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Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state

Jonathan Ganc∗

Texas Cosmology Center and Department of Physics,
The University of Texas at Austin, Austin, TX 78712, USA

Single-field slow-roll inflation with a non-vacuum initial state has an enhanced bispectrum in the
local limit. We numerically calculate the local-type fNL signal in the CMB that would be measured
for such models (including the full transfer function and 2D projection). The nature of the result
depends on several parameters, including the occupation number Nk, the phase angle θk between
the Bogoliubov parameters, and the slow-roll parameter ǫ. In the most conservative case, where
one takes θk ≈ η0k (justified by physical reasons discussed within) and ǫ . 0.01, we find that
0 < fNL < 1.52(ǫ/0.01), which is likely too small to be detected in the CMB. However, if one is
willing to allow a constant value for the phase angle θk and Nk = O(1), fNL can be much larger
and/or negative (depending on the choice of θk), e.g. fNL ≈ 28(ǫ/0.01) or −6.4(ǫ/0.01); depending
on ǫ, these scenarios could be detected by Planck or a future satellite. While we show that these
results are not actually a violation of the single-field consistency relation, they do produce a value
for fNL that is considerably larger than that usually predicted from single-field inflation.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Most cosmologists share the belief that the universe
underwent an early inflationary period, where it ex-
perienced an accelerated expansion [1] that produced
the large-scale perturbations that seeded the cosmic mi-
crowave background (CMB) anisotropy and large-scale
structure [2]. However, understanding the mechanism
and exact history of this early period is still the subject
of active research and the impetus behind the develop-
ment of a variety of inflationary models [3]. One of the
most promising avenues for discrimination between dif-
ferent models is the measurement of the non-Gaussianity
of the primordial curvature perturbation ζ, that is, the
degree to which the primordial fluctuations contain sta-
tistical information beyond the power spectrum [4]. As it
stands, all measurements are consistent with a Gaussian
curvature perturbation [5]; however, this analysis may
change with the release of data from the Planck satellite,
as well as large-scale structure observations.
The bispectrum is the lowest-order non-Gaussianity

and, at least in most models, the most likely to be de-
tected. It is defined in terms of the Fourier transform of
the three-point function

〈ζk1
ζk2

ζk3
〉 = (2π)3δ(3)

(
∑

ki

)

Bζ(k1, k2, k3) , (1)

where the δ-function is required by translation invariance
of the underlying theory. The bispectrum Bζ(k1, k2, k3)
is a real-valued function of three variables; however, the
measured data has only limited signal strength so the
bispectrum is often reported in terms of fNL parame-
ters, each of which is obtained by fitting the measure-
ments to a template bispectrum. This paper will deal
with the local bispectrum f loc

NL (henceforth simply called
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fNL), the most commonly reported non-Gaussianity pa-
rameter. The local template is the result of assuming
that the non-Gaussianity is produced from a background
Gaussian field ζg by a purely-local process [6], so that

ζ(x) = ζg(x) + (3/5)fNLζ
2
g (x) + . . . ; (2)

a straightforward calculation then yields the bispectrum

Bloc
ζ (k1, k2, k3) =

6

5
fNL[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3)+

+ Pζ(k3)Pζ(k1)] .

(3)

Noting that the measured power spectrum Pζ(k) ∝ k−3

and that the wavenumbers must obey k1 + k2 + k3 =
0, we see that this bispectrum peaks when one of the
wavenumbers is much smaller than the other two, e.g.
k3 ≪ k1 ≈ k2; this limit is known as the squeezed-limit

or local-limit [7]. In this regime, the bispectrum becomes

Bloc
ζ (k1, k2, k3)k3≪k1≈k2

≈ 12

5
fNLP (k1)P (k3). (4)

fNL gained much importance when Creminelli and Zal-
darriaga [8] demonstrated a consistency relation that
shows that for all single-field inflation models (regardless
of kinetic term, vacuum state, etc.) in the squeezed-limit

Bζ(k3 ≪ k1) = (1 − ns)P (k1)P (k3).

