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Using a principal component (PC) basis that accommodates order unity features in the slow roll
parameters as fine as 1/10 of a decade across more than 2 decades of the inflationary expansion,
we test slow roll and single field inflation with the WMAP7 data. Detection of any non-zero
component would represent a violation of ordinary slow roll and indicate a feature in the inflaton
potential or sound speed. Although one component shows a deviation at the 98% CL, it cannot
be considered statistically significant given the 20 components tested. The maximum likelihood
PC parameters only improves 2∆ lnL by 17 for the 20 parameters associated with known glitches
in the WMAP power spectrum at multipoles ℓ < 60. We make model-independent predictions
for the matching glitches in the polarization spectrum that would test their inflationary origin.
This complete analysis for bandlimited features in the source function of generalized slow roll can
be used to constrain parameters of specific models of the inflaton potential without requiring a
separate likelihood analysis for each choice. We illustrate its use by placing bounds on the height
and width of a step-like feature in the potential proposed to explain the glitch at 20 ≤ ℓ ≤ 40. Even
allowing for the presence of features in the temperature spectrum, single field inflation makes sharp
falsifiable predictions for the acoustic peaks in the polarization whose violation would require extra
degrees of freedom.

I. INTRODUCTION

Observed glitches in the WMAP power spectrum of
cosmic microwave background (CMB) temperature fluc-
tuations [1], such as the low quadrupole and the dip and
bump at ℓ = 20 − 40, have motivated many studies of
features in the initial conditions. Most of these stud-
ies have focused on the reconstruction of the curvature
power spectrum through parametric, minimally paramet-
ric or regularized inverse techniques (e.g. [2–12]).

Reconstruction of the curvature spectrum suffers from
two potential problems. Given that fine scale features
are observable at high wavenumber, parametric models
are not complete unless a very large number of param-
eters are employed. Secondly, not all curvature power
spectra can arise from physical mechanisms in the early
universe making parametric models potentially overcom-
plete and subject to fitting the noise instead of fitting
the physics. For example, a delta function in the initial
curvature spectrum would be highly observable but not
expected to arise in any physical model.

For the purposes of testing inflationary models of the
initial conditions one can instead try to constrain the
shape of the inflaton potential under the assumption that
inflation arises from a single scalar field with a canonical
kinetic term. Specific potentials have been used to test
the origin of the low quadrupole moment, the glitches
at multipole moments ℓ = 20 − 40 and glitches near
the WMAP beam scale [1, 13–15]. On the other hand,
model-independent reconstruction approaches have im-
plicitly or explicitly assumed a slowly varying inflaton
potential [16–20].

Sharp features in the inflaton potential would cause
features in the temperature power spectrum [21, 22]. As
long as those features are of small amplitude, inflation

continues uninterrupted but certain slow roll parameters
are neither constant nor necessarily small. The gener-
alized slow roll (GSR) approach [23–26] can be used to
analyze such cases. In particular, to good approximation
there is a single source function that encodes observable
features in the inflation potential [26] for canonical ki-
netic terms or the sound speed for non-canonical terms
[27]. This function is also closely related to the source
of corresponding bispectrum features [28]. In previous
work, we studied the strong constraints on this func-
tion imposed by the precise and featureless measurements
around the first acoustic peak through a low order prin-
cipal components decomposition [29].
In this paper, we extend our previous analysis to a

basis of 20 principal components for the source function
of inflationary features. This basis is complete for mod-
els where the features vary no more rapidly than 10 per
decade of the expansion or about 4 per efold during infla-
tion. In §II we review the GSR and principal components
technique. In Appendix A, we describe numerical tech-
niques used to reduce the computation time of the anal-
ysis. We test the validity of the GSR approximation in
Appendix B. We present the results of the WMAP like-
lihood analysis in §III. In §IV we develop tests of single
field inflation and consider applications to specific classes
of potentials. We discuss these results in §V.

II. METHODOLOGY

We use the generalized slow roll (GSR) approximation
and principal components to study features generated by
single-field inflation. We refer the reader to Ref. [29] for
details but provide a brief description here. Features arise
from a single source function that describes the deviation
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from slow roll in the background (§II A) which we can be
decomposed into a basis of principal components that is
complete for bandlimited models sampled at a maximal
rate per efold (§II B).

A. Generalized Slow Roll

Under the GSR approximation, features in the curva-
ture power spectrum are generated by a single source
function of the background evolution of the inflaton φ

G′(ln η) ≡ −2(ln f)′ +
2

3
(ln f)′′ , (1)

where

f =
2πφ̇aη

H
. (2)

Primes here and below denote derivatives with respect

to ln η where η =
∫ tend
t

dt′/a(t′) is the conformal time to
the end of inflation and we take units where the reduced
Planck mass Mpl = (8πG)−1/2 = 1 as well as c = 1 and
~ = 1.
In the ordinary slow roll approximation, the curvature

power spectrum is given by ∆2
R

≈ f−2 since

ǫH =
1

2

(

φ̇

H

)2

, η ≈ 1

aH
. (3)

In the GSR approximation, the curvature power spec-
trum is instead determined by features in the source func-
tion through

ln∆2
R(k) ≈ G(ln ηmin) +

∫ ηmax

ηmin

dη

η
W (kη)G′(ln η)

+ ln[1 + I21 (k)] , (4)

where integrating G′ gives

G(ln η) = −2 ln f +
2

3
(ln f)′. (5)

Here the non-linear correction is given by

I1(k) =
1√
2

∫ ηmax

ηmin

dη

η
X(kη)G′(ln η) . (6)

We take ηmin = 1 Mpc and ηmax = 105 Mpc which more
than covers the range observable to WMAP. The window
functions

W (u) =
3 sin(2u)

2u3
− 3 cos(2u)

u2
− 3 sin(2u)

2u
,

X(u) =
3

u3
(sinu− u cosu)2 , (7)

define the linear and nonlinear response of the curva-
ture spectrum to G′ respectively. Accuracy of the GSR
approximation requires the nonlinear response, as quan-
tified by I21 , to remain below order unity. We call this
the GSR condition (see Appendix B).

