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The presence of weak intergalactic magnetic fields can be studied by their effect on electro-
magnetic cascades induced by multi-TeV γ-rays in the cosmic radiation background. Small deflec-
tions of secondary electrons and positrons as the cascade develops extend the apparent size of the
emission region of distant TeV γ-ray sources. These γ-ray halos can be resolvable in imaging at-
mospheric Cherenkov telescopes and serve as a measure of the intergalactic magnetic field strength
and coherence length. We present a method of calculating the γ-ray halo for isotropically emitting
sources by treating magnetic deflections in the cascade as a diffusion process. With this ansatz the
moments of the halo follow from a set of simple diffusion-cascade equations. The reconstruction
of the angular distribution is then equivalent to a classical moment problem. We present a simple
solution using Padé approximations of the moment’s generating function.

PACS numbers: 95.85.Pw, 98.62.En, 98.70.Rz, 98.80.Es

I. INTRODUCTION

The presence of large-scale magnetic fields in cosmic environments can be probed by various astronomical techniques.
Synchrotron radiation of relativistic electrons can be detected by its characteristic linear polarization and spectrum.
Faraday rotation of linearly polarized emission tests the birefringent properties of a dilute magnetized plasma filling
intergalactic space. Zeeman splitting of an atom’s energy levels can be observed by the corresponding shift of spectral
lines from astrophysical masers. With these standard methods it has been possible to identify micro-Gauss magnetic
fields coherent over galactic scales in many galaxies and galaxy clusters [1, 2].

The origin of these large-scale magnetic fields is unclear. It is assumed that galactic magnetic fields can be main-
tained and amplified via a dynamo mechanism, where the kinetic energy of a turbulent interstellar plasma is converted
into magnetic energy [3]. However, this requires initial seed fields of unknown origin, possibly pre-galactic or primor-
dial [4, 5]. The strength and correlation length of primordial intergalactic magnetic fields (IGMFs) can be limited by
their effect on various stages in cosmic history. The strongest bounds on the strength of primordial IGMFs arise from
the study of temperature anisotropies in the cosmic microwave background (CMB) [6]. The limits are of the order
of nano-Gauss for a correlation lengths larger than a few Mpc. Simulations of large-scale structure formation favor
long-range IGMF with a strength of the order of pico-Gauss [7].

It has been suggested that weak IGMFs of the order of femto-Gauss can be probed by their effect on electro-
magnetic cascades initiated by the emission of distant multi-TeV γ-ray sources [8, 9]. High-energy γ-rays produce
pairs of electrons/positrons in the cosmic infrared/optical background (CIB) with an interaction length of the order
of 100 Mpc. The secondary leptons lose their energy via inverse-Compton scattering off the background photons and
produce secondary γ-rays at somewhat lower energies. If these photons are still above the pair-production threshold
the cycle repeats. In this way the electro-magnetic energy of the cascade is continuously shifted into the GeV-TeV
energy region. In the presence of magnetic fields secondary leptons are deflected off the line-of-sight and secondary
γ-rays inherit this deflection. This will attenuate the flux originally emitted towards the observer. However, γ-rays
initially emitted away from the observer can be scattered back into the line-of-sight and partially compensate for this
loss.

There are various ways to infer the strength B0 and correlation length λB of the IGMF from this effect. For
small deflections and isotropically emitting sources (or sufficiently large jet opening-angles) the net effect will be an
extended emission region of secondary γ-rays [8, 10–13]. For burst-like γ-ray sources this can also cause an observable
time-delay between the primary burst and secondary γ-rays [9, 14]. In the case of a hard TeV γ-ray emission the
secondary component can dominate over the attenuated primary γ-rays. Non-observation of the point-source in the
GeV-TeV band can then imply a lower limit on the magnetic field depending on the instrument’s resolution [8]. These
methods have been applied to various TeV γ-ray sources [15–21] and indicate the presence of an IGMF. The inferred
lower limits on its strength range from 10−18 G to 10−15 G, depending on many systematic uncertainties like the
primary emission spectrum, the CIB and the coherence length of magnetic fields.

Besides the systematic uncertainties of these methods, there are also some technical challenges in calculating the
energy and angular spectrum of the γ-ray halos. A straightforward Monte-Carlo calculation of the electro-magnetic
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cascade can become numerically expensive; since energy is conserved in the cascade the number of γ-rays, electrons
and positrons in the cascade increases by one order of magnitude for every decade of the energy shift. At every step
of the cascade each particle will have accumulated a deflection angle with respect to the line-of-sight which depends
on its history in the cascade. In order to accumulate a satisfactory resolution in energy and angular extend of the
halos it is necessary to sample over many cascades.

In the absence of deflections by magnetic fields the electro-magnetic cascade can be calculated efficiently by ana-
lytical methods using cascade equations and the method of matrix doubling [22]. We will show in this paper that
there is a straightforward extension of this method to the case of isotropic emitters and small deflections in magnetic
fields. The key observation is that the deflection θ of electrons and positrons in the cascade in combination with
inelastic losses to photons can be treated as a diffusion process in θ-space where the diffusion coefficient depend on
the particle’s Larmor radius and the inverse-Compton energy loss length. We derive diffusion-cascade equations that
describe the evolution of the moments of the θ-distribution and give a simple method how these moments can be used
to reconstruct the distribution.

We will begin in section II by a discussion of electro-magnetic cascades from γ-ray point sources in the presence of
weak IGMFs. In section III we will motivate the extension of the Boltzmann equations by a diffusion term in θ-space
and give an extended set of cascade equations for the moments of the θ-distribution. We discuss in section IV how
the full θ-distribution can be reconstructed efficiently from a finite number of moments via explicit inverse Laplace
transformations of Padé approximations of the moment’s generating function. We will test our method in section V
by two examples and compare our results to previous studies. Finally, we conclude in section VI.