Since the local template is most sensitive to squeezed-
limit wavenumber configurations, the consistency rela-
tion implies that

fNL ≈ (5/12)(1− ns) ≈ 0.01,

where ns is the spectral tilt; thus, a larger detection of
fNL would strongly disfavor single-field inflation. The
consistency relation has been explored in many papers,
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including [9–13]. However, one must be cautious when
using the consistency relation to interpret observations.
The relation is inviolable only in the exact squeezed limit
while measurements are made over a finite range of k
values and involve a best-fit of the measured bispectrum
to the local-template bispectrum. Recently, Agullo and
Parker [14] showed that there can be an enhancement
of the local-limit bispectrum for slow-roll inflation given
a non-vacuum initial state. In § II, we reproduce their
result, though in a formalism where the non-standard
initial state is recorded in the Bogoliubov parameters
(rather than by a density matrix). We then proceed,
in § III to calculate the value of fNL that such a model
would produce in the CMB. In § IV we report the re-
sults, which we interpret further in § V. We find that
fNL . 3 (i.e. undetectable) in the most conservative case
but that we can have fNL ≫ 1 if we allow some freedom
in the parameters; this result highlights the importance
of properly applying the consistency relation.

II. SLOW-ROLL INFLATION WITH A

NON-BUNCH-DAVIES INITIAL STATE

First, we must calculate the bispectrum for slow-roll in-
flation with a non-vacuum initial state. The fluctuations
in the scalar curvature perturbation ζ are produced by
quantum fluctuations in a scalar field φ which has the
action

S =
1

2

∫

d4x
√−g[R− (∇φ)2 − 2V (φ)] .

We suppose that the slow-roll parameters are small, i.e.

ǫ ≡ 1

2
φ̇2/H2 ≪ 1

ηSR ≡ −φ̈/Hφ̇+ (1/2) φ̇2/H2 ≪ 1.

After switching the degree-of-freedom to ζ, we can calcu-
late the action to third order (note thatM−2

pl ≡ 8πG ≡ 1)

as [9]

S2 =
1

2

∫

d4x
φ̇2

H2
[a3ζ̇2 − a(∂ζ)2],

S3 =

∫

d4x
φ̇4

H4
a5Hζ̇2∂−2ζ̇ ≡

∫

dt L3(t), (5)

where as usual a is the scale factor and H ≡ ȧ/a; note
that we have neglected a field redefinition which is a small
effect and irrelevant for this discussion. Then, to lowest
order in slow-roll, the equation of motion for ζ is

−∂t(a
3 φ̇2

0

H2
ζ̇) + a

φ̇2
0

H2
∂2ζ = 0. (6)

Using the in-in formalism, the tree-level three-point
function for ζ is [15]

〈

ζ3(t∗)
〉

= −i

∫ t∗

t0

dt′
〈

0
∣

∣[ζ3(t∗), HI(t
′)]
∣

∣0
〉

, (7)

where the brackets on the LHS denote the ensemble aver-
age, HI is the interaction Hamiltonian (and equals −L3),
and t0 is the time where we set initial conditions on the
state of the universe. To evaluate the RHS, we quantize
ζ using Quantum Field Theory in curved space-time [16]:

ζk(t) = uk(t)ak + u∗
k(t)a

†
−k

, (8)

where ak, a
†
k
are annihilation, creation operators, respec-

tively, for ζ modes and uk(t) are the mode functions for ζ,
i.e. complex solutions to the equations of motion (6) sat-
isfying some normalization condition. We usually choose
u to correspond to the so-called Bunch-Davies (BD) vac-
uum, where it contains only positive frequency modes
and where the vacuum state is unchanged under trans-
formations that leave the metric de-Sitter; for slow-roll
inflation, the BD vacuum state is

uk(η) =
H2

φ̇

1√
2k3

(1 + ikη)e−ikη. (9)

More recently, people have realized that the assump-
tion of a BD vacuum may be too restrictive and have
considered initial states containing particles [11, 14, 17–
21]. These states can be thought of as parameterizing
either early-time or high-energy physics and can be rep-
resented by performing a Bogoliubov transformation on
the BD u:

ũk(t) = αk uk(t) + βk u
∗
k(t) =

= αk
H2

φ̇

1√
2k3

(1 + ikη)e−ikη+

+ βk
H2

φ̇

1√
2k3

(1− ikη)eikη (10)

for slow-roll inflation. If uk is a vacuum mode function,
then ũk corresponds to a mode containing Nk = |βk|2
particles in mode k; also, the Bogoliubov parameters
obey |αk|2 − |βk|2 = 1. Only the relative phase θk be-
tween αk and βk is physically relevant so we can write all
quantities involving the Bogoliubov parameters in terms
of Nk and θk (e.g. αkβ

∗
k+α∗

kβk = 2
√

Nk(Nk + 1) cos θk).
θk is an additional unconstrained parameter and for very
particular choices it can dramatically enhance fNL; this
will be further discussed later.
To use the non-BD ũ, we simply replace u by ũ in the

quantization of ζ (8). For the power spectrum, this gives
us

P (k) = |uk|2η→0 =
H4

φ̇2

1

2k3
|αk + βk|2

=
H4

φ̇2

1

2k3

(

1 + 2Nk + 2
√

Nk(Nk + 1) cos θk

)

.

(11)

While we currently can only conjecture about the exact
form of Nk, we can place on it certain constraints:



3

(a) The energy content in the fluctuations must be finite.
This requires that, in the UV, Nk = O(1/k4+δ) [18]
(heuristically at least, this follows from demanding
that the energy density

∫

d3k kNk converge). Ac-
tually, this constraint has only a limited impact on
our results; we can only observe a restricted range of
wavenumbers so that we are free to posit any form
for Nk for high enough wavenumber.

(b) A more restrictive condition comes from demanding
that the energy content in the fluctuations be less
than that in the unperturbed background field; oth-
erwise, there would be back reaction on the infla-
ton’s dynamics and inflation would not proceed as
expected. Roughly, we can write this condition as

∫

d3k kNk . M2
plH

2.

(c) The amplitude of the perturbations must be compat-
ible with the observed primordial power spectrum.
This constraint is fairly weak since, as we can see
from (11), P (k) ∝ (H4/φ̇2)(1 + 2Nk) and we can-
not independently constrain either the first or second
term.

(d) The running of Nk must conform to the observed
spectral tilt 1− ns ≈ 0.032 [5]. This implies that

1− ns ≡ −d log(k3 P (k) )/d log k

= −2ηSR + 6ǫ− d log(1 + 2Nk)/d log k

= 0.032 .

Assuming ǫ and ηSR are small, then Nk must change
slowly [14].

As in [19], we will consider Nk with the form

Nk ≈ Nk,0e
−k2/k2

cut ,

with some cutoff scale kcut. Condition (b) gives Nk,0 .

M2
plH

2/k4cut. If we take kcut ≈
√

MplH , i.e. the scale of
inflation, Nk,0 can be of order one; for other scenarios,
Nk,0 might be higher or lower. A more careful calculation
gives a comparable result [18]. If we take the cutoff scale
kcut to be sufficiently larger than the primordial modes
observable today then, for observational purposes, Nk ≈
Nk,0 = const; this is one case we consider. We will also
calculate the effect of having the cutoff kcut lie within the
observable modes. For some cutoffs, this situation may
not satisfy condition (d) above but it provides an idea
about the effect of a varying Nk.

The form of θk is constrained only through the power
spectrum (11), allowing us considerable freedom in its
choice. If we think of the non-vacuum initial state as pa-
rameterizing unknown physics, then we expect that it is
determined by matching the mode function (10) to the
initial conditions. It follows that the main (or at least
a large) contributor to θk will be the exponential factors
e−ikη0 , eikη0 evaluated as some initial time η0; the alter-
native is that these factors are coincidentally cancelled
off in the initial conditions which (since the initial con-
ditions probably represent very different physics) seems
unlikely. Thus, it makes sense to consider θk ≈ kη0,
though we will also explore the effect of a constant θk for
very large kcut.