FIG. 1: The first 20 principal components of the GSR source
G′ [see Eq. (8)] as a function of conformal time to the end of
inflation, in order of increasing variance from bottom to top.
20 PC components suffice to represent inflationary features
observable to WMAP that vary no more rapidly than ∼ 1/4
of an efold. Here and below, dashed red lines represent power
law conditions with zero amplitude in the PC components.
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B. Principal Component Analysis

The principal components of the WMAP7 Fisher ma-
trix provide an efficient basis with which to decompose
the source function (1)

G′(ln η) = 1− ns +
N
∑

a=1

maSa(ln η) , (8)

where the eigenfunctions Sa are constructed following
Ref. [29] by sampling at a rate of 10 per decade in η or
equivalently 4.3 per efold of inflation across η = [1− 105]
Mpc with spline interpolation between the points. In
terms of the width of features in the potential, this limit

corresponds to ∆φ & ǫ
1/2
H /4.3. This rate is sufficient to

capture models that describe the glitches in the WMAP7
power spectrum (see §IV for a discussion of the limita-
tions imposed by the sampling).
The amplitudes ma then can be incorporated into a

Markov Chain Monte Carlo (MCMC) likelihood analy-
sis of the WMAP data. As described in Appendix A we
slightly modify the original approach [29] to improve the
convergence properties of the MCMC analysis. Since a
constant G′ described by ns is equivalent to tilt in the
curvature spectrum and G(ln ηmin) is equivalent to a nor-
malization parameter we replace them with effective pa-
rameters Ḡ′ and Ac. Specifically Ḡ′ is an average of G′

for 30 < η/Mpc < 400 and Ac is the normalization of
the temperature power spectrum CTT

ℓ at the first peak
ℓ = 220 relative to a fiducial choice that fits the WMAP7
data. From these two phenomenological parameters we
can derive constraints for the tilt ns and curvature power
spectrum normalization As (see Appendix A).
Since a signal-to-noise analysis shows that 20 out of

the 50 principal components are required for a complete
representation of the WMAP data at our bandlimit [29],
we choose N = 20 for our analysis. These first 20 prin-
cipal components are shown in Fig. 1. Note that the
first 10 components resemble local Fourier modes around
η ≈ 102 Mpc where the well-constrained first acoustic
peak gets its power. It is not until components 11-20
that horizon scale features at low multipole or 103 − 104

Mpc are represented.
We use the MCMC method to determine joint con-

straints on the 20 PC amplitudes and cosmological pa-
rameters

pµ = {m1, . . . ,m20, Ac, Ḡ, τ,Ωbh
2,Ωch

2, θ} . (9)

Here τ is the reionization optical depth, Ωbh
2 is the physi-

cal baryon density, Ωch
2 is the physical dark matter den-

sity and θ is 100 times the angular size of the sound
horizon at recombination.
The MCMC algorithm samples the parameter space

evaluating the likelihood L(x|p) of the data x given each
proposed parameter set p (e.g. see [30, 31]). The poste-
rior distribution is obtained using Bayes’ Theorem,

P(p|x) = L(x|p)P(p)
∫

dθ L(x|p)P(p)
, (10)

FIG. 2: Sensitivity of the nonlinearity parameter I1,max (see
Eq. 11) to the amplitude of the first 20 PCs considered indi-
vidually. This parameter must be less than order unity for the
GSR approximation to be accurate, and we typically place a
prior of I1,max < 1/

√
2.

where P(p) is the prior probability density. We place
non-informative tophat priors on all parameters in
Eq. (9). To ensure the validity of the GSR approximation
we set the prior to zero if I1 exceeds a maximum value
of

I1,max = max|I1(k)|. (11)

at any k. As shown in Appendix B, a value of I1,max =

1/
√
2 is sufficient to ensure accuracy of the GSR approx-

imation.
Fig. 2 shows the maximal contribution to I1 per unit

amplitude deviation in each of the first 20 principal com-
ponents. The higher PCs actually produce a slightly
smaller response largely because the frequency of the os-
cillations in Fig. 1 begins to exceed that of the nonlinear
response function X(kη). Thus a prior of I1,max = 1/

√
2

actually allows high PC components to reach order unity
and |G′| to reach ∼ 4 or greater.
The MCMC algorithm generates random draws from

the posterior distribution. We test convergence of the
samples to a stationary distribution that approximates
the joint posterior density P(p|x) by applying a con-
servative Gelman-Rubin criterion [32] of R − 1 < 0.01
across four chains. We use the code CosmoMC [33] for
the MCMC analysis [40].
For the WMAP7 power spectrum data [34], we use the

optimized approximate likelihood from Ref. [29]. In addi-
tion, we utilize data from the BICEP (Background Imag-
ing of Cosmic Extragalactic Polarization) and QUAD
(QU Extragalactic Survey Telescope at Degree Angular
Scale Interferometer) experiments which include polar-
ization constraints [35, 36]. We calculate the CMB power
spectra without incorporating gravitational lensing and
the default sparse sampling in ℓ (accuracy boost=1). We
correct for these approximations in postprocessing by im-
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Parameters All Data CMB Only

100Ωbh
2 2.241 ± 0.048 2.233 2.231 ± 0.051 2.229

Ωch
2 0.1101 ± 0.0040 0.1098 0.1110 ± 0.0051 0.1116

θ 1.0398 ± 0.0022 1.0397 1.0394 ± 0.0022 1.0394

τ 0.089 ± 0.014 0.086 0.087 ± 0.015 0.085

ns, 1− Ḡ′ 0.9669 ± 0.9882 0.9649 0.9620 ± 0.0078 0.9622

ln[1010As] 3.0808 ± 0.0332 3.0733 3.0770 ± 0.0338 3.0746

H0 71.23 ± 1.74 71.23 70.70 ± 2.32 70.40

ΩΛ 0.738 ± 0.0198 0.739 0.732 ± 0.027 0.730

−2 lnL 8140.06 7608.39

TABLE I: Power law (PL) parameter results: means, standard deviations (left subdivision of columns) and maximum likelihood values
(right subdivision of columns) with CMB data (WMAP7 + BICEP + QUAD) and all data (+UNION2 +H0+ BBN) in a flat universe.
H0 and ΩΛ constraints are derived from the other parameters.