We work throughout in natural Heaviside-Lorentz units with ~ = c = ε0 = µ0 = 1, α = e2/(4π) ' 1/137 and
1 G ' 1.95× 10−2eV2.

II. ELECTRO-MAGNETIC CASCADES

The driving processes of the electro-magnetic cascade in the cosmic radiation background (CRB) are inverse Comp-
ton scattering (ICS) with CMB photons, e±+γbgr → e±+γ, and pair production (PP) with CMB and CIB radiation,
γ + γbgr → e+ + e− [23, 24]. In particular, the interaction length of multi-TeV γ-rays depend on the CIB back-
ground at low redshift and is of the order of a few 100 Mpc. We show the relevant interaction lengths and energy
loss lengths in the left panel of Fig. 1. High energetic electrons and positrons may also lose energy via synchrotron
radiation in the intergalactic magnetic field, but this contribution is in general negligible for the small magnetic field
strength considered here. Further processes contributing to the electro-magnetic cascade are double pair production,
γ + γbgr → e+ + e− + e+ + e−, and triple pair production, e± + γbgr → e± + e+ + e− [22, 25]. These contributions
can be neglected for cascades initiated by multi-TeV γ-rays considered here. Also, interactions on the cosmic radio
background are negligible in this case.

For the calculation of the flux from a γ-ray point-source it is convenient to start from the evolution of a comoving
number density Yα = nα/(1 + z)3 (GeV−1 cm−1) in a spatially homogeneous and isotropic universe. The Boltzmann
equations of electrons/positrons (Ye) and γ-rays (Yγ) is given by

Ẏα(E) = ∂E(HEYα)− ΓαYα(E) +
∑
β=e,γ

∫
E

dE′γβα(E′, E)Yβ(E′) + Lα(E) , (1)

together with the Friedman-Lemâıtre equations describing the cosmic expansion rate H(z) as a function of the
redshift z, H2(z) = H2

0 [Ωm(1 + z)3 + ΩΛ], normalized to its present value of H0 ∼ 70 km s−1 Mpc−1. We consider
the usual “concordance model” dominated by a cosmological constant with ΩΛ ∼ 0.7 and a (cold) matter component,
Ωm ∼ 0.3 [26]. The time-dependence of the redshift is given by dz = −dt (1 + z)H. The first term in the r.h.s. of
Eq. (1) accounts for the continuous energy loss due to the adiabatic expansion of the Universe. The second and third
terms describe the interactions with background photon fields involving particle losses (α → anything) and particle
generation α→ β. The angular-averaged (differential) interaction rate, Γα (γαβ) is defined as

Γα(z, Eα) =
1

2

1∫
−1

d cos θ

∫
dε (1− β cos θ)nγ(z, ε)σtot

αγ , (2)

γαβ(z, Eα, Eβ) = Γα(z, Eα)
dNαβ
dEβ

(Eα, Eβ) , (3)
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where nγ(z, ε) is the energy distribution of background photons at redshift z and dNαβ/dEβ is the angular-averaged
distribution of particles β after interaction of a particle α. Besides the contribution of the CMB we use the CIB from
Ref. [27]. Due to the cosmic evolution of the radiation background density the interaction rates (2) and (3) scale
with redshift. The CMB evolution follows an adiabatic expansion, nγ(z, ε) = (1 + z)2 nγ(0, ε/(1 + z)), and we assume
the same evolution of the CIB for simplicity. We refer to Ref. [28] for a list of the redshift scaling relations of the
interaction rates in Eqs. (1). The last term in Eq. (1), Lα, accounts for the emission rate of particles α per comoving
volume.

In the limit of small deflections of particles via magnetic fields, the flux from a γ-ray point source at redshift distance
z? with emission rate Qγ is equivalent to an angular-averaged flux from a sphere at redshift z?. Hence, the solution
of Y at t = 0 is equivalent to the point source flux J (GeV−1 cm−2 s−1) by replacing the emission rate density L in
(1) by

L?γ(z, E) =
Qγ(E)

4πd2
C(z?)

H(z?)δ(z − z?) , (4)

where the comoving distance of the source (in a flat universe) is given by dC(z) ≡
∫ z

0
dz′/H(z′). Note, that we can

also use the ansatz (4) for a cosmic ray (CR) point source located at redshift z?, where the electro-magnetic emission
is in the form of cosmogenic γ-rays, electrons and positrons produced during CR propagation [29].

III. ANGULAR DIFFUSION IN INTERGALACTIC MAGNETIC FIELDS

The γ-ray cascade can only contribute to a GeV-TeV point-source flux if the deflections of secondaries off the
line-of-sight are sufficiently low. The scattering angle of secondaries is only of the order of ε/me and can be neglected
for the optical/infra-red background photon energies ε. However, electrons and positrons can be deflected in the
IGMF. We can estimate the extend of the cascaded γ-ray emission by simple geometric arguments following [11].
Deflection of electrons and positrons will be small if the energy loss length λe of electrons/positrons via inverse
Compton scattering (ICS) is much smaller than the Larmor radius given as RL = E/eB ' 1.1(ETeV/BfG)Mpc. Here
and in the following we use the abbreviations E = ETeVTeV, etc. For center of mass energies much lower than the
electron mass, corresponding to energies below PeV in the CMB frame, electrons and positrons interact quickly on kpc
scales but with low inelasticity proportional to their energy, λe ' 0.4 Mpc/ETeV. The typical size of the point-spread
function (PSF) of imaging atmospheric Cherenkov telescopes (IACTs) is of the order of θPSF ' 0.1◦. Hence, magnetic

deflections become important if θPSF . λe/RL or E . 14 TeV
√
BfG/θPSF,0.1◦ .

