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ABSTRACT

Higher-order curvature corrections involving the conformally-invariant Weyl-squared

action have played a role in two recent investigations of four-dimensional gravity; in

critical gravity, where it is added to the standard cosmological Einstein-Hilbert action

with a coefficient tuned to make the massive ghostlike spin-2 excitations massless, and

in a pure Weyl-squared action considered by Maldacena, where the massive spin-2

modes are removed by the imposition of boundary conditions. We exhibit the connec-

tions between the two approaches, and we also generalise critical gravity to a wider

class of Weyl-squared modifications to cosmological Einstein gravity where one can

eliminate the massive ghostlike spin-2 modes by means of boundary conditions. The
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cosmological constant plays a crucial role in the discussion, since there is then a “win-

dow” of negative mass-squared spin-2 modes around AdS4 that are not tachyonic. We

also construct analogous conformal and non-conformal gravities in six dimensions.
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1 Introduction

Although string theory may provide the most promising candidate for a quantum

theory of gravity, there remains a tantalizing question as to whether four-dimensional

gravity can be quantized in its own right. A natural approach, and one of the simplest,

is to consider extending Einstein gravity by adding quadratic curvature terms, thus

rendering the theory perturbatively renormalizable [1, 2]. However, as is typical in a

theory with more than second-order time derivatives, it contains ghostlike modes, in

the form of massive spin-2 excitations. There is a way to circumvent this problem if

one considers three dimensions rather than four, and so the usual massless graviton

is trivial. Hence the ghostlike massive modes can become acceptable upon reversing

the sign of the Einstein-Hilbert action, without in the process creating a ghostlike

physical massless graviton. Examples include the well-studied topologically massive

gravity [3], and the more recently discovered new massive gravity [4]. It was observed

that when a cosmological constant is included, there exists some critical point [5]

in the parameter space such that the massive modes disappear and are replaced by

modes with logarithmic coordinate dependence [6]. The theory can be made ghost

free while retaining the standard sign for the Einstein-Hilbert action, by truncating

out the log modes using standard Brown-Henneaux AdS3 boundary conditions [7].

The theory has subsequently been generalized to a large class of three-dimensional

off-shell supergravities [8]-[12].

Analogous critical gravities in four dimensions were subsequently proposed [13].

The Lagrangian consists of the Einstein-Hilbert term, a cosmological constant Λ, and

a term constructed from the square of the Weyl tensor, with a coupling constant

1
2
α.1 It was shown that there is a critical relationship between α and Λ such that the

massive spin-2 modes disappear by coalescing with the massless modes, resulting again

in the appearance of logarithmic modes [15]. (See also [16, 17].) These log modes are

ghostlike in nature [18, 19], but their fall-off behaviour at infinity is slower than the

standard massless modes, and so they can be truncated out by imposing appropriate

AdS4 boundary conditions. The resulting theory appears, however, to be somewhat

1Actions with a Weyl-squared term have also been considered in the context of non-commutative

geometry in [14].

3



empty, in that the remaining massless graviton has zero on-shell energy. Furthermore,

the mass and entropy of black holes in the critical theory both vanish. This critical

phenomenon arises also in higher-dimensional gravities extended by adding curvature-

squared terms [20], and also if certain cubic curvature terms are added [21]. (See also

[22] for the D = 3 case.)

Recently, four-dimensional purely conformal gravity [23], where there is only a

Weyl-squared term, has been revisited in [24]. It was shown that if an appropriate

boundary condition is imposed, then for spherically-symmetric configurations only

the Schwarzschild-AdS metric arises as a black-hole solution in conformal gravity.

Furthermore, its Euclidean action calculated in conformal gravity modified by a purely

topological contribution from a Gauss-Bonnet term turns out to match exactly with

the action of the same black hole in Einstein gravity with a cosmological constant,

for an appropriate choice of the coefficient α of the Weyl-squared term in conformal

gravity. The black-hole entropy calculated for the conformal gravity and for the usual

Einstein gravity then precisely matches also. This leads to the possibility that the

two theories at long wavelengths are in fact equivalent.

The Lagrangian for critical gravity, modulo a total derivative that does not affect

the equations of motion, is given by [13]

Lcrit =
√
−g(R− 2Λ + 1

2
αCµνρσCµνρσ) , (1.1)

where Cµνρσ is the Weyl tensor. It turns out that the value for α required for criticality,

namely α = 3/(2Λ), is of precisely the same magnitude as that for the Weyl-squared

coupling coefficient obtained in [24] for conformal gravity by imposing the Euclidean

action matching condition described above. Thus the essentially vacuous nature of

critical gravity is a reflection of the equivalence of the cosmological Einstein-Hilbert

and the conformal theories.

