P̂ij,ks is defined as

P̂ij,kr ≡ P̂ikP̂jr −
1

2
P̂ijP̂kr.

Anticipating the results of Sec. 6, we notice that the energy-loss formula depends on the

time derivative of the fields. For the vector part, the previous expression yields

ḣ0i = V̇i = − c2t
2πM2

b

(

1

r

∫

d3x̃ Pij τ̇j0(t, x̃)

)

. (33)

From the conservation law (12), this term can be expressed as the integration over the

boundary of the transverse component of the source, which cancels away from the source,

and we can neglect the vector perturbations altogether.

Concerning the scalar field, from the wave equation (19c) one finds

ψ =
α

8π(α− 2)M2
b r

(

3

2
[Z − 1] r̂ir̂jQ̈ij(t− r/cs) +

1

2
Z Ïkk(t− r/cs)

+
2

csα
r̂i
∫

d3x̃ τ̇00(t− r/cs, x̃)x̃
i +

1

3c3sα
r̂ir̂j r̂k

∫

d3x̃
...
τ 00(t− r/cs, x̃)x̃

ix̃j x̃k

+
1

cs
r̂aṠkk,a(t− r/cs)−

(2 + β + 3λ)

cs(β + λ)
r̂ir̂j r̂kṠij,k(t− r/cs)

)

+O(v6),

(34)

where

Z ≡ (β − 1)(αPPN
1 − 2αPPN

2 )

3(α− 2β)
. (35)

Notice that the conservation law τ̇00 = ∂i(τ0i+J̄i) has been used to show that the first moment

of τ00 is constant in time and therefore ignored in (34). From the results in the previous

section, we see that the modification to the GR results appear at order O(v4). Notice also
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that it follows from (30) and the constancy of the integral of τi0 that the dipolar contribution

in (34) is O(v5) and suppressed by the PPN parameters. Finally, the quadrupole terms in

the tensor and scalar sectors differ slightly, as they depend on different retarded times. For

the remaining scalar fields φ and E, from Eqs. (19) one finds

φ =
2

α
ψ +

1

4πM2
b α r

∫

d3x̃ τ00, Ė = −2(λ + 1)

β + λ
ψ̇. (36)

6 Energy-loss formulae for post-Newtonian systems

The definition of the energy carried by gravity waves is non-trivial (see [32] for a review

on the concepts of energy and momentum in GR). For the problem at hand, we follow

the procedure of [21] (see also [33]) and use the notion of energy for asymptotically flat

spacetimes derived in [34]. Given an isolated source, we can compute the time variation of

this notion of energy by performing an integral of the flux in the far-zone, which we idealize

as being infinitely far away from the source. We associate this energy loss to the energy

carried away by gravitational radiation. As shown in [34, 35], this alternative approach

is equivalent to the one based on pseudo-tensors used in standard computations of energy

loss due to gravitational radiation [12, 15, 31]. We give a brief review on this method in

Appendix C,

In deriving the energy-loss formula, we make the following assumptions. We start by

assuming that our system consists of an asymptotically Minkowski spacetime at early times,

with the following fall-off properties in the unitary gauge,

gµν = ηµν +O(1/r), ∂αgµν = O(1/r2), χ = 0. (37)

As for the matter fields, we assume that they vanish asymptotically to ensure that there are

no boundary integral contributions. The previous conditions allow us to define a convenient

notion of conserved energy E , Eq. (61), as the conserved charge associated to the invariance

of the asymptotic solution under asymptotic time translations8. To compute the flux of

gravitational radiation, we consider the moment of time when the emitted GWs are already

at spatial infinity, which means that the fall-off properties of the fields change to

hw ∼ O(1/r), ḣw ∼ ωO(1/r), ∂rhw ∼ ω/csO(1/r). (38)

8Even if this symmetry is broken by the background for the field ϕ, it is still a symmetry due to the

reparametrization invariance of the theory (2).
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The quantity E with these boundary conditions is in general divergent. Nevertheless, its

change due to the radiation emitted during a finite interval of time is well-defined [36]. We

focus on computing the time variation of E , Eq. (64). As shown in Appendix C, Ė is finite

for conditions (38) and only has contributions that are quadratic in the fields.