In the following we are going to study these magnetic deflections more quantitatively. For simplicity, we will start
with a regular IGMF that fills the space between the source and the observer and has the component B⊥ perpendicular
to the line-of-sight. We also assume that the source is emitting γ-rays isotropically.1 Due to charge conservation in
the cascade electrons and positrons will be produced in equal rates and will be deflected in opposite directions. For
small scattering and isotropic emission we can assume that leptons that are lost by deflections out of the line-of-sight
are replenished by the corresponding leptons deflected into the line-of-sight. Effectively, we can hence assume that the
total number of electrons/positrons within the line-of-sight remains constant by these deflections while the scattering
angle θ is broadened by the magnetic field. The width of this θ-distribution, Ye(E, θ), is determined by the energy
loss length via ICS. Secondary γ-rays will inherit the θ-distribution of the parent leptons and will appear as extended
halos.

The energy loss length via ICS with CMB photons is much smaller than the typical distance of TeV γ-ray sources
or the interaction length of PP in the CIB. This indicates that we can treat magnetic deflections in the cascade as
a diffusive process of the angle θ. The mean free path of the electrons/positrons corresponds to the energy loss rate
in ICS and the diffusion velocity is the inverse Larmor radius. Hence, the diffusion coefficient D is of the order of
λ2

ICS/R
2
L. A more rigorous derivation (see Appendix A) shows that the evolution of the θ-distributions of leptons and

1 We can relax this condition by requiring that the γ-ray emission is into a jet with sufficiently large jet opening-angle.
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γ-rays, Ye(E, θ) and Yγ(E, θ) respectively, can be described by the coupled set of differential equations,

Ẏγ ' ∂E(HEYγ)− ΓγYγ +
∑
α=e,γ

∫
E

dE′γαγ(E′, E)Yα(E′) + L?γδ(θ) , (5)

Ẏe ' ∂E(HEYe)− ΓeYe +
∑
α=e,γ

∫
E

dE′γαe(E
′, E)Yα(E′) + L?eδ(θ) +

∫
E

dE′Dreg(E′, E)∂2
θYe(E′) . (6)

The diffusion matrix of electrons/positrons in a regular magnetic field is given by

Dreg(E′, E) =
1

E ΓICS(E)

e2B2
⊥

E′2 〈x〉(E′)
, (7)

where 〈x〉(E) is the inelasticity of ICS with interaction rate ΓICS(E). For cosmological sources the redshift scaling of
the diffusion matrix (7) can also become important. For primordial magnetic fields scaling as B⊥(z) = (1 + z)2B⊥(0)
and ICS with CMB photons the redshift dependence is given by the simple relation Dreg(z, E′, E) = (1+z)4Dreg(0, (1+
z)E′, (1 + z)E).

This formalism has the advantage that we can calculate the moments of the θ-distribution by an extended set of
cascade equations as we will see in the following. Firstly, we introduce the quantities

Y
(n)
e/γ ≡

1

(2n)!

∞∫
−∞

dθ θ2n Ye/γ (regular) . (8)

At leading order we have Y (0) = Y as the solution of Eq. (1) and for n ≥ 1 the quantities Y (n) correspond to the
scaled moments of the θ-distribution.2 It is easy to see that the quantities Y (n) (n > 0) follow the coupled set of
differential equations,

Ẏ (n)
α (E) = ∂E(HEY (n)

α )− ΓαY
(n)
α (E) +

∑
β=e,γ

∫
E

dE′γβα(E′, E)Y
(n)
β (E′) + δeα

∫
E

dE′D(E′, E)Y (n−1)
α (E′) , (9)

in addition to Eqs. (1). Note, that electro-magnetic interactions of photons and leptons that drive the cascade happen
on time-scales much shorter than the rate of adiabatic losses in the Universe. We can hence treat the interaction rates
as constant over small time-intervals and neglect the energy loss terms ∂E(HEY

(n)
α ) in Eqs. (1) and (9). We show

in Appendix B that this system of equations can then be solved efficiently by a generalization of the conventional
cascade equations.

We next consider a randomly oriented IGMF field with a coherence length λB much smaller then the distance d of
the source. In this case we have to replace Eq. (5) by the evolution of radial diffusion on a sphere of the form3

Ẏe ' ∂E(HEYe)− ΓeYe +
∑
α=e,γ

∫
E

dE′γαe(E
′, E)Yα(E′) + L?γδ(θ) +

∫
E

dE′Drnd(E′, E)θ−1∂θ [θ∂θYe(E′)] , (10)

with diffusion coefficient (see Appendix A)

Drnd(E′, E) ' 1

3

min(1, λBΓICS(E))

E ΓICS(E)

e2B2
0

E′2〈x〉(E′)
. (11)

Here, a factor 1/3 accounts for the random orientation of the magnetic field w.r.t. the line-of-sight. Analogously to
the diffusion in a regular magnetic field we can define moments of the diffusion in random IGMFs by

Y
(n)
e/γ ≡

2π

(2nn!)2

∞∫
0

dθ θ θ2n Ye/γ (random) , (12)

2 To be more precise, θ is an element of the covering space R of the circle S1. The distribution along the circle is then obtained by
YS1 (E, θ) =

∑
n∈Z YR(E, θ+ 2πn). However, we are only interested in small scattering angles θ � 1◦ and hence YS1 (E, θ) ' YR(E, θ).

3 We consider only small deflections and can hence approximate the sphere as two-dimensional flat space.
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FIG. 1: Left panel: The interaction length (solid lines) and energy loss length (dashed lines) from various contributions of
the CRB. We show the rates separately for the CMB and CIB. Also shown is the inverse Hubble scale (dotted line). Right
panel: The spectra of γ-rays from a source at 120 Mpc with injection spectrum Qγ ∼ E−2 exp(−E/300 TeV) (gray line)
following Ref. [12]. We show the contribution of surviving primary γ-rays (dashed line) and secondary cascaded γ-rays (solid
line) separately.

which follow the same differential equations (9) with diffusion matrix Drnd.