Parameters All Data I1,max = 1/
√
2 All Data I1,max = 1/2 CMB Only I1,max = 1/

√
2

100Ωbh
2 2.279 ± 0.107 2.227 2.282 ± 0.107 2.410 2.160 ± 0.159 2.110

Ωch
2 0.1127 ± 0.0055 0.1101 0.1126 ± 0.0056 0.1100 0.1297 ± 0.0142 0.1338

θ 1.0411 ± 0.0030 1.0402 1.0411 ± 0.0030 1.0417 1.0395 ± 0.0032 1.0381

τ 0.086 ± 0.016 0.096 0.088 ± 0.016 0.091 0.082 ± 0.016 0.072

Ḡ′ 0.0122 ± 0.0268 0.0055 0.0191 ± 0.0248 0.0213 0.0186 ± 0.0283 0.0221

ln[1010Ac] 0.0032 ± 0.0117 0.0036 0.0032 ± 0.0122 0.0098 0.0051 ± 0.0122 0.0056

m1 0.0048 ± 0.0073 0.0060 0.0025 ± 0.0071 0.0068 0.0021 ± 0.0078 0.0009

m2 0.0152 ± 0.0122 0.0163 0.0120 ± 0.0122 0.0109 0.0086 ± 0.0137 0.0104

m3 −0.0120 ± 0.0181 −0.0042 −0.0140 ± 0.0179 −0.0085 −0.0151 ± 0.0191 −0.0161

m4 0.0427 ± 0.0190 0.0460 0.0327 ± 0.0171 0.0481 0.0455 ± 0.0195 0.0583

m5 0.0198 ± 0.0256 0.0050 0.0168 ± 0.0249 0.0486 0.0165 ± 0.0272 0.0165

m6 −0.0156 ± 0.0325 −0.0089 −0.0142 ± 0.0328 −0.0166 0.0062 ± 0.0377 −0.0120

m7 −0.0061 ± 0.0354 −0.0015 −0.0060 ± 0.0333 −0.0060 −0.0174 ± 0.0383 −0.0324

m8 0.0278 ± 0.0486 0.0285 0.0403 ± 0.0464 0.0431 0.0174 ± 0.0505 −0.0061

m9 −0.1239 ± 0.0731 −0.1436 −0.0970 ± 0.0670 −0.1458 −0.1319 ± 0.0770 −0.1184

m10 0.0336 ± 0.0609 0.0219 0.0282 ± 0.0602 0.0462 0.0150 ± 0.0647 0.0441

m11 0.0759 ± 0.0908 0.0225 0.0599 ± 0.0847 0.0364 0.0591 ± 0.0966 0.1339

m12 −0.0917 ± 0.1027 −0.1604 −0.0702 ± 0.0946 −0.1477 −0.1100 ± 0.1076 −0.2137

m13 −0.0947 ± 0.1129 −0.1895 −0.0764 ± 0.1036 −0.1577 −0.0506 ± 0.1194 −0.2300

m14 0.1116 ± 0.1616 0.2069 0.0561 ± 0.1450 0.2126 0.1507 ± 0.1714 0.2103

m15 −0.0199 ± 0.2042 0.0617 0.0191 ± 0.1864 −0.0091 −0.0255 ± 0.2152 0.0686

m16 0.1006 ± 0.0975 0.1318 0.0837 ± 0.0964 0.1102 0.1481 ± 0.1043 0.0772

m17 −0.1253 ± 0.2688 −0.1953 −0.1094 ± 0.2326 −0.1302 −0.0575 ± 0.2833 −0.1376

m18 −0.5089 ± 0.2938 −0.6131 −0.3322 ± 0.2475 −0.3798 −0.4894 ± 0.3083 −0.6610

m19 0.2239 ± 0.3773 0.2737 0.1524 ± 0.3028 0.1785 0.2406 ± 0.3878 0.5228

m20 −0.0742 ± 0.4070 0.0011 −0.2472 ± 0.3173 −0.1789 −0.1265 ± 0.4065 −0.0113

ns 1.0299 ± 0.0671 1.1296 1.0075 ± 0.0515 1.0535 1.0191 ± 0.0672 1.0823

ln[1010As] 3.0387 ± 0.0582 3.0358 3.0446 ± 0.0573 3.0654 3.0684 ± 0.0626 3.0726

H0 71.03 ± 2.28 71.22 71.08 ± 2.28 73.28 63.86 ± 5.88 61.35

ΩΛ 0.730 ± 0.026 0.739 0.731 ± 0.026 0.750 0.614 ± 0.105 0.588

2∆ lnL 16.85 14.26 17.2

TABLE II: 20 principal component (PC) parameter results: means, standard deviations (left subdivision of columns) and maximum
likelihood (ML) values (right subdivision of columns). Fiducial results are for all data and nonlinearity prior I1,max = 1/

√
2, left columns,

with variations shown in center and right columns. Parameters ns−ΩΛ are derived from the chain parameters. The difference in likelihood
2∆ lnL is given for the ML values and taken with respect to the corresponding PL maximum likelihood model in Tab. I.
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FIG. 3: Constraints on the 20 PC amplitudes from the all-
data analysis with an I1,max < 1/

√
2 prior (gray band). The

black points are the mean values of ma and the error bars
correspond to their 1σ error. The only significant deviation
from the ma = 0 PL expectation (red dashed line) is m4 =
0.0427±0.0190. Onlym17−m20 are significantly prior limited.
The maximum likelihood model is shown as blue points.

portance sampling as described in Appendix A before
presenting the results in the next section. The main ef-
fect is a ∼ 0.5σ upwards shift in the Ωbh

2 posterior to
compensate the smoothing effect of lensing.
In order to ensure that models are compatible with

a reasonable cosmology we add non-CMB constraints
from the UNION2 (a supernova type Ia compilation) [41],
the SHOES (Supernova H0 for the Equation of State)
H0 = (74.2±3.6) km/s/Mpc measurement [37] and a big
bang nucleosynthesis constraint of Ωbh

2 = 0.022± 0.002
[38]. These data mainly constrain the energy density
components of the universe rather than the inflationary
initial conditions. We call the combination of CMB and
external data the “all data” analysis. We address the im-
pact of the I1,max prior and the non-CMB data in §III B
below.

III. MCMC RESULTS

In this section, we present the results of the Markov
Chain Monte Carlo analysis in the principal component
(PC) space of the GSR source function. We discuss the
results of our fiducial all data analysis in §III A and ad-
dress the impact of priors and non-CMB data in §III B.

A. All Data

For our fiducial results we use the all-data combina-
tion of CMB and external data described in the pre-
vious section. To establish a baseline for the PC re-
sults we start with the ma = 0 power law (PL) case,
∆2

R
= As(k/kp)

ns−1. Table I gives the mean, standard

FIG. 4: Posterior parameter probability distributions from the
all-data analysis in a flat universe with I1,max = 1/

√
2. Dashed

lines represent the posteriors with approximations for the low ℓ po-
larization likelihood and Cℓ accuracy used to run the MCMC (see
Appendix); solid lines represent posteriors corrected by importance
sampling. Red dashed lines represent corrected posteriors for power
law models. Distributions here and below are arbitrarily normal-
ized to their maximum value.

deviation of the posterior probabilities, and the maxi-
mum likelihood (ML) parameter values for the power law
model.

For the PC analysis, we take 20 components and a
nonlinearity tophat prior of I1,max < 1/

√
2 (see §II B).

Table II gives the parameter constraints as well as the
maximum likelihood PC model (left columns).