We also consider the time average of the quantity Ė over several periods of the source,

〈Ė〉. The final averaged energy-loss formula is a standard observable in GW experiments

(including the binary system of interest, where the observed damping of the orbits occurs

after several periods) and the final expression is simplified since total time derivatives vanish

when integrated.

The final expression is further simplified after one takes into account the following con-

siderations. From the form of the solution of the tensor modes, Eq. (32a), and of the field

ψ, Eq. (34), then in the far-zone these fields satisfy the equation

cσ ∂iσ = −r̂iσ̇, (39)

for the corresponding speeds of propagation. Remember also that in the far-zone, the tensor

modes tij are transverse with respect to the algebraic projector r̂itij = 0. For the vector

part, we already showed that it does not contribute to 〈Ė〉, as its time derivative cancels,

cf. Eq. (33). Similarly, the fields E and φ always appear under a time or a space derivative.

Thus, we notice that the dependence on the source appearing in Eq. (36) will be either

higher order in R/r for the space derivatives (and therefore negligible), or of the form
∫

d3x̃ τ̇00 = −M2
b

∫

d3x̃ Q̄χ =M2
b

∫

d3x̃ ∂i(
√−gJ i)NL = 0.

So, only the ψ contribution for E and φ is non-zero, and therefore these fields satisfy relation

(39). In fact, the latter relation is also satisfied by the scalar part of hij .

The previous considerations (and some algebra presented in the Appendix C) yield the

final result for the rate of energy loss of the system,

〈Ė〉 = −M
2
b

4

∮

S2
∞

dΩ r2
〈

1

ct
ṫij ṫij −

8(α− 2)

α cs
ψ̇ψ̇

〉

. (40)

Whereas the radiation emitted in the tensor modes always decreases the energy of the system,

the behaviour of the emitted scalar modes depends on the parameter α. We see that the

emitted energy is positive for the range 0 < α < 2, as expected since these values are also

required for the stability of the Minkowski background (absence of ghosts) [7].

Up to this point, we have consistently worked to first PN order (which corresponds to and

includes O(v5) in the wave-forms). Given the time derivatives in Eq. (40), substitution of the
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waveforms (32a) and (34) yields the energy loss of the system from gravitational radiation

up to and including O(v12), although corrections already appear at leading order, O(v10).

To simplify what follows, we therefore focus on Newtonian sources and the corrections at

this order. Substituting the waveforms to lowest PN order in the previous expressions and

performing the angular integrals, we find the energy-loss formula9

〈Ė〉 = − 1

8πM2
b

〈A
5

...
Qij

...
Qij + B

...
I

...
I

〉

, (41)

where (recall Eq. (35))

A ≡ 1

ct
− 3α(Z − 1)2

2cs(α− 2)
, B = − αZ2

4cs(α− 2)
.

The final expression, Eq. (41), differs from the GR result in two ways: the coefficient cor-

responding to the quadrupole depends on the parameters of the model; there is a monopole

contribution already at this first Newtonian order. This is similar to the formula derived

for æ-theory10 [21]. Let us note something quite remarkable in the context of the khrono-

metric theory that we are studying. All of the Solar System tests are passed in the limit

|αPPN
1 | ≪ 1, |α2|PPN ≪ 1, which can be achieved by the single requirement |α − 2β| ≪ 1,

cf. (31). In this limit, Z = 1, the dipole term (30) cancels and the monopole contribution

in Eq. (41) is still present. This last result contrasts with the æ-theory case for which there

is only a modified quadrupole (in the equivalent limit). This discontinuity between the two

theories is discussed in Appendix B.

7 Energy loss by a Newtonian binary system

To complete the calculation, the power-loss formula (41) must be supplemented by the equa-

tions of motion of the system to desired post-Newtonian (PN) order. We content ourselves

with a 2-body Newtonian system composed of point-masses m1 and m2. The matter action

is then given by

Sm = −
2
∑

A=1

∫

mAdsA , (42)

9In this final formula, we compute the quadrupole and monopole terms at a time when radiation from

both the tensor and scalar modes simultaneously reaches the boundary of the isolated system. For different

speeds of propagation ct and cs, the discrepancy in emission time is irrelevant for stationary production of

