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One of the principle efforts in cosmic microwave background (CMB) research is measurement of
the parameter fnl that quantifies the departure from Gaussianity in a large class of non-minimal
inflationary (and other) models. Estimators for fnl are composed of a sum of products of the
temperatures in three different pixels in the CMB map. Since the number∼ N2

pix of terms in this sum

exceeds the number Npix of measurements, these ∼ N2
pix terms cannot be statistically independent.

Therefore, the central-limit theorem does not necessarily apply, and the probability distribution
function (PDF) for the fnl estimator does not necessarily approach a Gaussian distribution for
Npix � 1. Although the variance of the estimators is known, the significance of a measurement
of fnl depends on knowledge of the full shape of its PDF. Here we use Monte Carlo realizations of
CMB maps to determine the PDF for two minimum-variance estimators: the standard estimator,
constructed under the null hypothesis (fnl = 0), and an improved estimator with a smaller variance
for fnl 6= 0. While the PDF for the null-hypothesis estimator is very nearly Gaussian when the true
value of fnl is zero, the PDF becomes significantly non-Gaussian when fnl 6= 0. In this case we

find that the PDF for the null-hypothesis estimator f̂nl is skewed, with a long non-Gaussian tail at

f̂nl > |fnl| and less probability at f̂nl < |fnl| than in the Gaussian case. We provide an analytic fit to
these PDFs. On the other hand, we find that the PDF for the improved estimator is nearly Gaussian
for observationally allowed values of fnl. We discuss briefly the implications for trispectrum (and
other higher-order correlation) estimators.

PACS numbers:

I. INTRODUCTION

The simplest single-field slow-roll inflation models pre-
dict that primordial perturbations should be nearly
Gaussian [1], but with predictably small departures from
Gaussianity [2]. This is often quantified through the non-
Gaussianity parameter fnl defined by [3],

Φ = φ+ fnl
(
φ2 −

〈
φ2
〉)
, (1)

where Φ is the gravitational potential and φ a Gaussian
random field. Standard single-field slow-roll inflation pre-
dicts fnl � 1 for the primordial field (although nonlin-
ear evolution of the density field may produce fnl ∼ 1
at the time of recombination; see, e.g., Ref. [4]). How-
ever, multi-field [5] or curvaton [6] models, or models with
sharp features [7] or wiggles [8] may produce larger values
of fnl. Measurement of fnl has thus become one of the
primary goals of cosmic microwave background (CMB)
and large-scale-structure (LSS) research. Current limits
from the CMB/LSS are in the ballpark of |fnl| . 100
[9, 10]. The plot has thickened with a suggestion [11]
(not universally accepted) that the WMAP 3-year data
prefers (at the 2.8σ level) fnl 6= 0, with a best-fit value
fnl ' 80 (a less significant result of 1.5σ is found in an
analysis of the most recent WMAP data release [9]). The
Planck satellite [12] is expected to achieve a sensitivity
of fnl ∼ 5.

In this paper, we address the following question: What

is the probability distribution function (PDF) P (f̂nl) for

an estimator f̂nl that is constructed from a CMB map?
If the PDF departs from the Gaussian distribution that
is often assumed, then the 99.7% confidence level (C.L.)
interval for fnl may be different than three times the
standard deviation for fnl. The interpretation of mea-
surements thus requires knowledge of this PDF.

The question arises as the theory predicts not only

the mean value of the estimator f̂nl, but it also makes
a prediction for the detailed functional form of the PDF

P (f̂nl). The consistency of a given measurement of f̂nl
with a theoretical prediction for fnl depends on knowl-

edge of the shape of P (f̂nl). Thus, for example, we often
evaluate or forecast the standard error σfnl with which
a given measurement will recover the true value of fnl
and then simply assume that the error is Gaussian. If
so, then with σfnl = 10, for example, a measurement of

f̂nl = 30 would represent a 3σ departure from fnl = 0 and

a measurement f̂nl = 0 would represent a 3σ departure
fom fnl = 30. However, if the PDF depends on the true
value fnl, and if that distribution is non-Gaussian, then

it may be that a measurement f̂nl = 30 could be easily
consistent with a true value fnl = 0, while a measure-

ment f̂nl = 0 could be inconsistent with fnl = 30 with
a confidence greater than “3σ.” We will see below that
something like this actually occurs with measurements of
fnl.

This question is particularly important for measure-
ments of non-Gaussianity (as opposed, for example, for
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the CMB power spectrum), because f̂nl is a sum over
products of three temperature measurements (unlike the
power spectrum, which sums over squares of temperature
measurements). Suppose the temperature is measured in
Npix pixels. There are then ∼ N2

pix terms in the fnl esti-

mator (after restrictions imposed by statistical isotropy).
While these terms may have zero covariance, they are not
statistically independent; there is no way to construct
N2

pix statistically independent quantities from Npix mea-
surements! The conditions required for the validity of the

central-limit theorem are therefore not met, and P (f̂nl)
will not necessarily approach a Gaussian in the Npix � 1
limit.