Returning to the calculation of the bispectrum, we plug (5) and (8) into (7) and find that

Bζ(k1, k2, k3) = 2i
φ̇4

H6

∑

i

(

1

k2i

)

ũk1
(η̄)ũk2

(η̄)ũk3
(η̄)

∫ η̄

η0

dη
1

η3
u′∗

k1
u′∗

k2
u′∗

k3
+ c.c. . (12)

We can now replace u by ũ to account for our initial state, so the integral becomes

∫ η̄

η0

dη
1

η3
ũ

′∗
k1
ũ

′∗
k2
ũ

′∗
k3

=
H6

φ̇3

√

k1k2k3
8

∫ η̄

η0

dη
(

α∗
k1
eik1η + β∗

k1
e−ik1η

) (

α∗
k2
eik2η + β∗

k2
e−ik2η

) (

α∗
k3
eik3η + β∗

k3
e−ik3η

)

.

(13)

For the BD case (α = 1, β=0), the integral

gives [1/i(k1 + k2 + k3)]e
i(k1+k2+k3)η

∣

∣

η̄

η0

, which in the

squeezed limit becomes (1/2i k1)e
2i k1η

∣

∣

η̄

η0

. If we consider

a non-BD initial state, βk 6= 0, and we get terms of a dif-
ferent character; for example, there is a α∗

k1
β∗
k2
α∗
k3

term

which gives [1/i(k1 − k2 + k3)]e
i(k1−k2+k3)η

∣

∣

η̄

η0

, or in the

squeezed limit (1/i k3)e
ik3η

∣

∣

η̄

η0

. Thus, terms like this lat-

ter term are enhanced by a factor of k1/k3 ≫ 1 in the

squeezed limit.

In principle, it is not clear what happens at the lower
limit of integration, when η = η0. We expect the initial
condition for the modes to be set while the modes are
within the horizon, i.e. kη0 ≫ 1. Thus, depending on
the exact value of k and η0, the exponentials will oscil-
late; when performing our calculations, we will take the
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average value, i.e. that the exponentials are zero. For the left endpoint, as usual, η̄ → 0.

In this way, we arrive at an expression for the bispectrum

Bζ(k1, k2, k3) =
i

4

H6

φ̇2

1

k1k2k3

∑

i

(

1

k2i

)

(αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)×

×
∫ η̄

η0

dη
(

α∗
k1
eik1η + β∗

k1
e−ik1η

) (

α∗
k2
eik2η + β∗

k2
e−ik2η

) (

α∗
k3
eik3η + β∗

k3
e−ik3η

)

+ c.c. , (14)

which is written out explicitly in the Appendix. The non-
BD part of the shape is primarily squeezed with some en-
hancement in the folded regime (i.e k1 ≈ k2 ≈ (1/2)k3),
coming from the terms mentioned above. As a check on
our calculation, note that we recover eq. (4.4) of Mal-
dacena’s paper [9] if we specialize to the BD case, where
αk = 1, βk = 0.

Thus, the non-BD bispectrum is enhanced in the
squeezed limit, resulting in a larger fNL.

Comparison with previous work

This result is essentially equivalent to eq. (5.9) of Ag-
ullo and Parker [14]. However, Agullo and Parker used
a density-matrix formalism where the results are essen-
tially expressed in terms the expectation value of prod-
ucts of the occupation number operator Nkk. By con-
trast, our results are expressed in terms of the Bogoliubov
parameters αk, βk. While the formalisms are equivalent
in principle, the relationship between them is not trivial,
since any non-Bunch-Davies state in terms of Bogoliubov
parameters is an infinite sum of states with definite occu-
pation numbers [22]. We have not encountered an explicit
formula connecting the two descriptions.