GWs.
10For the monopole and quadrupole contributions, the definition of Z in [21] differs from Eq. (35) by a

factor of two. We attribute this difference to a typo in the final formula for ψ in [21].
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where dsA represents the proper-time of the A-th particle. A priori, mA depends on the

khronon field. Since we are only interested in the Newtonian system, it is enough to Taylor

expand the mass around its background value and use only the leading order contribution,

hence mA is taken to be constant. Using the preferred time as the affine parameter, the

energy-momentum tensor derived from (42) is

Tm
µν =

1√−g

2
∑

A=1

mAuAµuAν
√

gρσu
ρ
Au

σ
A

δ(3)(xk − xkA(t)),

where the A-th body follows the trajectory xkA(t) with four-velocity uµA. At Newtonian order

this yields

Ïij(t− r/cσ) = ∂20

2
∑

A=1

mAx
i
A(t− r/cσ)x

j
A(t− r/cσ).

We evaluate this at very late times as explained in the previous section. Next, from the

geodesic equation derived from (42), we find Newton’s law

ẍi1 = −GN
m2

r212
r̂i12, ẍi2 = GN

m1

r212
r̂i12,

where we introduce (also see Appendix A)

GN ≡ 1

4πM2
b (2− α)

, ri12 ≡ xi1 − xi2. (43)

As usual in binary systems, it is convenient to define the problem in terms of the relative

distances and the position of the center of mass xCM ≡ m1x1+m2x2

m1+m2

. Finally, assuming11 that

the system is at rest with respect to the preferred frame (so that ẋCM = 0) we get

...
I ij(t− r/c) = −2GNµM

r212

(

4r̂
(i
12v

j) − 3r̂i12r̂
j
12ṙ12

)

.

with µ ≡ m1m2/M , M ≡ m1 + m2 and vi ≡ ṙi12 is related to the expansion parameter v.

Thus, the loss of energy in gravitational radiation for a Newtonian binary system is given by

〈Ė〉 = − 1

πM2
b

(

GNMµ

r212

)2〈
1

15
A
(

12v2 − 11ṙ212
)

+
B
2
ṙ212

〉

, (44)

from which we deduce the ‘Peters-Mathews’ (PM) parameters [12, 37] (κD = 0),

κ1 = 12(1− α/2)A, κ2 = (1− α/2)

(

11A− 15

2
B
)

.

11Corrections to this assumption are considered as higher order in the PN expansion.
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Once the energy loss for the binary system is known, one can use Kepler’s third law to relate

it to the damping of the orbit. The expression for the change of the orbit’s period for generic

PM parameters in terms of other orbital parameters of the system can be found in [38].

In GR, the previous analysis suffices to predict the radiation damping of binary systems

for compact (relativistic) sources, like the PSR1913+16 [12]. This is because the structure of

the compact stars of the binary does not influence the orbit in GR (this is called the ‘effacing

principle’ which is a consequence of the strong equivalence principle). This is certainly not

true for most alternative theories of gravity. Thus, to yield concrete predictions about

the radiation damping of systems with highly relativistic sources (sources with large self-

energies), one must first understand the behaviour of the fields beyond the PN approximation.

One can then use Eq. (41) to derive the energy loss resulting in a change of the orbit (at

corresponding PN order). For scalar-tensor theories, the final result is a test of the strong-

field regime [39, 40, 41]. For æ-theory, the first steps were performed in [21] based on the

stellar solutions of [24] and using the effective field theory methods of [42, 43, 44, 45]

It is beyond the scope of our article to derive the radiation damping of these realistic

systems (including relativistic self-gravitating objects) for khronometric theory. In any case,

we do not expect the new corrections to cancel the ones we have already derived for the

Newtonian source, and thus we find it appropriate to use Eq. (44) to set order of magnitude

bounds on the free parameters of the khronometric action (4). Current data on the radiation

damping of the Hulse-Taylor binary system agrees with GR up to a level slightly better than

one part in one hundred [1, 17]. This means that the formula (44) should agree with GR

to O(10−2), which finally implies the bound (for the case where α, β and λ are of the same

order)

α ∼ β ∼ λ . 10−2. (45)

The previous bound is less stringent than the bounds coming from the PPN analysis [5, 12],

|αPPN
1 | . 10−4, |αPPN

2 | . 10−7.