In section 2, we review both critical gravity and the Einstein/Conformal Gravity

duality conjecture. In conformal gravity, there exist ghostlike massive spin-2 modes

in the AdS4 background, satisfying (�− 2
3
Λ −M2)hµν = 0, in addition to the mass-

less spin-2 modes satisfying (� − 2
3
Λ)hµν = 0. Spin-2 representations in AdS4 are

characterised by their lowest-energy E0, which is given by

E0 =
3

2
±
√

9

4
− 3

Λ
M2 . (1.2)
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The representation is unitary if E0 ≥ 3, and hence M2 ≥ 0 [25]. The time-dependence

of the modes is proportional to e−iE0t, and so by analogy with the situation in

Minkowski spacetime, modes may be defined to be tachyonic if E0 becomes com-

plex, thus leading to exponential growth in time. From (1.2), the absence of tachyons

therefore requires2

M2 ≥ 3

4
Λ . (1.3)

Interestingly, although the massive modes in conformal gravity have M2 < 0, the

“mass”-squared is not sufficiently negative to violate the bound (1.3), and so although

they are not unitary representations they are not tachyonic. However, the radial fall-

off of these modes is slower than that for modes with M2 ≥ 0. In fact they fall

off more slowly even than the logarithmic modes. Thus these non-unitary modes

can be truncated out by imposing appropriate boundary conditions, leaving only the

massless graviton. The vanishing on-shell energy of the massless graviton in critical

gravity implies that its energy in conformal gravity is exactly the same as it is in

cosmological Einstein gravity.

In section 3, we obtain new unitary four-dimensional gravities, by generalising the

parameter choices made for critical gravity in [13]. For critical gravity, the unitarity

requirement M2 ≥ 0 was imposed for the spin-2 modes. However, as noted above,

the absence of tachyonic modes in D = 4 is less restrictive than this, and M2 can

be negative provided that (1.3) is still satisfied. This implies we can choose the

coupling α for the Weyl-squared term in (1.1) so that the massive spin-2 modes have

3Λ/4 ≤ M2 < 0. These ghostlike modes are classically stable, but can be truncated

out by imposing appropriate boundary conditions, just as was done for conformal

gravity in [24], leaving only the unitary massless graviton modes. Within this broader

class of cosmological gravity plus Weyl-squared theories, critical gravity’s specific

problem of becoming vacuous after truncating the ghostlike modes is circumvented.

Furthermore, since the broader class of theories has a range of allowable values for

the parameter α, rather than a single critical choice, the possibility of finding a stable

fixed point under the renormalization group flow becomes less demanding.

In section 4, we generalize these results to six dimensions. There are three

2For scalar fields, the analogous requirement that E0 be real is equivalent to the Breitenlohner-

Freedman bound [26].
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conformally-invariant structures in D = 6. Two of these are the two independent

invariants built from the cube of the Weyl tensor. The third is essentially built from

second derivatives of the square of the Riemann curvature. In order to obtain a

conformal equivalence to Einstein gravity, it is in particular necessary that Einstein

metrics should also be solutions of the conformal gravity. Indeed, it was already ob-

served that there exists a specific linear combination of the three conformal structure

such that Riemann curvature squared and cubed terms all vanish [27]. As in D = 4,

we find that the conditions on the coefficients required for critical gravity are exactly

the same as those implied by requiring Einstein/conformal gravity duality. We then

observe that we can again construct a more general family of six-dimensional gravities

for which the massive spin-2 modes can be eliminated by boundary conditions.

The paper ends with conclusions in section 5. In an appendix, we collect some of

the detailed calculations for the six-dimensional theories.

2 Critical vs Conformal Gravity in Four Dimen-

sions

The Lagrangian of four-dimensional critical gravity discussed in [13],

L = L0 + L1 , (2.1)

contains two parts. The first is the usual Einstein-Hilbert term with a cosmological

constant,

L0 =
√
−g(R − 2Λ) . (2.2)

The second term is quadratic in curvature, namely the square of the Weyl tensor

together with a Gauss-Bonnet term which is a total derivative:

L1 = −1
3
α
√
−g(R2 − 3RµνRµν)

= 1
2
α
√
−g(CµνρσCµνρσ −E4) , (2.3)

where

E4 = RµνρσRµνρσ − 4RµνRµν +R2 (2.4)

6



is the Gauss-Bonnet invariant whose integral is proportional to the Euler number.

Being a total derivative in four dimensions, E4 does not contribute to the equations

of motion.