We feel our result is worthwhile because it connects
to the formalism of much of the previous literature on
the subject. Also, it is often easier to use when try-
ing to hypothesize possible initial states since these are
often naturally expressed in Bogoliubov parameters, as
we saw in our arguments about the expected behavior
of the phase angle θk. We do however admit that Ag-
ullo’s approach has the potential advantage of being able
to calculate the bispectrum given any arbitrary initial
state, since the space of states expressible in terms of
Bogoliubov parameters does not fill the Fock space.

A similar situation was treated in [19] but they were
expecting a signal only in the folded limit and did not
look for one in the squeezed limit. [Note that there is
an error in their eq. (3.16) which further obfuscates the

squeezed limit enhancement]. [20] used a similar setup
as the present case, examining slow-roll inflation with a
modified initial state. Like in the current paper, they
performed a 2D projection, though in the flat-sky ap-
proximation, which works accurately only for l & 150
[23] and so is not ideal for calculating the local template
(which has a strong signal when one of the l’s is small);
however, they used the same incorrect bispectrum as [19],
and so their result missed the local limit enhancement. A
later paper including two of the same authors [21] found
that models with a small speed of sound and a modi-
fied initial state can have an enhanced local signal; they
also noted that the size of the enhancement depends on
the phase angle and they studied the effect of different
(constant) phase angles. However, they did not perform
the 2D projection so they could not calculate what fNL

would be. Furthermore, the model they used was more
complicated, and we feel that are advantages to studying
this unexpected behavior in the simple case of standard
slow-roll inflation.

III. THE OBSERVED VALUE OF fNL

Determining the fNL signal in the CMB requires some
additional work. In particular, we must use a trans-
fer function to calculate the present-day temperature
anisotropy from the primordial curvature perturbation
and then project the 3D CMB onto the 2D projection
that we actually observe; this gives us the angular bis-
pectrum. Then, we use the optimal estimator to extract
the value of fNL; essentially, this last step involves fit-
ting the measured angular bispectrum to the template
angular bispectrum derived from (3).
The calculations required are described in [24]. The

angular power spectrum and bispectrum are calculated
from their primordial counterparts by

Cl =

(

18

25π

)
∫

dk k2Pζ(k)g
2
Tl(k) , (15)

and
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bl1l2l3 =

(

6

5π

)3 ∫

r2dr

∫

dk1 dk2 dk3 (k1k2k3)
2Bζ(k1, k2, k3)gTl1(k1)gTl2(k2)gTl3(k3)jl1(k1r)jl2 (k2r)jl3 (k3r) , (16)

where gTl and jl are the radiation transfer function and
spherical Bessel functions, respectively. The angular bis-
pectrum bl1l2l3 for the non-vacuum initial state is calcu-
lated using (14) while blocl1l2l3

for the local template bis-
pectrum is calculated using (3). To calculate Cl, one can
use (11). Finally, the optimal estimator for fNL is given
by

fNL =
1

N loc

∑

l1≥l2≥l3≥2

I2l1l2l3
blocl1l2l3

bl1l2l3
∆l1l2l3Cl1Cl2Cl3

, (17)

where

N loc ≡
∑

l1≥l2≥l3≥2

I2l1l2l3

(

blocl1l2l3

)2

∆l1l2l3Cl1Cl2Cl3

;

for convenience, we have defined

∆l1l2l3 ≡











6 , if all l’s the same

2 , if 2 l’s the same

1 , if all l’s different

,

Il1l2l3 ≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)

,

where the matrix above is a Wigner 3-j symbol.
Given the complicated form of gTl and of the equa-

tions above, analytically solving for fNL is generally an
intractable problem and must be done numerically. Even
so, the system is somewhat involved and, in general,
presents a difficult computational challenge. This situ-
ation is improved if the bispectrum is separable, i.e. if it
can be written in the form

Bζ(k1, k2, k3) =
∑

i

fi(k1)gi(k2)hi(k3).