As can be directly seen from Eq. (31), the PPN bounds are automatically satisfied in the

limit α = 2β. In this limit, Z = 1, and our expression (45) yields the most stringent bound

for the theory. Notice in particular that it constrains the propagation speeds to be close to

c = 1. Another constraint in this limit comes from the difference between GN as derived in

(43) and the value for Newton’s constant appearing in Friedmann’s equation, Gc [7]. The

value of Gc is constrained by nucleosynthesis and satisfies
∣

∣

∣

GN

Gc
− 1
∣

∣

∣
≤ 0.13 [46], which, in

terms of the parameters in the action (4), implies the estimate α, β, λ . 0.1 [7]. Also, we
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should ensure the absence of gravitational Cherenkov radiation, which implies c2t ≥ 1 and

c2s ≥ 1 (this means that a particle moving through the aether does not radiate12). Notice

that the speeds are superluminal, which does not pose a threat to Lorentz violating theories

as long as causality is maintained.

8 Discussion

Our aim has been to study the radiation loss from an isolated source in the PN approximation

for khronometric theory. This theory is an interesting alternative to GR with a high energy

cutoff and for which a UV completion is known in the form of Hořava gravity. It is also very

similar to æ-theory, as in both cases there is a preferred time coordinate. The difference is

that khronometric theory has only one extra scalar degree of freedom, the khronon, whereas

æ-theory relies on a timelike unit dynamical vector leading to three extra degrees of freedom,

consisting of one scalar and one vector field.

For arbitrary parameters, we have shown in Eq. (41) that the formula controlling the

power loss of the system (which may be related to the change of the orbital period of a binary

source) is modified with respect to GR already at lowest, Newtonian, order. In particular, the

quadrupole contribution differs from GR, partly due to the different speeds of propagation of

the tensor modes in both theories. Furthermore, there is also an extra monopole contribution

at this order. The monopole at leading order in khronometric theory contrasts with the usual

situation in other scalar-tensor theories [18]. At higher order, there are other modifications,

including the dipole term (30). Quite remarkably, in the phenomenologically interesting

limit where all PPN parameters coincide with GR (which corresponds to the limit α = 2β

for our parameters), the monopole is still present, and its strength is proportional to the

parameters appearing in the action of the theory, Eq. (4). These results for khronometric

theory are similar to those of æ-theory, modulo vector propagating degrees of freedom that

are absent for the khronometric case. There is a key difference, however, since æ-theory only

has a modified quadrupole to lowest order in the equivalent limit.

This work has been devoted to PN sources. These types of sources do not correspond

to the ones found in the binary systems of interest, which are compact and characterized

by strong gravitational fields. Despite this, we have evaluated the energy-loss formula for

the simplest possible system: a Newtonian binary. Doing so provides an order of magnitude

estimate on the parameters of the theory (as we do not expect corrections due to strong-

12We thank D. Levkov and S. Sibiryakov for pointing this out to us.
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fields to cancel the modifications apparent in the power loss formula). Thus, our results

are relevant for constraining the case α = 2β. In this case, requiring the rate of radiation

damping to be close to GR sets constraints on this parameters of order O(10−2). These

constraints represent the strongest phenomenological bounds for this particular choice of

parameters and are relevant for the cosmological implications of the theory, including the

recently suggested model of dark-energy [47].

Sources with strong self-energies is left for future research and can be treated in our

theory in the same way as scalar-tensor theories [39, 40, 41]: a phenomenon of “scalarization”

modifies the orbit of these sources as compared with the post-Newtonian ones. It would

also be interesting to consider our results in the parametrized post-Einsteinian framework

introduced in [48] (see also [49] for the binary pulsar constraints for this framework). Finally,

the consequences of alternatives theories of gravity for experiments of direct detection of GWs

have been recently discussed, see e.g. [1, 50]. We hope to extend these works to khronometric

theories in the future.
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A Post-Newtonian expressions

The PPN formalism is a valuable tool for comparing theories of gravitation with each other

and with experiment in the weak, non-relativistic limit [12] . In this section, we briefly

present the steps involved in the PPN calculation for khronometric theory (see also [5]). The

final result are the parameters (all the other PPN parameters cancel)

βPPN = γPPN = 1,

αPPN
1 =

4(α− 2β)

β − 1
,

αPPN
2 =

(α− 2β)(−β(3 + β + 3λ)− λ+ α[1 + β + 2λ])

(α− 2)(β − 1)(β + λ)
.