So far we have only considered the diffuse scattering of the photons along their initial trajectory. How does this
translate into the observed morphology of the γ-ray signal? Deflections of electrons close to the source at distance d,
e.g. by the magnetic field of the source itself, will have a weaker impact on the observed angular distribution than
deflections close to the observer. If the cascade experiences a deflection ∆θ at a distance r from the observer we can
approximate the corresponding angular displacement ∆θ′ in the observer’s frame via ∆θ′/∆θ ' (d − r)/d. We can
account for this scaling in the cascade equation by introducing the corresponding scaling in the convection velocity
R−1
L or, equivalently, by a scaling of the diffusion matrix of the form D′ ' ((d − r)/d)2D. In practice, this requires

that we repeat the calculation of transfer matrices after sufficiently small propagation distances, for which we then
also account for the variation of (differential) interaction rates Γ (γ) with redshift and adiabatic energy loss. With
this simple modification the moments Y (n) reflect the angular distribution of γ-ray halos, as long as scattering in the
magnetic field is small and the source is emitting isotropically.

As an example, we study in the following an isotropic γ-ray point-source at a distance of about 120 Mpc – as Mrk 421
– with a γ-ray injection spectrum of the form Qγ ∼ E−2 exp(−E/300 TeV). This particular example has been studied
in Ref. [12] and hence our results are directly comparable. In the left panel of Fig. 1 we show the source spectrum,
i.e. the spectrum that would be visible without the CRB (thin gray line) together with the electron/positron and
γ-ray spectrum after propagation. The total γ-ray spectrum (dotted green line) can be decomposed into a “primary”
component (dashed green line) of surviving γ-rays and a “cascaded” component (solid green line) from γ-rays of the
cascade. The γ-ray flux is strongly suppressed beyond 10 TeV due to the PP with the CIB and secondary γ-rays from
ICS with the CMB peak between 0.1-1 TeV.

We will assume in the following that the cascade develops in a weak IGMF with strength B0 = 10−15 G and a
coherence length λB = 1 Mpc extends. For the reconstruction of the γ-ray halo it is convenient to first subtract the
moments of the surviving primary γ-rays that don’t take part in the cascade,

Y
(n)
γ, halo = Y

(n)
γ, total − Y

(n)
γ primary . (13)

In our example we assume a point-source with sufficiently small angular extend, corresponding to the case Y
(0)
γ, primary =

Yγ, primary and vanishing higher moments. In general, the higher moments of the primary source with an angular extend
2θs can be approximated by

Y
(n)
primary ' Y

(0)
primary

θ2n
s

n!(n+ 1)!4n
. (14)



6

The size of the first non-trivial moment Y
(1)
γ, halo/Y

(0)
γ, halo already serves as a first indicator for the size of the γ-ray

halo. If this is much larger than the PSF of an IACT the flux of secondary γ-rays will be strongly isotropized and
can only be constrained by the diffuse γ-ray background (see e.g. [30]). We will show in the following that we can use
the spectrum of moments to reconstruct the γ-ray halo for small deflection angles. This will also give an indication
at which energies the contribution of secondary γ-rays contribute to the point-source spectrum.

IV. RECONSTRUCTION OF THE ANGULAR DISTRIBUTION

The moments of the γ-ray halo serve as a measure for its angular distribution. How we can reconstruct the angular
distribution from a limited number of moments? As a first step it is convenient to define a distribution f(E, x) by
the transformation

Yγ,halo(E, θ) ≡ Yγ,halo(E)

∞∫
0

dx

[
1

(2πx)
d
2

e−θ
2/2x

]
f(E, x) , (15)

for regular (d = 1) or random (d = 2) magnetic fields. This transformation is motivated by the observation that the ker-

nel Gd(x, θ) = [. . .] corresponds to a Green’s function of the d-dimensional diffusion equation, (∂x−
∑
i ∂

2
θi

)Gd(x, ~θ) = 0

and Gd(0, ~θ) =
∏
i δ(θi) with

∑
i θ

2
i = θ2. We can then identify the quantities Y (n)/Y (0) as (scaled) moments of the

distribution f(E, x) for both, regular and random fields:

µn(E) ≡
∞∫

0

dxxn f(E, x) = 2nn!
Y

(n)
γ,halo(E)

Y
(0)
γ,halo(E)

. (16)

We hence arrive at a classical (Stieltjes) moment problem [31] of finding the distribution f from its moments
µn. From the differential equations (9) and the definition (16) it is easy to see that we can find a constant C
such that µn(E) < Cn![2dmaxE′≥E(D(E′, E))]n, where d the distance to the source. This is a sufficient condition
for a determinate moment problem [31], i.e. there exists a unique solution f satisfying Eq. (16). Note, that the
reconstruction of f from the complete set of moments µn is trivial. For instance, we can express f by an infinite
sum of Laguerre polynomials which are orthogonal on [0,∞) under the measure exp(−x). However, this method does
not prove convenient if there are only a finite number of µn at our disposal. The truncation of the expansion after
the first N + 1 basis function leads typically to rapidly oscillating solutions. Alternatively, we can reconstruct the
distribution by a sequence of approximations f , which are maxima of an entropy functional [33], where the condition
(16) are introduced via Lagrange multipliers. This problem can then be reduced to a minimization problem of an
N -dimensional effective potential.

In our case we choose a different approach, which is suitable for the particular form of the distribution. First, we
introduce the Laplace transform of the potential f as

f̂(E, s) = L{f(E, x)} ≡
∞∫

0

dxe−sxf(E, x) =

∞∑
k=0

(−s)k

k!
µk . (17)

The Laplace transform f̂ corresponds to a generating function of the moments, (−1)n∂ns f(E, s)|s=0 = µn(E), and the

solution to the moment problem corresponds to the inverse Laplace transform f(E, x) = L−1{f̂(E, s)}. However, in
practice we have only a finite number of moments N + 1 and the truncation of the alternating series (17) does not
converge for large s.