The improvement in the ML PC model over the ML
power law model is 2∆ lnL = 17 for 20 extra parame-
ters and so is not statistically significant in and of itself.
Of course, specific inflationary models may realize this
improvement with a smaller set of physical rather than
phenomenological parameters (see §IVB), and so it is
interesting to examine more closely the origin of this im-
provement.
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The main improvement comes from ℓ ≤ 60 in the TT
part of the WMAP likelihood with a 2∆ lnL = 11.9. We
shall see in §IVA that these improvements are largely as-
sociated with known features in the WMAP temperature
power spectrum.

In terms of the principal components, the improve-
ments are localized in only a few of the 20 parameters.
Fig. 3 plots these ma constraints and ML values. Most
of the components are consistent with zero at the ∼ 1σ
level. Components m17 −m20 are constrained in part by
the I1,max prior not just the data.

As in the 5 PC analysis of [29], the single most dis-
crepant parameter between the PL and PC cases is m4

corresponding to a feature centered around η ∼ 300Mpc
and resembling a local running of the tilt. Fig. 4 shows
the posterior probability distributions of the parameters.
An m4 value as extreme as the power law value ofm4 = 0
is disfavored at 98.2% CL compared with 94.8% for 5
PCs and WMAP7 alone. The increase in significance by
a fraction of a σ arises because of the correlation between
m4 and the higher principal components. Perhaps more
importantly, freedom in the higher PCs allows large m4

without the need to make large adjustments to the cos-
mological parameters that would violate non-CMB con-
straints. On the other hand, one event out of 20 showing
a 98% exclusion is not that unlikely.

The poorly constrained a > 10 modes allow large
amplitude deviations and in fact even marginally pre-
fer them. This explains why including the higher com-
ponents can change results on the lower components.
Large amplitude deviations in the high order compo-
nents make the modes no longer statistically indepen-
dent as they would be for infinitesimal deviations. Still
the correlation remains relatively small. For example
R4a = Cov(m4,ma)/σm4

σma
reaches 0.4 only for one

mode, m5, with more typical correlations in the±0.1−0.2
range.

The next most significant deviations are in m9 (with
a value of m9 = 0 disfavored at the 89.6% CL) and m18

(with a value of m18 = 0 disfavored at the 91.8% CL).
These results are also consistent with the PL null hypoth-
esis of ma = 0, given that there are only 3 events out of
20 where tests of that model exceed the ∼ 90% CL.

We can get further insight on the origin of these con-
straints by examining the maximum likelihood (ML)
models. Fig. 5 show temperature and polarization power
spectra of the ML PL (red dashed lines) and PC (thick
solid curve) models respectively. The poorly constrained
a > 10 modes create fluctuations in the low order multi-
poles which marginally fit features in the data better such
as the low quadrupole and glitch at ℓ ∼ 20 − 40. These
large amplitude modes require small amplitude low or-
der PC variations in order to compensate the broad band
residual effects they have. This can be seen by decom-
posing the difference between the ML PL and PC mod-
els into contributions from the various parameters (see
Fig. 6). Removing the large m10−m20 components from
the model not only removes the low ℓ oscillations but also

creates broadband deviations, especially at ℓ . 40, that
are compensated by a combination of small amplitude
changes in m1 −m5 and effective tilt Ḡ′.

B. Robustness Tests

In order to test the robustness of the fiducial results
of the last section, we run separate MCMC chains with
different choices for the nonlinearity prior and data sets.

We first examine the impact of our I1,max prior by
reanalyzing the all-data case with I1,max = 1/2 instead

of 1/
√
2 (see Tab. II). The main impact of tightening the

prior is on m18 −m20 as is expected from Fig. 3. These
components mainly affect the low ℓmultipoles. In spite of
this fact the prior on I1,max has very little impact on the
behavior of favored models at low ℓ. In Fig. 7, we show
the maximum likelihood model with the stronger I1,max

prior. Even at low ℓ the differences are much smaller than
cosmic variance. In particular the posterior distribution
of power in the quadrupole moment for models in the
chain shown in Fig. 8 differ negligibly.

Some of this robustness in the low multipole moments
is due to the impact of the non-CMB data. Without
the external data, the quadrupole distribution extends
to smaller quadrupole moments due to the ability to re-
duce the integrated Sachs-Wolfe effect by lowering the
cosmological constant in the absence of constraints on
the acceleration of the expansion (see Fig. 8). In this
case the data may prefer more extreme inflationary mod-
els that further lower the quadrupole that are excluded
by our nonlinearity prior on I1,max [13].

The main impact on parameters of removing the non-
CMB data is to allow a wider range in Ωch

2 (see Table
II). In contrast to the 5 PC analysis [29], this wider range
though has little impact on the PC parameters. In partic-
ular the higher order PC components allow compensation
of the effects of m4 across the acoustic peaks without the
need to vary Ωch

2 substantially. For similar reasons, we
expect our flatness prior to have little impact on the PC
results aside from weakening the constraints on ΩΛ and
Ωch

2 and small shifts of the location of features in G′

with the angular diameter distance degeneracy.

IV. APPLICATIONS

Here we discuss applications of the fiducial 20 PC anal-
ysis of §III A. In §IVA we place constraints on and de-
vise tests of slow roll and single field inflation in a model
independent manner. Alternately, as a complete obser-
vational basis for efold bandlimited models, the PC anal-
ysis places constraints on any such model that satisfies
the GSR condition. We use running of the tilt and a step
in the inflaton potential as example test cases in §IVB.
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FIG. 5: The temperature (left) and E-mode polarization (right) power spectra posterior using the all-data PC constraints and
a prior of I1,max = 1/

√
2. The shaded area encloses the 68% CL region and the upper and lower curves show the upper and

lower 95% CL limits. The maximum likelihood (ML) model is shown as the thick black central curve, and the power law ML
model is shown in red dashed lines. The blue points with error bars show the 7-year WMAP measurements.

FIG. 6: Parameter decomposition of the temperature power
spectrum difference between the power law (PL) and PC max-
imum likelihood (ML) models shown in Fig. 5 (bottom panel).
The curves include cumulative changes in parameters between
the models starting with the cosmological parameters, adding
the normalization Ac and effective tilt Ḡ′, m1 . . .m5, etc. un-
til the full PC ML parameters are utilized.