(46)
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Notice that the PPN parameters for khronometric theory for arbitrary values of the parame-

ters in (4) appear here for the first time. They coincide with results in [5] in the limit of small

parameters. The non-zero parameters αPPN
1 and αPPN

2 indicate that khronometric theory

violates Lorentz invariance. These same two parameters are non-vanishing for æ-theory, al-

though the dependence on the parameters α, β and λ is different. In both theories, however,

the relationship between αPPN
1 and αPPN

2 is the same

αPPN
2 =

αPPN
1

2
− (2β − α)(3λ+ β + α)

(λ+ β)(2− α)
.

To compute the previous results we closely follow [12, 51] to which we refer the reader

for further details. The source is assumed to be a fluid with a covariantly conserved energy-

momentum tensor

T µν = (ρ+ ρΠ + p)vµvν − pgµν ,

where vµ is the four velocity of the source, ρ the rest mass energy density, Π the internal

energy density and p the isotropic pressure of the fluid. The source is assumed to satisfy

(10).

In what follows, recall that the different fields have the following expansion,

g00 = 1 +O(v2) +O(v4), g0i = O(v3),

gij = −δij +O(v2), χ = O(v2) +O(v3).
(47)

Also, we use the following potentials

F (x) = GN

∫

d3y
ρ(y)f

|x− y| ,

where GN is defined in Eq. (43) and the correspondence F 7→ f is given by

U 7→ 1, Φ1 7→ vivi, Φ2 7→ U, Φ3 7→ Π, Φ4 7→ p/ρ,

V PPN
i 7→ vi, W PPN

i 7→ vj(xj − yj)(x
i − yi)

|x− y|2 .

The steps to take are:

1. Solve g00 to order O(v2). For this we use the 00 component of Eq. (5) to O(v2), which

yields13

∆
2

h00 = 8πGNρ.

13We use a number over the field to keep track of the order in v.

23



2. Solve gij to O(v2). Following [51], we choose the gauge conditions

∂i
2

hij = −1

2

(

∂i
2

h00 − ∂i
2

hkk

)

. ∂i
3

h0i = Γ∂0
2

h00.

The arbitrary constant Γ will be chosen to write the result in the PPN gauge. Then

from the ij component of Eq. (5) to O(v2), we find

∆
2

hij = 8πGNρ δij.

3. Solve χ to O(v3). The khronon equation of motion (6) to leading order is given by
(

∆
3
χ− Γ∂0

2

h00

)

= −(3λ+ α + β)

2(λ+ β)
∂0

2

h00,

4. Solve g0i to O(v3). In our gauge, the 0i component of Eq. (5) to O(v3) yields

∆
3

h0i =
8πGNρ vi(α− 2)− [−2 + α + Γ(1− β)]∂0∂i

2

h00
β − 1

.

5. Solve g00 to O(v4). From the 00 component of Eq. (5) to O(v4), we find

∆
4

h00 = ∂i
2

h00∂i
2

h00 −
2

h00∆
2

h00 − 4∆Φ1 + 4∆Φ2 − 2∆Φ3 − 6∆Φ4

+
(−α2 + 2β(3 + β − 2Γ) + 2(3 + 3β − 2Γ)λ+ 2α(β(Γ− 1) + (Γ− 3)λ))

(α− 2)(β + λ)
∆∂20H,

where H = −GN

∫

d3yρ|x− y| is known as the superpotential.

6. To go to the PPN gauge, we choose Γ that cancels the term depending on H in the

previous equation [12].

Putting everything together, we have (to desired order)

gPPN
00 = 1− 2U + 2U2 − 4Φ1 − 4Φ2 − 2Φ3 − 6Φ4 = 1 +∆H,

gPPN
ij = −(1 + 2U)δij = δij (−1 + ∆H) ,

gPPN
0i =

1

2
(7 + αPPN

1 − αPPN
2 )V PPN

i +
1

2
(1 + αPPN

2 )W PPN
i ,

χPPN =
(α− 2β)(2 + β + 3λ)Ḣ

2(α− 2)(β + λ)
,

which, compared to the generic PPN metric (see for example, Eq. (A.11) of [51]) implies

that all the PPN parameters vanish except for the ones cited in (46).
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The PN metric in the unitary gauge of Eqs. (17) and (18) is easily derived from these PPN

expressions. It suffices to go from the PPN gauge to the unitary gauge via a diffeomorphism

δxµ = ξµ satisfying

ξ0 = −(α − 2β)(2 + β + 3λ)Ḣ

2(α− 2)(β + λ)
, ξi =

(α + β + 3λ)∂iH

2(β + λ)
.