The Lagrangian L1 is proportional to the one for conformal gravity discussed in

[23]. Defining Lconf(α) ≡ −L1, we have

L = L0 − Lconf(α) . (2.5)

The Lagrangian admits Einstein metrics as solutions, with cosmological constant

equal to Λ. Included amongst these is the AdS4 vacuum solution, whose curvature is

given by

Rµν = Λ gµν , R = 4Λ , Rµνρσ =
Λ

3
(gµρgνσ − gµσgνρ) . (2.6)

Writing the varied metric as gµν → gµν + hµν , and so δgµν = hµν , the linearized

equations of motion were given in [13]. Choosing the gauge condition

∇µhµν = ∇νh , (2.7)

it was shown that trace part h vanishes by virtue of the equations of motion. The

transverse and traceless spin-2 modes satisfy

−α(�− 2
3
Λ)(�− 2

3
Λ−M2)hµν = 0 , (2.8)

where

M2 = 2
3
Λ− 1

α
. (2.9)

The spectrum contains massless graviton modes h
(m)
µν and also massive spin-2

modes h
(M)
µν . Their on-shell energies are given by [13]

Emassless = − 1

2κ2T
(1− 2

3
αΛ)

∫ √
−g d4x∇0hµν

(m) ḣ
(m)
µν , (2.10)

Emassive =
1

2κ2T
(1− 2

3
αΛ)

∫ √
−g d4x∇0hµν

(M) ḣ
(M)
µν , (2.11)

where the integration over the time coordinate is taken over an interval T , which

one could take to be the natural time periodicity of AdS4, or else just send it to

infinity. Since the integrals themselves both give negative quantities, it follows that

7



ghost modes are unavoidable in general. In [13], the parameter α was chosen to have

the critical value given by

α = αcrit ≡ 3

2Λ
, (2.12)

implying that M2 = 0. In this case, because the massive modes coalesce with the

massless ones, one obtains new solutions to (2.8) that are annihilated by neither

second-order factor. These modes have logarithmic dependence on the AdS4 radial

coordinate, and they can be truncated out by imposing an appropriate AdS boundary

condition. The resulting critical gravity is however rendered essentially trivial, since

the energy (2.10) for the surviving massless mode vanishes. Furthermore, the mass

and the entropy of the Schwarzschild black hole vanish also. The mass formulae for

black holes in extended gravity can be found in [28, 29, 30].

In a new development in higher-derivative gravity, four dimensional conformal

gravity [23] was revisited in [24]. It was observed that the Euclidean action for the

Schwarzschild AdS black hole computed from Lconf is identical to that calculated from

the pure cosmological Einstein-Hilbert Lagrangian L0, provided that the parameter

α is chosen to take the critical value given in (2.12). The black hole entropy matches

also. We have checked that the actions also match for the Kerr-AdS black hole. It

was proposed in [24] that subject to the imposition of appropriate boundary condi-

tions, the Lagrangians L0 and Lconf are equivalent at the critical point, in the long

wavelength regime. From this point of view, the “triviality” of critical gravity can be

easily understood, since critical gravity (2.1) is given by

Lcrit = L0 − Lconf(αcrit) , (2.13)

and so one is subtracting two Lagrangians that describe the same IR physics. The

vanishing in critical gravity of the graviton energy and also the black hole mass and

entropy further establish the equivalence of L0 and Lconf at the critical point.

It should be remarked that there is an issue of ghost modes in conformal gravity.

The linearized equation of motion following from Lconf is given by

α(�− 2
3
Λ)(�− 4

3
Λ)hµν = 0 . (2.14)

This implies that

M2 = 2
3
Λ , (2.15)
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which is negative since Λ < 0 for AdS4. The energies of the on-shell massless and

massive spin-2 modes are given by

Econf
massless = − αΛ

κ2T

∫ √
−g d4x∇0hµν

(m) ḣ
(m)
µν , (2.16)

Econf
massive =

αΛ

κ2T

∫ √
−g d4x∇0hµν

(M) ḣ
(M)
µν . (2.17)

Thus we see that α has to be negative for the massless graviton to have positive

energy; meanwhile, the massive graviton has negative energy.

The “mass” squared, M2, of the massive graviton (2.15) in conformal gravity

is negative, suggesting the possibility that these modes might be tachyonic. As we

mentioned in the introduction, the SO(2, 3) representations for massive spin-2 modes

in AdS4 are characterised by their lowest energy E0, which is given in terms of M2

by (1.2). From now on, we shall for convenience take

Λ = −3 , (2.18)

so that the AdS4 has “unit radius.” The reality of E0 = 3
2
±

√
9
4
+M2 therefore

requires that

M2 ≥ M2
min ≡ −9

4
. (2.19)

As can be seen from the explicit expressions for the massive spin-2 modes obtained

in [15], which have time dependence of the form e−i E0t, the condition that E0 be

real ensures that the modes do not grow exponentially in time. This is essentially the

statement of the absence of tachyons. The massive spin-2 modes in conformal gravity,

which have M2 = −2, lie within the bound (2.19), and so they are not tachyonic.