A. Testing Slow Roll and Single Field Inflation

Bounds on the PC components can be thought of as
functional constraints on G′ itself across the observed
range from WMAP. These in turn limit features in the

FIG. 7: Comparison of the maximum likelihood models of
the three MCMCs of Tab. II: the all-data analysis with
I1,max = 1/

√
2 (black curve), all-data with I1,max = 1/2 (blue

curve), and CMB data with I1,max = 1/
√
2 (red curve). The

smallness of the differences indicates robustness of our results
to the priors and external data sets.

inflaton potential V (φ) through the approximate relation
[26]

G′(ln η) ≈ 3(
V,φ

V
)2 − 2

V,φφ

V
. (12)

If the inflaton carries non-canonical kinetic terms then
the relationship is modified to include variations in the
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FIG. 8: The temperature quadrupole power CTT
2 posterior

distribution for the all-data analysis with I1,max = 1/
√
2

(black curve), all-data with I1,max = 1/2 (blue curve), and
CMB data with I1,max = 1/

√
2 (red curve). Without external

data to constrain the cosmological constant, the quadrupole
can be lowered by reducing the integrated Sachs-Wolfe effect.

sound speed [27].
Since the PC decomposition only represents features in

G′ across the observable domain, one should consider the
constraints on the mas as defining a PC filtered version
of G′:

G′

20(ln η) =

20
∑

a=1

maSa(ln η) . (13)

Any significant deviation from zero of this function would
indicate a violation of ordinary slow roll. We can extract
the posterior probability of G′

20 by considering its values
on a continuous set of samples of η as derived parameters.
In Fig. 9 we plot both the ML model and the 68% and

95% posterior bands. Note that G′
20 = 0 lies within the

95% CL regime for all η. These functional constraints
differ from a full reconstruction of G′ in that the PCs
filter out deviations at η < 20 Mpc and η > 104 Mpc as
well as deviations that are too high frequency to satisfy
our bandlimit.
In the well-constrained regime of 30 . η/Mpc . 400

constraints are both tight and consistent with G′
20 = 0.

Only nearly zero mean high frequency deviations are al-
lowed in this regime. Nonetheless, the poorly constrained
m10−m20 components allow, but do not strongly prefer,
large oscillatory features between 103 . η/Mpc . 104. In
fact G′

20 = 0 lies noticeably outside the 68% CL bands
only for the dip and bump between 1000−2000 Mpc and
a bump at 70− 100 Mpc.
We can associate the most significant features with

the corresponding effects on the observable power spec-
tra themselves. Figure 5 shows the 68% and 95% range
in the power spectra posterior. The 1000 − 2000 Mpc
feature in fact corresponds to the ℓ = 20 − 40 dip and
bump in the temperature power spectrum. The 70− 100

Mpc feature corresponds to a glitch at ℓ ∼ 600 − 700
[14, 15]. While the η & 104 Mpc regime is limited by our
priors on the amplitude of deviations through I1,max we
have shown that the data do not favor a feature corre-
sponding to a low quadrupole ℓ = 2 unless acceleration
constraints are omitted (see §III B).
Finally, we can examine the posterior distributions of

the E-mode polarization. These predictions are not sig-
nificantly constrained by the polarization data sets em-
ployed. Instead these distributions are limited mainly by
the common origin of the temperature and polarization
spectra from single field inflation. These serve as pre-
dictions for future measurements. For example, the low
significance features in the temperature power spectrum
predict corresponding ones in the E-mode polarization
which have yet to be measured and can be used to test
the hypothesis of their inflationary origin at substantially
higher joint significance [39]. In particular, one expects

a ∼ 26%+13%
−17%

enhancement in the EE power spectrum

at ℓ = 39 and a ∼ −37%+17%
−3%

deficit around ℓ = 25. The
skew distribution in the latter case reflects the difficulty
in constructing models with low power out of the prin-
cipal components rather than the data disfavoring such
models. Models that actually explain the low TT power
at ℓ = 25 predict low EE power as well.
Even in the acoustic regime where the polarization

predictions are tight and do not suggest the presence
of features, these predictions are of interest. If future
observations violate them, then not only will slow-roll
inflation be falsified but all single field inflationary mod-
els, including those with sound speed variations, as long
as they satisfy our weak prior constraint on acceptable
models: the efold bandlimit and small GSR non-linearity
I1,max < 1/

√
2. Such a violation might indicate other de-

grees of freedom breaking the relationship between the
temperature and polarization fields, e.g. isocurvature
modes in multifield inflation or trace amounts of cosmo-
logical defects. For ℓ . 30 violation could alternately
indicate a more complicated reionization scenario [39].
Currently these bounds and tests apply to the ℓ < 800

regime measured by WMAP but will soon be extended
by high resolution ground based experiments and Planck.

B. Constraining Inflationary Models

We can also apply the model independent PC analysis
to any specific set of models that satisfy the GSR condi-
tion I1,max < 1/

√
2 and bandlimit of features no sharper

than about 1/4 efold. To place constraints on the pa-
rameters of a model, one projects the source function G′

of the model onto the principal components

ma =
1

ln ηmax − ln ηmin

∫ ηmax

ηmin

dη

η
Sa(ln η)G

′(ln η) (14)

as a function of parameters and compares the result to
the joint posterior probability distributions of the com-
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FIG. 9: The 20 PC filtered G′ posterior from the fiducial all-
data analysis and I1,max = 1/

√
2 as a prior. The shaded area

encloses the 68% CL region and the upper and lower curves
show the upper and lower 95% CL limits. The maximum
likelihood is shown as the thick black central curve, and the
power law ML model is shown in red dashed lines.

ponents. Likewise one can construct G′
20 from the result

and compare it with Fig. 9.
In fact, the means m̄a and covariance matrix C of the

components ma extracted from their joint posterior form
a simple but useful representation. From these, one can
construct a χ2 statistic

χ2 =

20
∑

a,b=1

[

(ma − m̄a)C
−1
ab (mb − m̄b)

]

, (15)

or the likelihood L ∝ exp(−χ2/2) under a multivariate
Gaussian approximation to the posteriors. For exam-
ple the ML PC model gives an improvement of ∆χ2 =
−15.36 over PL to be compared with −2∆ lnL = −16.85.
As a simple illustration of a concrete model, consider

a linear deviation in G′

G′(ln η) = 1− n0 + α ln (η/η0) . (16)

The curvature power spectrum for this model has a local
tilt of

d ln∆2
R

d ln k
= n0 − 1 + α ln

(

kη0
C

)

− απ√
2

I1
1 + I21

, (17)

where C = e7/3−γE/2 ≈ 2.895 and

I1 =
1√
2

[π

2
(1− n0 − α ln kη0) + 1.67α

]

. (18)

For |n0 − 1| ≪ 1 and |α| ≪ 1, the I1 term contributes
negligibly and the model gives a linear running of the tilt
[29].
The 20 PC components are a linear function of α given

explicitly by

ma(α) =
α

ln ηmax − ln ηmin

∫ ηmax

ηmin

dη

η
Sa(ln η) ln(η/η0) .

(19)

FIG. 10: A model with a linear deviation in G′ with slope
α = −0.026 (and arbitrary offset) is shown as the blue curve.
The 20 PC filtered source G′

20 (in black lines) is compared
with the input linear G′ model. 20 PCs captures all of the
observable information in α. These models are compatible
with the 68% CL region (shaded) for G′

20 from the fiducial all
data analysis.