The PDF can be obtained from Monte Carlo simula-
tions, but the simulations are very computationally in-
tensive (e.g., Ref. [13]). The number of Monte Carlo re-
alizations is thus usually limited to the number, . 1000,
required to determine a 99.7% C.L. detection or some-
times even fewer if it is just the variance that is being
estimated. Although with only 1000 realizations Fig. 8 in
Ref. [13] shows hints of a non-Gaussian PDF, simulations
done up until now do not include enough realizations to

precisely map the functional form of P (f̂nl). The num-
ber of realizations required to map ultimately the 4σ,
5σ, etc. ranges will be prohibitive, especially since the
simulations will need to be re-run repeatedly to deter-
mine how the error ranges depend on cosmological pa-
rameters, instrument-noise properties, scanning strate-
gies, etc., and they then must be run for multiple theo-
retical values fnl.

Work along these lines was begun in Ref. [14], wherein

it was shown that the variance of the distribution P (f̂nl)
may have a strong dependence on the true underlying
value of fnl. More precisely, they evaluated the vari-
ance of the estimator designed to have the minimum vari-
ance under the null hypothesis fnl = 0 (which we refer
to frequently below as the “null-hypothesis minimum-
variance” estimator, or NHMV estimator), and showed
that the variance of this NHMV estimator increases as
fnl

2 increases. They then constructed an alternative es-

timator f̂nnl, which we call the CSZ estimator1, which
has a PDF with a variance that saturates the Cramer-
Rao bound up to corrections of order fnl

2. Still, as we
have argued above, the consistency of a hypothesis with
a measurement requires full knowledge of the PDF of
whatever estimator is used in the analysis.

To address these questions, we calculate the PDF for
an ideal (no-noise) map to understand the irreducible
PDF introduced simply by cosmic variance under the

1 We note that the CSZ estimator, which is defined under the
Sachs-Wolfe approximation, has yet to be generalized so that it
can be applied to actual data. On the other hand a Bayesian
approach, discussed in Ref. [15], allows for an fnl inference that
saturates the Cramer-Rao bound even in the presence of non-
Gaussianity.

Sachs-Wolfe approximation and on a flat sky. We hope

that lessons learned about P (f̂nl) in this ideal case may
help interpret and understand current/forthcoming re-
sults and assess the validity of full-experiment simula-
tions.

We calculate these PDFs by using Monte Carlo real-
izations of numerous no-noise flat-sky CMB maps. The
first order of business with a map will be to determine
whether a given map is consistent or inconsistent with the
null hypothesis fnl = 0. Therefore, we first calculate the
PDF that arises if fnl does indeed vanish, for the NHMV

estimator f̂nl, and we also calculate the PDF that arises
if the true value of fnl is nonzero. We provide an analytic
fit for these PDFs in Eq. (21). If the evidence from such
a measurement were to show that fnl is nonzero, then the

next step would be to apply the CSZ estimator f̂nnl for
fnl 6= 0 [14] to obtain a more precise value for fnl or to
test consistency of the data with a specific nonzero value
of fnl. We therefore follow by calculating the PDF for
these improved non-null-hypothesis estimators.

We find that, besides having a variance that increases
with fnl

2, the PDF of the NHMV can have a signifi-
cantly non-Gaussian shape when fnl 6= 0 with a long

non-Gaussian tail for f̂nl > |fnl| and less probability at

f̂nl < |fnl| than in the Gaussian case. As an example,
taking fnl = 100 for an experiment which measures mul-
tipoles out to lmax = 3000 (such as Planck) and assuming
a Gaussian PDF for the NHMV this experiment mea-

sures 74 ≤ f̂nl ≤ 148 at the 99.7% C.L.; the actual PDF

shows that this experiment measures 68 ≤ f̂nl ≤ 143 at
the 99.7% C.L. Applying the CSZ estimator to the data
we find it has a PDF which is well approximated by a

Gaussian with f̂nl = 100± 12.5 at 99.7% C.L.

This paper is organized as follows. In Sec. II we con-

struct the standard minimum-variance estimator f̂nl un-
der the null hypothesis fnl = 0 and discuss why the PDF
for this estimator is not necessarily Gaussian, even in
the limit of a large number of pixels. In Sec. III A we use

Monte Carlo calculations to evaluate the PDF P (f̂nl) for
this estimator if the null hypothesis is indeed valid, i.e.,
if fnl is indeed zero. We find that the PDF in this fnl = 0
case is well approximated by a Gaussian, for Npix � 1,
even though the central-limit theorem does not apply.
In Sec. III B, we calculate the PDF assuming that the
null hypothesis is not valid, i.e., if fnl 6= 0. We find the
PDFs in this case can be highly non-Gaussian, skewed to

large |f̂nl|, with long large-f̂nl non-Gaussian tails and less

likelihood at f̂nl ≤ |fnl| relative to the Gaussian distri-
bution of the same variance. We provide fitting formulas

for the PDF as a function of the estimator f̂nl, the true
value of fnl, and the maximum multipole moment lmax

of the map. In Sec. IV we discuss the PDF of the CSZ
estimator. We show that this estimator is well approx-
imated by a Gaussian for values of fnl still allowed by
observations. In Sec. V we summarize and discuss some
possible implications of the work for other bispectra and
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also for the trispectrum and other higher-order statistics.
An Appendix discusses the computational techniques we
used in order to perform our Monte Carlo simulations.