While the local form bispectrum (3) is of this form, the
non-vacuum slow-roll bispectrum (14) is not. However,
since calculating fNL requires fitting a bispectrum to
the local form, the result is primarily dependent on the
regime where the local form peeks, i.e. the squeezed limit
k3 ≪ k1 ≈ k2. More formally, one may examine (16),
(17), – noting that gTl(k) peaks when k ≈ l/rLS, where
rLS is the comoving distance to the surface of last scatter-
ing – and arrive at the same conclusion. In other words,
we can make our bispectrum (14) separable by assuming
that it is evaluated in the local limit, where k3 ≪ k1.
Then, our bispectrum becomes:

Bζ(k1, k2, k3) =
H6

φ̇2

1

4k1k2k43
N , (18)

where

N ≡
∏

i

(αki
+ βki

) (α∗
k1
β∗
k2
α∗
k3

+ β∗
k1
α∗
k2
α∗
k3
)−

− (α ↔ β) + c.c. =

= 2N1 + 2N2 + 4N1N2

+ 4N1

√

N2(N2 + 1) cos θ2+

+ 4N2

√

N1(N1 + 1) cos θ1+

+ 2
√

N1(N1 + 1) cos θ1 + 2
√

N2(N2 + 1) cos θ2+

+ 4
√

N1N2(N1 + 1)(N2 + 1) cos θ1 cos θ2+

+ 4
√

N1N2(N1 + 1)(N2 + 1) sin θ1 sin θ2+

+ 4
√

N1N3(N1 + 1)(N3 + 1) sin θ1 sin θ3+

+ 4
√

N2N3(N2 + 1)(N3 + 1) sin θ2 sin θ3 , (19)

where Ni ≡ Nki
, θi ≡ θki

. (To ascertain the reasonable-
ness of this approximation, we performed the calculation
to the next order in k3 and found results that were 100
times smaller). Note that the standard 1− ns terms are
absent because they are lower order in k3.
To find fNL, we plugged (18) into (16) and (17) and nu-

merically performed the integrals in (16). To determine
the radiation transfer function gTl, we used the gtFAST
software [25], based on CMBFAST 4.0 [26]; for input,
we assumed h = 70.3, TCMB = 2.725 K, Ωb = 0.0451,
Ωc = 0.226, ΩΛ = 0.729, Ων = 0, Nν = 3.04, τ = 0.088,
and zreion = 10.4 (from [5]). We summed l’s up to 2000,
to reflect the signal available in the CMB temperature
power spectrum.

IV. RESULTS

As described in § II, we calculated fNL for various
values of the cutoff kcut:

a) kcut is very large, so that, Nk ≈ Nk,0 ≈ const:
We supposed either that θk ≈ const or θk ≈ kη0. For
the latter case, the terms in (19) with one trigonometric
function will clearly average out to zero in (16). The
terms with two trigonometric functions initially appear
as if they might contribute, since k1 ≈ k2, giving e.g.
cos θ1 cos θ2 ≈ cos2 θ1. However, the integrand in (16) is
sensitive only to k values that satisfy a triangle inequality
(while this is not obvious from (16), it is clear from the
derivation of that equation) so that, for example, k2 ∈
[k1 − k3, k1 + k3]. Even though k3 ≪ k1 ≈ k2, η0 is
sufficiently large (k3η0 ≫ 0 because we suppose that the
initial conditions are set when k3 is within the horizon)
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that these terms will oscillate greatly during the integral
over k2 and average out. Thus, we will be left with only
the first line of the second equality in (19): Nθk≈kη0

=
4(Nk,0 +N2

k,0).
For either form of θk, the numerical integral is the

same. Performing the integral, we found

fNL = 76
φ̇2

H2

N
P̃ 2

= 1.52
ǫ

0.01

N
P̃ 2

, (20)

where we have defined P (k) = H4/(2k3φ̇2) P̃ , so that

P̃ (k) equals the term in parenthesis in (11). We have
expressed the answer in terms of the slow-roll parameter
ǫ. If the single-field relation r = 16ǫ still holds for this
situation (where r is the tensor-scalar ratio), the bound
r < 0.2 [5] yields ǫ < 0.013; however, since we have
a non-vacuum initial state, this relation may no longer
hold, and ǫ could be larger than otherwise expected (but
the slow-roll approximation breaks down for ǫ & 0.1).
For the case that θk ≈ kη0, (20) becomes

fNL = 1.52
ǫ

0.01

(

1− 1

1 + 4Nk,0 + 4N2
k,0

)