In Fig. 10 we show an example with α = −0.026 and
compare the original linear G′ to the PC filtered G′

20.
The filter introduces features at low and high η that are
not present in the actual source. Note that a Fisher anal-
ysis of sensitivity to α reveals that most of the signal to
noise should lie in the m4 component [29] which carries
the most significant deviations from zero in the data.

The χ2 analysis with all data implies α = −0.039 ±
0.019. We can compare this result to a direct MCMC
analysis with α as a parameter constructed from 20 PCs:
α = −0.027± 0.021. Thus the simple χ2 approximation
captures the information on α in the 20 PC posterior to
∼ 0.5σ.

We can further test the completeness of the 20 PC
decomposition of α by going to 50 PCs. In this case
α = −0.026 ± 0.023 showing that 20 PCs completely
describe the observable properties of α. In fact, 5 PCs are
enough to describe the observable properties of α in this
case; a direct MCMC analysis gives α = −0.026± 0.020.
Fig. 11 shows that the full posterior distributions of α for
these cases are indistinguishable within the errors. We
also show the simple χ2 approximation which is shifted
by ∼ 0.5σ as expected.

The posterior distributions are skewed to negative val-
ues of α. For example the ML model of the 50 PC
chain has α = −0.021 to be compared with a mean
of −0.026. For large negative α, the linear G′ model
no longer matches a running of the tilt due to the I1
terms in Eq. (18). In Fig. 12, we show an example with
n0 = 0.96 and η0 = 145 Mpc for α = dns/d ln k = −0.09
and −0.02. While the α model closely matches con-
stant dns/d ln k for the smaller value, it produces sub-
stantially less deviations at high and low k. This bias
explains the difference between constraints on the linear
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FIG. 11: Posterior probability distribution of α from a direct
MCMC analysis constructed from 50 PCs (black/solid curve),
20 PCs (red curve), and 5 PCs (blue curve). The distribution
from the χ2 approximation is shown in black/dashed curve.

FIG. 12: Initial curvature power spectrum of a model with
running of the tilt (dns/d ln k = −0.02, −0.09, solid curves)
compared to a model with a linear deviation in G′ (α = −0.02,
−0.09, dashed curves). For the −0.02 case, the two models
are similar whereas for −0.09 the running of the tilt model
has larger deviations from scale free conditions at low and
high k.

α model and running of the tilt found in [29]. For ex-
ample, with the same data sets and priors running of the
tilt gives dns/d lnk = −0.018± 0.019. Note that the ML
α = −0.021 from the 50PC chain is consistent with this
constraint.
Another example is the step potential which has been

employed to explain the glitches in the power spectrum
at ℓ ≈ 20− 40

V (φ) =
1

2
m2φ2

[

1 + c tanh

(

φ− φs

d

)]

. (20)

For simplicity, we fix φs = 14.668 so that the feature ap-
pears at the correct position to explain the glitches with
the convention that η = 20Mpc is the comoving horizon

FIG. 13: Constraints on the step potential model parame-
ters c (height of step) and d width of step. Top panel: the
χ2 approximation (black curves) compared to the full 20 PC
posterior (blue curves). Bottom panel: constraints from the
20 PCs posterior (blue curves) compared to a direct GSR cal-
culation of the model (black points).

scale 50 efolds before the end of inflation. Although we
set the smooth part of the potential to correspond to an
m2φ2 model with m = 7.126 × 10−6 for the projection
onto PCs, in the analysis we retain the freedom to adjust
the amplitude and tilt as usual. This leaves us with 2
additional parameters c and d to control the amplitude
and width of the step.

The constraints on (c, d) from the χ2 approximation
are shown in Fig. 13 (top panel). Note that the crude
χ2 analysis correctly picks out the favored parameters
which can explain the glitches [39]. The minimum χ2

model is c = 0.0015, d = 0.026 and is favored over the
PL ma = 0 (or c = 0) model by ∆χ2 = −10.2. Although
the χ2 analysis assumes that the joint posterior in ma is a
multivariate Gaussian, it does not make that assumption
for parameter probabilities. With the distorted shape of
the confidence region, the contours of the 68% area of
the probability distribution corresponds to ∆χ2 = 2.5,
95% contour to 8.6 and 99.7% contour to 13.3, compared
with the more stringent 2.3, 6.2 and 11.6 obtained for
Gaussian distributions in (c, d). Here and below we take
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FIG. 14: The ML model of the step potential from the χ2

approximation is shown in blue dashed lines, and the ML
model from the projection onto 20 PCs [ma(c, d)] is shown
in black lines. The step potential model captures the main
feature seen in the fiducial all-data analysis (shaded 68% CL
area).

a prior of d > 0.005 due to our bandlimit of 1/4 efold
(see below).

We again compare this with a full analysis of the joint
20 PC posteriors. As in the case of α, the projection
onto the two dimensional ma(c, d) space leaves us with
too few samples in the original 20 PC chain to reliably ex-
tract the posterior via importance sampling. We instead
run a direct MCMC analysis on the 20 PC description
with ma(c, d). These results are shown in Fig. 13 in blue
lines. The maximum likelihood model has c = 0.0016,
d = 0.025 and is favored over PL ma = 0 (or c = 0)
by 2∆ lnL = 9.1. These values are fully consistent with
the simple χ2 analysis. This improvement is a substan-
tial fraction of the total of 17 available to the 20 PCs
from Tab. II and is achieved with 3 parameters: c, d and
implicitly φs, the location of the step.

The filtered G′
20 source for both the ML and minimum

χ2 model are shown in Fig. 14 and are consistent with
the posteriors of the fiducial all data analysis. Further-
more, the χ2 analysis correctly picks out the best fit re-
gion and qualitatively recovers its distorted shape. The
main difference is that the confidence region is slightly
underestimated.

Finally, we test the completeness of the 20 PC descrip-
tion of the step model by conducting a separate MCMC
with the full function G′ directly (see Appendix B,
Eqs. B10-B13 for details). The maximum likelihood
model has c = 0.0021, d = 0.029 and is favored over
PL by 2∆ lnL = 9.5 As shown in Fig. 13 (bottom
panel), the main difference is that the models are more
tightly constrained at d < 0.01. The features in G′ span
less than ∼ 1/4 of an efold for these models and con-
sequently the 20 PC decomposition is not complete. In
Fig. 15 (top panel) we show a model with d = 9.2×10−3

and c = 4.6 × 10−4 represented by the full function G′

FIG. 15: Top panel: step potential model with width d =
9.2 × 10−3 and height c = 4.6 × 10−4 represented by the full
source function G′ (in black lines) compared to its 20 PC
description (in blue/dashed lines). Bottom panel: fractional
difference between the full GSR description and its 20 PC
decomposition. The oscillations at ℓ ∼ 100 are not captured
by the 20 PCs.