II. NON-GAUSSIANITY ESTIMATORS

A. Formalism

We assume a flat sky to avoid the complications
(e.g., spherical harmonics, Clebsch-Gordan coefficients,
Wigner 3j and 6j symbols, etc.) associated with a spher-
ical sky, and we further assume the Sachs-Wolfe approx-
imation. We denote the fractional temperature pertur-

bation at position ~θ on a flat sky by T (~θ) and refer to it
hereafter simply as the temperature.

The field T (~θ) has a power spectrum Cl given by〈
T~l1T~l2

〉
= Ωδ~l1+~l2,0Cl, (2)

where Ω = 4πfsky is the survey area (in steradian),

T~l =

∫
d2~θ e−i

~l·~θT (~θ) ' Ω

Npix

∑
~θ

e−i
~l·~θT (~θ), (3)

is the Fourier transform of T (~θ), and δ~l1+~l2,0 is a Kro-

necker delta that sets ~l1 = −~l2. The power spectrum for

T (~θ) is given by

Cl =
2πA

l2
, (4)

where the amplitude, A ' 10−10. The bispectrum
B(l1, l2, l3) is defined by〈

T~l1T~l2T~l3

〉
= Ωδ~l1+~l2+~l3,0B(l1, l2, l3). (5)

The Kronecker delta insures that the bispectrum is de-

fined only for ~l1 + ~l2 + ~l3 = 0; i.e., only for triangles in
Fourier space. Statistical isotropy then dictates that the
bispectrum depends only on the magnitudes l1, l2, l3 of
the three sides of this Fourier triangle.

B. The null-hypothesis minimum-variance
estimator

We now review how to construct the minimum-
variance estimator for fnl under the null hypothesis. This
is the quantity that one would first determine from the
data to check for consistency of the measurement with
the null hypothesis fnl = 0.

From Eq. (5), each triangle ~l1 + ~l2 + ~l3 = 0 gives an
estimator,

(f̂nl)123 =
T~l1T~l2T~l3

ΩB(l1, l2, l3)/fnl
, (6)

and under the null hypothesis this has a variance propor-
tional to

Ω3Cl1Cl2Cl3

[ΩB(l1, l2, l3)/fnl]
2 . (7)

The null-hypothesis minimum-variance estimator is con-
structed by adding all of these estimators with inverse-
variance weighting. It is [16, 17]

f̂nl ≡ σ2
fnl

∑
~l1+~l2+~l3=0

T~l1T~l2T~l3B(l1, l2, l3)/fnl

6Ω2Cl1Cl2Cl3
, (8)

and it has inverse variance,

σ−2fnl =
∑

~l1+~l2+~l3=0

[B(l1, l2, l3)/fnl]
2

6ΩCl1Cl2Cl3
. (9)

C. Non-gaussianity of the PDF

If the number of pixels in the CMB map is Npix, then
there are alsoNpix statistically independent T~l. But there

are a much larger number, ∝ N2
pix, of triplets T~l1T~l2T~l3 ,

included in the estimator [cf., Eq. (8)], and so the num-
ber of individual “data points” (i.e., triplets) used in
the minimum-variance estimator scales like N2

pix � Npix.
Since the number of terms included in the estimator is
greater than the number of independently measured data
points the standard central-limit theorem does not apply.
Thus, we cannot assume that the PDF of the estimator
will approach a Gaussian in the Npix →∞ limit.

This contrasts with the estimator Ĉl ∝
∑
|T~l|

2 of the

power spectrum Cl. While the PDF for Ĉl is not neces-
sarily Gaussian (it has a χ2

2l+1 distribution), it is the sum
of the squares of statistically independent quantities. The
central-limit theorem therefore applies, and the distribu-

tion for Ĉl does indeed approach a Gaussian for large l.
The problems we address here for fnl estimators paral-
lel those discussed in the literature for the quadrupole
moment C2, as the distribution for quadrupole-moment
estimators will be highly non-Gaussian and will also de-
pend on the underlying theory (see, e.g., Ref. [18]).