The radial dependence of the modes with M2
min ≤ M2 < 0 exhibits a slower fall

off at large distance than that for modes with M2 ≥ 0. In fact they fall off more

slowly even than the log modes. They can therefore be truncated out by imposing an

appropriate asymptotic boundary condition, as was described in [24]. This is essen-

tially the same boundary condition that can be used to truncate out the logarithmic

modes in critical gravity.
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3 New Unitary Gravities in Four Dimensions

After the truncation of the massive modes, the conformal gravity described by Lconf(αcrit)

can be viewed as being equivalent, at the classical level, to cosmological Einstein grav-

ity L0 [24]. It should, however, be emphasised that conformal gravity admits Einstein

metrics with arbitrary cosmological constant as solutions, and so for a given value

of α the equivalence to Einstein gravity holds only for the specific value Λ = 3/(2α)

appearing in L0.

It is natural to consider the more restrictive case where the theory has a unique

scale for the AdS vacuum determined by the cosmological constant in the theory. We

then need to consider the Lagrangian (2.1). As discussed earlier, the mass of the

massive spin-2 modes in this theory is given by (2.9). In [13], it was required that

M2 ≥ 0, so that these modes will correspond to unitary representations of SO(2, 3).

For M2 > 0, they fall off faster than the massless modes, and so they could not

be truncated out by imposing boundary conditions at infinity. Thus one would be

stuck with having non-truncatable ghostlike modes, except in the critical case where

M = 0, for which the resulting logarithmic modes can be truncated out on account

of their slower fall off.

An alternative choice is to choose the α parameter so that M2 lies in the range

−9

4
≤ M2 < 0 . (3.1)

Within this range, the massive modes are non-tachyonic and classically stable in

the sense that there is no exponential growth in the time. Since, however, they

fall off more slowly than those with M2 ≥ 0, one can impose boundary conditions

that eliminate them from the spectrum whilst retaining the massless modes.3 The

condition (3.1) is satisfied by either α ≥ 4 or α < −1
2
. It follows from (2.10) that the

choice α < −1
2
implies that the massless graviton has negative energy. On the other

hand for the choice of α ≥ 4, the energy of the massless graviton remains positive.

Of course, in this case, the massive modes would have negative energy. However,

as we discussed, these modes can be eliminated by imposing appropriate boundary

conditions, leaving just the non-trivial positive-energy massless graviton.

3Note that the E0 = 0 branch of the massless solution from (1.2) is truncated out for the same

reason.
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As we have seen, by allowing the possibility of having non-tachyonic but negative-

M2 massive modes, which can then be eliminated by boundary conditions, we have

now arrived at a 1-parameter family (α ≥ 4) of extended gravity theories that de-

scribe just unitary massless spin-2 fields. At the quantum level, having such a family

broadens the chances for finding an ultra-violet fixed point of the renormalization

group flow that lands within the class of acceptable theories. This may improve the

prospects for obtaining a consistent theory of quantum gravity.

4 Generalisations to Six Dimensions

We now turn our attention to six dimensions. Conformal gravities in D = 6 have

been previously studied (see, for example, [31, 32, 33]). Three independent structures

can arise in the Lagrangian. Their explicit forms are (see [34], and also [35, 36])

I1 = CµρσνC
µαβνCα

ρσ
β ,

I2 = CµνρσC
ρσαβCαβ

µν ,

I3 = Cµρσλ

(
δµν �+ 4Rµ

ν −
6

5
R δµν

)
Cνρσλ +∇µJ

µ , (4.1)

where ∇µJ
µ, which does not contribute to the equations of motion, can be found

in [34]. In general, a Lagrangian of the form
√−g ciIi will give equations of motion

that are not satisfied by arbitrary Einstein metrics. However, for a specific choice of

the ci (unique up to overall scaling), the equations of motion will be satisfied by any

Einstein metric. This same linear combination has the feature that, modulo total

derivatives, all terms of cubic and quadratic order in the Riemann tensor are absent

[27]. In this form, the Lagrangian is given by

e−1Lconf = β(4I1 + I2 − 1
3
Ĩ3 − 1

24
E6 +∇µJ̃

µ)