We can find an approximate solution by replacing the truncated series by a Padé approximation – a method which

is well-known to chemistry, engineering or nuclear physics [34]. We are approximating f̂ by a rational function

f̂[M,M+1](s) = P (s)/Q(s) where P and Q are polynomials of degree M and M + 1, respectively. The coefficents of P
and Q are determined by matching the first 2M +1 terms of the Taylor expansion of f[M,M+1] to the truncated series.
Clearly, for N + 1 calculated moments we can only consider M ≤ N/2 for the approximation. Since deg(Q) > deg(P )
the Padé approximation is finite as s → ∞, in contrast to the truncated series it approximates. If we write the
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FIG. 2: Left panel: The first 15 non-trivial moments µn at three different γ-ray energies for the example shown in the right
panel of Fig. 1 and assuming a IGMF with strength B0 = 10−15 G and λB = 1 Mpc. The dashed lines show the momenta
reconstructed by the Padé approximations f̂[4,5] that are fixed by the first eight non-trivial moments. The approximation
reproduces the higher moments well. Right panel: The γ-ray halos reconstructed from the moments shown in left panel. We
also indicate the typical size of the PSF for IACTs.

denominator via its roots si with multiplicity mi, Q(s) =
∏n
i=1(s − si)

mi , the inverse Laplace transform of the
rational function f[M,M+1] has the simple form

f(E, x) ' L−1{f̂[M,M+1]} =

n∑
i=1

mi∑
j=1

cij(E)

(j − 1)!
xj−1exsi(E) , (18)

where the coefficients cij follow from an expansion into partial fractions. Note, however, that for a general Padé
approximation it is not guaranteed that all <(si) < 0 and hence the approximation (18) can be unstable even if the
exact solution (17) is stable itself. However, by lowering the degree of approximation M it is in general possible to
obtain a stable Padé approximation that fulfills the necessary criteria. This can be done by trial and error – as we do
here for simplicity – or by an algorithmic procedure [35]. We will show in the following section, that this procedure
is stable and reproduces the moments of the distribution well. Finally, the distribution N(θ) can be obtained from
Eqs. (15) and (18).

We illustrate this procedure for the cascade spectrum shown in the right panel Fig. 1. In the left panel of Fig. 2 we
show the first 15 non-trivial moments µn of the distribution f for γ-ray halos at 102.5, 103 and 103.5 GeV. The dashed

line shows the moments calculated via the Padé approximation f̂[4,5]. Note, that this approximation is determined by
the first eight non-trivial moments, but also reproduces all the higher moments of our calculation satisfactorily (up to
a few percent). This serves as an indication that the method converges for large deflections θ for the given number of
moments. In general, the necessary order of the Padé approximation depends on the specific problem, i.e. the distance
to the source and its emission spectrum. On the other hand, the lower moments of the distribution are expected to
set the scale for the small angle resolution of the reconstruction. Qualitatively, we can estimate this as θres '

√
µ1.

For all three energies shown in the left panel of Fig. 2 the resolution is hence expected to be better than 0.1◦, the
typical size of the PSF of IACTS. We discuss the convergence of the halo reconstruction from a truncated moment
problem in Appendix C in more detail.

Using Eqs. (15) and (18) we can derive the angular distribution of the halos which are shown in the right panel
of Fig. 2. For illustration we normalize the distribution as N(θ,E) = Yγ,halo(θ,E)/Yγ,total(E). The halos indicate
a sub-structure of at least two sub-halos. At first sight this seems peculiar; from our earlier estimates we expect
a halo with a size of the order of λe/RL. However, one notices that most of the γ-rays at energies 102.5, 103 and
103.5 GeV are contained in smaller sub-halos. This is a result of the scaling of the deflection with the distance to
the source. For instance, the γ-ray halo at 103 GeV are produced by ICS of electrons/positrons of CMB photons at
about 7 × 103 GeV. From the right panel of Fig. 1 we can see that these leptons can originate from PP of primary
γ-rays at about 104 GeV. However, this production channel is not efficient due to the small optical depth with only a
small fraction of primary γ-rays participating. A more efficient way to produce these 7×103 GeV electrons/positrons
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FIG. 3: Left panel: The size of the extended γ-ray halo defined by Eqs. (19) and (20) for a source at z = 0.031 with spectrum
Qγ(E) ∼ E−2 exp(−E/300TeV). Right panel: A model for the γ-ray spectrum of the blazar source 1ES0229+200 located
at z = 0.14. The blue data points show the H.E.S.S. observation [36] and the red lines correspond to the upper flux limits

from Fermi-LAT (taken from Ref. [18]). We assume a source spectrum of the form Qγ ∝ E−2/3Θ(20TeV − E). The solid
green line shows the spectrum of secondary γ-rays without deflections in the IGMF. The dotted green lines indicate the part
of the cascaded γ-ray spectrum within 0.1◦ around the source for an IGMF with coherence length λB = 1 Mpc and strength
B0 = 10−16 G, 10−15 G and 10−14 G, respectively.

is PP of γ-rays at much higher energies and subsequent continuous energy loss via ICS. Note, that since the primary
γ-ray flux of the model scales as E−2 each energy decade above the PP threshold has a similar contribution to the
103 GeV signal during the lifetime of the cascade.

The distinction of these two channels becomes important since the observed deflection depends on the distance from
the source. Direct production of electrons happens at a late stage in the cascade and the deflections are larger. This
contribution is responsible for the largest sub-halos shown in the right panel of Fig. 2. However, the more dominant
channel of PP by higher energy γ-rays and subsequent ICS of the electrons happens much faster and closer to the
source. Hence, this contribution forms sub-halos with smaller extend. However, not all of these γ-ray sub-halos will
be resolvable in IACTs. We are indicating in the plot the typical size of the PSF of 0.1◦. We will discuss in the
following section the observable size of the extended γ-ray halos in more detail.