III. THE PDF OF f̂nl FOR THE LOCAL MODEL

We now restrict our attention to a family of non-

Gaussian models in which the temperature T (~θ) has a
non-Gaussian component; i.e.,

T (~θ) = t(~θ) + 3fnl

{
[t(~θ)]2 −

〈
[t(~θ)]2

〉}
, (10)

where t(θ) is a Gaussian random field with a power spec-
trum Cl given in Eq. (4). To zero-th order in fnl, the

power spectrum and correlation function for T (~θ) are the
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same as those for t(~θ). Note that T (~θ) is, strictly speak-

ing, the temperature fluctuation, so
〈
T (~θ)

〉
= 0 = T~l=0.

The bispectrum for this model is

B(l1, l2, l3) = 6fnl(Cl1Cl2 + Cl1Cl3 + Cl2Cl3). (11)

The temperature Fourier coefficients can be written
T~l = t~l + fnlδt

2
~l

with

δt2~l ≡
3

Ω

∑
~l′

t~l−~l′t~l′ . (12)

Formally, the sum goes from 0 < |~l′| ≤ ∞, but for a finite-
resolution map, the sum is truncated at some lmax such
that the number of Fourier modes equals the number of
data points.

We now proceed to evaluate P (f̂nl; fnl, lmax), the PDF
that arises if the true value is fnl for the NHMV estimator

f̂nl and for a map with lmax. To do so, we generated large
numbers of Monte Carlo realizations of maps according
to Eq. (12), for some assumed value of fnl, and then
applied the estimator in Eq. (8) to these maps. Each
map is simulated in harmonic space from lmin = 2 up to
a maximum multipole lmax. In order to produce a large
number of realizations we re-expressed the generation of
maps and implementation of the estimator in terms of
fast Fourier transforms as discussed in Appendix A.

A. The PDF of the null hypothesis
minimum-variance estimator with fnl = 0

First we consider the shape of P (f̂nl; fnl = 0, lmax),
the PDF for the NHMV estimator in Eq. (8) applied to a
purely Gaussian (fnl = 0) map. To do this we generated
106 Gaussian realizations and applied the estimator in

Eq. (8) to generate a histogram of values of f̂nl. From

this histogram we determined P (f̂nl; fnl = 0, lmax) out to
four times the root-variance, as shown in Fig 1.

First we note that our simulations verify that the vari-
ance of the distribution for the null case is well approxi-
mated by the analytic expression [16, 17],

σ2
fnl
≈ 1

72Al2max ln(lmax)
. (13)

Additionally our simulations show that out to at

least four times the root-variance, the PDF P (f̂nl; fnl =
0, lmax) is well approximated by a Gaussian for lmax & 25,
even though the conditions for the central-limit theo-
rem to apply are not satisfied. Therefore, a measure-

ment of f̂nl that differed from 0 at more than three times
the root-variance would indeed constitute a ‘99.7% con-
fidence level’ inconsistency with the fnl = 0 hypothesis.

FIG. 1: Numerical evaluations of P (f̂nl; fnl = 0, lmax). The
left (right) two panels show the PDF for lmax = 5 and
lmax = 25 for 106 realizations for a scale-invariant power spec-
trum. In all panels the PDF has been normalized to have a
unit variance, and the corresponding Gaussian PDF (with
the same variance) is shown as the red dashed curve. As lmax

gets larger, the PDF tends towards a Gaussian. This is not
guaranteed by the central-limit theorem since the majority of
the terms that appear in the estimator are not statistically
independent.

B. The PDF of the null hypothesis
minimum-variance estimator with fnl 6= 0

We now consider the form of P (f̂nl; fnl, lmax) when
fnl 6= 0, the PDF for the null-hypothesis minimum-
variance estimator if the null hypothesis is in fact not
valid. In this case, the non-Gaussian statistics of the T~ls

impart some non-Gaussianity to the f̂nl PDF.

In Fig. 2 we show P (f̂nl; fnl, lmax) calculated using 106

realizations with fnl = 1500 and lmax = 25. Clearly the
PDF in this case is highly non-Gaussian.

Non-Gaussianity of P (f̂nl; fnl, lmax) for a central value
fnl 6= 0 may be significant for the interpretation of data.
Suppose, for example, that a CMB measurement returns

f̂nl = 0 with a root-variance σfnl = 40. If the PDF

was assumed to be Gaussian the measurement f̂nl = 0
would rule out fnl = 100 at the 2.5σ level, but given the
asymmetric PDF of Fig. 2 it may rule out fnl = 100 at a
much higher significance.