= β
(
RRµνRµν − 3

25
R3 − 2RµνRρσRµρνσ − Rµν

�Rµν +
3
10
R�R

)
, (4.2)

where Ĩ3 = I3 −∇µJ
µ, and the total derivative ∇µJ̃

µ can be derived from [27]. Note

that E6 is the Euler integrand, given by

E6 = ǫµ1ν1µ2ν2µ3ν3ǫ
ρ1σ1ρ2σ2ρ3σ3Rµ1ν1

ρ1σ1
Rµ2ν2

ρ2σ2
Rµ3ν3

ρ3σ3
. (4.3)

Any Einstein metric (or in fact any metric conformal to Einstein metric) will be

a solution to the theory following from (4.2). In particular we may consider the
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Schwarzschild-AdS black hole, satisfying Rµν = −5gµν , with the metric

ds2 = −fdt2 + f−1 dr2 + r2dΩ2
4 ,

f = 1 + r2 − µ

r3
. (4.4)

This is also a solution to Einstein gravity with a cosmological constant, described by

the Lagrangian

e−1L0 = R + 20 . (4.5)

Note that we have chosen the cosmological constant so that the AdS6 vacuum is of

unit radius. The thermodynamic quantities for the black hole (4.4) are given by

T =
3 + 5r2+
4πr+

, S = 2
3
π2r4+ , M = 2

3
πr3+(1 + r2+) , (4.6)

where r+ is the horizon radius. The Euclidean action is given by

IEin6 =
2π2r4+(1− r2+)

3(3 + 5r2+)
. (4.7)

Substituting the Euclideanised solution (4.4) into the action Iconf6 =
∫
d6xLconf ,

we find that the contribution from (4I1 + I2 − 1
3
Ĩ3) converges. The contribution from

the ∇µJ̃
µ term vanishes. The integral of E6 itself diverges, but if, following the

same strategy as in [24], one adds in the associated boundary term that arises in the

definition of the Euler number for manifolds with boundary, it contributes a pure

topological number. The Euclidean action Iconf6 then turns out to be proportional to

IEin6 . To be specific, we have

IEin6 = Iconf6

∣∣∣
β=−

1

24

. (4.8)

We have also checked this equality for the Kerr-AdS black hole [37, 38], using also

results from [39], in the case that the two angular momenta are equal. It is straight-

forward to check, using the Wald formula [40], that the Schwarzschild-AdS black hole

entropy matches exactly also. This suggests, therefore, that as in D = 4, Einstein

gravity emerges from conformal gravity.

Let us now consider the linearization of conformal gravity around the AdS6 back-

ground. For Einstein gravity (4.5), the spin-2 graviton is massless, satisfying

−(�+ 2)h(m)
µν = 0 . (4.9)
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(Recall that we have set Λ = −5.) For conformal gravity (4.2), the full set of equations

of motion and linearization around the AdS6 vacuum are given in the appendix. It

turns out the spin-2 modes satisfy

β(�+ 2)(�+ 6)(�+ 8)hµν = 0 . (4.10)

Thus in the six-dimensional conformal gravity, there are two massive spin-2 modes,

with negative mass-squared, in addition to the massless graviton. The masses are

given by

M2
1 = −4 , and M2

2 = −6 . (4.11)

The condition for the absence of tachyon modes is that the lowest energy E0 of the

SO(2, 5) representations should be real, where E0 is given by

E0(E0 − 5) = M2 . (4.12)

This implies that

M2 ≥ −25

4
. (4.13)

Thus both M1 and M2 satisfy this bound, even though both these massive modes

violate the bound E0 ≥ 5 for unitary representations. Since they have M2 < 0, their

fall off at large distance is slower than the modes with M2 ≥ 0, and hence they can be

truncated out by imposing appropriate AdS boundary condition whilst the massless

graviton is retained.

Use standard Ostrogradsky or Noether techniques, we find that the on-shell energy

of the massless graviton in the conformal gravity is given by

E =
1

4κ2
(24β) lim

T→∞

1

T

∫ T

0

dt

∫ √
−gd5xḣµν∇0hµν (4.14)

For β = −1/24, this is precisely the on-shell energy of the Einstein gravity (4.5),

further establishing the equivalence of Einstein gravity and conformal gravity at the

classical level.

We may also interpret the above discussion from the point of view of critical

gravity, whose Lagrangian is given by

L6 = L0
6 − Lconf

6 . (4.15)
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It is clear that the theory admits a unique AdS6 vacuum. Furthermore, any Einstein

metrics with Λ = −5, including the Schwarzschild black hole (4.4), are also solutions.