V. SIZE OF THE EXTENDED HALOS

The size of the extended halo serves as a measure of the IGMF. Typically, the low-θ form of the halo derived from
the approximation (18) depend on a few roots si with large real component |<(si)|. In this case, the θ-distribution is
in the form of a modified Bessel function for a random IGMF with λB � d. The sub-halos have the form

N(θ) ∼ |<(si)|
π

K0(
√

2|<(si)|θ) ∼
1√
8πθ

1

θ
3/2
i

e−θ/θi , (19)

where in the last step we took the asymptotic form of K0 at large θ and introduced the characteristic size of the
sub-halo, θi = (2|<(si)|)−1/2. Hence, there is a simple relation between the measurable size of the halo and the simple
poles of the Padé approximation.

In the cases shown in the right panel of Fig. 2 the leading order halo is below the typical instrument’s resolution
of θPSF = 0.1◦. Instead, the next-to-leading-order root will determine the size of the halo. In this case we define the
size of the leading (observable) halo as

θcut = min({θi}|θi > θPSF) . (20)

For our test spectrum we show the parameter θcut in the left panel of Fig. 3 for various magnetic field strengths and
γ-ray energies between 100 GeV to a few TeV. As before we consider a coherence length of λB = 1 Mpc. The size
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of the halo in this energy range follows approximately θcut ∝ E−1 as the fit shows. This agrees with the findings of
Ref. [12] (Fig. 7) derived from a Monte-Carlo study.

Another interesting situation occurs if the cascaded γ-ray spectrum dominates over the primary γ-ray emission.
This can happen for injection spectra that are considerably harder than E−2. In this case the detection sensitivity of
the cascaded GeV-TeV spectrum depends on the size of the halo and the resolution of the telescope. As an example
we consider the emission of the blazar source 1ES0229+200 located at redshift z = 0.14, which has been detected by
its TeV γ-ray emission by H.E.S.S. [36]. The spectrum is shown in the right panel of Fig. 3 as the blue data. Following
Ref. [18] we model the γ-ray emission spectrum as Qγ ∝ E−2/3Θ(20TeV−E) (thin gray line). The surviving primary
γ-rays are shown as a dashed green line and secondary cascaded γ-rays by a solid line.

It is easy to understand the shape of the various spectra. Primary γ-rays close to Emax interact with the CIB to
produce electron/positron pairs. This is a slow process happening on typical scales of the order of a few 100 Mpc (see
left panel of Fig. 1). The leptons quickly lose energy via ICS with CMB photons at a rate bICS = E/λe; their spectrum
in quasi-equilibrium (∂tYe ' 0) follows the differential equation ∂E(bICSYe) ' ΓPPYγ . Thus, the Comptonized electron
spectrum for E � Emax has the form Ye ∼ E−2

e . The typical photon energy from ICS of a background photon with
energy ε is given by Eγ ' ε(Ee/me)

2. The resulting photon spectrum at E � Emax follows from energy conservation

in ICS, ∂tYγ ' (dEe/dEγ)(bICS/Eγ)Ye ∼ (Ee/Eγ)2/(2λe)Ye ∼ E
−3/2
γ . The plateau of the full cascaded spectrum

shown in the right panel of Fig. 3 is slightly softer than this since a part of the inverse-Compton spectrum is still
above pair-production threshold and enters a second cascade cycle.

We also show the expected contribution of secondary γ-rays confined within the PSF of a typical IACT with
θPSF = 0.1◦ assuming an IGMF with coherence length λB = 1 Mpc and strength B0 = 10−16, B0 = 10−15 and
B0 = 10−14 G, respectively. The deflection of an electron of the Comptonized spectrum is approximately θe ∼ λe/RL/4
following from ∂t(θeYe) ' Ye/RL and Ye ∼ E−2

e . This is consistent with the results of our diffusion ansatz since the

first moment of the electron/positron distribution follows Y
(1)
e /Y

(0)
e ' (λe/RL/4)2/2. If the typical deflection θe

exceeds θPSF we expect to see a reduction in the point-source flux by a geometric factor (θPSF/θe)
2 ∝ E−4

e ∼ E−2
γ .

Pair production by γ-rays close to Emax happen within about 100 Mpc of the source and the deflection is reduced by
the optical depth, τPP = ΓPPdC(z?) ∼ 5. Hence, for ICS in the CMB the transition is expected to occur close to the
energy

Ecr ' 0.2
BfG

θPSF,0.1◦
TeV . (21)

This agrees well with the reduced cascade flux (“θ < 0.1◦”; dotted lines) shown in the plot.

Before we conclude we would like to emphasize a subtlety concerning the contribution of the CIB in ICS. As can be
seen from the summary of interaction/loss lengths in the left panel of Fig. 1, the contribution of the CIB to the total
energy loss of ICS is negligible. The γ-ray spectrum Yγ is hence almost independent of this contribution, but this is

not the case for the higher moments Y
(n)
γ . To see this, let us consider a fully Comptonized electron/positron spectrum

Ye ∼ E−2
e . Following our previous arguments we have ∂t(θγYγ) ∼ (dEe/dEγ)(bICS/Eγ)θeYe ' (Ee/Eγ)2/(8RL)Ye for

the Comptonized electron spectrum. The growth of the deflection is hence proportional to
√
ε and optical photons are

expected to contribute much stronger than CMB photons. However, the fraction of photons that contribute with this
large deflection is negligible. Inverse-Compton scattering by the CIB will form a shallow plateau of γ-rays that are
negligible for the calculation of the moments of the central halo from the CMB contribution. We can hence neglect
this contribution in the calculation of moments which improves the quality of the halo reconstruction at low θ.

VI. CONCLUSION

We have discussed a novel technique of calculating extended halos of TeV γ-ray sources in the presence of inter-
galactic magnetic fields. The method builds on standard cascade equations that account for all particle interactions
with the background radiation and treats the effect of secondary electron/positron deflections in intervening magnetic
fields by a diffusion ansatz. The moments of the angular distribution can be calculated efficiently by an extended set
of cascade equations. The first moments of the distribution already serve as a good estimator of the halo size. We have
shown how the full distribution can be reconstructed from further moments via an inverse Laplace transformation of
the moment’s generating function using Padé approximations.