In order to better understand the origin of the non-
Gaussian PDF, it is useful to expand the minimum-
variance estimator in Eq. (8) to linear order in fnl [14]:

f̂nl ≈ E0 + fnlE1 + · · · , (14)
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FIG. 2: The PDF P (f̂nl) when f̂nl = 1500 using the estimator
in Eq. (8) with lmax = 25. The upper (lower) panel shows
the PDF on a linear (log) scale. We can see that the PDF
is significantly non-Gaussian with an exponential drop-off to
the left of mean and a power-law to the right. We provide a

fitting formula for P (f̂nl; fnl, lmax) in the text.

where

E0 = σ2
fnl

∑
~l1+~l2+~l3=0

t~l1t~l2t~l3
6Ω2fnlCl1Cl2Cl3

B(l1, l2, l3)(15)

E1 = σ2
fnl

∑
~l1+~l2+~l3=0

δt2~l1
t~l2t~l3

2Ω3Cl1Cl2Cl3
B(l1, l2, l3). (16)

Since E0 ∼ t3 and E1 ∼ t4, it is clear that 〈E0〉 = 0
and 〈E0E1〉 = 0, and the normalization guarantees that
〈E1〉 = 1. Furthermore, since we have already estab-

lished that P (f̂nl) approaches a Gaussian in the large
lmax limit if fnl = 0, we know that, to leading order,

the non-Gaussian shape of P (f̂nl; fnl, lmax) for fnl 6= 0 is
being generated by E1.

Some of the statistics associated with E1 have al-
ready been explored in Ref. [14]. There it is noted

that the variance of f̂nl is dominated by E1 in the
high S/N limit leading to a slower scaling of the S/N
than the l−2max ln−1(lmax) scaling expected if the estima-
tor saturated the Cramer-Rao bound [14]. We explored
the same limit using our Monte Carlo realizations, as

FIG. 3: The dependence of
〈
(∆E1)2

〉
on lmax. The points

correspond to the results of our Monte Carlo simulations for
1000 realizations at different values of lmax. The solid curve
shows the analytic calculation of the variance presented in
Appendix B which is well-fit by the function

〈
(∆E1)2

〉
=

[14.0(lmax)0.433]/[ln5.1(lmax)] ≈ 4.5 ln−3(lmax).

shown in Fig. 3, and find the same qualitative trend but
with a different dependence on lmax. Ref. [14] found
〈(∆E1)2〉 ∝ ln−2(lmax) whereas our simulations show
〈(∆E1)2〉 ∝ ln−3(lmax). We have checked the scaling
found with our simulations by computing the variance
analytically, as we further discuss in Appendix B. Fig. 3
shows the agreement between our analytic calculation
(solid curve) and simulations (data points).

Our simulations allow us to generate the full PDF for
E1, not just the variance. Fig. 4 shows this PDF for
various choices of lmax (thin solid lines). An important
conclusion from Fig. 4 is that the shape of the PDF ap-
proaches a universal form in the lmax � 1 limit. We
provide a fit to the PDF (thick red dashed line), accu-
rate to ∼10% (40%) out to three (four) times the root
variance, using the fitting formula

log[F (x)] = N − (17){
−(x− xp)2/(2σ2), x ≤ xp
− c
σ2

(√
(x− xp)2 + c2 − c

)
, x > xp,

where N ≡
√

2/πσ + c exp[c2/σ2]K1(c2/σ2) and K1(x)
is a modified Bessel function of the first kind, c quantifies
the non-Gaussianity of the distribution (and approaches
a Gaussian in the c → ∞ limit) and xp is the value of
(E1 − 〈E1〉)/σE1

at the peak of the distribution. The
red curve in Fig. 4 shows Eq. (17) with parameter values
xp = −0.22, σ = 0.80, and c = 0.91.
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FIG. 4: The PDF of E1 calculated using 106 realizations.
The thin solid curves correspond to P (E1) with lmax = 25
(green), lmax = 50 (purple), lmax = 100 (black). Since the
functional form of the PDF for each choice of lmax is nearly
identical, we conclude that P (E1) approaches an asymptotic
functional form in the large-lmax limit. The thick red dashed
curve corresponds to a fit to P (E1), accurate to ∼10% out to
3 times the root variance, using the fitting formula in Eq. (17)
with parameter values xp = −0.22, σ = 0.80, and c = 0.91.

We are now in a position to write down a semi-analytic

expression for P (f̂nl; fnl, lmax), accurate to ∼10% (40%)
out to three (four) times the root variance, as a function
of fnl and lmax. Letting σ0 and σ1 denote the standard
deviations of the distributions for E0 and E1 respectively
we have

σ2
0 ≈

1

72Al2max ln(lmax)
, (18)

σ2
1 ≈

fnl
2

2 ln3(lmax)
. (19)

A good approximation to the PDF of f̂nl is provided by
the convolution of the PDF of E0 and fnlE1:

P (f̂nl; fnl, lmax) ≈ 4

9
√

2πσ0σ1
(20)

×
∫ ∞
−∞

G0(f̂nl − x)F ([x− fnl]/σ1)dx,

where G0(x) is a Gaussian with zero mean and standard
deviation σ0 and F ([x−fnl]/σ1) is given by Eq. (17) with
xp = −0.22, σ = 0.80, and c = 0.91.