. (21)

We thus have fNL . 1.6(ǫ/0.01); for the standard bound
on ǫ this is indistinguishable in the CMB – since the best
the CMB can do is ∆fNL ≈ 3 [27]. For larger values
of ǫ, this might actually be observable by future CMB
satellites.
If we instead consider that θk ≈ const, we can get

significantly larger results and even negative fNL. Indeed,
finding the extrema of (20) with respect to a constant θk
for Nk,0 > 0.017, one finds a maximum of

fNL = 1.52
ǫ

0.01

(

1

4
+ 9Nk,0 + 9N2

k,0

)

(22)

and a minimum of

fNL = −1.52
ǫ

0.01

[

2Nk,0(1 +Nk,0)+

+
√

Nk,0(1 +Nk,0)(1 + 2Nk,0)
]

,

(23)

where N ≡ Nk,0. These values are depicted in Fig. 1 as
a function of Nk,0.

b) kcut lies within the observable modes:
As acknowledged earlier, if kcut lies within the observ-
able modes, there might be a conflict with measured
power spectrum results; however, because of the impor-
tance of fully investigating possible inflationary scenar-
ios and understanding their consequences, we felt it was
worthwhile to perform the calculation. Using a simple
formula, one can relate the CMB-anisotropy multipole l
to the wavenumber k most responsible for producing it
at the surface of last scattering: k ≈ l/rLS [28], where

0 0.5 1 1.5 2

-20

0

20

40

60

80

Nk ,0

f N
L
�
Ε

0.
01

FIG. 1. For very large kcut, where Nk ≈ Nk,0 = const,
and fine-tuned values of θk = const, fNL can be large. The
maximum values (upper solid line) are achieved for cos θ =

(1− 12N − 12N2)/6
√

N(N + 1)(1 + 2N), and the minimum
values (lower dashed line) are achieved for cos θ = −1.

lcut kcut Nk,0 fNL

( ǫ

0.01

)

−1

very large very large Nk,0 1.52
[

1−
(

1 + 4Nk,0 + 4N2
k,0

)

−1
]

1500 0.104 Mpc−1

0.1 0.14
1 0.44
10 0.46

500 0.0347 Mpc−1

0.1 5.4× 10−3

1 1.9× 10−2

10 2.32 × 10−2

TABLE I. The observed fNL for Nk = Nk,0e
−k2/k2

cut . The top
line shows the result for kcut very large, so that Nk ≈ const.
For cutoff kcut ≡ lcut/rLS, we get a suppression of Nk for the
wavenumbers that contribute primarily to multipoles larger
than lcut in the CMB temperature anisotropy.

rLS = 14400 Mpc−1 is the comoving distance to the sur-
face of last scattering. We considered values of kcut corre-
sponding to a cutoff at l = 500 and l = 1500. We further
calculated for θk ≈ kη0, as well as for θk ≈ k/k∗ where
k∗ ≪ k3 so that the terms with trigonometric functions
in (19) average out as in (a). The results for several val-
ues of Nk,0 are listed in Table I. We see that the values
for fNL are much smaller than for Nk ≈ const.

V. DISCUSSION AND CONCLUSION

The conclusions from this work depend on the form of
θk and the size of ǫ. In the most conservative case, we
suppose that θk ≈ η0k and ǫ . 0.01, and we find from
(21) that fNL . 3 in the CMB and thus undetectable.
This case conforms to the general idea that a detection of
fNL would disfavor single-field inflation. However, if we
allow either θk to be constant or ǫ to be slightly elevated
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(which, as mentioned in § IV is possible for a non-Bunch-
Davies initial state), we can get a larger fNL that could
be measured. The second of these scenarios – a larger ǫ
– can produce a (barely) measurable fNL ≈ 15 if ǫ ≈ 0.1
and Nk & 1. The first scenario, where θk ≈ const, can
produce a much larger and/or negative fNL, depending
on the value of θk, as we see from (22), (23), and Fig.
1, rising to ≈ 30 for Nk = O(1) and e ≈ 0.01. Thus,
a detection of local-type fNL alone would not rule out
single-find inflation.