Our method applies to situations where the emission of γ-rays is isotropic or within a sufficiently large jet opening-
angle. The γ-ray halo is expected to show further structure in the more general case. For instance, γ-ray emission
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into narrow jets are expected to produce additional breaks in the halo profile [11] and non-spherical geometries in the
case of an off-axes emission [37]. For the illustration of the method we have considered a steady γ-ray emission. In
the case of pulsed or short-lived γ-ray sources there will be a time-delay between primary and secondary γ-rays due
to the increased path length of the leptons. This can also serve as a measure for the intergalactic magnetic field.
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Appendix A: Derivation of Eqs. (5) and (10)

We assume in the following that the magnetic field is perpendicular to the line-of-sight of the source. In this setup
electrons and positrons will be deflected by an angle θ in a plane normal to the magnetic field. For isotropic emission
and small deflections the leptons deflected off the line-of-sight are replenished by leptons initially streaming away from
the observer. The net effect is a broadening of the θ-distribution (Y±) due to a convection term with opposite sign
for electrons (−) and positrons (+). The transport equations take the form

Ẏ±(E, t, θ) =± 1

RL(E)
∂θY±(E, t, θ)− Γe(E)Y±(E, t, θ)

+

∫
E

dE′
(

1

2
γγe(E

′, E)Yγ(E′, t, θ) + γee(E
′, E)Y±(E′, t, θ)

)
+

1

2
L?e(E, t, θ) . (A1)

The evolution equation of the total electron/positron cascade Ye = Y+ + Y− can then be written as

Ẏe(E, t, θ) =
1

R2
L(E)

t∫
0

dt′e−Γe(E)(t−t′)∂2
θYe(E, t′, θ)− Γe(E)Ye(E, t, θ) + Leff

e (E, t, θ)

+

t∫
0

dt′e−Γe(E)(t−t′)
∫
E

dE′γee(E
′, E)

[
Ẏe(E′, t′, θ) + Γe(E

′)Ye(E′, t′, θ)− Leff
e (E′, t′, θ)

]
, (A2)

with an effective source term

Leff
e (E, t, θ) =

∑
α=e,γ

∫
E

dE′γαe(E
′, E)Yα(E′, t, θ) + L?e(E, t, θ) . (A3)

For tΓe � 1 we can make the replacement Γe exp(−Γe(t− t′))→ δ(t− t′) and Eq. (A2) reduces to

∂2
θYe(E, t, θ)
R2
L(E)

'
∫
E

dE′
(

Γe(E
′)δ(E − E′)− γee(E′, E)

)[
Ẏe(E′, t, θ) + Γe(E

′)Ye(E′, t, θ)− Leff
e (E′, t, θ)

]
. (A4)

We can further simplify Eq. (A4) by introducing the mean inelasticity,

〈x〉 = 1−
∫

dE′
E′

E

γee(E,E
′)

Γe(E)
. (A5)

The inelasticity of ICS off CMB photons for electron/positron energies below about 100 TeV is small and we can
hence approximate the differential interaction rate by γee(E

′, E) ' Γe(E
′)δ(E −E′(1− 〈x〉)). Using this in Eq. (A4)

and taking the limit 〈x〉 � 1 we arrive at

∂2
θYe(E, t, θ)
〈x〉(E)R2

L(E)
' −∂E

(
E Γe(E)

[
Ẏe(E, t, θ) + Γe(E)Ye(E, t, θ)− Leff

e (E, t, θ)

])
. (A6)
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Integrating this equation gives

1

E Γe(E)

∞∫
E

dE′
∂2
θYe(E′, t, θ)
〈x〉(E′)R2

L(E′)
' Ẏe(E, t, θ) + Γe(E)Ye(E, t, θ)− Leff

e (E, t, θ) . (A7)

We hence arrive at the diffusion term (5) with diffusion matrix (7) for a regular magnetic field.

If the coherence length λB of the magnetic field is smaller than the distant to the source we can not neglect the

spatial dependence of the diffusion velocity R−1
L . Generalizing to two angular variables ~θ = (θ1, θ2) in the plane

orthogonal to the line-of-sight we start with

Ẏ±(E, t, ~θ) =± 1

RL(E)
~nL(t)~∇θY±(E, t, ~θ)− Γe(E)Y±(E, t, ~θ)

+

∫
E

dE′
(

1

2
γγe(E

′, E)Yγ(E′, t, ~θ) + γee(E
′, E)Y±(E′, t, ~θ)

)
+

1

2
L?e(E, t, ~θ) , (A8)

where ~nL is the direction of the Lorentz force projected into the θ1θ2-plane. From here we arrive at

Ẏe(E, t, ~θ) =
1

R2
L(E)

t∫
0

dt′e−Γe(E)(t−t′)~nL(t)~∇θ
[
~nL(t′)~∇θYe(E, t′, ~θ)

]
− Γe(E)Ye(E, t, ~θ) + Leff

e (E, t, ~θ)

+

t∫
0

dt′e−Γe(E)(t−t′)
∫
E

dE′γee(E
′, E)

[
Ẏe(E′, t′, ~θ) + Γe(E

′)Ye(E′, t′, ~θ)− Leff
e (E′, t′, ~θ)

]
. (A9)

For the evaluation of the second time integral in Eq. (A9) we can proceed as in the case of a regular magnetic
field. However, in the first integral we have to account for the fluctuations of ~nL(t′) over the inverse Compton
scattering length. These will average to zero except for ∆t . λB and we hence substitute Γe exp(−Γe(t − t′)) →
min(1, λBΓe)δ(t − t′). Averaging over the orientation of the magnetic field can be accounted for by an additional
factor 1/3. Proceeding now along the same steps as in the case of a regular field and replacing the angles θ1/2 by
spherical coordinates with radius θ we arrive at the diffusion term (10) with diffusion matrix (11).