To obtain an analytic expression for the PDF we can
approximate the convolution in Eq. (20) to write

P (f̂nl; fnl, lmax) ≈ 2

9
exp

[
− X2

2(σ2
0 + σ2

1σ
2)

]√
1

σ2
1(σ2

0 + σ2
1σ

2)

{
σ1σ

(
1 + erf

[
σ2
0 + σ1σ

2(X + σ1)

σ0σ
√

2(σ2
0 + σ2

1σ
2)

])
(21)

+
√
σ2
0 + σ2

1σ
2

(
1− erf

[
cσ2

0 + σ1σ
2(X + σ1)√

2σ0σ1σ2

])
exp

[
1

2

(
c2σ2

0

σ2
1σ

4
+

2c[X + σ1c
2]

σ1σ2
+

X2

σ2
0 + σ2

1σ
2

)]}
,

where X ≡ fnl + xpσ1 − f̂nl.
Another useful way of quantifying the non-Gaussian

shape of P (f̂nl; fnl, lmax) is to measure its skewness,

〈(∆f̂nl)3〉, as a function of fnl and lmax. We show this in
Fig. 5 for fnl = 100. An analytic fit to the skewness is
given by

〈(∆f̂nl)3〉
σ3
fnl

=

(
fnl
100

)3

(22)

×
(

1

1 + 3.7 exp [−(lmax − 5.1)/740]
− 0.26

)
,

with the variance of the distribution, σ2
fnl

, given by

σ2
fnl
≈ 1

72Al2max ln(lmax)

[
1 +

36Afnl
2l2max

ln2(lmax)

]
. (23)

Finally, we note that the shape of P (f̂nl; fnl, lmax) de-
parts significantly from a Gaussian when σ0 ' σ1. This
occurs when

fnlA
1/2 &

ln(lmax)

6lmax
. (24)

Therefore, for the Planck satellite (i.e., lmax = 3000) the

non-Gaussian features of P (f̂nl; fnl, lmax) for the NHMV
estimator are significant if fnl & O(10). Thus, given that
Planck is expected to measure fnl with a variance σ ≈ 5,
these PDFs may need to be taken into account to assign
a precise confidence region with Planck data.
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FIG. 5: The skewness, 〈(∆f̂nl)3〉, as a fraction of the variance

of P (f̂nl; fnl, lmax) as a function of lmax for fnl = 100. We
provide an analytic fitting formula in Eqs. (22) and (23) as a
function of fnl and lmax.

IV. THE PDF OF AN IMPROVED ESTIMATOR
WHEN fnl 6= 0

As we saw in the previous Section the standard

(null-hypothesis) minimum-variance estimator f̂nl is con-
structed under the null hypothesis, so its variance is
strictly minimized only when applied to maps with

fnl = 0 [14]. In particular, the variance of f̂nl is given
in Eq. (23) so that when 36Afnl

2l2max/ ln2(lmax) & 1,
the variance scales as the ln−3(lmax), as opposed to
l−2max ln−1(lmax). This indicates that when fnl 6= 0 there
may be other estimators with smaller variances.

For a flat-sky and under the Sachs-Wolfe approxi-
mation Ref. [14] introduced an improved estimator for
fnl 6= 0 which has a variance that continues to decrease
as 1/[l2max ln(lmax)] in the high signal-to-noise limit.
To achieve this scaling they introduced a realization-
dependent normalization,

N ≡ σ2
fnl

∑
~l1+~l2+~l3=0

χ~l1T~l2T~l3
2Cl1Cl2Cl3

B(l1, l2, l3), (25)

where

χ~l ≡
∑
~k

T~l−~kT~k. (26)

By construction 〈N〉 = 1. They then define a new esti-
mator constructed under the non-null hypothesis:

f̂nnl ≡
f̂nl
N
. (27)

To explore the properties of the PDF of f̂nnl, we expand
the normalization as N ≈ N0 + fnlN1 + · · · and write

f̂nnl ≈
E0

N0
+ fnl

E1N0 − E0N1

N 2
0

+ · · · , (28)

≡ E0 + fnlE1 + · · · . (29)

FIG. 6: The PDF P (E0) (left) and P (E1) (right) for lmax = 25
determined with 106 non-Gaussian realizations. The top pan-
els show the PDF on a linear scale; the bottom panels show
the PDF on a log scale. We have confirmed that the shape
of the PDF is unchanged for larger values of lmax. The PDF
of E0 (left) is well approximated by a Gaussian. However,
the PDF of the first-order correction E1 (right) has significant

non-Gaussian wings. This implies that the full PDF of f̂n
nl is

also non-Gaussian, even if the true value of fnl matches that
assumed in the construction of the CSZ estimator. Quantita-
tively, however, the level of non-Gaussianty will be small for
Planck, as the variance of E1 is

〈
(∆E1)2

〉
≈ 9 ln2(lmax)/(l3max).