It might seem curious that fNL in (21) does not blow
up for very large Nk,0. To understand this, note that
(4) shows that fNL roughly measures the size of the
bispectrum in the squeezed limit relative to the product

of power spectra P (k1)P (k3). However, for large Nk,0,
P (k) ∝ Nk,0 and Bζ ∝ N2

k,0, so that Bζ increases ex-

actly like P (k1)P (k3) with respect to Nk,0, and fNL is
not enhanced. In fact, the non-numerical factors in (21)
can be derived by supposing

fNL ≈ Bζ

P (k1)P (k3)
.

In examining the effect of Nk,0 of fNL in Table I, we
see that fNL decreases for decreasing lcut. This is consis-
tent with expectations since the bispectrum we found was
enhanced by k1/k3, and a lower lcut prevents the contri-
bution of modes where k1 is large. Along the same lines,
one might also wonder about the effect of other forms
of Nk, for example a sharp peak at some momentum k
due to a condensate or particle production. The effect of
such a form would likely depend on the specifics of the
effect. If the boosted power is at small or large scales,
where k1/k3 is large, it will increase the observability of
the fNL enhancement; however, the observability is also a

function of the width of the peak, since an overly narrow
peak will be washed out as the bispectrum is projected
to 2D and then used to calculate fNL.
As a last note, we remark on the fact that our results

produce fNL larger than (5/12)(1 − ns) ≈ 0.01, as pre-
dicted by the single-field consistency relation. To recon-
cile this apparent discrepancy, we examine the integrals
which give the enhanced terms, as described below (13).

These integrals yield terms like eik3η
∣

∣

η

η0

. In the exact

squeezed-limit of the consistency relation, k3 is taken to
be arbitrarily small, so |k3η0| ≪ 1 and these terms are
zero; the only pieces remaining reproduce the Maldacena
squeezed-limit result. This explanation is somewhat un-
satisfying because |k3η0| ≪ 1 implies that the initial con-
dition was set when k3 was far outside the horizon; how-
ever, one may argue that unknown, early universe effects
were responsible for this and, in any case, the consistency
relation does hold. Thus, we see that the consistency re-
lation is a powerful tool but it only applies perfectly in a
certain limit (a similar conclusion was reached in [12]).
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Appendix: Explicit Bispectrum

From (14), we easily write out the bispectrum explic-
itly:

Bζ(k1, k2, k3) =

=
i

4

H6

φ̇2

1

k1k2k3

∑

i

(

1

k2i

)

(αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)×

×
∫ η̄

η0

dη
(

α∗
k1
eik1η + β∗

k1
e−ik1η

) (

α∗
k2
eik2η + β∗

k2
e−ik2η

) (

α∗
k3
eik3η + β∗

k3
e−ik3η

)

+ c.c. ≈

≈1

4

H6

φ̇2

1

k1k2k3

∑

i

(

1

k2i

)

(αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)×

×
[ 1

k1 + k2 + k3
(α∗

k1
α∗
k2
α∗
k3

− β∗
k1
β∗
k2
β∗
k3
) +

1

k1 + k2 − k3
(α∗

k1
α∗
k2
β∗
k3

− β∗
k1
β∗
k2
α∗
k3
)+

+
1

k1 − k2 + k3
(α∗

k1
β∗
k2
α∗
k3

− β∗
k1
α∗
k2
β∗
k3
) +

1

k1 − k2 − k3
(α∗

k1
β∗
k2
β∗
k3

− β∗
k1
α∗
k2
α∗
k3
)
]

+ c.c. ,

(A.1)
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where, in the last equation we let η̄ → 0 and averaged
over η0, as discussed in § II.
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