Linearizing the theory around the AdS6 vacuum, it is easy to verify that the trace

mode is trivial and the remaining spin-2 modes satisfy the equation

−(�+ 2)
(
1 + β(�+ 6)(�+ 8)

)
hµν = 0 . (4.16)

Thus in addition to the massless graviton, there are two massive modes with

M2
±
= −5±

√
1− 1

β
. (4.17)

The on-shell energy for the massless graviton is given by

E = − 1

4κ2
(1 + 24β) lim

T→∞

1

T

∫ T

0

dt

∫ √
−gd5xḣµν∇0hµν . (4.18)

The criticality condition is β = −1/24, for which the massless graviton therefore has

zero energy. Furthermore, one of the two massive gravitons becomes massless. The

remaining massive mode has M2 = −10 which violates the no-tachyon bound (4.13).

As in the case of D = 4, we can consider alternative parameter choices such that

the massive spin-2 modes both satisfy the bound

−25

4
≤ M2

±
< 0 . (4.19)

These modes, with non-unitary representations, can nevertheless be truncated out

by imposing appropriate AdS6 boundary conditions. Furthermore, we would like

the remaining massless graviton to have positive energy, as given by (4.18). These

requirements can all be met by choosing

β ≥ 1 . (4.20)

Note that β = 1 corresponds to another critical point, where the two massive spin-2

modes have the same mass, M2
±
= −5. Restoring the general cosmological constant

Λ, defined by Rµν = Λgµν , the condition (4.20) becomes β(−Λ) ≥ 5.

Finally, we remark that at the β = −1/24 critical point in the D = 6 theory, there

are still surviving massive spin-2 modes, since we have only the one parameter β to

adjust. We may also add a Weyl-squared term 1
2
α
√−gC2 to the Lagrangian. The

linearized equation for the spin-2 modes is now given by

−(� + 2)
(
1− 1

3
α(�+ 6) + β(�+ 6)(�+ 8)

)
hµν = 0 (4.21)
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A tri-critical point is then achieved with α = 15/8 and β = 1/16, at which the

linearized equation becomes

−(�+ 2)3hµν = 0 . (4.22)

5 Conclusions

In this paper we have developed some new ideas for constructing higher-derivative

theories of gravity that avoid the difficulties with massive spin-2 ghost modes that

typically plague such theories. In four dimensions, it was observed in [13] that if a

term proportional to the square of the Weyl tensor is added to the usual Einstein-

Hilbert Lagrangian with a cosmological constant, then although generically one finds

that the fluctuations around the AdS4 background describe the usual massless spin-2

graviton and also ghostlike massive spin-2 modes, it is possible to tune the coefficient

of the Weyl-squared term so as to make the massive modes massless also. In fact the

energies of the massless modes then vanish in this critical theory. There are, however,

now also modes with a logarithmic coordinate dependence, which can have negative

energies. Since their fall off at infinity is slower than that of the massless modes,

they can be removed by imposing appropriate boundary conditions. However, since

the massless modes that remain have zero energy, the resulting theory is somewhat

trivial.

Recently, purely conformal gravity where there is only a Weyl-squared term was

revisited [24]. In this case there are again massless and massive spin-2 modes around

an AdS4 background, and again the massive modes are ghostlike. However, their

mass-squared is actually negative, although not sufficiently negative to be tachyonic.

This means that they fall off more slowly at infinity than do the massless modes, and

so they can be eliminated by imposing appropriate boundary conditions. In [24], it

was shown that by tuning the coefficient of the Weyl-squared action appropriately, it

could be matched for Euclideanised solutions with the Euclidean cosmological Ein-

stein action for the same configuration. It was argued that conformal gravity is then

really equivalent to cosmological Einstein gravity. In fact the value needed for the

Weyl-squared coefficient is exactly the same as the one required in [13] for critical

gravity. This provides a new insight into the trivial nature of critical gravity once the
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logarithmic modes are eliminated, in that its action is essentially just the difference

between two actions that provide equivalent descriptions of long-wavelength physics.

The main purpose of this paper was to construct a new 1-parameter family of

higher-derivative gravities for which the ghostlike massive spin-2 modes can be elim-

inated. We did this by relaxing the assumption that was made in [13] that the mass-

squared of the massive spin-2 modes should be non-negative. This condition is needed

if one wants the massive modes to carry unitary representations under SO(2, 3), but

since they are in any case ghostlike and need to be truncated, this is not really a cru-

cial requirement. The key point is that because the background is AdS4 rather than

Minkowski spacetime, there is a window of allowed negative values of mass-squared

for which the modes are non-tachyonic, and thus classically stable. Furthermore,

precisely because the mass-squared is negative, the fall off of these modes is slower

than the fall off of the massless modes. Thus one can impose boundary conditions

to eliminate the undesired massive modes whilst retaining the massless modes. The

massive modes lie in the desired negative mass-squared range if the parameter α in

(1.1) satisfies

α (−Λ) > 12 , (5.1)

i.e. α > 4 if we normalise the cosmological constant of AdS4 canonically to Λ = −3.