In order to determine the shape of P (f̂nnl), we com-
puted P (E0) and P (E1) for various values of lmax. We

found, as in the f̂nl case, that these PDFs approach
asymptotic shapes in the lmax � 1 limit. We show
these PDFs in Fig. 6 determined by 106 realizations for
lmax = 25. It is clear that P (E0) is very well approxi-
mated by a Gaussian, whereas P (E1) has significant non-

Gaussian wings. As in the P (f̂nl) case, this implies that

the level of non-Gaussianity in P (f̂nnl) is significant only

when the ratio fnl
2
〈
(∆E1)2

〉
/
〈
(∆E0)2

〉
& 1. Our simu-

lations show〈
(∆E0)2

〉
≈ 1

72Al2max ln(lmax)
, (30)

〈
(∆E1)2

〉
≈ ln2(lmax)

l3max

, (31)

so that the PDF will be significantly non-Gaussian when

fnlA
1/2 &

1

3

[
lmax

8 ln(lmax)

]1/2
. (32)
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Therefore, for Planck (with lmax = 3000) P (f̂nnl; fnl, lmax)
will be significantly non-Gaussian only if fnl & O(1000).
Since this has already been ruled out by observations [9,

10], we conclude that P (f̂nnl; fnl, lmax) will be effectively
Gaussian.

V. DISCUSSION

Here we have argued that the PDF for non-Gaussianity
estimators cannot be assumed to be Gaussian, since the
number of triplets used to construct these estimators may
greatly exceed the number Npix of measurements. The
99.7% confidence-level interval cannot safely be assumed
to be 3 times the 66.5% confidence-level interval. We
found, however, that the standard minimum-variance es-

timator f̂nl constructed under the null hypothesis is well-
approximated by a Gaussian distribution in the lmax � 1
limit if the null hypothesis is correct (i.e., when applied
to purely Gaussian maps).

We then calculated the same PDF P (f̂nl) under the
hypothesis that the true value of fnl is non-zero. We
find that the PDF is non-Gaussian in this case, skewed

to large f̂nl if fnl > 0 and vice versa for fnl < 0. The

PDF for small positive or for negative f̂nl is significantly
smaller for fnl > 0 than the Gaussian PDF with the same
variance. Thus, for example, if the NHMV estimator

gives f̂nl > 0, it may actually rule out fnl = 0 with
a smaller statistical significance than would be inferred
assuming a Gaussian distribution of the same variance.
For Planck (with lmax ' 3000) we find that the non-

Gaussian shape of P (f̂nl) is significant if fnl & O(10).
Thus, the non-Gaussian shape of the PDF may need to
be taken into account, even in case of a null result, to
assign a precise 99.7% confidence-level upper (or lower,
for fnl < 0) limit to fnl. We also provide, in Eq. (21), an
analytic fit to these PDFs.

The non-Gaussian shape of P (f̂nl) when fnl 6= 0 is
accompanied by a variance that decreases only logarith-
mically with increasing lmax. Because of this, Ref. [14]
constructed an improved estimator under the fnl 6= 0 hy-
pothesis with a variance that saturates the Cramer-Rao
bound and continues to decrease as 1/[l2max log(lmax)].
We found that for observationally allowed values of fnl
this improved estimator has a PDF that is well approx-
imated by a Gaussian shape. However, this estimator
has only been defined under the Sachs-Wolfe approxima-
tion and it is not immediately clear how it should be
generalized to be applied to actual data. An alternative,
Bayesian, approach to measuring fnl which also saturates
the Cramer-Rao bound in the presence of fnl 6= 0 is pre-
sented in Ref. [15].

The results presented here are made within the flat-
sky, Sachs-Wolfe approximation. As such our conclu-
sions should be taken as an order of magnitude estimate

of P (f̂nl) calculated on the full sky and with the full
transfer function (see Ref. [14]) for a further discussion).

However, we note that a comparison between the exact
and approximate scaling of the signal-to-noise with lmax

shows the agreement to be better than an order of mag-
nitude [16].

We have restricted our attention to the bispectrum in
the local model, but the PDF must be similarly deter-
mined for the non-Gaussianity parameter for bispectra
with other shape dependences; e.g., the equilateral model
[19, 20] or that which arises with self-ordering scalar fields
[21]. It should also be interesting to explore the PDF for
maximum-likelihood, rather than quadratic, estimators
(see, e.g., Ref. [14]). Ultimately, a variety of experimen-
tal effects and more precise power spectra and bispectra,
rather than the Sachs-Wolfe-limit quantities used here,
will need to be included in interpreting the results of re-
alistic experiments.