This leads to the following PN metric in the unitary gauge

g00 = 1 +∆H +O(v4),

gij = δij (−1 + ∆H)− (α + β + 3λ)

β + λ
∂j∂iH +O(v4),

g0i =
1

4
(8 + αPPN

1 )(V PPN
i +W PPN

i ) +O(v4),

χ = O(v4).

(48)

B The Einstein-aether and the monopole

In both khronometric and Einstein-aether theories, we compare the monopole contribution

to the energy-loss formula in the limit for which the PPN parameters are identical to GR.

The free parameters of khronometric theory are α, β and λ and those of the Einstein-aether

[13] are ci for i = 1, . . . , 4. We have the correspondence14 c1 = 0, c2 = λ, c3 = β and c4 = α.

Notice that one less parameter is needed to define khronometric theory. This is because the

action of a hypersurface orthogonal aether (which is equivalent to khronometric theory [5])

contains a term that can be absorbed by the others, reducing the number of independent

terms from four down to three.

Comparing the results of this paper and the work presented in [20], we see that the

waveforms for the spin-0 and spin-2 modes are essentially identical. The main difference

comes from the expression for Z of Eq. (35). Let Z̃ be the equivalent expression in æ-theory,

Z̃ ≡ (c13 − 1)(α̃PPN
1 − 2α̃PPN

2 )

3(c14 − 2c13)
, (49)

where α̃PPN
1 , α̃PPN

2 are the Lorentz violating PPN parameters in æ-theory and cij = ci + cj .

Then the khronometric expression for Z is precisely Z̃, but with c1 = 0.

The limit αPPN
1 = αPPN

2 = 0 in khronometric theory can be achieved by setting α = 2β

and leads to Z = 1. By inspection of the energy-loss formula (41), we see that the monopole

14Recall that we are using the mostly minus signature. The mostly plus signature is used in [20] and leads

to a different correspondence between the parameters.
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is proportional to Z and therefore persists in this limit. In generic æ-theory, the equivalent

limit that sets the PPN parameters to GR is given by

c2 =
−2c21 − c1c3 + c23

3c1
, c4 = −c

2
3

c1
(50)

and leads to Z̃ = 0. The corresponding monopole is proportional to Z̃ and subsequently

vanishes in this limit. Therefore, the values of Z and Z̃ explain the presence or absence of

the monopole in the limit when the PPN parameters are identical to those of GR.

It is natural to ask if Z̃ can be tweaked so that æ-theory has a monopole when α̃PPN
1 =

α̃PPN
2 = 0. A first possibility would be to consider the limit that ressembles khronometric

theory, namely c1 = 0 and c4 = 2c3. This leads to Z̃ = 1, like in khronometric theory,

indicating that a monopole may be possible. However, requiring only c1 = 0 implies that

αPPN
1 = 8. One could try to set c1 = 0 and c3 = 0 to get αPPN

1 = 0, but this case of

æ-theory has yet to be studied [13]. Alternatively, one may try to make the denominator in

(49) vanish to retrieve a finite limit. Setting c14 = 2c13 yields Z̃ = 1. However, the second

condition in (50) implies c1 = c3 = c4 = 0, which is a singular limit for æ-theory.

C Notion of energy for an asymptotically flat spacetime

To characterize the energy carried away from a system by GWs, we use a method different

from the standard technique defined in terms of the Landau-Lifshitz or related pseudotensors

[12, 15, 31, 32]. Here, instead of computing the energy carried by GWs, we derive the

loss of energy of the isolated system during the process of gravitational radiation. This

resembles the definition of energy loss by the time variation of the Bondi-Sachs mass [28, 32].

However, we will use a different notion of conserved energy that, to our knowledge, was

first used in the context of GWs in [20]. This energy is well-defined for asymptotically

flat spacetimes satisfying the boundary conditions (37), which we use to define isolated

sources. Its conservation follows from the invariance of the asymptotic solution under time

translations and it reduces to the standard notion of energy for flat spacetime [34] (see also

[36, 52]). Since the method is not standard, this Appendix is devoted to presenting a succinct

summary. We encourage the reader to consult the original literature to complement it.