(in black lines) compared to its 20 PCs description (in
blue/dashed curves). The fractional difference between
these two constructions is shown in the bottom panel. In
such models, the oscillations in the temperature power
spectrum continue to higher ℓ, in this case ℓ ∼ 100, and
are not allowed by the data.
This example shows that the main limitation of the 20

PC analysis is that it is too conservative for models with
high frequency structure in the source: such models tend
to be in conflict with the data in ways not represented
by the principal components.

V. DISCUSSION

We have conducted a complete study of constraints
from the WMAP7 data on inflationary features beyond
the slow roll limit. Using a principal component basis
that accommodates order unity features as fine as 1/10
of a decade across more than 2 decades of the inflation-
ary expansion, we find no significant deviations from slow
roll. Although one component shows a deviation at the
98% CL, it cannot be considered statistically significant
given the 20 components tested. The maximum likeli-
hood PC parameters only improves 2∆ lnL by 17 for the
20 parameters added.
On the other hand, specific inflationary models may
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access this improvement with fewer physical parameters.
Most of the improvement comes from fitting features in
the temperature power spectrum at multipoles ℓ ≤ 60
with the known glitch at 20 ≤ ℓ ≤ 40 comprising a large
fraction. We have illustrated this fact by taking two pa-
rameters of the well-known step model represented in the
20 PC space.

From our analysis, we also extract predictions for the
corresponding features in the polarization power spec-
trum that can be used to test their inflationary origin in-
dependently of a specific choice for the inflaton potential
(cf. [39]). In particular, one expects a ∼ 26% enhance-
ment in the EE power spectrum at ℓ = 39 and a ∼ 37%
deficit around ℓ = 25 if the temperature features have an
inflationary origin. Outside of the range of these low ℓ
features, the predictions are very precise and any viola-
tion of them in future observations would falsify single
field inflation independently of the potential.

Our constraints can also be used to test any single field
model that satisfies our conditions. Most of the informa-
tion from the likelihood analysis is distilled in the means
and covariance of the principal components themselves
which we make publicly available [42]. Two models illus-
trate this encapsulation: a linear source model that ap-
proximates running of the tilt and a step potential model
that fits the features at ℓ = 20 − 40. A simple χ2 anal-
ysis approximates the joint parameter posteriors despite
its highly non-Gaussian form for the step parameters.
This procedure greatly simplifies the testing of inflation-
ary models with features in that parameter constraints
on any model that satisfies our conditions can be simply
approximated without a case-by-case likelihood analysis.
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Appendix A: MCMC Optimization

1. Parameterization

We seek to define amplitude and tilt parameters for the
MCMC that are nearly orthogonal to the PC parameters
in order to improve the convergence properties of the
MCMC chains.

A constant G′ is equivalent to tilt ns and hence PC
components that have long positive or negative definite
stretches become degenerate with tilt and cause problems
for MCMC convergence. Instead of a constant tilt, we
define a new chain parameter to be the average of G′

across a narrower range that is better associated with
the observables

Ḡ′ =
1

ln η2 − ln η1

∫ η2

η1

dη

η
G′ , (A1)

where specifically, we choose η1 = 30 Mpc and η2 = 400
Mpc to roughly minimize the variance of Ḡ′ in the chain
(see Fig. 9).
Next, we replace the normalization parameter

G(ln ηmin) with

As ≡ ln∆2
R
(kp) , (A2)

where in practice we choose kp = 0.05 Mpc−1.
The effective tilt and normalization parameters bring

the model of the power spectrum from Eq. (4) to

ln∆2
R = ln

[

As

(

k

kp

)−Ḡ′
]

+

N
∑

a=1

ma[W̄a(k)− W̄a(kp)]

+ ln



1 +
1

2

(

π

2
Ḡ′ +

N
∑

a=1

maX̄a(k)

)2




− ln



1 +
1

2

(

π

2
Ḡ′ +

N
∑

a=1

maX̄a(kp)

)2


 , (A3)

where

W̄a(k) =

∫ ηmax

ηmin

dη

η
W (kη)(Sa(ln η)− S̄a) ,

X̄a(k) =

∫ ηmax

ηmin

dη

η
X(kη)(Sa(ln η)− S̄a) , (A4)

and

S̄a ≡ 1

ln η2 − ln η1

∫ η2

η1

dη

η
Sa . (A5)

Note that we can recover the tilt ns, equivalent to the
average of Ḡ across the whole range ηmin to ηmax, as

ns = (1− Ḡ′) +
20
∑

a=1

maS̄a , (A6)

and keep it as a derived parameter in the chain
Given the oscillatory nature of the k-space response

to the PC eigenfunctions through W̄a and X̄a and the
geometric projection from k to angular multipole ℓ, nor-
malization at a given k does not correspond simply to
normalization at a given ℓ. Since the observations best
constrain the amplitude of the temperature power spec-
trum near the first acoustic peak at ℓ ∼ 220 it is advan-
tageous to use an ℓ-space normalization in the MCMC
and then transform back to As.
Let us define a phenomenological parameter Ac which

renormalizes the angular power spectra as

CXY
ℓ = elnAc

CTTfid
220

C̃TT
220

C̃XY
ℓ . (A7)

Here CTTfid
220 is the temperature power spectrum at the

first peak of a fiducial model that fits the WMAP7 data.
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We use CTTfid
220 = 0.747µK2. Thus if Ac = 0, CTT

220 =
CTTfid

220 regardless of the PC parameters.

We can recover constraints on the k-space normaliza-
tion by considering As as a derived parameter. If we
compute the original C̃XY

ℓ with the As = Afid
s of the

fiducial model, then the true As is given by

lnAs = lnAc + ln(CTTfid
220 /C̃TT

220) + lnAfid
s . (A8)

In summary, we replace the parameters ns and G(ln ηmin)
with Ḡ′ and Ac in order to reduce parameter degeneracies
that would otherwise inhibit chain convergence.

2. Likelihood corrections

To speed up the calculation of the WMAP and other
CMB likelihoods we employ three approximations when
running the chains. Firstly, we use a fitting function for
the low ℓ WMAP7 polarization likelihood as described
in [29]. Secondly, we calculate the CMB power spectra
with gravitational lensing artificially turned off. Thirdly,
we use the default ℓ-space sampling of CAMB that is
designed for smooth underlying power spectra. Each of
these approximations produce small errors in the likeli-
hood evaluation that we can correct by importance sam-
pling the chain.