There is also interest in using higher-order correlation
functions to measure fnl from CMB maps. Our argu-
ments should apply also to these higher-order correlation
functions, like the trispectrum, etc. For example, the
estimator for the amplitude of the n-point correlation
function (e.g., n = 3 for the bispectrum, n = 4 for the

trispectrum, etc.), will be constructed from ∼ N (n−1)
pix /n!

combinations of n pixels, and this number of combina-
tions scales even more rapidly with Npix than that for
the bispectrum. Thus, although the signal-to-noise scales
more rapidly with Npix for these higher-order correlation
functions than that for the bispectrum [17, 22, 23], con-
cerns about the PDF for these estimators should be even
more serious than for the bispectrum. It will thus be
necessary to understand the PDF for these higher-order
estimators to confidently forecast the statistical signfi-
cance of measurements [24].
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Appendix A: Computing non-Gaussianity estimators
using FFTs

We are interested in using Monte Carlo simulations to

determine the shape of the PDF of f̂nl as a function of
the fiducial choice of fnl and the number Npix of pixels
measured in a given observation. Applying the estimator
in Eq. (8) to the local-model bispectrum [Eq. (11)] it can
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be rewritten

f̂nl = σ2
fnl

∑
~l1+~l2+~l3=0

T~l1T~l2T~l3
Ω2Cl3

. (A1)

The estimator in Eq. (A1) takes N2
pix operations to eval-

uate. Since current CMB observations have Npix ∼ 106

this estimator would take a prohibitively long time to
evaluate for a significant number of realizations, espe-
cially since we are interested in probing the shape of the
PDF far into the tail of the distribution (∼ 3− 4σ).

As discussed at length in Ref. [25] this is even more of
a problem when measuring non-Gaussianity on the full

sky where the number of operations scales as N
5/2
pix . In

order to make the problem tractable Ref. [25] rewrites

f̂nl in terms of real-space quantities reducing the number

of operations to N
3/2
pix .

We can do the same for f̂nl in the flat-sky approxima-
tion. Noting that

δ~l1+~l2+~l3,0 =

∫
d2θ

Ω
ei
~θ·(~l1+~l2+~l3), (A2)

and writing

A(~θ) ≡ 1

Ω

∑
~l

ei
~l·~θT~l, (A3)

B(~θ) ≡ 1

Ω

∑
~l

ei
~l·~θ T~l
Cl
, (A4)

f̂nl can be written

f̂nl = Ωσ2
fnl

∫
d2θ

Ω
A2(~θ)B(~θ). (A5)

Next, in order to compute the integral in Eq. (A5) we
use the Nyquist sampling theorem and the fact that both

A(~θ) and B(~θ) have finite Fourier spectra (truncated at
a maximum frequency lmax). This allows us to rewrite
the integral as a discrete sum

f̂nl =
Ωσ2

fnl

N2

N∑
i=1

N∑
j=1

A2

(
2π
i− 1

N
, 2π

j − 1

N

)

× B

(
2π
i− 1

N
, 2π

j − 1

N

)
, (A6)

where N ≡ 2(2lmax + 1).

Since Eqs. (A3) and (A4) are discrete inverse Fourier
transforms we can use a fast Fourier transform (FFT)
algorithm so that the number of operations scale as
Npix ln(Npix).

We can use the same computational trick when evalu-
ating the non-Gaussian contribution for each realization
by also employing a forward FFT in order to compute
the convolution in Eq. (12).

Appendix B: Analytic calculation of
〈
(∆E1)2

〉
In order to verify that our simulations are correct we

performed an analytic calculation of the variance of E1

[Eq. (16)] defined by

E1 = σ2
fnl

∑
~l1+~l2+~l3=0

δt2~l1
t~l2t~l3

2Cl1Cl2Cl3
B(l1, l2, l3). (B1)

A straightforward but tedious calculation shows that the
variance is given by〈

(∆E1)2
〉

= 9σ4
fnl

(A1 + 8A2 +A3 + 4A4), (B2)

where

A1 ≡
∑
{~l},{~k}

B(l)

Cl1

B(k)

Ck1
δ~l1+~k1,0, (B3)

A2 ≡
∑
{~l},{~k}

B(l)

Cl1

B(k)

Ck1
δ~l3+~k3,0, (B4)

A3 ≡
∑
{~l}

B(l)2

C2
l1
Cl2Cl3

lmax∑
|~m|=1

C|~l1−~m|Cm, (B5)

A4 ≡
∑
{~l},{~k}

B(l)B(k)

Cl1Ck1Ck3
C|~l1+~k2|δl3+k3,0, (B6)

where {~l} indicates the sum is over |~l1 +~l2 +~l3| = 0 and
B(l) ≡ B(l1, l2, l3). Computing these terms as a function
of lmax we find that the variance is well-fit by the function

〈
(∆E1)2

〉
=

14.0 l0.433max

ln5.1(lmax)
. (B7)

In Fig. 3 we show how that this analytic calculation of
the

〈
(∆E1)2

〉
is reproduced by the results of the Monte

Carlo simulations.
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