Appendix B: Diffusion-Cascade Equations

We start from the Boltzmann equations (1) and (9) and define discrete values Y
(n)
e,i ' ∆EiY

(n)
e (Ei), Qe,i '

∆EiQe(Ei), etc. The combined effect of transitions and deflections within the cascade during a sufficiently small
time-step ∆t can be described by(

Yγ(t+ ∆t)
Ye(t+ ∆t)

)(0)

i

'
∑
j

(
Tγγ(∆t) Teγ(∆t)
Tγe(∆t) Tee(∆t)

)
ji

(
Yγ(t)
Ye(t)

)(0)

j

+ ∆t

(
Qγ
Qe

)
i

, (B1)

(
Yγ(t+ ∆t)
Ye(t+ ∆t)

)(n)

i

'
∑
j

(
Tγγ(∆t) Teγ(∆t)
Tγe(∆t) Tee(∆t)

)
ji

(
Yγ(t)
Ye(t)

)(n)

j

+ ∆t

(
0 0
0 D

)
ji

(
Yγ(t)
Ye(t)

)(n−1)

j

(n > 0) , (B2)

The full cascade solution is then given by(
Yγ(t′)
Ye(t

′)

)(n)

i

'
n∑

m=0

∑
j

A(m)
ji (t′ − t)

(
Yγ(t)
Ye(t)

)(n−m)

j

+ ∆t
∑
j

B(n)
ji (t′ − t)

(
Qγ
Qe

)
j

. (B3)

The 2n matrizes A(m) and B(m) follow the recursive relation

A(n)(2p∆t) =

n∑
i=0

A(i)(2p−1∆t) · A(n−i)(2p−1∆t) , (B4)

B(n)(2p∆t) = B(n)(2p−1∆t) +

n∑
i=0

A(i)(2p−1∆t) · B(n−i)(2p−1∆t) , (B5)
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FIG. 4: Range of canonical solutions (shaded area) of the moment problem compared to the Padé approximation (red solid
line).

where the non-zero initial conditions are A(0)(∆t) = T (∆t), A(1)
ij = diag(0,∆tDij) and B(0)(∆t) = 1. The matrices

A(0) and B(0) are the familiar transfer matrices for electro-magnetic cascades in the presence of a source term. Using
the recursion relations (B4) and (B5) we can efficiently calculate the matrices A(n) and B(n) via matrix-doubling [22].

Appendix C: Convergence of the Halo Reconstruction

We estimate in this section the precision of the halo reconstruction of the truncated moment problem. An upper
limit on the halo can be derived in a very simple way. Imagine that the distribution f(x) is concentrated at one
point y on the real axis, f(x) ' δ(x − y). The moments of this distribution are simply µi ' yi. If we decompose
f(x) =

∫
dyf(y)δ(x− y) we can derive a simple upper limit on the halo of the form

N(θ) ≤ maxx

{[
1

2πx
e−θ

2/2x

]
minn

{µn
xn

}}
. (C1)

As an example, we show in Fig. 4 the upper limit (dashed black line) constructed from the first 15 moments of the
TeV halo (red solid line) already shown in Fig. 2.

It is possible to give a stronger upper as well as lower limit of the halo. For simplicity, let us assume that we
know the first (2n + 1) moments (16) of f(x). We follow Ref. [32] and define a set of orthogonal functions Di with
D0 = 1/

√
µ0 and otherwise

Di(x) =
1√

∆i∆i−1

∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µi
µ1 µ2 · · · µi+1

...
...

. . .
...

µi−1 µi · · · µ2i−1

1 x · · · xi

∣∣∣∣∣∣∣∣∣∣
with ∆i =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µi
µ1 µ2 · · · µi+1

...
...

. . .
...

µi µi+1 · · · µ2i

∣∣∣∣∣∣∣∣∣ (C2)

A second set of polynomials Ei(x) is defined as in Eqs. (C2) with the replacement µi → µi+1. We further define the
functions

ρ(1)
n (x) =

(
n∑
i=0

D2
i (x)

)−1

and ρ(2)
n (x) =

1

x

(
n−1∑
i=0

E2
i (x)

)−1

(C3)

One can show that ρn(x) = min〈ρ(1)
n (x), ρ

(2)
n (x)〉 corresponds to the “maximum mass” that can be concentrated in

the distribution f at position x. From this we can construct canonical representations fζ(x), that have the maximal
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mass ρn(ζ) at ζ > 0. These solutions are given by fζ(x) =
∑
i ρ(xi)δ(x− xi), where xi (including ζ) are the roots of

Qζ(x) =


(x− ζ)

n∑
i=0

Di(ζ)Di(x) for ρ(ζ) = ρ(1)(ζ) ,

x(x− ζ)
n−1∑
i=0

Ei(ζ)Ei(x) for ρ(ζ) = ρ(2)(ζ) .
(C4)

In Fig. 4 we indicate the range of Nζ(θ) corresponding to the solutions fζ for n = 7 as a shaded area. For illustration,
we also indicate two explicit examples of Nζ as thin dotted line. One can consider the set of fζ as a basis of the
continuous solution f(x). Clearly, the reconstruction via a Padé approximation shown as a red solid line lies within
the band of these basis functions. Note that the width of solutions fζ becomes very narrow in the large-θ region.
Hence, the halo reconstruction concerning the asymptotic behavior of N(θ) is expected to converge very quickly.

In fact, the set of functions fζ provide yet another possibility to reconstruct the halo from its moments. The
difficulty for this approach lies in finding a continuous solution as a superposition of the form f(x) =

∫
dζg(ζ)fζ(x)

with
∫

dζg(ζ) = 1. For illustration, we also show in Fig. 4 a solution drawn from 100 random samples (uniform in ζ
with 0◦ <

√
ζ < 1◦) as a blue dashed line.
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