(Although our primary concern in this paper is for negative cosmological constant,

we expect the above inequality to hold for positive cosmological constant also.)

We then extended our discussion to consider gravities in six dimensions. By taking

a suitable linear combination of the three possible conformally-invariant terms, one

can construct a conformal gravity in six dimensions that admits all Einstein metrics as

solutions. One can again tune the overall coefficient so that the action of Euclideanised

AdS black holes matches with that calculated for the cosmological Einstein-Hilbert

action. There are now two sets of massive spin-2 modes in addition to the massless

ones, and both have mass-squared values that are negative but not tachyonic. Thus,

as in the four-dimensional case studied in [24], one can eliminate the ghostlike massive

modes by imposing appropriate boundary conditions, suggesting the equivalence of

Einstein and conformal gravity in six dimensions too.

An essential idea underlying the proposal for conformal gravity in [24] is that

one may be able to “have one’s cake and eat it,” by reaping the renormalisability

16



benefits of the higher-derivative theory in the ultraviolet regime, whilst still having

an equivalence to conventional Einstein gravity in the infrared. One motivation for

seeking families of potentially acceptable theories of gravity as we have done in this

paper, rather than isolated examples, comes from quantum considerations. If one

does have a renormalisable theory then the question arises as to how it behaves in

the high-energy limit under the renormalisation group flow. One possibility is that

the family of theories we have considered (α ≥ 4 in four dimensions; β ≥ 1 in

six dimensions) might start from a finite α or β and flow to a fixed point at the

conformally-invariant limit (α = ∞ or β = ∞), as possibly suggested by the results

in [41]. An advantage of starting from a finite α or β at lower energies, rather than

just using the conformally-invariant theory at all energy scales, would be that one

would in general have the more tightly restricted solution space of Einstein gravity

plus quadratic corrections, flowing to the less restrictive scale invariance of conformal

gravity only in the high-energy limit. Thus the extensions of critical gravity we have

considered here may be of relevance for a quantum theory of gravity.
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A Equations and Linearization of D = 6 Conformal

Gravity

Equations of motion:

The Lagrangian for the D = 6 conformal gravity we study in this paper is given

by (4.2). There are five terms. The contributions E
(i)
µν to Einstein equations of motion
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from each term is summarized as follows:

1) : RRµνRµν ⇒
E(1)

µν = (�(RλσR
λσ) +∇λ∇σ(RRλσ)− 1

2
RRλσR

λσ)gµν +RλσR
λσRµν + 2RRλµR

λ
ν

+�(RRµν)−∇µ∇ν(RλσR
λσ)−∇λ∇µ(RRλ

ν)−∇λ∇ν(RRλ
µ) ,

2) : R3 ⇒
E(2)

µν = (3�R2 − 1
2
R3)gµν + 3R2Rµν − 3∇µ∇νR

2 ,

3) : RµνRλρRµλνρ ⇒
E(3)

µν = −1
2
RσδRλρRσλδρgµν +

3
2
RρσRρµσλR

λ
ν +

3
2
RρσRρνσλR

λ
µ

+�(RρσRρµσν) +∇σ∇δ(RλρRλσρδ)gµν

−∇λ∇µ(R
ρσRρλσν)−∇λ∇ν(R

ρσRρλσµ)

−∇(σ∇λ)(R
σ
µ R λ

ν ) +∇σ∇λ(RµνR
σλ)

4) : Rµν
�Rµν = −gµν∇µR

λρ∇νRλρ ⇒
E(4)

µν = 1
2
gµν(g

σδ∇σR
λρ∇δRλρ)− (2∇σRµλ∇σR

λ
ν +∇µRσλ∇νR

σλ)

+2∇λ(Rσ(µ∇ν)R
λσ) + 2∇λ(∇λRσ

(νRµ)σ)− 2∇σ(∇(µRν)λR
σλ)

+�
2Rµν +∇σ∇λ�Rσλgµν −∇λ∇ν(�Rλ

µ)−∇λ∇µ(�Rλ
ν)

5) : R�R = −gµν∇µR∇νR ⇒
E(5)

µν = 1
2
gµν(g

σλ∇σR∇λR)−∇µR∇νR + 2(�R)Rµν

+2(�2R)gµν − 2∇µ∇ν�R (A.1)

The complete equation of motion following from (4.2) is then

E(1)
µν − 3

25
E(2)

µν − 2E(3)
µν − E(4)