Given a Lagrangian density L(Φ) depending on some dynamical fields Φ, we define its

associated 4-form (we present the 3 + 1 case) as

L(Φ) = L(Φ)d4x.

26



After integration by parts, the first variation of the previous form following from the variation

δΦ can be expressed as,

δL(Φ) = EΦδΦ + dΘL(Φ, δΦ),

where EΦ = 0 are the equations of motion of the theory. If the variation δΦ is a diffeomor-

phism generated by a vector field ξ, the previous variation should correspond to the action

of this transformation over L(Φ),

δξL(Φ) = d(iξ L),

where iξ L refers to the contraction of the form L with the vector field ξ. Define the Noether

current 3-form associated to ξ and L(Φ) as

JL ≡ ΘL(Φ, δξΦ)− iξ L. (51)

This form is clearly closed when the equations of motion are satisfied. In practice, to find

the components of the 3-form ΘL, notice that it is dual to a 1-form. In components

ΘLµνρ = ǫαµνρΘ
α
L,

where the index of Θα
L is risen with the metric gµν and ǫαµνρ are the components of the

Levi-Civita 3-form defined for the metric gµν . From this definition it follows that

dΘL =
√−g∇µΘ

µ
Ld

4x = ∂µ(
√−gΘµ

L)d
4x, (52)

from which one can easily identify the components of ΘL.

To associate the flux generated by ξ to a Hamiltonian evolution from an initial hypersur-

face Σ, one must assume [34, 52] that in the boundary of the initial hypersurface, denoted

by ∂Σ, it is possible to find a 3-form BL such that

δ

∫

∂Σ

iξ BL =

∫

∂Σ

iξ ΘL.

If such a current exists, the flux generated by ξ corresponds to the orbits generated by of

the Hamiltonian

Hξ ≡
∫

Σ

JL −
∫

∂Σ

iξBL. (53)

Finally, since JL is closed when the equations of motion are satisfied, it follows that locally

JL = dQL. Thus, when the equations of motion hold, Hξ can be written as a pure boundary

term,

Hξ =

∫

∂Σ

(QL − iξ BL) . (54)
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To define a canonical notion of energy, we shall now assume that ξ is an asymptotic

time translation, with components ξµ → δµ0 and that the asymptotic conditions on the

dynamical fields have been specified in such a way that the surface integrals appearing in

Eq. (54) approach a finite limit. The Hamiltonian then corresponds to the generator of time

evolution. We define the canonical energy at a hypersurface slice of constant time Σt to be

[34]

EL =

∫

S2
t

(

QL − iδµ
0
BL

)

, (55)

where S2
t represents the boundary sphere at the boundary of Σt. Whenever EL is well-defined,

it is a conserved quantity, and we can remove the t label in S2
t .

We now apply the previous formalism to our action (4). The hypersurface of constant

time corresponds to a sheet of the preferred foliation. Even if not necessary, it is convenient

to work with an action for which
∫

S2

iξ ΘL = 0. (56)

This equation is not satisfied for the Einstein-Hilbert action part of (4) (see e.g. Eq. (87)

in [34]). As explained in [34], the existence of a background metric ηµν makes it possible

to build a covariant action (which is required to get a conserved current (51)) equivalent to

Einstein-Hilbert and satisfying (56). Indeed, let us write gµν = ηµν + hµν and consider hµν

and ηµν as independent dynamical fields. We can then add a boundary term invariant under

diffeomorphisms to the action (4) to yield

S ′ ≡ S +
M2

0

2

∫

d4x
(√−g

(

(Γα
µν − Γ̄α

µν)g
µν − (Γµ

µν − Γ̄µ
µν)g

να
))

,α ≡
∫

d4xL′, (57)

where Γ̄µ
σν refers to the connection compatible with the background metric ηµν . The part

corresponding to GR reads

S ′

ΓΓ = −M
2
0

2

∫

d4x
[√−ggµρ

(

Γα
ρνΓ

ν
αµ − Γν

ανΓ
α
µρ

)

+
(√−g

(

Γ̄α
µνg

µν − Γ̄µ
µνg

να
))

,α
]

. (58)

The equations of motion derived from varying the previous action with respect to hµν and

ηµν are the same, as these fields appear only in the combination gµν , except in the boundary

term. As a consequence, ηµν can be considered to be Minkowski, and we can assume that

the equations of motion fix hµν .