The advantage of correcting these approximations in
a postprocessing step is twofold. The chains may be
thinned due to the high correlation between samples
in the chain. Secondly, postprocessing elements of the
thinned chains is embarrassingly parallel unlike the run-
ning of the original chain.

In practice, when we satisfy our convergence criterion
described in the main text, we thin the chains by a factor
of half of the correlation length. We have tested that with
such thinning we reproduce the posteriors of the original
chains. Next we compute the CMB power spectra of
the thinned chains with lensing turned on and a higher
ℓ-space sampling (CAMB “accuracy boost” 2). We use
these high accuracy power spectra to correct the chain
multiplicity for the change in the likelihood.

In Fig. 16 we show as an example the posteri-
ors coming directly from power law (PL) chains (in
blue/solid curves), the chains with all corrections (in
blue/dashed lines) and finally all corrections but lensing
(in red/dashed lines). These should be compared with
results from a separate chain run with all the corrections
turned on from the start (in black/solid lines). Impor-
tance sampling accurately models the impact of the small
corrections for all parameters. The leading correction is
on Ωbh

2 from lensing.

In Fig. 17, we show the impact of the corrections on the
PC chain using m18 as an example with the largest cor-
rection. The correction on PC parameters is extremely
small and again dominated by lensing.

FIG. 16: Power law parameter posteriors from the approxima-
tions used to run the MCMC chain (in blue/solid curve), from
an independent MCMC with no approximation (in black/solid
curve), from the approximate chain with importance sampling
correction (in blue/dashed curve), and from the approximate
chain without lensing correction (in red/dashed curve).

FIG. 17: The m18 posterior probability distributions from the ap-
proximations used to run the MCMC with all data and I1,max =

1/
√
2 (in black lines), from the approximate chain with importance

sampling correction (in blue/dashed lines), and from the approxi-
mate chain without lensing correction (in red/dashed lines). m18

has the largest correction of the PC amplitudes which is still ≪ 1σ
and dominated by the lensing correction.

Appendix B: GSR Accuracy

To test the accuracy of the GSR approximation in the
PC space, we need to consider the inverse problem: con-
struct an inflationary model that matches a desired G′

for which we can solve exactly for the curvature power
spectrum.
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In the forward direction, given an inflationary model
we can compute the exact curvature spectrum by first
evaluating the background behavior of the model through

g(ln η) =
f ′′

f
− 3

f ′

f
=

3

2
G′ +

(

f ′

f

)2

, (B1)

and then solving the equation

d2y

dx2
+

(

1− 2

x2

)

y =
g

x2
y , (B2)

where x = kη, subject to the usual Bunch-Davies initial
conditions [23]. The curvature power spectrum is then
given by

∆2
R

= lim
x→0

x2 |y|2
f2

. (B3)

FIG. 18: Fractional difference in temperature power spec-
tra between GSR and the exact inflationary solution for
the maximum likelihood model from the all-data analysis
(in black lines) as well as a model that saturates the prior
I1,max = 1/

√
2 from the chain (in blue lines). For reference,

the ML model has I1,max = 0.66.

Therefore to test the GSR approximation we first need
to determine the function g that matches a givenG′(ln η).
Transforming variables to r = f ′/f , we obtain from
Eq. (B1)

r′ − 3r =
3

2
G′ , (B4)

which has the general solution

r =
3

2
η3
∫

dη̃

η̃
η̃−3G′ + Cη3 . (B5)

Let us choose the integration constant

C = −3

2

∫ ηmax

ηmin

dη̃

η̃
η̃−3G′ , (B6)

FIG. 19: Likelihood difference between the GSR solution and
the full inflationary calculation of a series of step potential
models as a function of I1,max. Models were chosen from the
full GSR chain to be the maximum likelihood in a series of
bins in step amplitude c. The maximal error is small below
I1,max = 1/

√
2 (blue dashed line), the prior in the fiducial

all-sky analysis.

and assume G′ vanishes outside this range. We then get

r = −3

2
η3
∫ ηmax

η

dη̃

η̃
η̃−3G′ , (B7)

for η > ηmin and

r = −3

2
η3
∫ ηmax

ηmin

dη̃

η̃
η̃−3G′ , (B8)

for η < ηmin. With this numerical solution we construct
g as

g =
3

2
G′ + r2 . (B9)

This suffices to specify the source for y in Eq. (B2). Fi-
nally, to get the curvature power spectrum we need f at
some ηlim ≪ k−1

max. However since this quantity is inde-
pendent of k, it is absorbed into our normalization defi-
nition. In Fig. 18, we take parameters from the all-data
chain and use this technique to calculate the temperature
power spectra of matching inflationary models exactly.
Even for the model that saturates the I1,max = 1/

√
2

prior, the WMAP likelihood difference between the ex-
act and GSR calculation is |2∆ lnL| = 0.4.
Using the step model chain from §IVB, we can explore

the accuracy of the GSR approximation as a function of
I1,max independently of the prior taken in the all data
analysis. Specifically, we take a model from the chain
that defines G′ and construct the matching full inflation-
ary model as above.
Recall that to construct G′, we solve for the back-

ground evolution of φ in the step potential of Eq. (20).
This specifies the m2φ2 model source through Eq. (1),
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which we call G′
m. To allow for a retilting of the spec-

trum, we add an extra constant parameter Ḡ′
p to the

model source to form the full source

G′(ln η; c, d, Ḡ′

p) = G′

m(ln η; c, d) + Ḡ′

p. (B10)

The GSR approximation then tells us that the curvature
spectrum is given by

ln∆2
R = ln

[

As

(

k

kp

)−Ḡ′

p

]

+ Im(k)− Im(kp) (B11)

with

Im(k) =

∫ ηmax

ηmin

dη

η
W (kη)G′

m (B12)

+ ln

[

1 +
1

2

(

π

2
Ḡ′

p +

∫ ηmax

ηmin

dη

η
X(kη)G′

m

)2
]

.

In Fig. 19, we compare the impact of taking this power
spectrum to a full inflationary calculation with match-
ing source (B10) on the WMAP likelihood. For the full
calculation of Eq. (B3), we take ∆2

R
(kp) = As to define

the normalization f . Since I1,max increases monotoni-
cally with c, we show models with maximum likelihood
parameters in uniform bins of c. Note that the maxi-
mal error increases with I1,max but does not exceed order

unity at I1,max < 1/
√
2.

For reference, to compute a matching 20 PC repre-
sentation as in Fig. 15 we take the amplitudes of the
principal components from Eq. (14) and use Eq. (A1) to
define

Ḡ′ = Ḡ′

p +
1

ln η2 − ln η1

∫ η2

η1

dη

η
G′

m(ln η) . (B13)

and keep the normalization As fixed.
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