µν + 3
10
E(5)

µν = 0 . (A.2)

Linearization:

The theory admit Einstein metrics with Rµν = Λgµν , with arbitrary Λ. We con-

sider the linearization around the AdS6 background, namely Rµνρσ = 1
5
Λ(gµρgνσ −

gµσgνρ). Writing the varied metric as gµν → gµν + hµν , and so δgµν = hµν , the

linearized Einstein tensor is given by

GL
µν = RL

µν − 1
2
RL gµν − Λ hµν , GL ≡ gµνGL

µν , (A.3)

RL
µν = ∇λ∇(µhν) λ − 1

2
�hµν − 1

2
∇µ∇νh , (A.4)

RL = ∇µ∇νhµν −�h− Λh . (A.5)
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(We have also defined RL
µν , the linearization ofRµν , and introduced h = gµνhµν .) With

these preliminaries, we find that the linearized five contributions of the equations of

motion listed above are given by

1) : (2Λ�GL + 6Λ∇λ∇σGL
λσ − 4Λ2GL)gµν + 30Λ2GL

µν + 6Λ�GL
µν

−2Λ∇µ∇νGL − 6Λ∇σ∇µGL
σν − 6Λ∇σ∇νGL

σµ + 14Λgµν�RL

+2Λ2gµνR
L − 14Λ∇µ∇νR

L ,

2) : 108Λ2GL
µν + 36Λgµν�RL + 36Λ2gµνR

L − 36∇µ∇νR
L ,

3) : 3ΛR λ σ
µ ν GL

λσ + 6Λ2GL
µν + Λ�GL

µν +�(R λ σ
µ ν GL

λσ) + gµν∇σ∇δ(R λ ρ
σ δ GL

λρ)

−∇λ∇µ(R
σ δ

λ ν GL
σδ)−∇λ∇ν(R

σ δ
λ µ GL

σδ)− 3
2
Λ∇σ∇µGL

σν − 3
2
Λ∇σ∇νGL

σµ

+Λ�GL
µν + 3Λ2gµνR

L + 3Λgµν�RL − 3Λ∇µ∇νR
L ,

4) : 2Λ�GL
µν +�

2GL
µν + gµν∇λ∇σ

�GL
λσ −∇λ∇µ�GL

λν −∇λ∇ν�GL
λµ

+gµνΛ�RL + gµν�
2RL −∇µ∇ν�RL ,

5) : 2(Λgµν�RL + gµν�
2RL −∇µ∇ν�RL) . (A.6)

Thus for the traceless and transverse spin-2 modes hµν , the linearized Einstein tensor

is GL
µν = −1

2
(�+ 2)hµν and the Ricci-scalar is RL = 0. It follows that the linearized

equation of motion is given by (4.10).

Hamiltonian:

The quadratic fluctuations S2 for the following action S are given by

S = 1
2κ2

∫ √
−gd6x

[
R−β(RRµνRµν − 3

25
R3−2RµνRλρRµλνρ−Rµν

�Rµν +
3
10
R�R)

]
,

(A.7)

S2 = − 1

8κ2

∫ √
−gd6x

[
∇λhµν∇λhµν − 2hµνh

µν + β(∇λ�hµν∇λ
�hµν − 16�hµν

�hµν

+76∇λhµν∇λhµν − 96hµνhµν)

]
. (A.8)

The Hamiltonian is

H = lim
T→∞

1

T

∫ T

0

dt

∫
d5x

(
ḣµνΠ

(1)µν+∂t(∇0hµν)Π
(2)µν+∂t(�hµν)Π

(3)µν−L
)
. (A.9)

where

Π(1)µν = −
√−g

4κ2
[∇0hµν + β(76∇0hµν + 16∇0

�hµν +∇0
�

2hµν)]
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Π(2)µν = −β
√−g

4κ2
[−16g00�hµν − g00�2hµν ]

Π(3)µν = −β
√−g

4κ2
[∇0

�hµν ] (A.10)

Then one can obtain the energy of massless graviton as

E = − 1

4κ2
(1 + 24β) lim

T→∞

1

T

∫ T

0

dt

∫ √
−gd5xḣµν∇0hµν (A.11)

In our case, the Wald formula is

S = − 1

8G

∫

H

ǫabǫcd

( ∂L

∂Rabcd

+∇(mn)
∂L

∂∇(mn)Rabcd

)
dΣ, (A.12)

where ǫab is the bi-normal vector of horizon normalized to satisfy ǫabǫ
ab = −2.
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[19] H. Liu, H. Lü and M. Luo, On black hole stability in critical gravities,

arXiv:1104.2623 [hep-th].
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