For the computation of JΓΓ corresponding to the action (58) and the vector field ∂t, with

components δµ0 , we first notice that ∂t is a Killing vector of ηµν ,

δ∂tηµν = 2∇̄(µην)αδ
α
0 = 0,
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and the boundary term in Eq. (58) does not contribute to JΓΓ. For the first term one finds

the corresponding current

Θν
ΓΓ =

M2
0

4

(

Γν
µα(g

µαgρσδgρσ − 2gµρgατδgτρ) + gνα(2Γβ
σβg

ρσδgρα − Γβ
αβg

ρσδgρσ)
)

. (59)

This term is linear in the connection and does not depend on the derivative of δgµν . To

construct the conserved current, we use

δ∂tgµν = 2∇(µgν)αδ
α
0 = 2gα(µΓ

α
ν)0,

Thus, under the assumption that the fields fall-off at large distances as (37), the current

(59) vanishes asymptotically as O(r−4), which means that its contribution to (56) cancels.

Indeed the cancellation of the contribution to (56) holds in the more general situation where

one considers variations δgµν which do not change the asymptotic behaviour (37). Finally,

the energy EΓΓ derived from Eq. (58) coincides with the ADM mass which also agrees with

the energy derived from the Landau-Lifshitz pseudotensor [34, 35].

The term Sχ in the action (4) yields a current

Θν
χ = −M2

b

[

(

αaσ∇µu
σ −∇ρK

ρ
µ

) Pνµ

√
X
δχ+Kνρ

Pα
ρ√
X
∂αδχ

− 1

2
([Kνα +Kαν ] uσ −Kασuν − uαuσuρK

νρ) δgασ

]

.

(60)

Remember that the invariance under diffeomorphisms is non-linearly realized15 on χ

δξχ = ξ0 + ξµ∂µχ.

From Eq. (37) this means that δ∂tχ ∼ O(1). Similarly uα = δα0√
g00

∼ δα0 + O(1/r). Thus,

Θν
χ ∼ O(r−3), which means that the contribution of this term to (56) cancels.

Finally, we find that the conserved energy (53) for the action (57) inside a constant time

hypersurface Σt is given by

E =

∫

Σt

d3x
√−g J 0

S′, (61)

with J 0
S′ representing the coordinates of the 1-form dual to the corresponding 3-form,

Eq. (51),

J ν
S′ ≡ (Θν

ΓΓ +Θν
χ)− δν0L

′. (62)

15We could also work with the field ϕ for which δξϕ = ξµ∂µϕ.
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The contribution from the khronon action is simplified once one considers the equation of

motion for χ. Indeed, Θν
χ in Eq. (60) includes a term

(

αaσ∇µu
σ −∇ρK

ρ
µ

) Pνµ

√
X

= Jν , (63)

where Jν is defined in (6). In the unitary gauge, this current is purely spatial, which means

that this term does not contribute to (61).

We are eventually interested in the flux of energy loss through GWs, so we want to

compute the quantity,

Ė =

∫

Σ

d3x
√
−g J̇ 0

S′ = −
∮

S2
∞

dΩ
√
−g r2r̂iJ i

S′, (64)

where we have used the fact that the current J µ
S′ is conserved on-shell, which is a consequence

of J being closed and (52). The final ingredient is to evaluate J i
S′. From Eq. (59),

Θi
ΓΓ =

M2
b

4
ḣαβ

[

ηαβ(∂ρhiρ − ∂ihσσ)− 2∂αhβi + ∂ihαβ + ηβi∂αhσσ
]

+O(h3). (65)

For the khronon terms, we find that at quadratic order in the unitary gauge

Θi
χ =M2

b

[

K̄(αi)(Γ̄0
α0 + ηαρΓ̄

ρ
00)− K̄i0Γ̄0

00

]

. (66)

From this expression it is clear that the notion of energy (61) is not well defined for spacetimes

with radiation at infinity satisfying conditions (38). This is an unphysical divergence, which

is regularized for a flux of energy of finite duration [36]. For our purposes, it is enough to

notice that the time variation (64) (and hence the flux) is well defined for these boundary

conditions. Also, only the part of the integral quadratic in perturbations does not vanish,

which implies that the previous expressions are enough to compute the flux of energy at

infinity. The steps to go from the previous formula to the final result (40) are explained in

Sec. 6.
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